1
|
Nunes Torres JA, de Lima DCA, Moraes VGDS, de Oliveira Cardoso MV, de Araújo Ribeiro LA, Silva FS, de Queiroz DB. Maternal exposure to glyphosate-based herbicide causes vascular dysfunction in offspring female rats. Toxicol Appl Pharmacol 2024; 484:116873. [PMID: 38417591 DOI: 10.1016/j.taap.2024.116873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/02/2024] [Accepted: 02/24/2024] [Indexed: 03/01/2024]
Abstract
This study analyzed how glyphosate exposure in the gestational period affects vascular function in their female offspring and whether oxidative stress is involved in this effect. To this, pregnant Wistar rats were exposed through drinking water to 0.2% of a glyphosate commercial formulation, and we analyzed the response to acetylcholine and phenylephrine in the aorta from offspring of Glyphosate-based herbicide (O-GBH) and controls (O-CON) rats at six months of age. Relaxation to acetylcholine was reduced in O-GBH than in O-CON. Acute Indomethacin and Apocynin increased relaxation to acetylcholine in O-GBH. The aorta from O-GBH was hyperactive to phenylephrine; the preincubation with N-nitro-L-arginine methyl ester (L-NAME) increased contraction to phenylephrine more in O-CON than O-GBH. TEMPOL similarly reduced phenylephrine response, and L-NAME prevented this effect. The TBARS and GSH levels were increased in O-GBH than in O-CON. Results reinforce the concept that oxidative stress during the perinatal period contributes to the development of vascular changes in adulthood. Results also reveal that oxidative stress parameters altered, and the current levels considered safe for exposure to Glyphosate deserve further investigation, especially in the female gender.
Collapse
|
2
|
Bujok J, Miśta D, Wincewicz E, Króliczewska B, Dzimira S, Żuk M. Atherosclerosis Development and Aortic Contractility in Hypercholesterolemic Rabbits Supplemented with Two Different Flaxseed Varieties. Foods 2021; 10:534. [PMID: 33806676 PMCID: PMC8001360 DOI: 10.3390/foods10030534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/01/2021] [Accepted: 03/01/2021] [Indexed: 11/16/2022] Open
Abstract
Alpha-linolenic acid (ALA) is widely regarded as the main beneficial component of flax for the prevention of cardiovascular disease. We evaluated the effect of the transgenic flaxseed W86-which is rich in ALA-on the lipid profile, atherosclerosis progression, and vascular reactivity in hypercholesterolemic rabbits compared to the parental cultivar Linola with a very low ALA content. Rabbits were fed a basal diet (control) or a basal diet supplemented with 1% cholesterol, 1% cholesterol and 10% flaxseed W86, or 1% cholesterol and 10% Linola flaxseed. A high-cholesterol diet resulted in an elevated plasma cholesterol and triglyceride levels compared to the control animals. Aortic sections from rabbits fed Linola had lower deposits of foamy cells than those from rabbits fed W86. A potassium-induced and phenylephrine-induced contractile response was enhanced by a high-cholesterol diet and not influenced by the W86 or Linola flaxseed. Pretreatment of the aortic rings with nitro-L-arginine methyl ester resulted in a concentration-dependent tendency to increase the reaction amplitude in the control and high-cholesterol diet groups but not the flaxseed groups. Linola flaxseed with a low ALA content more effectively reduced the atherosclerosis progression compared with the W86 flaxseed with a high concentration of stable ALA. Aorta contractility studies suggested that flaxseed ameliorated an increased contractility in hypercholesterolemia but had little or no impact on NO synthesis in the vascular wall.
Collapse
Affiliation(s)
- Jolanta Bujok
- Department of Animal Physiology and Biostructure, Wroclaw University of Environmental and Life Sciences, C.K. Norwida 31, 50-375 Wrocław, Poland; (D.M.); (E.W.); (B.K.)
| | - Dorota Miśta
- Department of Animal Physiology and Biostructure, Wroclaw University of Environmental and Life Sciences, C.K. Norwida 31, 50-375 Wrocław, Poland; (D.M.); (E.W.); (B.K.)
| | - Edyta Wincewicz
- Department of Animal Physiology and Biostructure, Wroclaw University of Environmental and Life Sciences, C.K. Norwida 31, 50-375 Wrocław, Poland; (D.M.); (E.W.); (B.K.)
| | - Bożena Króliczewska
- Department of Animal Physiology and Biostructure, Wroclaw University of Environmental and Life Sciences, C.K. Norwida 31, 50-375 Wrocław, Poland; (D.M.); (E.W.); (B.K.)
| | - Stanisław Dzimira
- Department of Pathology, Wroclaw University of Environmental and Life Sciences, C.K. Norwida 31, 50-375 Wrocław, Poland;
| | - Magdalena Żuk
- Department of Genetic Biochemistry, Faculty of Biotechnology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wrocław, Poland;
| |
Collapse
|
3
|
Kang H, Sun A, Wu Q, Yang J, Zhang W, Qu Y, Gao M, Deng X. Atherogenic diet-diminished endothelial glycocalyx contributes to impaired vasomotor properties in rat. Am J Physiol Heart Circ Physiol 2020; 319:H814-H823. [PMID: 32822214 DOI: 10.1152/ajpheart.00039.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Hypercholesterolemia- and atherosclerosis-caused vasomotor property dysfunction may be involved in many clinic manifestations of atherosclerosis, including angina, acute myocardial infarction, and sudden cardiac death. However, its underlying mechanism is not clear. The endothelial glycocalyx is a protective surface layer on the endothelial cells, serving as a molecular sieve, cell adhesion modulator, and mechanosensor for blood flow. In the present study, we demonstrated by confocal microscopy in Sprague-Dawley (SD) male rats fed a 12-wk high-cholesterol diet (HC) compared with the normal diet (NC) that the dimension of the endothelial glycocalyx reduced significantly in both the common carotid artery (2.89 ± 0.41 µm and 3.25 ± 0.44 μm, respectively) and the internal sinus region (2.35 ± 0.07 µm and 3.46 ± 0.86 μm, respectively). Furthermore, we showed by real-time PCR that this dimension modification of endothelial glycocalyx may be attributed to a significant downregulation of heparan sulfate proteoglycan (HSPG)-related genes, including syndecan-3, glypican-1, and EXT1, not resulting from an enhanced shedding of sulfated glycosaminoglycans (sGAGs) from the vessel wall to the plasma. Meanwhile, the mean contraction and relaxation forces of the common carotid artery with responses to norepinephrine (NE) and acetylcholine (ACh) decreased ~0.34- and 0.13-fold, respectively, accompanied by a lower level of nitric oxide (NO) release. These findings suggest that the atherogenic high cholesterol diet diminished endothelial glycocalyx and disturbed the local NO release, thus contributing to the impaired vasomotor properties of the vessel.NEW & NOTEWORTHY Twelve-week high-cholesterol (HC) diet reduces the thickness of the endothelial glycocalyx in Sprague-Dawley (SD) male rats, which is mainly attributed to a downregulation of heparan sulfate proteoglycan-related genes (syndecan-3, glypican-1, EXT1), not resulting from an enhanced shedding of sulfated glycosaminoglycans (sGAGs) into the plasma. HC-diminished glycocalyx may disturb its mechanotransduction of local shear stress, lower nitric oxide (NO) release, and impair vasomotor responses to norepinephrine (NE) and acetylcholine (ACh).
