1
|
Zhang RB, Ren L, Ding DP, Wang HD, Peng J, Zheng K. Protective Effect of the SIRT1-Mediated NF-κB Signaling Pathway against Necrotizing Enterocolitis in Neonatal Mice. Eur J Pediatr Surg 2023; 33:386-394. [PMID: 36379465 DOI: 10.1055/s-0042-1758157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To discover the mechanism of the sirtuin 1 (SIRT1)-mediated nuclear factor-κB (NF-κB) pathway in the protection against necrotizing enterocolitis (NEC) in neonatal mice. MATERIALS AND METHODS Neonatal mice were treated with EX527 (an inhibitor of SIRT1) and/or pyrrolidine dithiocarbamate (PDTC, an inhibitor of NF-κB). The survival rate of the mice was recorded. Hematoxylin and eosin (HE) staining was performed to observe the pathological changes in the intestines. Furthermore, western blotting, enzyme-linked immunosorbent assay, and real-time quantitative polymerase chain reaction were conducted to measure the protein and gene expression, while corresponding kits were used to detect the levels of oxidative stress indicators. RESULTS PDTC increased the survival rate of NEC mice. When compared with the NEC+ EX527 + PDTC group, the histological NEC score was higher in the NEC + EX527 group but lower in the NEC + PDTC group. SIRT1 expression in the intestines of NEC mice was downregulated, with an increase in p65 nuclear translocation. Additionally, malondialdehyde increased and glutathione peroxidase decreased in the intestines of NEC mice, with the upregulation of interleukin (IL)-6, IL-1β, and tumor necrosis factor-α, as well as the downregulation of ZO-1, occludin, and claudin-4 in the intestines. However, the above changes could be improved by PDTC, which could be further reversed by EX527. CONCLUSION SIRT1 can mitigate inflammation and the oxidative stress response and improve intestinal permeability by mediating the NF-κB pathway, playing an important role in the alleviation of NEC.
Collapse
Affiliation(s)
- Rui-Bo Zhang
- Department of Pediatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, People's Republic of China
| | - Lan Ren
- Department of Pediatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, People's Republic of China
| | - De-Ping Ding
- Department of Infectious Diseases, Taihe Hospital, Hubei University of Medicine, Shiyan, People's Republic of China
| | - Heng-Dong Wang
- Department of Pediatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, People's Republic of China
| | - Juan Peng
- Department of Blood Transfusion, Taihe Hospital, Hubei University of Medicine, Shiyan, People's Republic of China
| | - Kun Zheng
- Department of Pediatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, People's Republic of China
| |
Collapse
|
2
|
Sazali Hamzah A, Fazli Mohammat M, Wibowo A, Shaameri Z, Nur Ain Abdul Rashid F, Hidayah Pungot N. Five-Membered Nitrogen Heterocycles as New Lead Compounds in Drug Discovery. HETEROCYCLES 2022. [DOI: 10.3987/rev-22-sr(r)7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
3
|
Nose-to-Brain Delivery of Antioxidants as a Potential Tool for the Therapy of Neurological Diseases. Pharmaceutics 2020; 12:pharmaceutics12121246. [PMID: 33371285 PMCID: PMC7766211 DOI: 10.3390/pharmaceutics12121246] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/13/2020] [Accepted: 12/18/2020] [Indexed: 12/31/2022] Open
Abstract
Oxidative stress has a key role in the pathogenesis of neurodegenerative disorders such as Alzheimer's, Parkinson's, and Huntington's diseases and can be an important cause of the damages in cerebral ischemia. Oxidative stress arises from high levels of reactive oxygen species (ROS). Consequently, on this rational base, antioxidants (many of natural origin) are proposed as potential drugs to prevent ROS noxious actions because they can protect the target tissues from the oxidative stress. However, the potential of antioxidants is limited, owing to the presence of the blood-brain barrier (BBB), which is difficult to cross with a consequent low bioavailability of the drug into the brain after systemic (intravenous, intraperitoneal, oral) administrations. One strategy to improve the delivery of antioxidants to the brain involves the use of the so-called nose-to-brain route, with the administration of the antioxidant in specific nasal formulations and its passage to the central nervous system (CNS) mainly through the olfactory nerve way. In the current literature, many examples show encouraging results in studies carried out in cell cultures and in animal models about the potential neuroprotective effects of antioxidants when administered through the nose. This review concerns the nose-to-brain route for the brain targeting of antioxidants as a potential tool for the therapy of neurological diseases.
Collapse
|
4
|
Li Q, Xing S, Chen Y, Liao Q, Li Q, Liu Y, He S, Feng F, Chen Y, Zhang J, Liu W, Guo Q, Sun Y, Sun H. Reasonably activating Nrf2: A long-term, effective and controllable strategy for neurodegenerative diseases. Eur J Med Chem 2019; 185:111862. [PMID: 31735576 DOI: 10.1016/j.ejmech.2019.111862] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 11/06/2019] [Accepted: 11/06/2019] [Indexed: 02/06/2023]
Abstract
Neurodegenerative diseases are a variety of debilitating and fatal disorder in central nervous system (CNS). Besides targeting neuronal activity by influencing neurotransmitters or their corresponding receptors, modulating the underlying processes that lead to cell death, such as oxidative stress and mitochondrial dysfunction, should also be emphasized as an assistant strategy for neurodegeneration therapy. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) has been closely verified to be related to anti-inflammation and oxidative stress, rationally regulating its belonging pathway and activating Nrf2 is emphasized to be a potential treatment approach. There have existed multiple Nrf2 activators with different mechanisms and diverse structures, but those applied for neuro-disorders are still limited. On the basis of research arrangement and compound summary, we put forward the limitations of existing Nrf2 activators for neurodegenerative diseases and their future developing directions in enhancing the blood-brain barrier permeability to make Nrf2 activators function in CNS and designing Nrf2-based multi-target-directed ligands to affect multiple nodes in pathology of neurodegenerative diseases.
Collapse
Affiliation(s)
- Qi Li
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Shuaishuai Xing
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Ying Chen
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Qinghong Liao
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Qihang Li
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Yang Liu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Siyu He
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Feng Feng
- Jiangsu Food and Pharmaceutical Science College, No.4 Meicheng Road, Huai'an, 223003, PR China
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Jie Zhang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Wenyuan Liu
- Department of Analytical Chemistry, School of Pharmacy, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Qinglong Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Yuan Sun
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, 95817, USA
| | - Haopeng Sun
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China; Jiangsu Food and Pharmaceutical Science College, No.4 Meicheng Road, Huai'an, 223003, PR China.
| |
Collapse
|
5
|
Motaghinejad M, Safari S, Feizipour S, Sadr S. Crocin may be useful to prevent or treatment of alcohol induced neurodegeneration and neurobehavioral sequels via modulation of CREB/BDNF and Akt/GSK signaling pathway. Med Hypotheses 2019; 124:21-25. [PMID: 30798909 DOI: 10.1016/j.mehy.2019.01.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/12/2019] [Accepted: 01/23/2019] [Indexed: 12/28/2022]
Abstract
The neurodegeneration and neurobehavioral consequences of alcohol are serious and offering therapeutic approaches for management of these types of neurodegeneration is one of the main concerns of researchers in this manner. Alcohol-stimulated oxidative stress, apoptosis and inflammation, with modulation of involved signaling pathway in neuroprotection, was reported previously. Neuroprotective strategy for management of alcohol induced neurodegeneration through a new generation neuroprotective agent and based on modulation of some neuroprotective signaling pathway such as CREB/BDNF and Akt/GSK has always been superior to any other therapeutic interventions. Therefore, the introduction and development of potential new neuroprotective properties and clarification of their effects on major cell signaling such as CREB/BDNF and Akt/GSK is necessitated. During recent years, using new neuroprotective compounds with therapeutic probability for treatment of alcohol induced neuro-biochemical and neuro-behavioral malicious effects have been amazingly increased. Many previous studies have reported the neuroprotective roles of crocin (major active component of saffron) in multiple neurodegenerative events and diseases in animal model. But the role of crocin neuroprotective effects against alcohol induced neurodegeneration and neurobehavioral sequels and also role of CREB/BDNF and Akt/GSK in this manner remain unclear. Hence we hypothesized that by using crocin in alcohol dependent subject it would provide neuroprotection against alcohol induced neurodegeneration and neurobehavioral and probably can manage sequels of alcohol abuses. Also we hypothesized that crocin, via intonation of CREB/BDNF and Akt/GSK signaling pathway, can inhibit alcohol induced neurodegeneration. In this article, we tried to discuss our hypothesis regarding the possible role of crocin, as a potent neuroprotective agent, and also role of Akt/GSK and CREB/BDNF signaling pathway in treatment of alcohol induced neurodegeneration and neurobehavioral through its anti-inflammatory,anti-apoptotic, anti-oxidative stress and cognitive enhancer.
