1
|
Lorentzen LG, Chuang CY, Rogowska-Wrzesinska A, Davies MJ. Identification and quantification of sites of nitration and oxidation in the key matrix protein laminin and the structural consequences of these modifications. Redox Biol 2019; 24:101226. [PMID: 31154162 PMCID: PMC6543125 DOI: 10.1016/j.redox.2019.101226] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/06/2019] [Accepted: 05/19/2019] [Indexed: 01/01/2023] Open
Abstract
Laminin is a major protein of the basement membrane (BM), a specialized extracellular matrix (ECM) of the artery wall. The potent oxidizing and nitrating agent peroxynitrous acid (ONOOH) is formed at sites of inflammation, and data implicate ONOOH in ECM damage and cardiovascular disease. Co-localization of 3-nitrotyrosine, a product of ONOOH-mediated tyrosine (Tyr) modification, and laminin has been reported in human atherosclerotic lesions. The sites and consequences of 3-nitrotyrosine (and related nitrated tryptophan) formation on laminin, it's self-assembly and cell interactions are poorly understood. In this study murine laminin-111 was exposed to ONOOH (1–500-fold molar excess). Nitration sites were mapped and quantified using LC-MS/MS. Mono-nitration was detected at 148 sites (126 Tyr, 22 Trp), and di-nitration at 14 sites. Label-free quantification showed enhanced nitration with increasing oxidant doses. Tyr nitration was ∼10-fold greater than at Trp. CO2 modulated damage in a site-specific manner, with most sites less extensively nitrated. 119 mono-nitration sites were identified with CO2 present, and no unique sites were detected. 23 di-nitration sites were detected, with 15 unique to the presence of CO2. Extensive modification was detected at sites involved in cell adhesion, protein-protein interactions and self-polymerization. Tyr-145 on the γ1 chain was extensively nitrated, and endothelial cells exhibited decreased adhesion to a nitrated peptide modelling this site. Modification of residues involved in self-polymerization interfered with the formation of ordered polymers as detected by scanning electron microscopy. These laminin modifications may contribute to endothelial cell dysfunction and modulate ECM structure and assembly, and thereby contribute to atherogenesis. Laminin is a major extracellular matrix protein of the artery wall. Peroxynitrous acid exposure gives nitration of tyrosine and tryptophan residues. CO2 both increases and decreases damage depending of the reaction site. LC-MS/MS used to map modifications to protein structure and functional domains. Sites for cell adhesion, protein interactions and self-polymerization are modified.
Collapse
Affiliation(s)
- Lasse G Lorentzen
- Dept. of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christine Y Chuang
- Dept. of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Adelina Rogowska-Wrzesinska
- Dept. of Biochemistry and Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Michael J Davies
- Dept. of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
2
|
Mason RP, Ganini D. Immuno-spin trapping of macromolecules free radicals in vitro and in vivo - One stop shopping for free radical detection. Free Radic Biol Med 2019; 131:318-331. [PMID: 30552998 DOI: 10.1016/j.freeradbiomed.2018.11.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 11/03/2018] [Accepted: 11/10/2018] [Indexed: 12/14/2022]
Abstract
The only general technique that allows the unambiguous detection of free radicals is electron spin resonance (ESR). However, ESR spin trapping has severe limitations especially in biological systems. The greatest limitation of ESR is poor sensitivity relative to the low steady-state concentration of free radical adducts, which in cells and in vivo is much lower than the best sensitivity of ESR. Limitations of ESR have led to an almost desperate search for alternatives to investigate free radicals in biological systems. Here we explore the use of the immuno-spin trapping technique, which combine the specificity of the spin trapping to the high sensitivity and universal use of immunological techniques. All of the immunological techniques based on antibody binding have become available for free radical detection in a wide variety of biological systems.