Collapse
Affiliation(s)
- Hongyan Kang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China
| | - Anqiang Sun
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China
| | - Qiuhong Wu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Jiali Yang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China
| | - Weichen Zhang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yuxin Qu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Menghan Gao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xiaoyan Deng
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China
| |
Collapse
|
4
|
Ando M, Matsumoto T, Taguchi K, Kobayashi T. Poly (I:C) impairs NO donor-induced relaxation by overexposure to NO via the NF-kappa B/iNOS pathway in rat superior mesenteric arteries. Free Radic Biol Med 2017; 112:553-566. [PMID: 28870522 DOI: 10.1016/j.freeradbiomed.2017.08.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 08/30/2017] [Accepted: 08/31/2017] [Indexed: 10/18/2022]
Abstract
Recent studies have suggested a link between vascular dysfunction and innate immune activation including toll-like receptors (TLRs), but the detailed mechanism remains unclear. Here we investigated whether poly (I:C) [a synthetic double-strand RNA recognized by TLR3, melanoma differentiation-associated gene 5 (MDA5), and retinoic acid-inducible gene I (RIG-I)] affected nitric oxide (NO)/cGMP-related vascular relaxation, one of the major cascades of relaxation, in rat superior mesenteric arteries. Using organ-cultured arteries, we found that poly (I:C) (30μg/mL for approximately 1 day) markedly reduced sodium nitroprusside (SNP)-induced relaxation (vs. vehicle); this was prevented by co-treatment with a TLR3 inhibitor. Relaxation induced by 8-Br cGMP (a phosphodiesterase (PDE)-resistant cGMP analogue) and the expression of proteins related to NO/cGMP signaling did not differ between vehicle- and poly (I:C)-treated groups. When PDEs were inhibited by IBMX (a nonselective PDE inhibitor), the SNP-induced relaxation was still greatly reduced in poly (I:C)-treated arteries (vs. vehicle). Poly (I:C) reduced SNP-stimulated cGMP production, but increased NO production and iNOS expression (vs. vehicle). The impairment of SNP-induced relaxation by poly (I:C) was prevented by co-treatment with either iNOS or a nuclear factor-kappa B (NF-κB) inhibitor. This effect induced by poly (I:C) appeared to be independent of oxidative stress. The SNP-induced relaxation was reduced in freshly isolated arteries by pre-incubation with SNP in a concentration-dependent manner. Poly (I:C) did not alter protein levels of TLR3, TRIF/TICAM-1, or phospho-IRF3/IRF3, whereas RIG-I and MDA5 were significantly upregulated (vs. vehicle). These results suggest that poly (I:C) impairs NO donor-induced relaxation in rat superior mesenteric arteries via overexposure to NO produced by the NF-κB/iNOS pathway.
Collapse
Affiliation(s)
- Makoto Ando
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan.
| | - Kumiko Taguchi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Tsuneo Kobayashi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan.
| |
Collapse
|
5
|
Matsumoto T, Watanabe S, Iguchi M, Ando M, Oda M, Nagata M, Yamada K, Taguchi K, Kobayashi T. Mechanisms Underlying Enhanced Noradrenaline-Induced Femoral Arterial Contractions of Spontaneously Hypertensive Rats: Involvement of Endothelium-Derived Factors and Cyclooxygenase-Derived Prostanoids. Biol Pharm Bull 2016; 39:384-93. [DOI: 10.1248/bpb.b15-00821] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
| | - Shun Watanabe
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
| | - Maika Iguchi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
| | - Makoto Ando
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
| | - Mirai Oda
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
| | - Mako Nagata
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
| | - Kosuke Yamada
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
| | - Kumiko Taguchi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
| | - Tsuneo Kobayashi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
| |
Collapse
|
6
|
Kong BWC, Vanhoutte PM, Man RYK, Leung SWS. 17β-estradiol potentiates endothelium-dependent nitric oxide- and hyperpolarization-mediated relaxations in blood vessels of male but not female apolipoprotein-E deficient mice. Vascul Pharmacol 2015; 71:166-73. [PMID: 25869512 DOI: 10.1016/j.vph.2015.02.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 02/10/2015] [Accepted: 02/16/2015] [Indexed: 11/17/2022]
Abstract
The present study investigated the influence of gender on the changes underlying endothelial dysfunction in hyperlipidemia during aging. Isometric tension in rings (with endothelium) of the aortae and superior mesenteric arteries from apolipoprotein-E deficient mice was determined in wire myographs. Nitric oxide (NO)- and endothelium-dependent hyperpolarization (EDH)-mediated relaxations were smaller in the aortae and mesenteric arteries of 32weeks old males than eight weeks old males. In females, NO- and EDH-mediated relaxations were impaired only at 84weeks of age. The levels of reactive oxygen species were elevated in the blood vessels of 32weeks old males, but not females. Acute in vitro treatment with 17β-estradiol and apocynin improved NO- and EDH-mediated relaxations in 32weeks old males but not in 84weeks old males. Relaxations to SKA-31, activator of intermediate (IKCa) and small (SKCa) conductance calcium-activated potassium channels, were attenuated in the mesenteric arteries of 32weeks old males. Such impairment was restored by acute treatment with apocynin. These findings suggest that male hyperlipidemic mice develop endothelial dysfunction at an earlier age than females. This endothelial dysfunction is associated with impaired NO bioavailability and reduced IKCa and SKCa activity. Apocynin and 17β-estradiol restore the endothelial function only in younger male animals but not in older male or female animals.
Collapse
Affiliation(s)
- Billy W C Kong
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Paul M Vanhoutte
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Ricky Y K Man
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Susan W S Leung
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong.
| |
Collapse
|
7
|
Nwokocha CR, Baker A, Douglas D, McCalla G, Nwokocha M, Brown PD. Apocynin ameliorates cadmium-induced hypertension through elevation of endothelium nitric oxide synthase. Cardiovasc Toxicol 2014; 13:357-63. [PMID: 23703608 DOI: 10.1007/s12012-013-9216-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Apocynin is reported to have antioxidant and NADPH oxidase inhibitor activities. Cadmium toxicity is reported to causes oxidative damage, resulting in vascular dysfunction, reduced bioavailability of nitric oxide (NO) and hypertension. The study aimed to investigate the protective effects of apocynin in cadmium-induced hypertension. Thirty-six (36) adult male Sprague-Dawley rats were randomly divided into 6 groups. Group 1 served as control, Groups 2 and 3 received 50 and 100 mg/Kg (b.w) apocynin, respectively, Group 4 received 100 ppm CdCl2 in their drinking water, while Group 5 and 6 received 100 ppm CdCl2 in their drinking and 50 and 100 mg/Kg (b.w) apocynin, respectively, for 8 weeks. Blood pressure readings were taken weekly using the tail-cuff method. cGMP, endothelial nitric oxide synthase (eNOS), NO and hematological parameters were analyzed at the end of 8 weeks. Apocynin, although a poor antioxidant, caused a significant reduction (p < 0.05) in systolic and mean arterial pressures in the cadmium-induced elevations in blood pressure and amelioration of altered hematological parameters. However, while cadmium exposures did not alter the cGMP, eNOS and nitrate concentrations in serum, apocynin reduced the cGMP and nitrite values while significantly elevating (p < 0.05) the eNOS concentrations and also improved the cadmium-induced anemia. Apocynin was effective in reducing cadmium-induced elevated blood pressures through elevation of eNOS. Inhibition of NADPH oxidase activity may be a useful strategy for prevention and treatment of cadmium-induced hypertension.
Collapse
Affiliation(s)
- Chukwuemeka R Nwokocha
- Physiology Section, Department of Basic Medical Sciences, The University of the West Indies, Mona Campus, Kingston 7, Jamaica,
| | | | | | | | | | | |
Collapse
|
8
|
Jiménez-Altayó F, Onetti Y, Heras M, Dantas AP, Vila E. Western-style diet modulates contractile responses to phenylephrine differently in mesenteric arteries from senescence-accelerated prone (SAMP8) and resistant (SAMR1) mice. AGE (DORDRECHT, NETHERLANDS) 2013; 35:1219-1234. [PMID: 22777652 PMCID: PMC3705122 DOI: 10.1007/s11357-012-9450-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 06/24/2012] [Indexed: 06/01/2023]
Abstract
The influence of two known cardiovascular risk factors, aging and consumption of a high-fat diet, on vascular mesenteric artery reactivity was examined in a mouse model of accelerated senescence (SAM). Five-month-old SAM prone (SAMP8) and resistant (SAMR1) female mice were fed a Western-type high-fat diet (WD; 8 weeks). Mesenteric arteries were dissected, and vascular reactivity, protein and messenger RNA expression, superoxide anion (O 2 (·-) ) and hydrogen peroxide formation were evaluated by wire myography, immunofluorescence, RT-qPCR, ethidium fluorescence and ferric-xylenol orange, respectively. Contraction to KCl and relaxation to acetylcholine remained unchanged irrespective of senescence and diet. Although similar contractions to phenylephrine were observed in SAMR1 and SAMP8, accelerated senescence was associated with decreased eNOS and nNOS and increased O 2 (·-) synthesis. Senescence-related alterations were compensated, at least partly, by the contribution of NO derived from iNOS and the enhanced endogenous antioxidant capacity of superoxide dismutase 1 to maintain vasoconstriction. Administration of a WD induced qualitatively different alterations in phenylephrine contractions of mesenteric arteries from SAMR1 and SAMP8. SAMR1 showed increased contractions partly as a result of decreased NO availability generated by decreased eNOS and nNOS and enhanced O 2 (·-) formation. In contrast, WD feeding in SAMP8 resulted in reduced contractions due to, at least in part, the increased functional participation of iNOS-derived NO. In conclusion, senescence-dependent intrinsic alterations during early stages of vascular senescence may promote vascular adaptation and predispose to further changes in response to high-fat intake, which may lead to the progression of aging-related cardiovascular disease, whereas young subjects lack the capacity for this adaptation.