Collapse
Affiliation(s)
- Majid Motaghinejad
- Research Center for Addiction and Risky Behaviors (ReCARB), Iran Psychiatric Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Sepideh Safari
- Razi Drug Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Saba Feizipour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Samira Sadr
- Research and Development Department, Parsian-Exir-Aria pharmaceutical Company, Tehran, Iran
| |
Collapse
|
6
|
Pyrrolidine dithiocarbamate (PDTC) inhibits inflammatory signaling via expression of regulator of calcineurin activity 1 (RCAN1). Biochem Pharmacol 2017; 143:107-117. [DOI: 10.1016/j.bcp.2017.07.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 07/11/2017] [Indexed: 11/20/2022]
|
7
|
Wang Z, Shan W, Cao J, Wintermark M, Huang W, Zuo Z. Early administration of pyrrolidine dithiocarbamate extends the therapeutic time window of tissue plasminogen activator in a male rat model of embolic stroke. J Neurosci Res 2017; 96:449-458. [PMID: 28976017 DOI: 10.1002/jnr.24186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 09/13/2017] [Accepted: 09/14/2017] [Indexed: 12/14/2022]
Abstract
Tissue plasminogen activator (tPA) is used in fewer than 4% of patients after ischemic stroke because of its narrow therapeutic time window. We tested whether pyrrolidine dithiocarbamate (PDTC), a drug with multiple mechanisms to provide neuroprotection, can be used to extend the therapeutic time window of tPA. Three-month-old male Sprague-Dawley rats were subjected to embolic stroke in the area supplied by the right middle cerebral artery. tPA at 10 mg/kg was given intravenously 4 h after the onset of stroke. PDTC at 50 mg/kg was given via gastric gavage at 30 min or 4 h after the onset of stroke. Two days after the stroke, neurological outcome was evaluated and the right frontal cortex area 1 (Fr1), an ischemic penumbral region, was harvested for analysis. PDTC given at 30 min after the stroke reduced infarct volumes and improved neurological functions no matter whether the rats received tPA. PDTC also reduced tPA-increased hemorrhagic volumes. Consistent with these results, PDTC in the presence or absence of tPA treatment attenuated the increase of proinflammatory cytokines, oxidative stress and matrix metalloprotease 2 activity in the right Fr1. However, PDTC given at 4 h after the onset of stroke did not improve the neurological outcome of rats treated with or without tPA. Our results suggest that PDTC given at an early time point but not in a delayed phase provides neuroprotection against embolic stroke and may be used to extend the therapeutic time window of tPA.
Collapse
Affiliation(s)
- Zhongxing Wang
- Department of Anesthesiology, University of Virginia, Charlottesville, Virginia.,Department of Anesthesiology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Weiran Shan
- Department of Anesthesiology, University of Virginia, Charlottesville, Virginia
| | - Jiangbei Cao
- Department of Anesthesiology, University of Virginia, Charlottesville, Virginia.,Department of Anesthesiology and Operation Center, Chinese PLA General Hospital, Beijing, China
| | - Max Wintermark
- University of Virginia, Department of Radiology, Neuroradiology Division, Charlottesville, Virginia
| | - Wenqi Huang
- Department of Anesthesiology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhiyi Zuo
- Department of Anesthesiology, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
8
|
Synthesis, spectral, structural and computational studies on NiS4 and NiS2NP chromophores: Anagostic and C–H⋯π (chelate) interactions in [Ni(dtc)(PPh3)(NCS)] (dtc = N-(2-phenylethyl)-N-(4-methoxybenzyl)- dithiocarbamate and N-(2-phenylethyl)-N-(4-chlorobenzyl)dithiocarbamate). J Mol Struct 2016. [DOI: 10.1016/j.molstruc.2016.04.079] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Liddell JR, Lehtonen S, Duncan C, Keksa-Goldsteine V, Levonen AL, Goldsteins G, Malm T, White AR, Koistinaho J, Kanninen KM. Pyrrolidine dithiocarbamate activates the Nrf2 pathway in astrocytes. J Neuroinflammation 2016; 13:49. [PMID: 26920699 PMCID: PMC4768425 DOI: 10.1186/s12974-016-0515-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 02/18/2016] [Indexed: 12/30/2022] Open
Abstract
Background Endogenous defense against oxidative stress is controlled by nuclear factor erythroid 2-related factor 2 (Nrf2). The normal compensatory mechanisms to combat oxidative stress appear to be insufficient to protect against the prolonged exposure to reactive oxygen species during disease. Counterbalancing the effects of oxidative stress by up-regulation of Nrf2 signaling has been shown to be effective in various disease models where oxidative stress is implicated, including Alzheimer’s disease. Stimulation of Nrf2 signaling by small-molecule activators is an appealing strategy to up-regulate the endogenous defense mechanisms of cells. Methods Here, we investigate Nrf2 induction by the metal chelator and known nuclear factor-κB inhibitor pyrrolidine dithiocarbamate (PDTC) in cultured astrocytes and neurons, and mouse brain. Nrf2 induction is further examined in cultures co-treated with PDTC and kinase inhibitors or amyloid-beta, and in Nrf2-deficient cultures. Results We show that PDTC is a potent inducer of Nrf2 signaling specifically in astrocytes and demonstrate the critical role of Nrf2 in PDTC-mediated protection against oxidative stress. This induction appears to be regulated by both Keap1 and glycogen synthase kinase 3β. Furthermore, the presence of amyloid-beta magnifies PDTC-mediated induction of endogenous protective mechanisms, therefore suggesting that PDTC may be an effective Nrf2 inducer in the context of Alzheimer’s disease. Finally, we show that PDTC increases brain copper content and glial expression of heme oxygenase-1, and decreases lipid peroxidation in vivo, promoting a more antioxidative environment. Conclusions PDTC activates Nrf2 and its antioxidative targets in astrocytes but not neurons. These effects may contribute to the neuroprotection observed for PDTC in models of Alzheimer’s disease. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0515-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jeffrey R Liddell
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia. .,Mental Health Research Institute of Victoria, Parkville, Victoria, Australia.
| | - Sarka Lehtonen
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| | - Clare Duncan
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia. .,Mental Health Research Institute of Victoria, Parkville, Victoria, Australia.
| | - Velta Keksa-Goldsteine
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| | - Anna-Liisa Levonen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| | - Gundars Goldsteins
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| | - Tarja Malm
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| | - Anthony R White
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia. .,Mental Health Research Institute of Victoria, Parkville, Victoria, Australia.
| | - Jari Koistinaho
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| | - Katja M Kanninen
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
10
|
Wu Q, Chen W, Sinha B, Tu Y, Manning S, Thomas N, Zhou S, Jiang H, Ma H, Kroessler DA, Yao J, Li Z, Inder TE, Wang X. Neuroprotective agents for neonatal hypoxic-ischemic brain injury. Drug Discov Today 2015; 20:1372-81. [PMID: 26360053 DOI: 10.1016/j.drudis.2015.09.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 07/31/2015] [Accepted: 09/01/2015] [Indexed: 01/13/2023]
Abstract
Hypoxic-ischemic (H-I) brain injury in newborns is a major cause of morbidity and mortality that claims thousands of lives each year. In this review, we summarize the promising neuroprotective agents tested on animal models and pilot clinical studies of neonatal H-I brain injury according to the different phases of the disease. These agents target various phases of injury including the early phase of excitotoxicity, oxidative stress and apoptosis as well as late-phase inflammatory reaction and neural repair. We analyze the cell survival and cell death pathways modified by these agents in neonatal H-I brain injury. We aim to 'build a bridge' between animal trials of neuroprotective agents and potential candidate treatments for future clinical applications against H-I encephalopathy.