Collapse
Affiliation(s)
- Ronald P Mason
- Inflammation, Immunity and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA.
| | - Douglas Ganini
- Inflammation, Immunity and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
3
|
Degendorfer G, Chuang CY, Mariotti M, Hammer A, Hoefler G, Hägglund P, Malle E, Wise SG, Davies MJ. Exposure of tropoelastin to peroxynitrous acid gives high yields of nitrated tyrosine residues, di-tyrosine cross-links and altered protein structure and function. Free Radic Biol Med 2018; 115:219-231. [PMID: 29191462 DOI: 10.1016/j.freeradbiomed.2017.11.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/06/2017] [Accepted: 11/24/2017] [Indexed: 12/18/2022]
Abstract
Elastin is an abundant extracellular matrix protein in elastic tissues, including the lungs, skin and arteries, and comprises 30-57% of the aorta by dry mass. The monomeric precursor, tropoelastin (TE), undergoes complex processing during elastogenesis to form mature elastic fibres. Peroxynitrous acid (ONOOH), a potent oxidising and nitrating agent, is formed in vivo from superoxide and nitric oxide radicals. Considerable evidence supports ONOOH formation in the inflamed artery wall, and a role for this species in the development of human atherosclerotic lesions, with ONOOH-damaged extracellular matrix implicated in lesion rupture. We demonstrate that TE is highly sensitive to ONOOH, with this resulting in extensive dimerization, fragmentation and nitration of Tyr residues to give 3-nitrotyrosine (3-nitroTyr). This occurs with equimolar or greater levels of oxidant and increases in a dose-dependent manner. Quantification of Tyr loss and 3-nitroTyr formation indicates extensive Tyr modification with up to two modified Tyr per protein molecule, and up to 8% conversion of initial ONOOH to 3-nitroTyr. These effects were modulated by bicarbonate, an alternative target for ONOOH. Inter- and intra-protein di-tyrosine cross-links have been characterized by mass spectrometry. Examination of human atherosclerotic lesions shows colocalization of 3-nitroTyr with elastin epitopes, consistent with TE or elastin modification in vivo, and also an association of 3-nitroTyr containing proteins and elastin with lipid deposits. These data suggest that exposure of TE to ONOOH gives marked chemical and structural changes to TE and altered matrix assembly, and that such damage accumulates in human arterial tissue during the development of atherosclerosis.
Collapse
Affiliation(s)
| | - Christine Y Chuang
- Dept. of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Michele Mariotti
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Astrid Hammer
- Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Gerald Hoefler
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Per Hägglund
- Dept. of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark; Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ernst Malle
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Steven G Wise
- The Heart Research Institute, Sydney, Australia; Faculty of Medicine, University of Sydney, Sydney, Australia
| | - Michael J Davies
- The Heart Research Institute, Sydney, Australia; Dept. of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark; Faculty of Medicine, University of Sydney, Sydney, Australia.
| |
Collapse
|
4
|
Casaril AM, Ignasiak MT, Chuang CY, Vieira B, Padilha NB, Carroll L, Lenardão EJ, Savegnago L, Davies MJ. Selenium-containing indolyl compounds: Kinetics of reaction with inflammation-associated oxidants and protective effect against oxidation of extracellular matrix proteins. Free Radic Biol Med 2017; 113:395-405. [PMID: 29055824 DOI: 10.1016/j.freeradbiomed.2017.10.344] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 10/14/2017] [Accepted: 10/16/2017] [Indexed: 12/27/2022]
Abstract
Activated white blood cells generate multiple oxidants in response to invading pathogens. Thus, hypochlorous acid (HOCl) is generated via the reaction of myeloperoxidase (from neutrophils and monocytes) with hydrogen peroxide, and peroxynitrous acid (ONOOH), a potent oxidizing and nitrating agent is formed from superoxide radicals and nitric oxide, generated by stimulated macrophages. Excessive or misplaced production of these oxidants has been linked to multiple human pathologies, including cardiovascular disease. Atherosclerosis is characterized by chronic inflammation and the presence of oxidized materials, including extracellular matrix (ECM) proteins, within the artery wall. Here we investigated the potential of selenium-containing indoles to afford protection against these oxidants, by determining rate constants (k) for their reaction, and quantifying the extent of damage on isolated ECM proteins and ECM generated by human coronary artery endothelial cells (HCAECs). The novel selenocompounds examined react with HOCl with k 0.2-1.0 × 108M-1s-1, and ONOOH with k 4.5-8.6 - × 105M-1s-1. Reaction with H2O2 is considerably slower (k < 0.25M-1s-1). The selenocompound 2-phenyl-3-(phenylselanyl)imidazo[1,2-a]pyridine provided protection to human serum albumin (HSA) against HOCl-mediated damage (as assessed by SDS-PAGE) and damage to isolated matrix proteins induced by ONOOH, with a concomitant decrease in the levels of the biomarker 3-nitrotyrosine. Structural damage and generation of 3-nitroTyr on HCAEC-ECM were also reduced. These data demonstrate that the novel selenium-containing compounds show high reactivity with oxidants and may modulate oxidative and nitrosative damage at sites of inflammation, contributing to a reduction in tissue dysfunction and atherogenesis.