Collapse
Affiliation(s)
- Francesc Jiménez-Altayó
- Departament de Farmacologia, Terapèutica i Toxicologia, Institut de Neurociències, Facultat de Medicina, Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Cerdanyola del Vallès, Spain.
| | | | | | | | | |
Collapse
|
9
|
Balarini CM, Leal MA, Gomes IBS, Pereira TMC, Gava AL, Meyrelles SS, Vasquez EC. Sildenafil restores endothelial function in the apolipoprotein E knockout mouse. J Transl Med 2013; 11:3. [PMID: 23289368 PMCID: PMC3551739 DOI: 10.1186/1479-5876-11-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 01/02/2013] [Indexed: 11/25/2022] Open
Abstract
Background Atherosclerosis is an inflammatory process of the arterial walls and is initiated by endothelial dysfunction accompanied by an imbalance in the production of reactive oxygen species (ROS) and nitric oxide (NO). Sildenafil, a selective phosphodiesterase-5 (PDE5) inhibitor used for erectile dysfunction, exerts its cardiovascular effects by enhancing the effects of NO. The aim of this study was to investigate the influence of sildenafil on endothelial function and atherosclerosis progression in apolipoprotein E knockout (apoE−/−) mice. Methods ApoE−/− mice treated with sildenafil (Viagra®, 40 mg/kg/day, for 3 weeks, by oral gavage) were compared to the untreated apoE−/− and the wild-type (WT) mice. Aortic rings were used to evaluate the relaxation responses to acetylcholine (ACh) in all of the groups. In a separate set of experiments, the roles of NO and ROS in the relaxation response to ACh were evaluated by incubating the aortic rings with L-NAME (NO synthase inhibitor) or apocynin (NADPH oxidase inhibitor). In addition, the atherosclerotic lesions were quantified and superoxide production was assessed. Results Sildenafil restored the vasodilator response to acetylcholine (ACh) in the aortic rings of the apoE−/− mice. Treatment with L-NAME abolished the vasodilator responses to ACh in all three groups of mice and revealed an augmented participation of NO in the endothelium-dependent vasodilation in the sildenafil-treated animals. The normalized endothelial function in sildenafil-treated apoE−/− mice was unaffected by apocynin highlighting the low levels of ROS production in these animals. Moreover, morphological analysis showed that sildenafil treatment caused approximately a 40% decrease in plaque deposition in the aorta. Conclusion This is the first study demonstrating the beneficial effects of chronic treatment with sildenafil on endothelial dysfunction and atherosclerosis in a model of spontaneous hypercholesterolemia. These data indicate that the main mechanism of the beneficial effect of sildenafil on the endothelial function appears to involve an enhancement of the NO pathway along with a reduction in oxidative stress.
Collapse
Affiliation(s)
- Camille M Balarini
- Dept, of Physiological Sciences, Health Sciences Center, Federal University of Espirito Santo, Vitoria, ES, Brazil
| | | | | | | | | | | | | |
Collapse
|
10
|
Ramos-Alves FE, de Queiroz DB, Santos-Rocha J, Duarte GP, Xavier FE. Increased cyclooxygenase-2-derived prostanoids contributes to the hyperreactivity to noradrenaline in mesenteric resistance arteries from offspring of diabetic rats. PLoS One 2012; 7:e50593. [PMID: 23209788 PMCID: PMC3509067 DOI: 10.1371/journal.pone.0050593] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 10/22/2012] [Indexed: 01/22/2023] Open
Abstract
This study analyzed the effect of in utero exposure to maternal diabetes on contraction to noradrenaline in mesenteric resistance arteries (MRA) from adult offspring, focusing on the role of cyclooxygenase (COX)-derived prostanoids. Diabetes in the maternal rat was induced by a single injection of streptozotocin (50 mg/kg body weight) on day 7 of pregnancy. Contraction to noradrenaline was analyzed in isolated MRA from offspring of diabetic (O-DR) and non-diabetic (O-CR) rats at 3, 6 and 12 months of age. Release of thromboxane A2 (TxA2) and prostaglandins E2 (PGE2) and F2α (PGF2α), was measured by specific enzyme immunoassay kits. O-DR developed hypertension from 6 months of age compared with O-CR. Arteries from O-DR were hyperactive to noradrenaline only at 6 and 12 months of age. Endothelial removal abolished this hyperreactivity to noradrenaline between O-CR and O-DR. Preincubation with either the COX-1/2 (indomethacin) or COX-2 inhibitor (NS-398) decreased noradrenaline contraction only in 6- and 12-month-old O-DR, while it remained unmodified by COX-1 inhibitor SC-560. In vessels from 6-month-old O-DR, a similar reduction in the contraction to noradrenaline produced by NS-398 was observed when TP and EP receptors were blocked (SQ29548+AH6809). In 12-month-old O-DR, this effect was only achieved when TP, EP and FP were blocked (SQ29548+AH6809+AL8810). Noradrenaline-stimulated TxB2 and PGE2 release was higher in 6- and 12-month-old O-DR, whereas PGF2α was increased only in 12-month-old O-DR. Our results demonstrated that in utero exposure to maternal hyperglycaemia in rats increases the participation of COX-2-derived prostanoids on contraction to noradrenaline, which might help to explain the greater response to this agonist in MRA from 6- and 12-month-old offspring. As increased contractile response in resistance vessels may contribute to hypertension, our results suggest a role for these COX-2-derived prostanoids in elevating vascular resistance and blood pressure in offspring of diabetic rats.
Collapse
Affiliation(s)
- Fernanda E. Ramos-Alves
- Departamento de Fisiologia e Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Recife, Brazil
| | - Diego B. de Queiroz
- Departamento de Fisiologia e Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Recife, Brazil
| | - Juliana Santos-Rocha
- Departamento de Fisiologia e Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Recife, Brazil
| | - Gloria P. Duarte
- Departamento de Fisiologia e Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Recife, Brazil
| | - Fabiano E. Xavier
- Departamento de Fisiologia e Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Recife, Brazil
- * E-mail:
| |
Collapse
|
11
|
Meyrelles SS, Peotta VA, Pereira TMC, Vasquez EC. Endothelial dysfunction in the apolipoprotein E-deficient mouse: insights into the influence of diet, gender and aging. Lipids Health Dis 2011; 10:211. [PMID: 22082357 PMCID: PMC3247089 DOI: 10.1186/1476-511x-10-211] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Accepted: 11/14/2011] [Indexed: 02/07/2023] Open
Abstract
Since the early 1990s, several strains of genetically modified mice have been developed as models for experimental atherosclerosis. Among the available models, the apolipoprotein E-deficient (apoE⁻/⁻) mouse is of particular relevance because of its propensity to spontaneously develop hypercholesterolemia and atherosclerotic lesions that are similar to those found in humans, even when the mice are fed a chow diet. The main purpose of this review is to highlight the key achievements that have contributed to elucidating the mechanisms pertaining to vascular dysfunction in the apoE⁻/⁻ mouse. First, we summarize lipoproteins and atherosclerosis phenotypes in the apoE⁻/⁻ mouse, and then we briefly discuss controversial evidence relative to the influence of gender on the development of atherosclerosis in this murine model. Second, we discuss the main mechanisms underlying the endothelial dysfunction of conducting vessels and resistance vessels and examine how this vascular defect can be influenced by diet, aging and gender in the apoE⁻/⁻ mouse.