Collapse
Affiliation(s)
- Qiaofeng Wu
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610091, China
| | - Wu Chen
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Clinical Laboratory, Dongfeng Hospital of Hubei University of Medicine, Shiyan, Hubei 442012, China
| | - Bharati Sinha
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Pediatrics, Boston University School of Medicine, Boston, MA 02118, USA
| | - Yanyang Tu
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Simon Manning
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Niranjan Thomas
- Department of Neonatology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Shuanhu Zhou
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hong Jiang
- Department of Pediatrics, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, China
| | - He Ma
- Third Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530031, China
| | - Daphne A Kroessler
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jiemin Yao
- Third Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530031, China
| | - Zhipu Li
- Department of Pediatrics, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, China
| | - Terry E Inder
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
11
|
Duan JL, Yin J, Ren WK, Wu MM, Chen S, Cui ZJ, Wu X, Huang RL, Li TJ, Yin YL. Pyrrolidine dithiocarbamate restores gastric damages and suppressive autophagy induced by hydrogen peroxide. Free Radic Res 2015; 49:210-8. [PMID: 25471085 DOI: 10.3109/10715762.2014.993627] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
It is well known that gastric barrier is very important for protecting host from various insults. Simultaneously, autophagy serving as a prominent cytoprotective and survival pathway under oxidative stress conditions is being increasingly recognized. Thus, this study was conducted for investigating the effect of pyrrolidine dithiocarbamate (PDTC) on gastric barrier function and autophagy under oxidative stress induced by intragastric administration of hydrogen peroxide (H2O2). The gastric tight junction proteins [zonula occludens-1 (ZO1), occludin, and claudin1], autophagic proteins [microtubule-associated protein light chain 3I(LC3I), LC3II, and beclin1], and nuclear factor kappa B (NF-κB) signaling pathway (p65 and IκB kinase α/β) were determined by Western blot. The results showed that H2O2 exposure disturbed gastric barrier function with decreased expression of ZO1, occludin, and claudin1, and reduced gastric autophagy with decreased conversion of LC3I into LC3II in mice. However, treatment with PDTC restored these adverse effects evidenced by increased expression of ZO1 and claudin1 and increased conversion of LC3I into LC3II. Meanwhile, H2O2 exposure decreased normal human gastric epithelial mucosa cell line (GES-1) viability in a concentration-dependent way. However, after being exposed to H2O2, GES-1 exhibited autophagic response which was inconsistent with our in vivo results in mice, while PDTC failed to decrease autophagy in GES-1 induced by H2O2. Simultaneously, the beneficial effect of PDTC on gastric damage and autophagy in mice might be independent of inhibition of NF-κB. In conclusion, PDTC treatment restores gastric damages and reduced autophagy induced by H2O2. Therefore, PDTC may serve as a potential adjuvant therapy for gastric damages.
Collapse
Affiliation(s)
- J L Duan
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences , Changsha, Hunan , P. R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abd-El-Fattah MA, Abdelakader NF, Zaki HF. Pyrrolidine dithiocarbamate protects against scopolamine-induced cognitive impairment in rats. Eur J Pharmacol 2014; 723:330-8. [DOI: 10.1016/j.ejphar.2013.11.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 11/12/2013] [Accepted: 11/15/2013] [Indexed: 10/25/2022]
|
13
|
Lv R, Xu X, Luo Z, Shen N, Wang F, Zhao Y. Pyrrolidine dithiocarbamate (PDTC) inhibits the overexpression of MCP-1 and attenuates microglial activation in the hippocampus of a pilocarpine-induced status epilepticus rat model. Exp Ther Med 2013; 7:39-45. [PMID: 24348761 PMCID: PMC3861516 DOI: 10.3892/etm.2013.1397] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Accepted: 08/02/2013] [Indexed: 01/09/2023] Open
Abstract
The aim of this study was to investigate the effects of pyrrolidine dithiocarbamate (PDTC) on MCP-1 expression and microglial activation in the hippocampus of a rat model of pilocarpine (PILO)-induced status epilepticus (SE). Moreover, seizure susceptibility, frequency and severity as well as brain damage were analyzed and changes in behavior were recorded. Chemokine MCP-1 expression and microglial activation were detected by immunohistochemistry (IHC). Fluoro-Jade C (FJC) and NeuN staining were used for the evaluation of tissue damage. Our results showed that although SE resulted in the upregulation of MCP-1 and microglial activation in the rat hippocampus 24 h after seizure onset, pretreatment with PDTC significantly inhibited the MCP-1 overexpression and attenuated the microglial activation. These effects were accompanied by neurodegenerative amelioration. To the best of our knowledge, these findings indicated for the first time that the activation of the nuclear factor-κB (NF-κB) pathway may contribute to MCP-1 upregulation and microglial activation in the context of epilepsy. PDTC was also shown to exert anticonvulsant activity and to have a neuroprotective effect on the hippocampal CA1 and CA3 regions, potentially through attenuating microglial activation.
Collapse
Affiliation(s)
- Rilang Lv
- Department of Neurology, Shanghai East Hospital Affiliated to Tongji University School of Medicine, Shanghai 200210, P.R. China
| | - Xiaoyun Xu
- Department of Neurology, Shanghai East Hospital Affiliated to Tongji University School of Medicine, Shanghai 200210, P.R. China ; Department of Neurology, Shanghai Pudong New Area Zhoupu Hospital, Shanghai 201318, P.R. China
| | - Zheng Luo
- Department of Neurology, Shanghai East Hospital Affiliated to Tongji University School of Medicine, Shanghai 200210, P.R. China
| | - Nan Shen
- Department of Neurology, Shanghai East Hospital Affiliated to Tongji University School of Medicine, Shanghai 200210, P.R. China
| | - Feng Wang
- Department of Neurology, Shanghai Jiaotong University Affiliated First People's Hospital, Shanghai 200080, P.R. China
| | - Yongbo Zhao
- Department of Neurology, Shanghai Jiaotong University Affiliated First People's Hospital, Shanghai 200080, P.R. China
| |
Collapse
|
14
|
Wang Z, Zhao H, Peng S, Zuo Z. Intranasal pyrrolidine dithiocarbamate decreases brain inflammatory mediators and provides neuroprotection after brain hypoxia-ischemia in neonatal rats. Exp Neurol 2013; 249:74-82. [PMID: 23994718 DOI: 10.1016/j.expneurol.2013.08.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Revised: 07/26/2013] [Accepted: 08/15/2013] [Indexed: 11/28/2022]
Abstract
Brain injury due to birth asphyxia is the major cause of death and long-term disabilities in newborns. We determined whether intranasal pyrrolidine dithiocarbamate (PDTC) could provide neuroprotection in neonatal rats after brain hypoxia-ischemia (HI). Seven-day old male and female Sprague-Dawley rats were subjected to brain HI. They were then treated with intranasal PDTC. Neurological outcomes were evaluated 7 or 30 days after the brain HI. Brain tissues were harvested 6 or 24 h after the brain HI for biochemical analysis. Here, PDTC dose-dependently reduced brain HI-induced brain tissue loss with an effective dose (ED)50 at 27 mg/kg. PDTC needed to be applied within 45 min after the brain HI for this neuroprotection. This treatment reduced brain tissue loss and improved neurological and cognitive functions assessed 30 days after the HI. PDTC attenuated brain HI-induced lipid oxidative stress, nuclear translocation of nuclear factor κ-light-chain-enhancer of activated B cells, and various inflammatory mediators in the brain tissues. Inhibition of inducible nitric oxide synthase after brain HI reduced brain tissue loss. Our results suggest that intranasal PDTC provides neuroprotection possibly via reducing inflammation and oxidative stress. Intranasal PDTC may have a potential to provide neuroprotection to human neonates after birth asphyxia.