Collapse
Affiliation(s)
- Angela M Casaril
- Grupo de Pesquisa em Neurobiotecnologia - GPN - Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900 Pelotas, RS, Brazil
| | - Marta T Ignasiak
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark; Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Christine Y Chuang
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Beatriz Vieira
- Laboratório de Síntese Orgânica Limpa - LASOL - Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900 Pelotas, RS, Brazil
| | - Nathalia B Padilha
- Laboratório de Síntese Orgânica Limpa - LASOL - Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900 Pelotas, RS, Brazil
| | - Luke Carroll
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Eder J Lenardão
- Laboratório de Síntese Orgânica Limpa - LASOL - Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900 Pelotas, RS, Brazil
| | - Lucielli Savegnago
- Grupo de Pesquisa em Neurobiotecnologia - GPN - Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900 Pelotas, RS, Brazil
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark.
| |
Collapse
|
5
|
Degendorfer G, Chuang CY, Kawasaki H, Hammer A, Malle E, Yamakura F, Davies MJ. Peroxynitrite-mediated oxidation of plasma fibronectin. Free Radic Biol Med 2016; 97:602-615. [PMID: 27396946 DOI: 10.1016/j.freeradbiomed.2016.06.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 05/13/2016] [Accepted: 06/16/2016] [Indexed: 01/10/2023]
Abstract
Fibronectin is a large dimeric glycoprotein present in both human plasma and in basement membranes. The latter are specialized extracellular matrices underlying endothelial cells in the artery wall. Peroxynitrous acid (ONOOH) a potent oxidizing and nitrating agent, is formed in vivo from superoxide and nitric oxide radicals by stimulated macrophages and other cells. Considerable evidence supports ONOOH involvement in human atherosclerotic lesion development and rupture, possibly via extracellular matrix damage. Here we demonstrate that Tyr and Trp residues on human plasma fibronectin are highly sensitive to ONOOH with this resulting in the formation of 3-nitrotyrosine, 6-nitrotryptophan and dityrosine as well as protein aggregation and fragmentation. This occurs with equimolar or greater levels of oxidant, and in a dose-dependent manner. Modification of Tyr was quantitatively more significant than Trp (9.1% versus 1.5% conversion with 500μM ONOOH) after accounting for parent amino acid abundance, but only accounts for a small percentage of the total oxidant added. LC-MS studies identified 28 nitration sites (24 Tyr, 4 Trp) with many of these present within domains critical to protein function, including the cell-binding and anastellin domains. Human coronary artery endothelial cells showed decreased adherence and cell-spreading on ONOOH-modified fibronectin compared to control, consistent with cellular dysfunction induced by the modified matrix. Studies on human atherosclerotic lesions have provided evidence for co-localization of 3-nitrotyrosine and fibronectin. ONOOH-mediated fibronectin modification and compromised cell-matrix interactions, may contribute to endothelial cell dysfunction, a weakening of the fibrous cap of atherosclerotic lesions, and an increased propensity to rupture.
Collapse
Affiliation(s)
- Georg Degendorfer
- The Heart Research Institute, Newtown, NSW, Australia; Faculty of Medicine, The University of Sydney, NSW, Australia
| | - Christine Y Chuang
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Hiroaki Kawasaki
- Department of Chemistry, Juntendo University School of Health Care and Nursing, 1-1 Hiragagakuendai, Inzai, Chiba 270-1606, Japan
| | - Astrid Hammer
- Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Ernst Malle
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Fumiyuki Yamakura
- Department of Chemistry, Juntendo University School of Health Care and Nursing, 1-1 Hiragagakuendai, Inzai, Chiba 270-1606, Japan
| | - Michael J Davies
- The Heart Research Institute, Newtown, NSW, Australia; Faculty of Medicine, The University of Sydney, NSW, Australia; Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark.