Collapse
Affiliation(s)
- Silvana S Meyrelles
- Departament of Physiological Sciences, Health Sciences Center, Federal University of Espirito Santo, Vitoria, ES, Brazil
| | | | | | | |
Collapse
|
12
|
Zhang R, Ran HH, Ma J, Bai YG, Lin LJ. NAD(P)H oxidase inhibiting with apocynin improved vascular reactivity in tail-suspended hindlimb unweighting rat. J Physiol Biochem 2011; 68:99-105. [PMID: 22015782 DOI: 10.1007/s13105-011-0123-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 10/03/2011] [Indexed: 02/07/2023]
Abstract
Recent studies suggested that reactive oxygen species derived from nicotinamide adenine dinucleotide phosphate (NAD(P)H) oxidase is of functional importance in modulating vascular tone, and we have previously detected excessive superoxide production in tail-suspended hindlimb unweighting (HU) rat cerebral and carotid arteries. HU rat was a widely used model to simulate physiological effects on the vasculature. The present study tended to investigate whether NAD(P)H oxidase inhibition with apocynin influences vasoconstriction, endothelium-dependent relaxation, and nitrite/nitrate (NOx) content in HU rat cerebral and carotid arteries. Vascular contractile and dilate responses were assessed in a myograph organ bath. NOx content in cerebral and carotid arteries was measured. We found enhanced maximal contractile response and impaired endothelium-dependent relaxation in HU rat basilar (P < 0.01) and common carotid artery (P < 0.05); however, chronic treatment of apocynin (50 mg/kg/day) partially reversed abnormal vascular response. Furthermore, 21-day HU increased arterial NOx content (P < 0.01) in cerebral and carotid arteries compared with control rats; however, apocynin treatment restored it toward near-normal values. These data demonstrated that NAD(P)H oxidase-derived oxidative stress mediated abnormal vasoreactivity though nitric oxide mechanism in the settings of simulated microgravity.
Collapse
Affiliation(s)
- Ran Zhang
- Insititute of Geriatric Cardiology, Chinese People's Liberation Army General Hospital, Beijing 100853, China.
| | | | | | | | | |
Collapse
|
13
|
Pereira RB, Vasquez EC, Stefanon I, Meyrelles SS. Oral P. gingivalis infection alters the vascular reactivity in healthy and spontaneously atherosclerotic mice. Lipids Health Dis 2011; 10:80. [PMID: 21586133 PMCID: PMC3118371 DOI: 10.1186/1476-511x-10-80] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Accepted: 05/17/2011] [Indexed: 11/19/2022] Open
Abstract
Background Considering that recent studies have demonstrated endothelial dysfunction in subjects with periodontitis and that there is no information about vascular function in coexistence of periodontitis and atherosclerosis, we assessed the impact of oral inoculation with the periodontal pathogen Porphyromonas gingivalis on vascular reactivity in healthy and hypercholesterolemic apolipoprotein E-deficient (ApoE) mice. In vitro preparations of mesenteric arteriolar bed were used to determine the vascular responses to acetylcholine, sodium nitroprusside and phenylephrine (PE). Results Alveolar bone resorption, an evidence of periodontitis, was assessed and confirmed in all infected mice. Acetylcholine- and sodium nitroprusside-induced vasorelaxations were similar among all groups. Non-infected ApoE mice were hyperreactive to PE when compared to non-infected healthy mice. P gingivalis infection significantly enhanced the vasoconstriction to PE in both healthy and spontaneous atherosclerotic mice, when compared to their respective controls. Conclusions This study demonstrates that oral P gingivalis affects the alpha-adrenoceptor-mediated vascular responsiveness in both healthy and spontaneous atherosclerotic mice, reinforcing the association between periodontitis and cardiovascular diseases.
Collapse
Affiliation(s)
- Raquel B Pereira
- Department of Physiological Sciences, Federal University of Espirito Santo, Vitoria, ES, Brazil.
| | | | | | | |
Collapse
|
14
|
Matsumoto T, Kobayashi T, Ishida K, Hirasawa Y, Morita H, Honda T, Kamata K. Vasodilator effect of Cassiarin A, a novel antiplasmodial alkaloid from Cassia siamea, in rat isolated mesenteric artery. Biol Pharm Bull 2010; 33:844-8. [PMID: 20460764 DOI: 10.1248/bpb.33.844] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this study was to investigate the vasorelaxant effect induced by cassiarin A, a novel antiplasmodial alkaloid from Cassia siamea, in rings cut from rat superior mesenteric arteries. In rings precontracted with phenylephrine, cassiarin A induced a concentration-dependent relaxation. This relaxation was attenuated: 1) after removal of the endothelium or after pretreatment of rings with 100 microM of N(G)-nitro-L-arginine (nitric oxide synthase inhibitor) or 10 microM of 1H-[1,2,4]oxadiazolo[4,3-a]-quinoxalin-1-one (guanylyl cyclase inhibitor), but not after pretreatment with 10 microM of indomethacin (cyclooxygenase inhibitor); and 2) after pretreatment of preparations with either a nonselective or selective inhibitor of large-conductance Ca(2+)-activated K(+) (BK(Ca)) channels [1 mM of tetraethylammonium or 100 nM of iberiotoxin, respectively]. The cassiarin A-induced relaxation was also attenuated by these BK(Ca) inhibitors in endothelium-denuded preparations. The cassiarin A-induced relaxation was not altered by treatment with the ATP-sensitive K(+)-channel inhibitor glibenclamide (10 microM) or with the voltage-dependent K(+)-channel inhibitor 4-aminopyridine (1 mM). In isolated mesenteric artery rings, cassiarin A tended to increase nitric oxide (NO) levels. These results suggest that in the rat mesenteric artery, cassiarin A-induced relaxation may be mediated by endothelial NO and may occur partly via BK(Ca)-channel activation.
Collapse
Affiliation(s)
- Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
15
|
Lu X, Guo X, Wassall CD, Kemple MD, Unthank JL, Kassab GS. Reactive oxygen species cause endothelial dysfunction in chronic flow overload. J Appl Physiol (1985) 2010; 110:520-7. [PMID: 21127212 DOI: 10.1152/japplphysiol.00786.2009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Although elevation of shear stress increases production of vascular reactive oxygen species (ROS), the role of ROS in chronic flow overload (CFO) has not been well investigated. We hypothesize that CFO increases ROS production mediated in part by NADPH oxidase, which leads to endothelial dysfunction. In six swine, CFO in carotid arteries was induced by contralateral ligation for 1 wk. In an additional group, six swine received apocynin (NADPH oxidase blocker and anti-oxidant) treatment in conjunction with CFO for 1 wk. The blood flow in carotid arteries increased from 189.2 ± 25.3 ml/min (control) to 369.6 ± 61.9 ml/min (CFO), and the arterial diameter increased by 8.6%. The expressions of endothelial nitric oxide synthase (eNOS), p22/p47(phox), and NOX2/NOX4 were upregulated. ROS production increased threefold in response to CFO. The endothelium-dependent vasorelaxation was compromised in the CFO group. Treatment with apocynin significantly reduced ROS production in the vessel wall, preserved endothelial function, and inhibited expressions of p22/p47phox and NOX2/NOX4. Although the process of CFO remodeling to restore the wall shear stress has been thought of as a physiological response, the present data implicate NADPH oxidase-produced ROS and eNOS uncoupling in endothelial dysfunction at 1 wk of CFO.
Collapse
Affiliation(s)
- X Lu
- Department of Biomedical Engineering, Indiana Univ. Purdue Univ. Indianapolis, Indianapolis, IN 46202, USA
| | | | | | | | | | | |
Collapse
|
16
|
Takenouchi Y, Kobayashi T, Taguchi K, Matsumoto T, Kamata K. Relationship among superoxide-related enzyme, PPARs, and endothelium-dependent relaxation in murine aortas previously organ-cultured in high-glucose conditions. Can J Physiol Pharmacol 2010; 88:760-9. [PMID: 20651824 DOI: 10.1139/y10-045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The aim of the present study was to investigate the relationship among superoxide anion, peroxisome proliferator-activated receptors (PPARs), and endothelium-dependent relaxation in murine aortas organ-cultured in a high-glucose condition. Aortas organ-cultured with a high concentration of glucose (40 mmol/L, 20 h; HG group) exhibited the following characteristics (versus aortas cultured in serum-free medium): (i) significantly weaker relaxation to acetylcholine, but unchanged relaxation to SNP and unchanged contractions to norepinephrine and isotonic K+, (ii) significantly greater superoxide generation (indicated by the amount of nitroblue tetrazolium reduced, (iii) significantly higher protein expression levels of gp91phox, NAD(P)H oxidase subunits, and endothelial NO synthase, (iv) significantly lower protein expression level of Mn-superoxide dismutase (SOD), and (v) markedly greater reduction in the protein expression of PPARgamma than in that of PPARalpha. The HG-induced impairment of endothelium-dependent relaxation was prevented by cotreatment with tempol (a SOD mimetic). These results suggest that in the mouse aorta, exposure to high glucose levels may lead to an excessive generation of superoxide via increased gp91phox and decreased Mn-SOD protein expression and that this may in turn trigger an impairment of endothelium-dependent relaxation. Moreover, such protein changes in gp91phox and Mn-SOD may be secondary to a decreased expression of PPARgamma protein.