Collapse
Affiliation(s)
- Zhi Wang
- Department of Anesthesiology, University of Virginia, Charlottesville, VA, USA; Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | | | | | | |
Collapse
|
15
|
Venna VR, Weston G, Benashski SE, Tarabishy S, Liu F, Li J, Conti LH, McCullough LD. NF-κB contributes to the detrimental effects of social isolation after experimental stroke. Acta Neuropathol 2012; 124:425-38. [PMID: 22562356 DOI: 10.1007/s00401-012-0990-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 04/22/2012] [Accepted: 04/22/2012] [Indexed: 01/07/2023]
Abstract
Social isolation (SI) is increasingly recognized as a risk factor for stroke. Individuals with lack of social support systems have an increased incidence of stroke, poorer recovery, and greater functional decline after injury compared to individuals with social support. Attesting to the importance of social factors in stroke outcome is that these same effects can be reproducibly demonstrated in animals; social interaction improves behavioral deficits and reduces damage after experimental stroke, whereas SI enhances injury. The mechanism by which SI exacerbates injury is unclear. We investigated the role of nuclear factor-kappaB (NF-κB) signaling in male mice that were pair housed (PH) with an ovariectomized female prior to random assignment into continued PH or SI for 7 days prior to middle cerebral artery occlusion. The effects of SI on infarct volume and functional recovery were assessed at 72 h post-stroke. Nuclear NF-κB levels and activity were assessed by Western blot and transcriptional assays. SI significantly exacerbated infarct size in both male and female mice compared to PH mice. SI mice had delayed functional recovery compared to PH mice. An elevation of systemic IL-6 levels, increased nuclear NF-κB transcriptional activity, and enhanced nuclear translocation of NF-κB was seen in SI stroke animals. Interference with NF-κB signaling using either a pharmacological inhibitor or genetically engineered NF-κB p50 knockout mice abolished the detrimental effects of SI on both infarct size and functional recovery. This suggests that NF-κB mediates the detrimental effects of SI.
Collapse
Affiliation(s)
- Venugopal Reddy Venna
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Lee SH, Suh HN, Lee YJ, Seo BN, Ha JW, Han HJ. Midkine prevented hypoxic injury of mouse embryonic stem cells through activation of Akt and HIF-1α via low-density lipoprotein receptor-related protein-1. J Cell Physiol 2012; 227:1731-9. [PMID: 21688265 DOI: 10.1002/jcp.22897] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Stem cell functions are dramatically altered by oxygen in tissue culture, which means the antioxidant/oxidant balance is critical for protection as well as toxicity. This study examined the effect of the heparin-binding growth factor midkine (MK) on hypoxia-induced apoptosis and related signal pathways in mouse embryonic stem cells (mESCs). Hypoxia (60 h) increased lactate dehydrogenase release and apoptosis, and reduced cell viability and proliferation. These effects were reversed by MK (100 ng/ml). MK also reversed hypoxia-induced increases of intracellular reactive oxygen species, c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (MAPK) phosphorylation. Blockage of JNK and p38 MAPK using small interference (si)RNAs produced a decrease in apoptosis. A loss of mitochondrial membrane potential, increases of cytochrome c release from mitochondria to cytosol, and cleaved caspase-3 expression, as well as decreases in cIAP-2 and Bcl-2 were also reversed by MK. Hypoxia alone and hypoxia with MK increased low-density lipoprotein receptor-related protein-1 (LRP-1) mRNA and protein expression. Hypoxia with MK rapidly increased serine/threonine protein kinase (Akt) phosphorylation which reversed by LRP-1 Ab (0.1 µg/ml) and prolonged heme oxygenase-1 (HO-1) expression. In addition, hypoxia with MK increased the expression of hypoxia-inducible factor-1α (HIF-1α). Moreover, inhibition of Akt, HO-1, and HIF-1α signaling pathways abolished the MK-induced blockage of apoptosis. In conclusion, MK partially prevented hypoxic injury of mESCs through activation of Akt, HO-1, and HIF-1α via LRP-1.
Collapse
Affiliation(s)
- Sang Hun Lee
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju, Korea
| | | | | | | | | | | |
Collapse
|
17
|
Wang Z, Bildin VN, Yang H, Capó-Aponte JE, Yang Y, Reinach PS. Dependence of corneal epithelial cell proliferation on modulation of interactions between ERK1/2 and NKCC1. Cell Physiol Biochem 2011; 28:703-14. [PMID: 22178882 DOI: 10.1159/000335764] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2011] [Indexed: 11/19/2022] Open
Abstract
Epidermal growth factor (EGF) receptor stimulation or protein kinase C (PKC) activation enhances corneal epithelial cell proliferation. This response is needed to maintain corneal transparency and vision. We clarify here in human corneal epithelial cells (HCEC) the cause and effect relationships between ERK1/2 and NKCC1 phosphorylation induced by EGF receptor or PKC activation. Furthermore, the roles are evaluated of NF-κB and ERK1/2 in mediating negative feedback control of ERK1/2 and NKCC1 phosphorylation through modulating DUSP1 and DUSP6 expression levels. Intracellular Ca(2+) rises induced by EGF elicited NKCC1 phosphorylation through ERK1/2 activation. Bumetanide suppressed EGF-induced NKCC1 phosphorylation, transient cell swelling and cell proliferation. This cause and effect relationship is similar to that induced by PKC stimulation. NKCC1 activation occurred through time-dependent increases in protein-protein interaction between ERK1/2 and NKCC1, which were proportional to EGF concentration. DUSP6 upregulation obviated EGF and PKC-induced NKCC1 phosphorylation. NF-κB inhibition by PDTC prolonged ERK1/2 activation through GSK-3 inactivation leading to declines in DUSP1 expression levels. These results show that EGF receptor and PKC activation induce increases in HCEC proliferation through ERK1/2 interaction with NKCC1. This response is modulated by changes in DUSP1- and DUSP6-mediated negative feedback control of ERK1/2-induced NKCC1 phosphorylation.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Biological Sciences, State University of New York, State College of Optometry, New York, NY 10036, USA
| | | | | | | | | | | |
Collapse
|
18
|
Sun MH, Chen KJ, Tsao YP, Kao LY, Han WH, Lin KK, Pang JHS. Down-Regulation of Matrix Metalloproteinase-9 by Pyrrolidine Dithiocarbamate Prevented Retinal Ganglion Cell Death After Transection of Optic Nerve in Rats. Curr Eye Res 2011; 36:1053-63. [DOI: 10.3109/02713683.2011.606591] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
19
|
The characteristic long-term upregulation of hippocampal NF-κB complex in PTSD-like behavioral stress response is normalized by high-dose corticosterone and pyrrolidine dithiocarbamate administered immediately after exposure. Neuropsychopharmacology 2011; 36:2286-302. [PMID: 21734649 PMCID: PMC3176566 DOI: 10.1038/npp.2011.118] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Nuclear factor-κB (NF-κB) is a ubiquitously expressed transcription factor for genes involved in cell survival, differentiation, inflammation, and growth. This study examined the role of NF-κB pathway in stress-induced PTSD-like behavioral response patterns in rats. Immunohistochemical technique was used to detect the expression of the NF-κB p50 and p65 subunits, I-κBα, p38, and phospho-p38 in the hippocampal subregions at 7 days after exposure to predator scent stress. Expression of p65 nuclear translocation was quantified by western blot as the level of NF-κB activation. The effects of intraperitoneally administered corticosterone or a selective NF-κB inhibitor (pyrrolidine dithiocarbamate (PDTC)) at 1 h post exposure on behavioral tests (elevated plus-maze and acoustic startle response) were evaluated 7 days later. Hippocampal expressions of those genes were subsequently evaluated. All data were analyzed in relation to individual behavior patterns. Extreme behavioral responder animals displayed significant upregulation of p50 and p65 with concomitant downregulation of I-κBα, p38, and phospho-p38 levels in hippocampal structures compared with minimal behavioral responders and controls. Immediate post-exposure treatment with high-dose corticosterone and PDTC significantly reduced prevalence rates of extreme responders and normalized the expression of those genes. Stress-induced upregulation of NF-κB complex in the hippocampus may contribute to the imbalance between what are normally precisely orchestrated and highly coordinated physiological and behavioral processes, thus associating it with stress-related disorders.
