1
|
Pirkkanen J, Tharmalingam S, Thome C, Sinex HC, Benjamin LV, Losch AC, Borgmann AJ, Dhaemers RM, Gordon C, Boreham DR, Mendonca MS. Genomic Loss and Epigenetic Silencing of the FOSL1 Tumor Suppressor Gene in Radiation-induced Neoplastic Transformation of Human CGL1 Cells Alters the Tumorigenic Phenotype In Vitro and In Vivo. Radiat Res 2023; 200:48-64. [PMID: 37141110 PMCID: PMC10409446 DOI: 10.1667/rade-22-00216.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/24/2023] [Indexed: 05/05/2023]
Abstract
The CGL1 human hybrid cell system has been utilized for many decades as an excellent cellular tool for investigating neoplastic transformation. Substantial work has been done previously implicating genetic factors related to chromosome 11 to the alteration of tumorigenic phenotype in CGL1 cells. This includes candidate tumor suppressor gene FOSL1, a member of the AP-1 transcription factor complex which encodes for protein FRA1. Here we present novel evidence supporting the role of FOSL1 in the suppression of tumorigenicity in segregants of the CGL1 system. Gamma-induced mutant (GIM) and control (CON) cells were isolated from 7 Gy gamma-irradiated CGL1s. Western, Southern and Northern blot analysis were utilized to assess FOSL1/FRA1 expression as well as methylation studies. GIMs were transfected to re-express FRA1 and in vivo tumorigenicity studies were conducted. Global transcriptomic microarray and RT-qPCR analysis were used to further characterize these unique cell segregants. GIMs were found to be tumorigenic in vivo when injected into nude mice whereas CON cells were not. GIMs show loss of Fosl/FRA1 expression as confirmed by Western blot. Southern and Northern blot analysis further reveals that FRA1 reduction in tumorigenic CGL1 segregants is likely due to transcriptional suppression. Results suggest that radiation-induced neoplastic transformation of CGL1 is in part due to silencing of the FOSL1 tumor suppressor gene promoter by methylation. The radiation-induced tumorigenic GIMs transfected to re-express FRA1 resulted in suppression of subcutaneous tumor growth in nude mice in vivo. Global microarray analysis and RT-qPCR validation elucidated several hundred differentially expressed genes. Downstream analysis reveals a significant number of altered pathways and enriched Gene Ontology terms genes related to cellular adhesion, proliferation, and migration. Together these findings provide strong evidence that FRA1 is a tumor suppressor gene deleted and epigenetically silenced after ionizing radiation-induced neoplastic transformation in the CGL1 human hybrid cell system.
Collapse
Affiliation(s)
- Jake Pirkkanen
- Department of Biology, Laurentian University, Sudbury, Ontario, P3E 2C6, Canada
- Biomolecular Sciences Program, Laurentian University, Sudbury, Ontario, P3E 2C6, Canada
| | - Sujeenthar Tharmalingam
- Department of Biology, Laurentian University, Sudbury, Ontario, P3E 2C6, Canada
- Biomolecular Sciences Program, Laurentian University, Sudbury, Ontario, P3E 2C6, Canada
- Medical Sciences Division, NOSM University, Sudbury, Ontario, P3E 2C6, Canada
| | - Christopher Thome
- Department of Biology, Laurentian University, Sudbury, Ontario, P3E 2C6, Canada
- Biomolecular Sciences Program, Laurentian University, Sudbury, Ontario, P3E 2C6, Canada
- Medical Sciences Division, NOSM University, Sudbury, Ontario, P3E 2C6, Canada
| | - Helen Chin Sinex
- Department of Radiation Oncology, Radiation and Cancer Biology Laboratories, and Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Laura V. Benjamin