Collapse
Affiliation(s)
- Yasuhiro Takenouchi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | | | | | | | | |
Collapse
|
17
|
Matsumoto T, Kobayashi T, Ishida K, Taguchi K, Kamata K. Enhancement of mesenteric artery contraction to 5-HT depends on Rho kinase and Src kinase pathways in the ob/ob mouse model of type 2 diabetes. Br J Pharmacol 2010; 160:1092-104. [PMID: 20590603 DOI: 10.1111/j.1476-5381.2010.00753.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND AND PURPOSE Arteries from hypertensive subjects are reportedly hyperresponsive to 5-hydroxytryptamine (5-HT), but it remains unclear whether this is true in chronic type 2 diabetes. We have assessed responses to 5-HT shown by mesenteric arteries from type 2 diabetic ob/ob mice (27-32 weeks old) and have identified the molecular mechanisms involved. EXPERIMENTAL APPROACH Contractions of mesenteric rings to 5-HT were examined in vitro. Activation of mesenteric RhoA, Rho kinase and Src was measured by Western blotting or by modified enzyme-linked immunosorbent assay. KEY RESULTS Concentration-dependent contractions to 5-HT were greater in mesenteric rings from the ob/ob than in those from the age-matched control ('Lean') group. In each group, there was no significant change in the 5-HT-induced contractions after inhibition of nitric oxide synthase (with N(G)-nitro-L-arginine), of cyclooxygenase (with indomethacin) or of protein kinase C (with chelerythrine). However inhibition of the MEK/ERK pathway (with PD98059) decreased the response to 5-HT. Although the diabetes-related enhancement of the 5-HT response was preserved with each of these inhibitors, enhancement was abolished by a Rho kinase inhibitor (Y27632) and by Src kinase inhibitors (PP1 analogue or Src kinase inhibitor I). 5-HT-induced activation of RhoA, Rho kinase and Src kinase in mesenteric arteries was greater in the ob/ob than in the Lean group, but the expression of RhoA, Rho kinase isoforms and Src did not differ between these groups. CONCLUSIONS AND IMPLICATIONS These results suggest that the enhancement of 5-HT-induced contraction in mesenteric arteries from ob/ob mice may be attributable to increased activation of RhoA/Rho kinase and Src kinase.
Collapse
Affiliation(s)
- Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
18
|
|
19
|
Matsumoto T, Ishida K, Nakayama N, Taguchi K, Kobayashi T, Kamata K. Mechanisms underlying the losartan treatment-induced improvement in the endothelial dysfunction seen in mesenteric arteries from type 2 diabetic rats. Pharmacol Res 2010; 62:271-81. [PMID: 20304070 DOI: 10.1016/j.phrs.2010.03.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 03/12/2010] [Accepted: 03/12/2010] [Indexed: 11/24/2022]
Abstract
It is well known that type 2 diabetes mellitus is frequently associated with vascular dysfunction and an elevated systemic blood pressure, yet the underlying mechanisms are not completely understood. We previously reported that in mesenteric arteries from established type 2 diabetic Otsuka Long-Evans Tokushima fatty (OLETF) rats, which exhibit endothelial dysfunction, there is an imbalance between endothelium-derived vasodilators [namely, nitric oxide (NO) and hyperpolarizing factor (EDHF)] and vasoconstrictors [contracting factors (EDCFs) such as cyclooxygenase (COX)-derived prostanoids]. Here, we investigated whether the angiotensin II receptor antagonist losartan might improve endothelial dysfunction in OLETF rats at the established stage of diabetes. In mesenteric arteries isolated from OLETF rats [vs. those from age-matched control Long-Evans Tokushima Otsuka (LETO) rats]: (1) the acetylcholine (ACh)-induced relaxation was impaired, (2) the NO- and EDHF-mediated relaxations were reduced, (3) the ACh-induced EDCF-mediated contraction and the production of prostanoids were increased, and (4) superoxide generation was increased. After such OLETF rats had received losartan (25 mg/kg/day p.o. for 4 weeks), their isolated mesenteric arteries exhibited: (1) improvements in ACh-induced NO- and EDHF-mediated relaxations, (2) reduced EDCF- and arachidonic acid-induced contractions, (3) suppressed production of prostanoids, (4) reduced PGE(2)-mediated contraction, and (5) reduced superoxide generation. Within the timescale studied here, losartan did not change the protein expressions of endothelial NO synthase, COX1, or COX2 in mesenteric arteries from either OLETF or LETO rats. Losartan thus normalizes vascular dysfunction in this type 2 diabetic model, and the above effects may contribute to the reduction of adverse cardiovascular events seen in diabetic patients treated with angiotensin II receptor blockers.
Collapse
Affiliation(s)
- Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | | | | | | | | | | |
Collapse
|
20
|
Ma L, Ma S, He H, Yang D, Chen X, Luo Z, Liu D, Zhu Z. Perivascular fat-mediated vascular dysfunction and remodeling through the AMPK/mTOR pathway in high-fat diet-induced obese rats. Hypertens Res 2010; 33:446-53. [DOI: 10.1038/hr.2010.11] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
21
|
Kamata K, Ozawa Y, Kobayashi T, Matsumoto T. Effect of N-epsilon-(carboxymethyl)lysine on coronary vasoconstriction in isolated perfused hearts from control and streptozotocin-induced diabetic rats. J Smooth Muscle Res 2009; 45:125-37. [PMID: 19602856 DOI: 10.1540/jsmr.45.125] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Advanced glycation end products (AGEs) derived from glucose are implicated in the pathogenesis of diabetic vascular disease. However, their direct modulatory effects on coronary vascular tone remain unclear. We previously reported that coronary vasoconstriction was induced by acetylcholine (ACh) infusion of the isolated perfused rat heart and that sensitivity was greater in perfused hearts from streptozotocin (STZ)-induced diabetic rats than in those from age-matched controls (Kamata et al., 2008). Here, we investigated the effect of N(epsilon)-(carboxymethyl)lysine (CML), which has one of the main AGE structures, on ACh-induced vasoconstriction in perfused hearts isolated from control and diabetic rats. ACh-induced vasoconstriction was significantly greater in the STZ-induced diabetic group than in the age-matched controls. CML enhanced the ACh-induced vasoconstriction in coronary arteries from control rats, but not in those from STZ-induced diabetic rats. In the controls, the vasoconstriction induced by the calcium-channel activator Bay K 8644 was also enhanced by CML. These CML-mediated enhancements of the vasoconstrictions induced by ACh and Bay K 8644 were significantly suppressed by tempol, a superoxide dismutase mimetic. The plasma CML and glucose levels were each significantly elevated in STZ-induced diabetic rats. These findings suggest (a) that CML augments ACh-induced coronary vasoconstriction, an effect that may be attributable to increased superoxide and to activation of voltage-gated Ca(2+) channels and (b) that this modulating effect may be desensitized in the STZ-induced diabetic heart.