Collapse
|
20
|
Song S, Abdelmohsen K, Zhang Y, Becker KG, Gorospe M, Bernier M. Impact of pyrrolidine dithiocarbamate and interleukin-6 on mammalian target of rapamycin complex 1 regulation and global protein translation. J Pharmacol Exp Ther 2011; 339:905-13. [PMID: 21917559 DOI: 10.1124/jpet.111.185678] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Interleukin-6 (IL-6) is a proinflammatory cytokine that exerts a wide range of cellular, physiological, and pathophysiological responses. Pyrrolidine dithiocarbamate (PDTC) antagonizes the cellular responsiveness to IL-6 through impairment in signal transducer and activator of transcription-3 activation and downstream signaling. To further elucidate the biological properties of PDTC, global gene expression profiling of human HepG2 hepatocellular carcinoma cells was carried out after treatment with PDTC or IL-6 for up to 8 h. Through an unbiased pathway analysis method, gene array analysis showed dramatic and temporal differences in expression changes in response to PDTC versus IL-6. A significant number of genes associated with metabolic pathways, inflammation, translation, and mitochondrial function were changed, with ribosomal protein genes and DNA damage-inducible transcript 4 protein (DDIT4) primarily up-regulated with PDTC but down-regulated with IL-6. Quantitative polymerase chain reaction and Western blot analyses validated the microarray data and showed the reciprocal expression pattern of the mammalian target of rapamycin (mTOR)-negative regulator DDIT4 in response to PDTC versus IL-6. Cell treatment with PDTC resulted in a rapid and sustained activation of Akt and subsequently blocked the IL-6-mediated increase in mTOR complex 1 function through up-regulation in DDIT4 expression. Conversely, down-regulation of DDIT4 with small interfering RNA dampened the capacity of PDTC to block IL-6-dependent mTOR activation. The overall protein biosynthetic capacity of the cells was severely blunted by IL-6 but increased in a rapamycin-independent pathway by PDTC. These results demonstrate a critical effect of PDTC on mTOR complex 1 function and provide evidence that PDTC can reverse IL-6-related signaling via induction of DDIT4.
Collapse
Affiliation(s)
- Shaoming Song
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Biomedical Research Center, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA
| | | | | | | | | | | |
Collapse
|
21
|
Koistinaho J, Malm T, Goldsteins G. Glycogen synthase kinase-3β: a mediator of inflammation in Alzheimer's disease? Int J Alzheimers Dis 2011; 2011:129753. [PMID: 21629736 PMCID: PMC3100542 DOI: 10.4061/2011/129753] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 03/04/2011] [Indexed: 02/03/2023] Open
Abstract
Proliferation and activation of microglial cells is a neuropathological characteristic of brain injury and neurodegeneration, including Alzheimer's disease. Microglia act as the first and main form of immune defense in the nervous system. While the primary function of microglia is to survey and maintain the cellular environment optimal for neurons in the brain parenchyma by actively scavenging the brain for damaged brain cells and foreign proteins or particles, sustained activation of microglia may result in high production of proinflammatory mediators that disturb normal brain functions and even cause neuronal injury. Glycogen synthase kinase-3β has been recently identified as a major regulator of immune system and mediates inflammatory responses in microglia. Glycogen synthase kinase-3β has been extensively investigated in connection to tau and amyloid β toxicity, whereas reports on the role of this enzyme in neuroinflammation in Alzheimer's disease are negligible. Here we review and discuss the role of glycogen synthase-3β in immune cells in the context of Alzheimer's disease pathology.
Collapse
Affiliation(s)
- Jari Koistinaho
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | | | | |
Collapse
|
22
|
Kanninen K, White AR, Koistinaho J, Malm T. Targeting Glycogen Synthase Kinase-3β for Therapeutic Benefit against Oxidative Stress in Alzheimer's Disease: Involvement of the Nrf2-ARE Pathway. Int J Alzheimers Dis 2011; 2011:985085. [PMID: 21629716 PMCID: PMC3100734 DOI: 10.4061/2011/985085] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Accepted: 03/01/2011] [Indexed: 12/30/2022] Open
Abstract
Specific regions of the Alzheimer's disease (AD) brain are burdened with extracellular protein deposits, the accumulation of which is concomitant with a complex cascade of overlapping events. Many of these pathological processes produce oxidative stress. Under normal conditions, oxidative stress leads to the activation of defensive gene expression that promotes cell survival. At the forefront of defence is the nuclear factor erythroid 2-related factor 2 (Nrf2), a transcription factor that regulates a broad spectrum of protective genes. Glycogen synthase kinase-3β (GSK-3β) regulates Nrf2, thus making this kinase a potential target for therapeutic intervention aiming to boost the protective activation of Nrf2. This paper aims to review the neuroprotective role of Nrf2 in AD, with special emphasis on the role of GSK-3β in the regulation of the Nrf2 pathway. We also examine the potential of inducing GSK-3β by small-molecule activators, dithiocarbamates, which potentially exert their beneficial therapeutic effects via the activation of the Nrf2 pathway.
Collapse
Affiliation(s)
- Katja Kanninen
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | | | | | | |
Collapse
|
23
|
Pfeilschifter W, Czech B, Hoffmann BP, Sujak M, Kahles T, Steinmetz H, Neumann-Haefelin T, Pfeilschifter J. Pyrrolidine Dithiocarbamate Activates p38 MAPK and Protects Brain Endothelial Cells From Apoptosis: A Mechanism for the Protective Effect in Stroke? Neurochem Res 2010; 35:1391-401. [DOI: 10.1007/s11064-010-0197-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2010] [Indexed: 01/18/2023]
|
24
|
Pyrrolidine dithiocarbamate protects the piriform cortex in the pilocarpine status epilepticus model. Epilepsy Res 2009; 87:177-83. [DOI: 10.1016/j.eplepsyres.2009.08.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 08/18/2009] [Accepted: 08/23/2009] [Indexed: 01/16/2023]
|
25
|
Zhang W, Su X, Gao Y, Sun B, Yu Y, Wang X, Zhang F. Berberine Protects Mesenchymal Stem Cells against Hypoxia-Induced Apoptosis in Vitro. Biol Pharm Bull 2009; 32:1335-42. [DOI: 10.1248/bpb.32.1335] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Wei Zhang
- The Liver Transplantation Center of the First Affiliated Hospital, Nanjing Medical University
| | - Xiang Su
- The Liver Transplantation Center of the First Affiliated Hospital, Nanjing Medical University
| | - Yun Gao
- The Liver Transplantation Center of the First Affiliated Hospital, Nanjing Medical University
| | - Beicheng Sun
- The Liver Transplantation Center of the First Affiliated Hospital, Nanjing Medical University
| | - Yue Yu
- The Liver Transplantation Center of the First Affiliated Hospital, Nanjing Medical University
| | - Xuehao Wang
- The Liver Transplantation Center of the First Affiliated Hospital, Nanjing Medical University
| | - Feng Zhang
- The Liver Transplantation Center of the First Affiliated Hospital, Nanjing Medical University
| |
Collapse
|
26
|
Biran Y, Masters CL, Barnham KJ, Bush AI, Adlard PA. Pharmacotherapeutic targets in Alzheimer's disease. J Cell Mol Med 2008; 13:61-86. [PMID: 19040415 PMCID: PMC3823037 DOI: 10.1111/j.1582-4934.2008.00595.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder which is characterized by an increasing impairment in normal memory and cognitive processes that significantly diminishes a person's daily functioning. Despite decades of research and advances in our understanding of disease aetiology and pathogenesis, there are still no effective disease-modifying drugs available for the treatment of AD. However, numerous compounds are currently undergoing pre-clinical and clinical evaluations. These candidate pharma-cotherapeutics are aimed at various aspects of the disease, such as the microtubule-associated τ-protein, the amyloid-β (Aβ) peptide and metal ion dyshomeostasis – all of which are involved in the development and progression of AD. We will review the way these pharmacological strategies target the biochemical and clinical features of the disease and the investigational drugs for each category.