| |
Collapse
|
6
|
Degendorfer G, Chuang CY, Hammer A, Malle E, Davies MJ. Peroxynitrous acid induces structural and functional modifications to basement membranes and its key component, laminin. Free Radic Biol Med 2015; 89:721-33. [PMID: 26453917 DOI: 10.1016/j.freeradbiomed.2015.09.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 09/18/2015] [Accepted: 09/22/2015] [Indexed: 01/23/2023]
Abstract
Basement membranes (BM) are specialized extracellular matrices underlying endothelial cells in the artery wall. Laminin, the most abundant BM glycoprotein, is a structural and biologically active component. Peroxynitrous acid (ONOOH), a potent oxidizing and nitrating agent, is formed in vivo at sites of inflammation from superoxide and nitric oxide radicals. Considerable data supports ONOOH formation in human atherosclerotic lesions, and an involvement of this oxidant in atherosclerosis development and lesion rupture. These effects may be mediated, at least in part, via extracellular matrix damage. In this study we demonstrate co-localization of 3-nitrotyrosine (a product of tyrosine damage by ONOOH) and laminin in human atherosclerotic lesions. ONOOH-induced damage to BM was characterized for isolated murine BM, and purified murine laminin-111. Exposure of laminin-111 to ONOOH resulted in dose-dependent loss of protein tyrosine and tryptophan residues, and formation of 3-nitrotyrosine, 6-nitrotryptophan and the cross-linked material di-tyrosine, as detected by amino acid analysis and Western blotting. These changes were accompanied by protein aggregation and fragmentation as detected by SDS-PAGE. Endothelial cell adhesion to isolated laminin-111 exposed to 10 μM or higher levels of ONOOH was significantly decreased (~25%) compared to untreated controls. These data indicate that laminin is oxidized by equimolar or greater concentrations of ONOOH, with this resulting in structural and functional changes. These modifications, and resulting compromised cell-matrix interactions, may contribute to endothelial cell dysfunction, a weakening of the structure of atherosclerotic lesions, and an increased propensity to rupture.
Collapse
Affiliation(s)
- Georg Degendorfer
- The Heart Research Institute, Newtown, NSW, Australia; Faculty of Medicine, The University of Sydney, NSW, Australia
| | - Christine Y Chuang
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Astrid Hammer
- Institute of Cell Biology, Histology and Embryology, Center for Molecular Medicine, Medical University of Graz, Graz, Austria
| | - Ernst Malle
- Institute of Molecular Biology and Biochemistry, Center for Molecular Medicine, Medical University of Graz, Graz, Austria
| | - Michael J Davies
- The Heart Research Institute, Newtown, NSW, Australia; Faculty of Medicine, The University of Sydney, NSW, Australia; Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark.
| |
Collapse
|
7
|
Parsons BJ. Oxidation of glycosaminoglycans by free radicals and reactive oxidative species: A review of investigative methods. Free Radic Res 2015; 49:618-32. [PMID: 25410647 DOI: 10.3109/10715762.2014.985220] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Glycosaminoglycans, in particular hyaluronan (HA), and proteoglycans are components of the extracellular matrix (ECM). The ECM plays a key role in the regulation of cellular behaviour and alterations to it can modulate both the development of human diseases as well as controlling normal biochemical processes such as cell signalling and pro-inflammatory responses. For these reasons, in vitro fragmentation studies of glycosaminoglycans by free radicals and oxidative species are seen to be relevant to the understanding of in vivo studies of damage to the ECM. A wide range of investigative techniques have therefore been applied to gain insights into the relative fragmentation effects of several reactive oxidative species with the ultimate goal of determining mechanisms of fragmentation at the molecular level. These methods are reviewed here.