Collapse
Affiliation(s)
- Katsuo Kamata
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan.
| | | | | | | |
Collapse
|
22
|
Hsieh CY, Miaw CL, Hsieh CC, Tseng HC, Yang YH, Yen CH. Effects of chronic 4-n-nonylphenol treatment on aortic vasoconstriction and vasorelaxation in rats. Arch Toxicol 2009; 83:941-6. [PMID: 19533100 DOI: 10.1007/s00204-009-0447-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Accepted: 06/03/2009] [Indexed: 11/25/2022]
Abstract
4-Nonylphenol (para-nonylphenol, 4-NP), metabolites including linear and branched isoforms of nonylphenol (n-NP and t-NP, respectively), has been considered an endocrine disrupting substance resulting in reproductive dysfunction and increasing reactive oxygen species production in testis, liver, kidney, and brain. However, to date, whether vasculature is susceptible to NP exposure remains to be unclear. In this study, we have investigated the effects of chronic in vivo 4-n-NP exposure on vasoconstriction and vasorelaxation in male rats. After a 20-week 4-n-NP treatment orally at the dosage of 10 and 50 muM in the drinking water, phenylephrine- and potassium chloride-induced concentration-dependent responsiveness assessed by wire myograph were both significantly higher in aorta isolated from 4-n-NP-treated rats compared with control rats, but acetylcholine-induced vasorelaxation was similar between these two groups. In addition, systemic oxidative stress and vascular, but not intestinal, oxidant enzyme activities assessed by lucigenin-amplified chemiluminescence were all markedly higher in 4-n-NP-treated rats. In conclusion, our results suggested that chronic in vivo 4-n-NP exposure augments vascular contractile responsiveness through enhanced vascular oxidant enzyme activity.
Collapse
Affiliation(s)
- Chi-Ying Hsieh
- Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | | | | | | | | | | |
Collapse
|
23
|
Matsumoto T, Ishida K, Nakayama N, Kobayashi T, Kamata K. Involvement of NO and MEK/ERK pathway in enhancement of endothelin-1-induced mesenteric artery contraction in later-stage type 2 diabetic Goto-Kakizaki rat. Am J Physiol Heart Circ Physiol 2009; 296:H1388-97. [DOI: 10.1152/ajpheart.00043.2009] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Endothelin (ET)-1 is a likely candidate for a key role in diabetic vascular complications. However, no abnormalities in the vascular responsiveness to ET-1 have been identified in the chronic stage of type 2 diabetes. Our goal was to look for abnormalities in the roles played by ET receptors (ETA and ETB) in the mesenteric artery of the type 2 diabetic Goto-Kakizaki (GK) rat and to identify the molecular mechanisms involved. Using mesenteric arteries from later-stage (32–38 wk old) individuals, we compared the ET-1-induced contraction and the relaxation induced by the selective ETB receptor agonist IRL1620 between GK rats and control Wistar rats. Mesenteric artery ERK activity and the protein expressions for ET receptors and MEK were also measured. In GK rats (vs. age-matched Wistar rats), we found as follows. 1) The ET-1-induced contraction was greater and was attenuated by BQ-123 (ETA antagonist) but not by BQ-788 (ETB antagonist). In the controls, BQ-788 augmented this contraction. 2) Both the relaxation and nitric oxide (NO) production induced by IRL1620 were reduced. 3) ET-1-induced contraction was enhanced by NG-nitro-l-arginine (l-NNA; NO synthase inhibitor) but suppressed by sodium nitroprusside (NO donor). 4) The enhanced ET-1-induced contraction was reduced by MEK/ERK pathway inhibitors (PD-98059 or U0126). 5) ET-1-stimulated ERK activation was increased, as were the ETA and MEK1/2 protein expressions. 6) Mesenteric ET-1 content was increased. These results suggest that upregulation of ETA, a defect in ETB-mediated NO signaling, and activation of the MEK/ERK pathway together represent a likely mechanism mediating the hyperreactivity to ET-1 examined in this study.
Collapse
|
24
|
Gender differences in age-related endothelial function in the murine aorta. Atherosclerosis 2009; 206:397-404. [PMID: 19356759 DOI: 10.1016/j.atherosclerosis.2009.03.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 03/04/2009] [Accepted: 03/07/2009] [Indexed: 02/07/2023]
Abstract
We investigated differences in aortic endothelial function among young (5 months) and old (20 months) male or female mice. Aortas isolated from male-old mice exhibited: (a) impaired relaxation to both acetylcholine (ACh) (P<0.01 vs. male-young or female-old) and A23187 (P<0.01 vs. male-young; P<0.001 vs. female-old), but unimpaired relaxation to sodium nitroprusside, and (b) increased superoxide generation (indicated by NBT reduction) (P<0.001 vs. male-young; P<0.01 vs. female-old) and increased 3-nitrotyrosine expression (marker for ONOO(-)) (P<0.01 vs. male-young or female-old). The protein expression of gp91phox, an NAD(P)H oxidase subunit, was upregulated in aortas from old mice (vs. young ones of the same gender) (males P<0.01; females P<0.05). The plasma adiponectin level (P<0.001) and the aortic Cu/Zn-SOD and EC-SOD protein expressions (each, P<0.01) were increased in females (vs. age-matched males). Aortic total SOD activities were lower in male-old than in either male-young (P<0.01) or female-old (P<0.001) mice. In aortas from male-young, female-young, and female-old mice, NADH [NAD(P)H oxidase substrate] and diethyldithiocarbamate (DDC; a SOD inhibitor) (whether applied alone or together) reduced ACh-induced endothelium-dependent relaxation (P<0.01 or P<0.001) and increased ACh-induced superoxide generation (P<0.05 or P<0.001). Tempol (a SOD mimetic) enhanced ACh-induced relaxation (P<0.05) and reduced ACh-induced superoxide generation (P<0.01) only in male-old aortas. These results suggest: (i) the impaired endothelium-dependent aortic relaxation in male-old mice is due to enhanced superoxide production via NADPH oxidase, and (ii) the relative preservation of endothelial function in female-old aortas may be due to enhanced superoxide scavenging (via increases in Cu/Zn-SOD and EC-SOD proteins and total SOD activity).
Collapse
|
25
|
Matsumoto T, Ozawa Y, Taguchi K, Kobayashi T, Kamata K. Chronic treatment with losartan (angiotensin II type 1 receptor antagonist) normalizes enhanced acetylcholine-induced coronary vasoconstriction in isolated perfused hearts of type 2 diabetic OLETF rats. J Smooth Muscle Res 2009; 45:197-208. [DOI: 10.1540/jsmr.45.197] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
| | - Yuta Ozawa
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
| | - Kumiko Taguchi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
| | - Tsuneo Kobayashi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
| | - Katsuo Kamata
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
| |
Collapse
|
26
|
Matsumoto T, Noguchi E, Ishida K, Nakayama N, Kobayashi T, Kamata K. Cilostazol improves endothelial dysfunction by increasing endothelium-derived hyperpolarizing factor response in mesenteric arteries from Type 2 diabetic rats. Eur J Pharmacol 2008; 599:102-9. [PMID: 18930728 DOI: 10.1016/j.ejphar.2008.10.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Revised: 09/18/2008] [Accepted: 10/05/2008] [Indexed: 01/13/2023]
Abstract
Diabetes mellitus impairs endothelial function, an effect that can be considered a hallmark of the development of cardiovascular diseases in diabetics. Cilostazol, a selective phosphodiesterase 3 inhibitor, is currently used to treat patients with diabetic vascular complications. However, the effects of cilostazol on responses mediated by endothelium-derived relaxing [in particular, nitric oxide (NO) and hyperpolarizing factors (EDHF)] and contracting factors remain unclear. Here, we hypothesized that cilostazol could improve endothelial dysfunctions in mesenteric arteries isolated from type 2 diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Using cilostazol-treated (100 mg/kg/day for 4 weeks) or -untreated OLETF and control (Long Evans Tokushima Otsuka) rats, we examined the acetylcholine-induced endothelium-dependent responses and the cell-permeant cyclic adenosine monophosphate (cAMP) analog-induced relaxations in the superior mesenteric artery. We also determined blood parameters in these animals. In OLETF rats, chronic treatment with cilostazol reduced the blood levels of triglyceride, non-esterified fatty acids, and leptin, and increased antioxidant capacity, but did not alter the blood glucose or insulin levels. In studies on mesenteric arteries from cilostazol-treated OLETF animals, the cilostazol treatment improved: (a) the acetylcholine-induced EDHF-mediated relaxation and (b) the cAMP-mediated relaxation. However, cilostazol did not alter the NO-mediated relaxation or the endothelium-derived contracting factor-mediated contraction. These results suggest that cilostazol improves endothelial functions in OLETF mesenteric arteries by increasing EDHF signaling, and that it normalizes some metabolic abnormalities in OLETF rats. On that basis, cilostazol may prove to be a potent drug for the clinical treatment of diabetic vasculopathy.