Collapse
Affiliation(s)
- Yif'at Biran
- The Oxidation Biology Laboratory, The Mental Health Research Institute, Parkville, Victoria, Australia
| | | | | | | | | |
Collapse
|
27
|
Guo SY, Yang GP, Jiang DJ, Wang F, Song T, Tan XH, Sun ZQ. Protection of capsaicin against hypoxia–reoxygenation-induced apoptosis of rat hippocampal neurons. Can J Physiol Pharmacol 2008; 86:785-92. [PMID: 19011674 DOI: 10.1139/y08-083] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The aim of this study was to investigate the effect of capsaicin on hypoxia–reoxygenation (H/R)-induced apoptosis in primary rat hippocampal neurons. Three hours of hypoxia (1% O2) and subsequent reoxygenation for 24 h significantly increased the apoptotic death of hippocampal neurons, as evidenced by increases in both TUNEL-positive cell number and caspase-3 activity. Pretreatment with capsaicin (3–30 µmol/L) or the caspase-3-specific inhibitor acetyl-DEVD-CHO (100 µmol/L) markedly attenuated H/R-induced apoptosis in hippocampal neurons. Capsaicin also markedly induced the phosphorylation of Akt. The phosphoinositide 3-kinase (PI3K) inhibitor LY294002 (10 µmol/L) prevented any capsaicin-induced survival effect in hippocampal neurons. Intracellular levels of reactive oxygen species (ROS), which were greatly increased after H/R, were significantly inhibited by capsaicin, pyrrolidine dithiocarbamate (PDTC) (50 µmol/L), and LY294002. Taken together, these data suggest that capsaicin protects against H/R-induced apoptosis of hippocampal neurons via the PI3K/Akt-mediated signaling pathway, which is related to the inhibition of oxidative stress and caspase-3 activation.
Collapse
Affiliation(s)
- Shi-Yin Guo
- School of Public Health, Central South University, Xiang-Ya Road 110, Changsha 410078, China
- Faculty of Food Science and Technology, Hunan Agricultural University, Changsha, China
- Center of Clinical Pharmacology, the Third Xiangya Hospital, Central South University, Changsha, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Guo-Ping Yang
- School of Public Health, Central South University, Xiang-Ya Road 110, Changsha 410078, China
- Faculty of Food Science and Technology, Hunan Agricultural University, Changsha, China
- Center of Clinical Pharmacology, the Third Xiangya Hospital, Central South University, Changsha, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - De-Jian Jiang
- School of Public Health, Central South University, Xiang-Ya Road 110, Changsha 410078, China
- Faculty of Food Science and Technology, Hunan Agricultural University, Changsha, China
- Center of Clinical Pharmacology, the Third Xiangya Hospital, Central South University, Changsha, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Feng Wang
- School of Public Health, Central South University, Xiang-Ya Road 110, Changsha 410078, China
- Faculty of Food Science and Technology, Hunan Agricultural University, Changsha, China
- Center of Clinical Pharmacology, the Third Xiangya Hospital, Central South University, Changsha, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Tao Song
- School of Public Health, Central South University, Xiang-Ya Road 110, Changsha 410078, China
- Faculty of Food Science and Technology, Hunan Agricultural University, Changsha, China
- Center of Clinical Pharmacology, the Third Xiangya Hospital, Central South University, Changsha, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Xing-He Tan
- School of Public Health, Central South University, Xiang-Ya Road 110, Changsha 410078, China
- Faculty of Food Science and Technology, Hunan Agricultural University, Changsha, China
- Center of Clinical Pharmacology, the Third Xiangya Hospital, Central South University, Changsha, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Zhen-Qiu Sun
- School of Public Health, Central South University, Xiang-Ya Road 110, Changsha 410078, China
- Faculty of Food Science and Technology, Hunan Agricultural University, Changsha, China
- Center of Clinical Pharmacology, the Third Xiangya Hospital, Central South University, Changsha, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, China
| |
Collapse
|
28
|
Tapia E, Sánchez-González DJ, Medina-Campos ON, Soto V, Avila-Casado C, Martínez-Martínez CM, Johnson RJ, Rodríguez-Iturbe B, Pedraza-Chaverrí J, Franco M, Sánchez-Lozada LG. Treatment with pyrrolidine dithiocarbamate improves proteinuria, oxidative stress, and glomerular hypertension in overload proteinuria. Am J Physiol Renal Physiol 2008; 295:F1431-9. [PMID: 18753301 DOI: 10.1152/ajprenal.90201.2008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We evaluated whether the blockade of the proinflammatory transcription factor NF-kappaB would modify the oxidative stress, inflammation, and structural and hemodynamic alterations found in the kidney as a result of massive proteinuria. Twenty male Sprague-Dawley rats were injected with 2 g of BSA intraperitoneally daily for 2 wk. Ten of them received in addition the inhibitor of NF-kappaB activation pyrrolidine dithiocarbamate (PDTC; 200 mg.kg(-1).day(-1) sc) and the rest received vehicle. Seven rats that received intraperitoneal saline were used as controls. Glomerular hemodynamics were studied after 14 days. Markers of oxidative stress (NF-kappaB subunit p65+ cells, 3-nitrotyrosine, and 4-hydroxynonenal), inflammation (cortical CD68+ cells and NOS-II), and afferent arteriole damage were assessed by immunohistochemistry and morphometry. Activity of antioxidant enzymes superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase was evaluated in renal cortex and medulla. Albumin overload induced massive proteinuria, oxidative stress with reduced activity of antioxidant enzymes, NF-kappaB activation, inflammatory cell infiltration, a significant presence of proteinaceous casts, systemic and glomerular hypertension, as well as arteriolar remodeling. Treatment with PDTC prevented or improved all of these findings. In this model of nephrotic syndrome, we demonstrate a key role for oxidative stress and inflammation in causing systemic and glomerular hypertension and proteinuria. Oxidative stress and inflammation may have a key role in accelerating renal injury associated with intense proteinuria.
Collapse
Affiliation(s)
- Edilia Tapia
- Department of Nephrology, Instituto Nacional de Cardiología Ignacio Chavez, Juan Badiano 1, 14080 Mexico City, Mexico
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Maiese K, Chong ZZ, Li F, Shang YC. Erythropoietin: elucidating new cellular targets that broaden therapeutic strategies. Prog Neurobiol 2008; 85:194-213. [PMID: 18396368 PMCID: PMC2441910 DOI: 10.1016/j.pneurobio.2008.02.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Revised: 01/04/2008] [Accepted: 02/22/2008] [Indexed: 01/06/2023]
Abstract
Given that erythropoietin (EPO) is no longer believed to have exclusive biological activity in the hematopoietic system, EPO is now considered to have applicability in a variety of nervous system disorders that can overlap with vascular disease, metabolic impairments, and immune system function. As a result, EPO may offer efficacy for a broad number of disorders that involve Alzheimer's disease, cardiac insufficiency, stroke, trauma, and diabetic complications. During a number of clinical conditions, EPO is robust and can prevent metabolic compromise, neuronal and vascular degeneration, and inflammatory cell activation. Yet, use of EPO is not without its considerations especially in light of frequent concerns that may compromise clinical care. Recent work has elucidated a number of novel cellular pathways governed by EPO that can open new avenues to avert deleterious effects of this agent and offer previously unrecognized perspectives for therapeutic strategies. Obtaining greater insight into the role of EPO in the nervous system and elucidating its unique cellular pathways may provide greater cellular viability not only in the nervous system but also throughout the body.