Collapse
Affiliation(s)
- B J Parsons
- Health and Social Sciences, Leeds Beckett University , Leeds , UK
| |
Collapse
|
8
|
van Golen RF, Reiniers MJ, Vrisekoop N, Zuurbier CJ, Olthof PB, van Rheenen J, van Gulik TM, Parsons BJ, Heger M. The mechanisms and physiological relevance of glycocalyx degradation in hepatic ischemia/reperfusion injury. Antioxid Redox Signal 2014; 21:1098-118. [PMID: 24313895 PMCID: PMC4123469 DOI: 10.1089/ars.2013.5751] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
SIGNIFICANCE Hepatic ischemia/reperfusion (I/R) injury is an inevitable side effect of major liver surgery that can culminate in liver failure. The bulk of I/R-induced liver injury results from an overproduction of reactive oxygen and nitrogen species (ROS/RNS), which inflict both parenchymal and microcirculatory damage. A structure that is particularly prone to oxidative attack and modification is the glycocalyx (GCX), a meshwork of proteoglycans and glycosaminoglycans (GAGs) that covers the lumenal endothelial surface and safeguards microvascular homeostasis. ROS/RNS-mediated degradation of the GCX may exacerbate I/R injury by, for example, inducing vasoconstriction, facilitating leukocyte adherence, and directly activating innate immune cells. RECENT ADVANCES Preliminary experiments revealed that hepatic sinusoids contain a functional GCX that is damaged during murine hepatic I/R and major liver surgery in patients. There are three ROS that mediate GCX degradation: hydroxyl radicals, carbonate radical anions, and hypochlorous acid (HOCl). HOCl converts GAGs in the GCX to GAG chloramides that become site-specific targets for oxidizing and reducing species and are more efficiently fragmented than the parent molecules. In addition to ROS/RNS, the GAG-degrading enzyme heparanase acts at the endothelial surface to shed the GCX. CRITICAL ISSUES The GCX seems to be degraded during major liver surgery, but the underlying cause remains ill-defined. FUTURE DIRECTIONS The relative contribution of the different ROS and RNS intermediates to GCX degradation in vivo, the immunogenic potential of the shed GCX fragments, and the role of heparanase in liver I/R injury all warrant further investigation.
Collapse
Affiliation(s)
- Rowan F van Golen
- 1 Department of Surgery, Surgical Laboratory, Academic Medical Center, University of Amsterdam , Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Chuang CY, Degendorfer G, Davies MJ. Oxidation and modification of extracellular matrix and its role in disease. Free Radic Res 2014; 48:970-89. [DOI: 10.3109/10715762.2014.920087] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
10
|
Lahmar-Belguendouz K, Belguendouz H, Hartani D, Lahlou-Boukoffa OS, Bédiar-Boulaneb F, Touil-Boukoffa C. [Effects of peroxynitrite derived from nitric oxide on cultured bovine ocular explants]. J Fr Ophtalmol 2012; 36:41-9. [PMID: 23040446 DOI: 10.1016/j.jfo.2012.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 04/12/2012] [Accepted: 04/16/2012] [Indexed: 01/28/2023]
Abstract
INTRODUCTION Several studies have reported a significant production of nitric oxide (NO) with peroxynitrite formation in the setting of intraocular inflammation. In a previous study, we showed the cytotoxic effect of nitrites and nitrates, stable metabolites of NO, on the various tissues forming the layers of the eye, with variable degrees of tissue sensitivity. This study aims to investigate the effect of peroxynitrite on whole ocular bovine explants in culture. METHODS Healthy ocular bovine eyes, obtained immediately upon enucleation, were dissected and samples were taken from the anterior and posterior segments, and then cultured in DMEM supplemented with 10% fetal bovine serum, 2mM L-glutamine and antibiotics. Cultures were treated with 3-morpholino-sydonimin N-ethyl-carbamide (SIN-1) (molecule which produces NO and superoxide anion O(2)(.-)) at varying concentrations (100 to 500 μM) over 24 hours. After incubation, the explants were fixed in 10% buffered formalin, and histological study was performed. RESULTS Most of the structures showed changes on tissue and cellular levels after incubation with the peroxynitrite donor and various responses depending on the concentration used. These observations reflect variable concentration-dependent tissue sensitivity. The epithelia (cornea, iris and ciliary process) showed high sensitivity in comparison with sclera, which developed greater resistance. CONCLUSION In all, our results indicate a deleterious effect of peroxynitrite on bovine ocular structures in vitro. This effect is proportional to the concentration used. These results corroborate those reported by other teams and suggest the role of peroxynitrite derived from NO in the ocular lesions observed in the setting of uveitis.