- Department of Radiation Oncology, Radiation and Cancer Biology Laboratories, and Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Adam C. Losch
- Department of Radiation Oncology, Radiation and Cancer Biology Laboratories, and Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Anthony J. Borgmann
- Department of Radiation Oncology, Radiation and Cancer Biology Laboratories, and Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Ryan M. Dhaemers
- Department of Radiation Oncology, Radiation and Cancer Biology Laboratories, and Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Christopher Gordon
- Department of Radiation Oncology, Radiation and Cancer Biology Laboratories, and Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Douglas R. Boreham
- Biomolecular Sciences Program, Laurentian University, Sudbury, Ontario, P3E 2C6, Canada
- Department of Radiation Oncology, Radiation and Cancer Biology Laboratories, and Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Bruce Power, PO Box 1540, 177 Tie Rd, R.R. 2, Tiverton, Ontario, N0G 2T0, Canada
- Nuclear Innovation Institute, Port Elgin, Ontario, N0H 2C0, Canada
| | - Marc S. Mendonca
- Department of Radiation Oncology, Radiation and Cancer Biology Laboratories, and Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| |
Collapse
|
2
|
Morel KL, Hamid AA, Clohessy JG, Pandell N, Ellis L, Sweeney CJ. NF-κB Blockade with Oral Administration of Dimethylaminoparthenolide (DMAPT), Delays Prostate Cancer Resistance to Androgen Receptor (AR) Inhibition and Inhibits AR Variants. Mol Cancer Res 2021; 19:1137-1145. [PMID: 33863813 PMCID: PMC8254800 DOI: 10.1158/1541-7786.mcr-21-0099] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/20/2021] [Accepted: 04/08/2021] [Indexed: 01/03/2023]
Abstract
NF-κB activation has been linked to prostate cancer progression and is commonly observed in castrate-resistant disease. It has been suggested that NF-κB-driven resistance to androgen-deprivation therapy (ADT) in prostate cancer cells may be mediated by aberrant androgen receptor (AR) activation and AR splice variant production. Preventing resistance to ADT may therefore be achieved by using NF-κB inhibitors. However, low oral bioavailability and high toxicity of NF-κB inhibitors is a major challenge for clinical translation. Dimethylaminoparthenolide (DMAPT) is an oral NF-κB inhibitor in clinical development and has already shown favorable pharmacokinetic and pharmacodyanamic data in patients with heme malignancies, including decrease of NF-κB in circulating leuchemic blasts. Here, we report that activation of NF-κB/p65 by castration in mouse and human prostate cancer models resulted in a significant increase in AR variant-7 (AR-V7) expression and modest upregulation of AR. In vivo castration of VCaP-CR tumors resulted in significant upregulation of phosphorylated-p65 and AR-V7, which was attenuated by combination with DMAPT and DMAPT increased the efficacy of AR inhibition. We further demonstrate that the effects of DMAPT-sensitizing prostate cancer cells to castration were dependent on the ability of DMAPT to inhibit phosphorylated-p65 function. IMPLICATIONS: Our study shows that DMAPT, an oral NF-κB inhibitor in clinical development, inhibits phosphorylated-p65 upregulation of AR-V7 and delays prostate cancer castration resistance. This provides rationale for the development of DMAPT as a novel therapeutic strategy to increase durable response in patients receiving AR-targeted therapy.