Collapse
Affiliation(s)
- Kenneth Maiese
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | | | | | | |
Collapse
|
30
|
Abstract
Unmitigated oxidative stress can lead to diminished cellular longevity, accelerated aging, and accumulated toxic effects for an organism. Current investigations further suggest the significant disadvantages that can occur with cellular oxidative stress that can lead to clinical disability in a number of disorders, such as myocardial infarction, dementia, stroke, and diabetes. New therapeutic strategies are therefore sought that can be directed toward ameliorating the toxic effects of oxidative stress. Here we discuss the exciting potential of the growth factor and cytokine erythropoietin for the treatment of diseases such as cardiac ischemia, vascular injury, neurodegeneration, and diabetes through the modulation of cellular oxidative stress. Erythropoietin controls a variety of signal transduction pathways during oxidative stress that can involve Janus-tyrosine kinase 2, protein kinase B, signal transducer and activator of transcription pathways, Wnt proteins, mammalian forkhead transcription factors, caspases, and nuclear factor kappaB. Yet, the biological effects of erythropoietin may not always be beneficial and may be poor tolerated in a number of clinical scenarios, necessitating further basic and clinical investigations that emphasize the elucidation of the signal transduction pathways controlled by erythropoietin to direct both successful and safe clinical care.
Collapse
Affiliation(s)
- Kenneth Maiese
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| | | | | | | |
Collapse
|
31
|
Maiese K. Triple play: promoting neurovascular longevity with nicotinamide, WNT, and erythropoietin in diabetes mellitus. Biomed Pharmacother 2008; 62:218-32. [PMID: 18342481 PMCID: PMC2431130 DOI: 10.1016/j.biopha.2008.01.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2008] [Accepted: 01/23/2008] [Indexed: 12/17/2022] Open
Abstract
Oxidative stress is a principal pathway for the dysfunction and ultimate destruction of cells in the neuronal and vascular systems for several disease entities, not promoting the ravages of oxidative stress to any less of a degree than diabetes mellitus. Diabetes mellitus is increasing in incidence as a result of changes in human behavior that relate to diet and daily exercise and is predicted to affect almost 400 million individuals worldwide in another two decades. Furthermore, both type 1 and type 2 diabetes mellitus can lead to significant disability in the nervous and cardiovascular systems, such as cognitive loss and cardiac insufficiency. As a result, innovative strategies that directly target oxidative stress to preserve neuronal and vascular longevity could offer viable therapeutic options to diabetic patients in addition to more conventional treatments that are designed to control serum glucose levels. Here we discuss the novel application of nicotinamide, Wnt signaling, and erythropoietin that modulate cellular oxidative stress and offer significant promise for the prevention of diabetic complications in the nervous and vascular systems. Essential to this process is the precise focus upon diverse as well as common cellular pathways governed by nicotinamide, Wnt signaling, and erythropoietin to outline not only the potential benefits, but also the challenges and possible detriments of these therapies. In this way, new avenues of investigation can hopefully bypass toxic complications, or at the very least, avoid contraindications that may limit care and offer both safe and robust clinical treatment for patients.
Collapse
Affiliation(s)
- Kenneth Maiese
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
32
|
Maiese K, Li F, Chong ZZ, Shang YC. The Wnt signaling pathway: aging gracefully as a protectionist? Pharmacol Ther 2008; 118:58-81. [PMID: 18313758 DOI: 10.1016/j.pharmthera.2008.01.004] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Accepted: 01/18/2008] [Indexed: 12/16/2022]
Abstract
No longer considered to be exclusive to cellular developmental pathways, the Wnt family of secreted cysteine-rich glycosylated proteins has emerged as versatile targets for a variety of conditions that involve cardiovascular disease, aging, cancer, diabetes, neurodegeneration, and inflammation. In particular, modulation of Wnt signaling may fill a critical void for the treatment of disorders that impact upon both cellular survival and cellular longevity. Yet, in some scenarios, Wnt signaling can become the catalyst for disease development or promote cell senescence that can compromise clinical utility. This double edge sword in regards to the role of Wnt and its signaling pathways highlights the critical need to further elucidate the cellular mechanisms governed by Wnt in conjunction with the development of robust pharmacological ligands that may open new avenues for disease treatment. Here we discuss the influence of the Wnt pathway during cell survival, metabolism, and aging in order for one to gain a greater insight for the novel role of Wnt signaling as well as exemplify its unique cellular pathways that influence both normal physiology and disease.
Collapse
Affiliation(s)
- Kenneth Maiese
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| | | | | | | |
Collapse
|
33
|
Qin ZH, Tao LY, Chen X. Dual roles of NF-kappaB in cell survival and implications of NF-kappaB inhibitors in neuroprotective therapy. Acta Pharmacol Sin 2007; 28:1859-72. [PMID: 18031598 DOI: 10.1111/j.1745-7254.2007.00741.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
NF-kappaB is a well-characterized transcription factor with multiple physiological and pathological functions. NF-kappaB plays important roles in the development and maturation of lymphoids, regulation of immune and inflammatory response, and cell death and survival. The influence of NF-kappaB on cell survival could be protective or destructive, depending on types, developmental stages of cells, and pathological conditions. The complexity of NF-kappaB in cell death and survival derives from its multiple roles in regulating the expression of a broad array of genes involved in promoting cell death and survival. The activation of NF-kappaB has been found in many neurological disorders, but its actual roles in pathogenesis are still being debated. Many compounds with neuroprotective actions are strongly associated with the inhibition of NF-kappaB, leading to speculation that blocking the pathological activation of NF-kappaB could offer neuroprotective effects in certain neurodegenerative conditions. This paper reviews the recent developments in understanding the dual roles of NF-kappaB in cell death and survival and explores its possible usefulness in treating neurological diseases. This paper will summarize the genes regulated by NF-kappaB that are involved in cell death and survival to elucidate why NF-kappaB promotes cell survival in some conditions while facilitating cell death in other conditions. This paper will also focus on the effects of various NF-kappaB inhibitors on neuroprotection in certain pathological conditions to speculate if NF-kappaB is a potential target for neuroprotective therapy.
Collapse
Affiliation(s)
- Zheng-hong Qin
- Department of Pharmacology, Soochow University School of Medicine, Suzhou 215123, China.
| | | | | |
Collapse
|
34
|
Chong ZZ, Shang YC, Maiese K. Vascular injury during elevated glucose can be mitigated by erythropoietin and Wnt signaling. Curr Neurovasc Res 2007; 4:194-204. [PMID: 17691973 PMCID: PMC2678063 DOI: 10.2174/156720207781387150] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Impacting a significant portion of the world's population with increasing incidence in minorities, the young, and the physically active, diabetes mellitus (DM) and its complications affect approximately 20 million individuals in the United States and over 100 million individuals worldwide. In particular, vascular disease from DM may lead to some of the most serious complications that can extend into both the cardiac and nervous systems. Unique strategies that can prevent endothelial cell (EC) demise and elucidate novel cellular mechanisms for vascular cytoprotection become vital for the prevention and treatment of vascular DM complications. Here, we demonstrate that erythropoietin (EPO), an agent that has recently been shown to extend cell viability in a number of systems extending beyond hematopoietic cells, prevents EC injury and apoptotic nuclear DNA degradation during elevated glucose exposure. More importantly, EPO employs Wnt1, a cysteine-rich glycosylated protein involved in gene expression, cell differentiation, and cell apoptosis, to confer EC cytoprotection and maintains the integrity of Wnt1 expression during elevated glucose exposure. In addition, application of anti-Wnt1 neutralizing antibody abrogates the protective capacity of both EPO and Wnt1, illustrating that Wnt1 is an important component in the cytoprotection of ECs during elevated glucose exposure. Intimately linked to this cytoprotection is the downstream Wnt1 pathway of glycogen synthase kinase (GSK-3beta) that requires phosphorylation of GSK-3beta and inhibition of its activity by EPO. Interestingly, inhibition of GSK-3beta activity during elevated glucose leads to enhanced EC survival, but does not synergistically improve protection by EPO or Wnt1, suggesting that EPO and Wnt1 are closely tied to the blockade of GSK-3beta activity. Our work exemplifies an exciting potential application for EPO in regards to the treatment of DM vascular disease complications and highlights a previously unrecognized role for Wnt1 and the modulation of the downstream pathway of GSK-3beta to promote vascular cell viability during DM.