Collapse
Affiliation(s)
- K Lahmar-Belguendouz
- Équipe « cytokines et NO synthases : immunité et pathogénie », laboratoire de biologie cellulaire et moléculaire, faculté des sciences biologiques, USTHB Bab Ezzouar, El Alia, BP 32, 16100 Alger, Algérie
| | | | | | | | | | | |
Collapse
|
11
|
Komosinska-Vassev K, Olczyk P, Winsz-Szczotka K, Klimek K, Olczyk K. Plasma biomarkers of oxidative and AGE-mediated damage of proteins and glycosaminoglycans during healthy ageing: a possible association with ECM metabolism. Mech Ageing Dev 2012; 133:538-48. [PMID: 22813851 DOI: 10.1016/j.mad.2012.07.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Revised: 06/15/2012] [Accepted: 07/08/2012] [Indexed: 01/12/2023]
Abstract
The aim of this study was to examine whether oxidative and AGE-mediated processes correlates with the metabolic changes of proteoglycans (PGs) and proteins during physiological ageing. The age and gender-associated changes of PGs metabolism were evaluated by plasma chondroitin sulfates (CS), dermatan sulfates (DS) and heparan sulfates and heparin (HS/H). We found a linear age-related decline in CS, DS and HS/H, the first one being the predominant plasma GAG during ageing. The possible deleterious effect of oxidative phenomenon on proteins' and proteoglycans' metabolism during ageing process was analyzed by plasma carbonyls (PCO) and thiols (PSH) as well as by total antioxidant capacity (TAS). An age-dependent increase in PCO and decrease in PSH concentrations were found, both strongly correlated with decreasing with age plasma TAS. Intensity of glycation was assessed by circulating N(ε)-(carboxymethyl)lysine (CML) and endogenous secretory receptor for AGE (esRAGE), both of them founding associated with ageing. Moreover, all markers of oxidative and AGE-mediated damage correlated with CS and DS level and could be contributing factors to age-related changes of these GAG types. Thus, plasma CS and DS could become promising biomarkers of human ageing to date, owning to its close association with oxidative status and glycation processes.
Collapse
Affiliation(s)
- Katarzyna Komosinska-Vassev
- Department of Clinical Chemistry and Laboratory Diagnostics, Medical University of Silesia, Sosnowiec, Poland.
| | | | | | | | | |
Collapse
|
12
|
van Golen RF, van Gulik TM, Heger M. Mechanistic overview of reactive species-induced degradation of the endothelial glycocalyx during hepatic ischemia/reperfusion injury. Free Radic Biol Med 2012; 52:1382-402. [PMID: 22326617 DOI: 10.1016/j.freeradbiomed.2012.01.013] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 01/20/2012] [Accepted: 01/20/2012] [Indexed: 02/06/2023]
Abstract
Endothelial cells are covered by a delicate meshwork of glycoproteins known as the glycocalyx. Under normophysiological conditions the glycocalyx plays an active role in maintaining vascular homeostasis by deterring primary and secondary hemostasis and leukocyte adhesion and by regulating vascular permeability and tone. During (micro)vascular oxidative and nitrosative stress, which prevails in numerous metabolic (diabetes), vascular (atherosclerosis, hypertension), and surgical (ischemia/reperfusion injury, trauma) disease states, the glycocalyx is oxidatively and nitrosatively modified and degraded, which culminates in an exacerbation of the underlying pathology. Consequently, glycocalyx degradation due to oxidative/nitrosative stress has far-reaching clinical implications. In this review the molecular mechanisms of reactive oxygen and nitrogen species-induced destruction of the endothelial glycocalyx are addressed in the context of hepatic ischemia/reperfusion injury as a model disease state. Specifically, the review focuses on (i) the mechanisms of glycocalyx degradation during hepatic ischemia/reperfusion, (ii) the molecular and cellular players involved in the degradation process, and (iii) its implications for hepatic pathophysiology. These topics are projected against a background of liver anatomy, glycocalyx function and structure, and the biology/biochemistry and the sources/targets of reactive oxygen and nitrogen species. The majority of the glycocalyx-related mechanisms elucidated for hepatic ischemia/reperfusion are extrapolatable to the other aforementioned disease states.
Collapse
Affiliation(s)
- Rowan F van Golen
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | | | | |
Collapse
|
13
|
Abstract
Considerable evidence exists for oxidative damage to extracellular materials during multiple human pathologies. Unlike cells, the extracellular compartment of most biological tissues is less well protected against oxidation than intracellular sites in terms of the presence of both antioxidants (low molecular mass and enzymatic) and repair enzymes. The extracellular compartment may therefore be subject to greater oxidative stress, marked alterations in redox balance and an accumulation of damage due to slow turnover and/or poor repair. The nature and consequences of damage to ECM (extracellular matrix) are poorly understood, despite the growing realization that changes in matrix structure not only have structural consequences, but also play a key role in the regulation of cellular adhesion, proliferation, migration and cell signalling. The ECM also plays a key role in cytokine and growth factor binding, and matrix modifications would therefore be expected to alter these parameters. In the present study, we review mechanisms of oxidative damage to ECM, resulting changes in matrix structure and how this affects cellular behaviour. The role of such damage in the development and progression of inflammatory diseases is also discussed with particular reference to cardiovascular disease.