Collapse
MESH Headings
- Administration, Oral
- Androgen Receptor Antagonists/pharmacology
- Animals
- Cell Line, Tumor
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Gene Expression Profiling/methods
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Kaplan-Meier Estimate
- Male
- Mice, Inbred ICR
- Mice, SCID
- NF-kappa B/antagonists & inhibitors
- NF-kappa B/metabolism
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/metabolism
- Protein Isoforms/antagonists & inhibitors
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Sesquiterpenes/administration & dosage
- Sesquiterpenes/pharmacology
- Mice
Collapse
Affiliation(s)
- Katherine L Morel
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Anis A Hamid
- Department of Medical Oncology, Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- University of Melbourne, Melbourne, VIC, Australia
| | - John G Clohessy
- Department of Medicine, Preclinical Murine Pharmacogenetics Facility, Cancer Research Institute, Beth Israel Deaconess Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Nicole Pandell
- Department of Medicine, Preclinical Murine Pharmacogenetics Facility, Cancer Research Institute, Beth Israel Deaconess Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Leigh Ellis
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- The Broad Institute, Cambridge, Massachusetts
| | - Christopher J Sweeney
- Department of Medical Oncology, Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
- The Broad Institute, Cambridge, Massachusetts
| |
Collapse
|
3
|
Ren Y, Kinghorn AD. Development of Potential Antitumor Agents from the Scaffolds of Plant-Derived Terpenoid Lactones. J Med Chem 2020; 63:15410-15448. [PMID: 33289552 PMCID: PMC7812702 DOI: 10.1021/acs.jmedchem.0c01449] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Naturally occurring terpenoid lactones and their synthetic derivatives have attracted increasing interest for their promising antitumor activity and potential utilization in the discovery and design of new antitumor agents. In the present perspective article, selected plant-derived five-membered γ-lactones and six-membered δ-lactones that occur with terpenoid scaffolds are reviewed, with their structures, cancer cell line cytotoxicity and in vivo antitumor activity, structure-activity relationships, mechanism of action, and the potential for developing cancer chemotherapeutic agents discussed in each case. The compounds presented include artemisinin (ART, 1), parthenolide (PTL, 2), thapsigargin (TPG, 3), andrographolide (AGL, 4), ginkgolide B (GKL B, 5), jolkinolide B (JKL B, 6), nagilactone E (NGL E, 7), triptolide (TPL, 8), bruceantin (BRC, 9), dichapetalin A (DCT A, 10), and limonin (LMN, 11), and their naturally occurring analogues and synthetic derivatives. It is hoped that this contribution will be supportive of the future development of additional efficacious anticancer agents derived from natural products.
Collapse
Affiliation(s)
- Yulin Ren
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - A. Douglas Kinghorn
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| |
Collapse
|
4
|
Parthenolide as Cooperating Agent for Anti-Cancer Treatment of Various Malignancies. Pharmaceuticals (Basel) 2020; 13:ph13080194. [PMID: 32823992 PMCID: PMC7466132 DOI: 10.3390/ph13080194] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 12/18/2022] Open
Abstract
Primary and acquired resistance of cancer to therapy is often associated with activation of nuclear factor kappa B (NF-κB). Parthenolide (PN) has been shown to inhibit NF-κB signaling and other pro-survival signaling pathways, induce apoptosis and reduce a subpopulation of cancer stem-like cells in several cancers. Multimodal therapies that include PN or its derivatives seem to be promising approaches enhancing sensitivity of cancer cells to therapy and diminishing development of resistance. A number of studies have demonstrated that several drugs with various targets and mechanisms of action can cooperate with PN to eliminate cancer cells or inhibit their proliferation. This review summarizes the current state of knowledge on PN activity and its potential utility as complementary therapy against different cancers.
Collapse
|
5
|
Micheliolide Enhances Radiosensitivities of p53-Deficient Non-Small-Cell Lung Cancer via Promoting HIF-1α Degradation. Int J Mol Sci 2020; 21:ijms21093392. [PMID: 32403326 PMCID: PMC7247679 DOI: 10.3390/ijms21093392] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/08/2020] [Accepted: 05/08/2020] [Indexed: 02/08/2023] Open
Abstract
Micheliolide (MCL) has shown promising anti-inflammatory and anti-tumor efficacy. However, whether and how MCL enhances the sensitivity of non-small-cell lung cancer (NSCLC) to radiotherapy are still unknown. In the present paper, we found that MCL exerted a tumor cell killing effect on NSCLC cells in a dose-dependent manner, and MCL strongly sensitized p53-deficient NSCLC cells, but not the cells with wild-type p53 to irradiation (IR). Meanwhile, MCL markedly inhibited the expression of hypoxia-inducible factor-1α (HIF-1α) after IR and hypoxic exposure in H1299 and Calu-1 cells rather than in H460 cells. Consistently, radiation- or hypoxia-induced expression of vascular endothelial growth factor (VEGF) was also significantly inhibited by MCL in H1299 and Calu-1 cells, but not in H460 cells. Therefore, inhibition of the HIF-1α pathway might, at least in part, contribute to the radiosensitizing effect of MCL. Further study showed that MCL could accelerate the degradation of HIF-1α through the ubiquitin-proteosome system. In addition, the transfection of wild-type p53 into p53-null cells (H1299) attenuated the effect of MCL on inhibiting HIF-1α expression. These results suggest MCL effectively sensitizes p53-deficient NSCLC cells to IR in a manner of inhibiting the HIF-1α pathway via promoting HIF-1α degradation, and p53 played a negative role in MCL-induced HIF-1α degradation.