Collapse
Affiliation(s)
- Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Matsumoto T, Kakami M, Kobayashi T, Kamata K. Gender differences in vascular reactivity to endothelin-1 (1-31) in mesenteric arteries from diabetic mice. Peptides 2008; 29:1338-46. [PMID: 18486991 DOI: 10.1016/j.peptides.2008.04.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 04/01/2008] [Accepted: 04/03/2008] [Indexed: 01/22/2023]
Abstract
Endothelin-1 (1-31) [ET-1 (1-31)], a novel member of the ET family, comprises 31 amino acids and is derived from the selective hydrolysis of big ET-1 by chymase. Although ET-1 (1-31) reportedly exerts biological effects by direct or indirect [via its conversion to ET-1 (1-21)] mechanisms, it is unclear whether in diabetes the vascular effects of ET-1 (1-31) display gender differences. We investigated this question by exposing mesenteric artery rings to ET-1 (1-31), using arteries from mice in the early or chronic phase of diabetes. In the early stage of diabetes, the ET-1 (1-31)-induced contraction was similar between age- and sex-matched control and streptozotocin (STZ)-induced diabetic mice. In the chronic stage of diabetes, the ET-1 (1-31)-induced contraction was enhanced in diabetic female mice, but not in diabetic male mice (vs. both age-matched control and early-stage diabetic mice). This enhancement was largely prevented by Y27632 (Rho kinase inhibitor), PD98059 [inhibitor of extracellular signal related kinases 1 and 2 (ERK1/2)], or SP600125 [C-jun terminal kinase (JNK) inhibitor]. These data indicate that the ET-1 (1-31)-induced vasoconstriction in the mesenteric artery may be specifically enhanced in established diabetic female mice, and that this enhancement may be due to alterations in the activities of Rho/Rho kinase or mitogen-activated protein kinase.
Collapse
Affiliation(s)
- Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | | | | | | |
Collapse
|
28
|
Matsumoto T, Noguchi E, Ishida K, Kobayashi T, Yamada N, Kamata K. Metformin normalizes endothelial function by suppressing vasoconstrictor prostanoids in mesenteric arteries from OLETF rats, a model of type 2 diabetes. Am J Physiol Heart Circ Physiol 2008; 295:H1165-H1176. [PMID: 18641273 DOI: 10.1152/ajpheart.00486.2008] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We previously reported that in mesenteric arteries from aged Otsuka Long-Evans Tokushima fatty (OLETF) rats (a type 2 diabetes model) endothelium-derived hyperpolarizing factor (EDHF)-type relaxation is impaired while endothelium-derived contracting factor (EDCF)-mediated contraction is enhanced (Matsumoto T, Kakami M, Noguchi E, Kobayashi T, Kamata K. Am J Physiol Heart Circ Physiol 293: H1480-H1490, 2007). Here we investigated whether acute and/or chronic treatment with metformin might improve this imbalance between the effects of the above endothelium-derived factors in mesenteric arteries isolated from OLETF rats. In acute studies on OLETF mesenteric arteries, ACh-induced relaxation was impaired and the relaxation became weaker at high ACh concentrations. Both metformin and 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside [AICAR, an AMP-activated protein kinase (AMPK) activator that is also activated by metformin] 1) diminished the tendency for the relaxation to reverse at high ACh concentrations and 2) suppressed both ACh-induced EDCF-mediated contraction and ACh-stimulated production of prostanoids (thromboxane A2 and PGE2). In studies on OLETF arteries from chronically treated animals, metformin treatment (300 mg.kg(-1).day(-1) for 4 wk) 1) improved ACh-induced nitric oxide- or EDHF-mediated relaxation and cyclooxygenase (COX)-mediated contraction, 2) reduced EDCF-mediated contraction, 3) suppressed production of prostanoids, and 4) reduced superoxide generation. Metformin did not alter the protein expressions of endothelial nitric oxide synthase (eNOS), phospho-eNOS (Ser1177), or COX-1, but it increased COX-2 protein. These results suggest that metformin improves endothelial functions in OLETF mesenteric arteries by suppressing vasoconstrictor prostanoids and by reducing oxidative stress. Our data suggest that within the timescale studied here, metformin improves endothelial function through this direct mechanism, rather than by improving metabolic abnormalities.
Collapse
Affiliation(s)
- Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Tokyo 142-8501, Japan
| | | | | | | | | | | |
Collapse
|
29
|
Matsumoto T, Kobayashi T, Kamata K. Relationships among ET-1, PPAR.GAMMA., oxidative stress and endothelial dysfunction in diabetic animals. J Smooth Muscle Res 2008; 44:41-55. [DOI: 10.1540/jsmr.44.41] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
| | - Tsuneo Kobayashi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
| | - Katsuo Kamata
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
| |
Collapse
|
30
|
Takenouchi Y, Kobayashi T, Matsumoto T, Kamata K. Possible Involvement of Akt Activity in Endothelial Dysfunction in Type 2 Diabetic Mice. J Pharmacol Sci 2008; 106:600-8. [DOI: 10.1254/jphs.fp0071684] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
31
|
Kamata K, Ozawa Y, Kobayashi T, Matsumoto T. Effect of long-term streptozotocin-induced diabetes on coronary vasoconstriction in isolated perfused rat heart. J Smooth Muscle Res 2008; 44:177-88. [DOI: 10.1540/jsmr.44.177] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Katsuo Kamata
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
| | - Yuta Ozawa
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
| | - Tsuneo Kobayashi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
| | - Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
| |
Collapse
|
32
|
Zhou Z, Jiang DJ, Jia SJ, Xiao HB, Xiao B, Li YJ. Down-regulation of endogenous nitric oxide synthase inhibitors on endothelial SK3 expression. Vascul Pharmacol 2007; 47:265-71. [PMID: 17869187 DOI: 10.1016/j.vph.2007.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2007] [Revised: 05/23/2007] [Accepted: 08/02/2007] [Indexed: 12/01/2022]
Abstract
OBJECTIVES To investigate role of endogenous nitric oxide synthase inhibitor asymmetric dimethylarginine (ADMA) in down-regulation of the expression of endothelial SK3 in atherosclerosis. METHODS Apolipoprotein E deficient (apo E(-/-)) mice aged 11 approximately 12 weeks were treated with ADMA (5 mg/kg per day, subcutaneous injection) for 4 weeks. Cultured human umbilical venous endothelial cells (HUVECs) were treated with different concentrations of lysophosphatidylcholine (LPC) or ADMA for 48 h. Plasma levels of ADMA were determined by high performance liquid chromatogram (HPLC); protein and mRNA levels of SK3 in the aortas of mice and cultured cells were detected by immunofluorescence, western blot and RT-PCR, respectively. RESULTS Concomitantly with the elevated plasma levels of ADMA, the expressions of both SK3 protein and mRNA in aortas of apo E(-/-) mice were significantly reduced in comparison to those of the wild-type mice. Moreover, 4-week treatment of ADMA made levels of SK3 expression even lower. In cultured HUVECs, either LPC or ADMA notably decreased the expressions of both SK3 protein and mRNA in a concentration dependent manner. CONCLUSIONS Endogenous ADMA may be an important factor for down-regulation of the expression of endothelial SK3 in atherosclerotic animals.