Collapse
|
14
|
Abstract
Peroxynitrite is a reactive oxidant produced from nitric oxide and superoxide, which reacts with proteins, lipids, and DNA, and promotes cytotoxic and proinflammatory responses. Here, we overview the role of peroxynitrite in various forms of circulatory shock. Immunohistochemical and biochemical evidences demonstrate the production of peroxynitrite in various experimental models of endotoxic and hemorrhagic shock both in rodents and in large animals. In addition, biological markers of peroxynitrite have been identified in human tissues after circulatory shock. Peroxynitrite can initiate toxic oxidative reactions in vitro and in vivo. Initiation of lipid peroxidation, direct inhibition of mitochondrial respiratory chain enzymes, inactivation of glyceraldehyde-3-phosphate dehydrogenase, inhibition of membrane Na+/K+ ATPase activity, inactivation of membrane sodium channels, and other oxidative protein modifications contribute to the cytotoxic effect of peroxynitrite. In addition, peroxynitrite is a potent trigger of DNA strand breakage, with subsequent activation of the nuclear enzyme poly(ADP-ribose) polymerase, which promotes cellular energetic collapse and cellular necrosis. Additional actions of peroxynitrite that contribute to the pathogenesis of shock include inactivation of catecholamines and catecholamine receptors (leading to vascular failure) and endothelial and epithelial injury (leading to endothelial and epithelial hyperpermeability and barrier dysfunction), as well as myocyte injury (contributing to loss of cardiac contractile function). Neutralization of peroxynitrite with potent peroxynitrite decomposition catalysts provides cytoprotective and beneficial effects in rodent and large-animal models of circulatory shock.
Collapse
|
15
|
Kennett EC, Rees MD, Malle E, Hammer A, Whitelock JM, Davies MJ. Peroxynitrite modifies the structure and function of the extracellular matrix proteoglycan perlecan by reaction with both the protein core and the heparan sulfate chains. Free Radic Biol Med 2010; 49:282-93. [PMID: 20416372 PMCID: PMC2892749 DOI: 10.1016/j.freeradbiomed.2010.04.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 03/21/2010] [Accepted: 04/14/2010] [Indexed: 11/29/2022]
Abstract
The heparan sulfate (HS) proteoglycan perlecan is a major component of basement membranes, plays a key role in extracellular matrix (ECM) structure, interacts with growth factors and adhesion molecules, and regulates the adhesion, differentiation and proliferation of vascular cells. Atherosclerosis is characterized by chronic inflammation and the presence of oxidized materials within lesions, with the majority of protein damage present on ECM, rather than cell, proteins. Weakening of ECM structure plays a key role in lesion rupture, the major cause of heart attacks and strokes. In this study peroxynitrite, a putative lesion oxidant, is shown to damage perlecan structurally and functionally. Exposure of human perlecan to peroxynitrite decreases recognition by antibodies raised against both the core protein and heparan sulfate chains; dose-dependent formation of 3-nitrotyrosine was also detected. These effects were modulated by bicarbonate and reaction pH. Oxidant exposure resulted in aggregate formation, consistent with oxidative protein crosslinking. Peroxynitrite treatment modified functional properties of perlecan that are dependent on both the protein core (decreased binding of human coronary artery endothelial cells), and the HS chains (diminished fibroblast growth factor-2 (FGF-2) receptor-mediated proliferation of Baf-32 cells). The latter is consistent with a decrease in FGF-2 binding to the HS chains of modified perlecan. Immunofluorescence of advanced human atherosclerotic lesions provided evidence for the presence of perlecan and extensive formation of 3-nitrotyrosine epitopes within the intimal region; these materials showing marked co-localization. These data indicate that peroxynitrite induces major structural and functional changes to perlecan and that damage to this material occurs within human atherosclerotic lesions.