Collapse
|
6
|
Santos JMO, Moreira‐Pais A, Neto T, Peixoto da Silva S, Oliveira PA, Ferreira R, Mendes J, Bastos MMSM, Lopes C, Casaca F, Silva S, Sweeney C, Medeiros R, Gil da Costa RM. Dimethylaminoparthenolide reduces the incidence of dysplasia and ameliorates a wasting syndrome in HPV16‐transgenic mice. Drug Dev Res 2019; 80:824-830. [DOI: 10.1002/ddr.21565] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 06/30/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Joana M. O. Santos
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI‐IPOP)Portuguese Oncology Institute of Porto (IPO Porto) Porto Portugal
- Faculty of Medicine of the University of Porto (FMUP) Porto Portugal
| | - Alexandra Moreira‐Pais
- Organic Chemistry, Natural and Agro‐Food Products Research Unit (QOPNA)University of Aveiro (UA) Aveiro Portugal
| | - Tiago Neto
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI‐IPOP)Portuguese Oncology Institute of Porto (IPO Porto) Porto Portugal
| | - Sara Peixoto da Silva
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI‐IPOP)Portuguese Oncology Institute of Porto (IPO Porto) Porto Portugal
- Faculty of Medicine of the University of Porto (FMUP) Porto Portugal
| | - Paula A. Oliveira
- Centre for the Research and Technology of Agro‐Environmental and Biological Sciences (CITAB)University of Trás‐os‐Montes and Alto Douro (UTAD) Vila Real Portugal
| | - Rita Ferreira
- Organic Chemistry, Natural and Agro‐Food Products Research Unit (QOPNA)University of Aveiro (UA) Aveiro Portugal
| | - Joaquim Mendes
- Institute of Science and Innovation in Mechanical and Industrial Engineering (INEGI), Faculty of Engineering of the University of Porto (FEUP) Porto Portugal
| | - Margarida M. S. M. Bastos
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE)Faculty of Engineering of the University of Porto (FEUP) Porto Portugal
| | - Carlos Lopes
- Botelho Moniz Análises Clínicas (BMAC) Porto Portugal
| | - Fátima Casaca
- Botelho Moniz Análises Clínicas (BMAC) Porto Portugal
| | - Sandra Silva
- Botelho Moniz Análises Clínicas (BMAC) Porto Portugal
| | - Christopher Sweeney
- Dana‐Farber Cancer Institute Boston Massachusetts
- Harvard Medical School Boston Massachusetts
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI‐IPOP)Portuguese Oncology Institute of Porto (IPO Porto) Porto Portugal
- Faculty of Medicine of the University of Porto (FMUP) Porto Portugal
- Virology Service, Portuguese Oncology Institute of Porto (IPO Porto) Porto Portugal
- Research Department of the Portuguese League Against Cancer—Regional Nucleus of the North (Liga Portuguesa Contra o Cancro—Núcleo Regional do Norte) Porto Portugal
- Biomedical Research Center (CEBIMED)Faculty of Health Sciences of the Fernando Pessoa University Porto Portugal
| | - Rui M. Gil da Costa
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI‐IPOP)Portuguese Oncology Institute of Porto (IPO Porto) Porto Portugal
- Centre for the Research and Technology of Agro‐Environmental and Biological Sciences (CITAB)University of Trás‐os‐Montes and Alto Douro (UTAD) Vila Real Portugal
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE)Faculty of Engineering of the University of Porto (FEUP) Porto Portugal
- Postgraduate Programme in Adult Health (PPGSAD) and Tumour BiobankFederal University of Maranhão (UFMA) São Luís Brazil
| |
Collapse
|
7
|