Collapse
Affiliation(s)
- Zhi Zhou
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | | | | | | | | | | |
Collapse
|
33
|
Matsumoto T, Kakami M, Noguchi E, Kobayashi T, Kamata K. Imbalance between endothelium-derived relaxing and contracting factors in mesenteric arteries from aged OLETF rats, a model of Type 2 diabetes. Am J Physiol Heart Circ Physiol 2007; 293:H1480-90. [PMID: 17513496 DOI: 10.1152/ajpheart.00229.2007] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We investigated whether the balance between endothelium-derived relaxing factors (EDRFs) and endothelium-derived contracting factors (EDCFs) might be altered in mesenteric arteries from aged Otsuka Long-Evans Tokushima Fatty (OLETF) rats (a Type 2 diabetic model) [vs. age-matched control Long-Evans Tokushima Otsuka (LETO) rats]. ACh-induced relaxation was impaired in the OLETF group, and a tendency for the relaxation to reverse at high ACh concentrations was observed in both groups. This tendency was abolished by indomethacin. Nitric oxide- and/or endothelium-derived hypolarizing factor-mediated relaxation and the protein expressions of phospho-endothelial nitric oxide synthase (Ser1177) and extracellular superoxide dismutase were also reduced in OLETF. An ACh-induced contraction was observed at higher ACh concentrations in the presence of NG-nitro-l-arginine (l-NNA) but was greater in OLETF rats. This contraction in OLETF rats was reduced by cyclooxygenase (COX) inhibitors and by prostanoid-receptor antagonists. The ACh-induced productions of thromboxane A2 and PGE2 were greater in OLETF than LETO rats, as were the mesenteric artery COX-1 and COX-2 protein expressions. Moreover, tert-butyl hydroperoxide ( t-BOOH) (membrane-permeant oxidant) induced a concentration-dependent contraction that was greater in OLETF rats. The t-BOOH-mediated contraction was increased both by l-NNA and by endothelium removal in LETO but not OLETF rats, suggesting that a negative modulatory role of the endothelium was lost in OLETF rats. These results suggest that an imbalance between EDRFs and EDCFs may be implicated in the endothelial dysfunction seen in aged OLETF mesenteric arteries, and may be attributable to increased oxidative stress.
Collapse
Affiliation(s)
- Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | | | | | | | | |
Collapse
|
34
|
Sutra T, Décordé K, Riss J, Dallas C, Cristol JP, Rouanet JM. A commercial extract of fruits and vegetables, Oxxynea, acts as a powerful antiatherosclerotic supplement in an animal model by reducing cholesterolemia, oxidative stress, and NADPH oxidase expression. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:4258-63. [PMID: 17444653 DOI: 10.1021/jf070029n] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The effects of fruit and vegetable extract (Oxxynea) on plasma cholesterol, early atherosclerosis, cardiac production of superoxide anion, and NAD(P)H oxidase expression were studied in an animal model of atherosclerosis. Thirty six hamsters were divided into two groups of 18 and fed an atherogenic diet for 12 weeks. They received by gavage either water or Oxxynea in water at a human dose equivalent of 10 fruits and vegetables per day. Oxxynea lowered plasma cholesterol and non-HDL cholesterol, but not HDL-cholesterol, and increased plasma antioxidant capacity. It also strongly reduced the area of aortic fatty streak deposition by 77%, cardiac production of superoxide anion by 45%, and p22phox subunit of NAD(P)H oxidase expression by 59%. These findings support the view that chronic consumption of antioxidants supplied by fruits and vegetables has potential beneficial effects with respect to the development of atherosclerosis. The underlying mechanism is related mainly to inhibiting pro-oxidant factors and improving the serum lipid profile.
Collapse
Affiliation(s)
- Thibault Sutra
- EA 3762 Nutrition & Aliments, Place E. Bataillon, Université Montpellier 2, 34095 Montpellier, France
| | | | | | | | | | | |
Collapse
|
35
|
Matsumoto T, Noguchi E, Kobayashi T, Kamata K. Mechanisms underlying the chronic pioglitazone treatment-induced improvement in the impaired endothelium-dependent relaxation seen in aortas from diabetic rats. Free Radic Biol Med 2007; 42:993-1007. [PMID: 17349927 DOI: 10.1016/j.freeradbiomed.2006.12.028] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Revised: 11/20/2006] [Accepted: 12/28/2006] [Indexed: 11/23/2022]
Abstract
The objectives of this study were to determine the effects of chronic treatment with pioglitazone, a peroxisome proliferator-activated receptor gamma agonist, on the impaired endothelium-dependent relaxation seen in aortas from established streptozotocin (STZ)-induced diabetic rats, and to identify some of the molecular mechanisms involved. Starting at 8 weeks of diabetes, pioglitazone (10 mg/kg) was administered to STZ-induced diabetic rats for 4 weeks. In untreated STZ rats (vs age-matched control rats): (1) ACh-induced relaxation, cGMP accumulation, phosphorylation of the cGMP-dependent protein kinase substrate vasodilator-stimulated phosphoprotein at Ser-239 [an established biochemical end-point of nitric oxide (NO)/cGMP signaling], and Cu/Zn-superoxide dismutase (SOD) expression and SOD activity were all reduced; (2) aortic superoxide generation, nitrotyrosine expression, and NAD(P)H oxidase activity were increased; (3) plasma endothelin-1 (ET-1) and aortic c-Jun (AP-1 component) protein expressions were increased. Pioglitazone treatment markedly corrected the above abnormalities. Collectively, these results suggest that pioglitazone treatment improves endothelium-dependent relaxation by reducing oxidative stress via increased SOD activity, decreased NAD(P)H oxidase activity, and a decreased ET-1 level, and that this decreased ET-1 level may be attributable to an inhibition of the AP-1 signaling pathway.
Collapse
Affiliation(s)
- Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Tokyo, Japan
| | | | | | | |
Collapse
|
36
|
Kamata K, Hosokawa M, Matsumoto T, Kobayashi T. Altered arachidonic acid-mediated responses in the perfused kidney of the streptozotocin-induced diabetic rat. J Smooth Muscle Res 2006; 42:171-87. [PMID: 17159333 DOI: 10.1540/jsmr.42.171] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Using perfused kidneys isolated from age-matched controls and streptozotocin (STZ)-induced diabetic rats, we investigated the effects of arachidonic acid (AA) on perfusion pressure in the presence of methoxamine. AA elicited a transient contraction followed by a sustained relaxation in each group. The amplitude of contraction was smaller in the diabetic group than in the control group, whereas the amplitude of the sustained relaxation was greater in the former than in the latter group. In the diabetic group, the AA-induced sustained relaxation was completely inhibited by indomethacin [cyclooxygenase (COX) inhibitor], SKF525A [cytochrome P450 (CYP450) inhibitor], or clotrimazole (epoxygenase inhibitor), but not by furegrelate [thromboxane A(2) (TXA(2))-synthase inhibitor], SQ29548 (TXA(2)-receptor antagonist), or baicalein [lipoxygenase (LOX) inhibitor]. In the diabetic kidney, more-or-less additive inhibitions of the AA-induced relaxation were seen when indomethacin was given with either SKF525A or clotrimazole. These results suggest that in the STZ-induced diabetic perfused kidney, vasorelaxant metabolites derived from AA (probably COX and/or CYP450 metabolites) are increased, and may serve to regulate vascular tone.
Collapse
Affiliation(s)
- Katsuo Kamata
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Tokyo, Japan.
| | | | | | | |
Collapse
|
37
|
Kamata K, Hosokawa M, Matsumoto T, Kobayashi T. Acetylcholine-induced vasodilation in the perfused kidney of the streptozotocin-induced diabetic rat: role of prostacyclin. J Smooth Muscle Res 2006; 42:159-70. [PMID: 17159332 DOI: 10.1540/jsmr.42.159] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Using the perfused kidneys of age-matched controls and streptozotocin (STZ)-induced diabetic rats, we previously demonstrated that endothelial dysfunction is present in STZ-induced diabetic rats and that acetylcholine (ACh) increases the level of 6-keto-prostaglandin F(1 alpha) (a metabolite of prostacyclin) in the effluent from such perfused kidneys. Here, we investigated whether the ACh-induced relaxation in the perfused kidney is modulated by prostacyclin and/or thromboxane A(2) (TXA(2)) in the STZ-induced diabetic state. ACh-induced renal vasodilatation was significantly weaker in STZ-induced diabetic rats than in age-matched controls, and it was not affected by treatment with 10 microM furegrelate (TXA(2) -synthase inhibitor) or 1 microM SQ29548 (TXA(2) -receptor antagonist) in either group. However, it was attenuated by 10 microM tranylcypromine (prostacyclin-synthesis inhibitor), but only in the diabetic group. These results suggest that the endothelium-dependent relaxation induced by ACh in the renal vascular bed of STZ-induced diabetic rats is regulated by prostacyclin, not by TXA(2). Increased prostacyclin-signaling may occur to help compensate for the impaired endothelial function seen in the kidney in long-term diabetic states.
Collapse
Affiliation(s)
- Katsuo Kamata
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Tokyo, Japan.
| | | | | | | |
Collapse
|