Collapse
Affiliation(s)
- Zhao Zhong Chong
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, Michigan 48201
| | - Yan Chen Shang
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, Michigan 48201
| | - Kenneth Maiese
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, Michigan 48201
- Departments of Neurology and Anatomy & Cell Biology, Center for Molecular Medicine and Genetics, Institute of Environmental Health Sciences, Wayne State University School of Medicine, Detroit, Michigan 48201
- Corresponding Author: Kenneth Maiese, MD, Department of Neurology, 8C-1 UHC, Wayne State University School of Medicine, 4201 St. Antoine, Detroit, MI 48201. Voice: 313-966-0833, Fax: 313-966-0486, ,
| |
Collapse
|
35
|
Malm TM, Iivonen H, Goldsteins G, Keksa-Goldsteine V, Ahtoniemi T, Kanninen K, Salminen A, Auriola S, Van Groen T, Tanila H, Koistinaho J. Pyrrolidine dithiocarbamate activates Akt and improves spatial learning in APP/PS1 mice without affecting beta-amyloid burden. J Neurosci 2007; 27:3712-21. [PMID: 17409235 PMCID: PMC6672417 DOI: 10.1523/jneurosci.0059-07.2007] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Pyrrolidine dithiocarbamate (PDTC) is a clinically tolerated inhibitor of nuclear factor-kappaB (NF-kappaB), antioxidant and antiinflammatory agent, which provides protection in brain ischemia models. In neonatal hypoxia-ischemia model, PDTC activates Akt and reduces activation of glycogen synthase kinase 3beta (GSK-3beta). Because chronic inflammation, oxidative stress, and increased GSK-3beta activity are features of Alzheimer's disease (AD) pathology, we tested whether PDTC reduces brain pathology and improves cognitive function in a transgenic animal model of AD. A 7 month oral treatment with PDTC prevented the decline in cognition in AD mice without altering beta-amyloid burden or gliosis. Moreover, marked oxidative stress and activation of NF-kappaB were not part of the brain pathology. Instead, the phosphorylated form of GSK-3beta was decreased in the AD mouse brain, and PDTC treatment increased the phosphorylation of Akt and GSK-3beta. Also, PDTC treatment increased the copper concentration in the brain. In addition, PDTC rescued cultured hippocampal neurons from the toxicity of oligomeric Abeta and reduced tau phosphorylation in the hippocampus of AD mice. Finally, astrocytic glutamate transporter GLT-1, known to be regulated by Akt pathway, was decreased in the transgenic AD mice but upregulated back to the wild-type levels by PDTC treatment. Thus, PDTC may improve spatial learning in AD by interfering with Akt-GSK pathway both in neurons and astrocytes. Because PDTC is capable of transferring external Cu2+ into a cell, and, in turn, Cu2+ is able to activate Akt, we hypothesize that PDTC provides the beneficial effect in transgenic AD mice through Cu2+-activated Akt pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Antero Salminen
- Departments of Neuroscience and Neurology and
- Departments of Neurology and
| | | | | | - Heikki Tanila
- A. I. Virtanen Institute for Molecular Sciences and
- Departments of Neurology and
| | - Jari Koistinaho
- A. I. Virtanen Institute for Molecular Sciences and
- Oncology, Kuopio University Hospital, FIN-70211 Kuopio, Finland
| |
Collapse
|
36
|
Abstract
Diabetes mellitus (DM) is a significant healthcare concern worldwide that affects more than 165 million individuals leading to cardiovascular disease, nephropathy, retinopathy, and widespread disease of both the peripheral and central nervous systems. The incidence of undiagnosed diabetes, impaired glucose tolerance, and impaired fasting glucose levels raises future concerns in regards to the financial and patient care resources that will be necessary to care for patients with DM. Interestingly, disease of the nervous system can become one of the most debilitating complications and affect sensitive cognitive regions of the brain, such as the hippocampus that modulates memory function, resulting in significant functional impairment and dementia. Oxidative stress forms the foundation for the induction of multiple cellular pathways that can ultimately lead to both the onset and subsequent complications of DM. In particular, novel pathways that involve metabotropic receptor signaling, protein-tyrosine phosphatases, Wnt proteins, Akt, GSK-3beta, and forkhead transcription factors may be responsible for the onset and progression of complications form DM. Further knowledge acquired in understanding the complexity of DM and its ability to impair cellular systems throughout the body will foster new strategies for the treatment of DM and its complications.
Collapse
Affiliation(s)
- Kenneth Maiese
- Department of Neurology, 8C-1 UHC, Wayne State University School of Medicine, 4201 St. Antoine, Detroit, MI 48201, USA.
| | | | | |
Collapse
|
37
|
Ahtoniemi T, Goldsteins G, Keksa-Goldsteine V, Malm T, Kanninen K, Salminen A, Koistinaho J. Pyrrolidine dithiocarbamate inhibits induction of immunoproteasome and decreases survival in a rat model of amyotrophic lateral sclerosis. Mol Pharmacol 2006; 71:30-7. [PMID: 17008387 DOI: 10.1124/mol.106.028415] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Pyrrolidine dithiocarbamate (PDTC), an inhibitor of nuclear transcription factor kappa-B (NF-kappaB) and an antioxidant, has beneficial effects in animal models of various diseases, including arthritis, brain ischemia, spinal cord injury, Alzheimer's disease, and Duchenne muscular dystrophy. Because inflammation and oxidative damage are also hallmarks of amyotrophic lateral sclerosis (ALS), we studied the effect of oral PDTC treatment on G93A-superoxide dismutase 1 (SOD1) transgenic (TG) rat model of human ALS and observed that PDTC treatment significantly decreases the survival. PDTC treatment evoked the end stage of the disease at 121 +/- 21 days, whereas untreated TG animals reached the end stage at 141 +/- 13 days (p < 0.01). The DNA binding activity of NF-kappaB was not altered in G93A-SOD1 TG rats by PDTC treatment. The copper concentration in the spinal cord was increased after PDTC treatment both in G93A-SOD1 TG and wild-type rats, suggesting that increased copper may enhance the neurotoxicity of mutant SOD1. The amount of ubiquitinated proteins were significantly higher and proteasomal activity was decreased in the spinal cords of PDTC-treated TG rats compared with other groups, suggesting that PDTC treatment decreases proteasome function. Immunoblotting and immunocytochemistry showed that the level of immunoproteasome but not constitutive proteasome was increased in glia of G93A-SOD1 TG rats along with disease development. PDTC treatment completely blocked the induction of immunoproteasome expression without affecting constitutive proteasome. These results suggest that PDTC acts as an immunoproteasome inhibitor in mutant SOD1 rats and that immunoproteasome may help the nervous system to cope with deleterious effects of SOD1-G93A mutation.
Collapse
Affiliation(s)
- Toni Ahtoniemi
- Department of Neurobiology, A I Virtanen Institute for Molecular Sciences, University of Kuopio, PO B 1627, FIN-70211 Kuopio, Finland
| | | | | | | | | | | | | |
Collapse
|