Collapse
Key Words
- abts, 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)
- donoo, decomposed peroxynitrite
- ecm, extracellular matrix
- fgf-2, fibroblast growth factor 2
- hcaec, human coronary artery endothelial cells
- hs, heparan sulfate
- hspg, heparan sulfate proteoglycan
- mtt, 1-(4,5-dimethylthiazol-2-yl)-3,5-diphenylformazan
- 3-nitrotyr, 3-nitrotyrosine
- onoo-, peroxynitrous acid anion
- onooh, peroxynitrous acid
- tca, trichloroacetic acid
- atherosclerosis
- extracellular matrix
- perlecan
- peroxynitrite
- heparan sulfate proteoglycans
- plaque rupture
- cell adhesion
- cell proliferation
- inflammation
Collapse
Affiliation(s)
- Eleanor C. Kennett
- The Heart Research Institute, 7 Eliza Street, Newtown, NSW 2042, Australia
| | - Martin D. Rees
- The Heart Research Institute, 7 Eliza Street, Newtown, NSW 2042, Australia
| | - Ernst Malle
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Graz, Austria
| | - Astrid Hammer
- Institute of Cell Biology, Histology and Embryology, Center for Molecular Medicine, Medical University of Graz, Graz, Austria
| | - John M. Whitelock
- The Graduate School of Biomedical Engineering, University of New South Wales, Kensington, NSW 2052, Australia
| | - Michael J. Davies
- The Heart Research Institute, 7 Eliza Street, Newtown, NSW 2042, Australia
- Faculty of Medicine, University of Sydney, NSW 2006, Australia
- Corresponding author. The Heart Research Institute, 7 Eliza Street, Newtown, NSW 2042, Australia. Fax: + 61 2 9565 5584.
| |
Collapse
|
16
|
Kennett EC, Davies MJ. Glycosaminoglycans are fragmented by hydroxyl, carbonate, and nitrogen dioxide radicals in a site-selective manner: implications for peroxynitrite-mediated damage at sites of inflammation. Free Radic Biol Med 2009; 47:389-400. [PMID: 19427378 DOI: 10.1016/j.freeradbiomed.2009.05.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Revised: 04/30/2009] [Accepted: 05/01/2009] [Indexed: 02/07/2023]
Abstract
Glycosaminoglycans (long-chain polysaccharides) are major components of the extracellular matrix, glycocalyx, and synovial fluid. These materials provide strength and elasticity to tissues and play a key role in regulating cell behavior. Modifications to these materials have been linked to multiple human pathologies. Although modification may occur via both enzymatic and nonenzymatic mechanisms, there is considerable evidence for oxidant-mediated matrix damage. Peroxynitrite (ONOO(-)/ONOOH) is a potential mediator of such damage, as elevated levels of this oxidant are likely to be present at sites of inflammation. In this study we demonstrate that hyaluronan and chondroitin sulfate are extensively depolymerized by HO(.) and CO3(.-), but not NO2(.), which may be formed from peroxynitrite. Polymer fragmentation is shown to be dependent on the radical flux, to be O2-independent, and to occur in a site-selective manner as indicated by the detection of disaccharide fragments. EPR spin trapping experiments with polymers, oligomers, and component monosaccharides, including 13C-labeled materials, have provided evidence for the formation of specific carbon-centered sugar-derived radicals. The time course of formation of these radicals is consistent with these species being involved in polymer fragmentation.
Collapse
|
17
|
Hawkins CL, Morgan PE, Davies MJ. Quantification of protein modification by oxidants. Free Radic Biol Med 2009; 46:965-88. [PMID: 19439229 DOI: 10.1016/j.freeradbiomed.2009.01.007] [Citation(s) in RCA: 338] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 01/12/2009] [Accepted: 01/12/2009] [Indexed: 12/19/2022]
Abstract
Proteins are major targets for oxidative damage due to their abundance and rapid rates of reaction with a wide range of radicals and excited state species, such as singlet oxygen. Exposure of proteins to these oxidants results in loss of the parent amino acid residue, formation of unstable intermediates, and the generation of stable products. Each of these events can be used, to a greater or lesser extent, to quantify damage to proteins. In this review the advantages and disadvantages of a number of these approaches are discussed, with an emphasis on methods that yield absolute quantitative data on the extent of protein modification. Detailed methods sheets are provided for many of these techniques.
Collapse
|