Morel KL, Ormsby RJ, Klebe S, Sweeney CJ, Sykes PJ. DMAPT is an Effective Radioprotector from Long-Term Radiation-Induced Damage to Normal Mouse Tissues In Vivo. Radiat Res 2019; 192:231-239. [PMID: 31095445 DOI: 10.1667/rr15404.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
While radiotherapy is widely used in cancer treatment, the benefits can be limited by radiation-induced damage to neighboring healthy tissues. We previously demonstrated in mice that the anti-inflammatory compound dimethylaminoparthenolide (DMAPT) selectively induces radiosensitivity in prostate tumor tissue from transgenic adenocarcinoma of mouse prostate (TRAMP) mice, while simultaneously protecting healthy tissues from 6 Gy whole-body radiation-induced apoptosis. Here, we examined the radioprotective effect of DMAPT on fibrosis in normal tissues after a partial-body fractionated radiation protocol that more closely mimics the image-guided fractionated radiotherapy protocols used clinically. Male C57BL/6J mice, 16 weeks old, received 20 Gy fractionated doses of X rays (2 Gy daily fractions, five days/week for two weeks) or sham irradiation to the lower abdomen, with or without a prior 20 mGy dose to mimic an image dose. In addition, mice received thrice weekly DMAPT (100 mg/kg by oral gavage) or vehicle control from 15 weeks of age until time of analysis at 6 weeks postirradiation. In the absence of exposure to radiation, there were no significant differences observed in the tissues of DMAPT and vehicle-treated mice (P > 0.05). DMAPT treatment significantly reduced radiation-induced testis weight loss by 60.9% (P < 0.0001), protected against a decrease in the seminiferous tubule diameter by 42.1% (P < 0.0001) and largely preserved testis morphology. Inclusion of the image dose had no significant effect on testis mass, seminiferous tubule diameter or testis morphology. DMAPT reduced radiation-induced fibrosis in the corpus cavernous region of the penis (98.1% reduction, P = 0.009) and in the muscle layer around the bladder (80.1% reduction, P = 0.0001). There was also a trend towards reduced collagen infiltration into the submucosal and muscle layers in the rectum. These results suggest that DMAPT could be useful in providing protection from the radiation-induced side effects of impotence and infertility, urinary incontinence and fecal urgency resulting from prostate cancer radiotherapy. DMAPT is a very well-tolerated drug and can conveniently be delivered orally without strict time windows relative to radiation exposure. Protection of normal tissues by DMAPT could potentially be useful in radiotherapy of other cancer types as well.
Collapse
Affiliation(s)
- Katherine L Morel
- a Flinders Centre for Innovation in Cancer, Flinders University and Medical Centre, Bedford Park, Adelaide, South Australia, Australia.,c Dana-Farber Cancer Institute, Harvard University, Boston, Massachusetts
| | - Rebecca J Ormsby
- a Flinders Centre for Innovation in Cancer, Flinders University and Medical Centre, Bedford Park, Adelaide, South Australia, Australia
| | - Sonja Klebe
- b Department of Anatomical Pathology, Flinders University and SA Pathology, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | | | - Pamela J Sykes
- a Flinders Centre for Innovation in Cancer, Flinders University and Medical Centre, Bedford Park, Adelaide, South Australia, Australia
| |
Collapse
|
8
|
Mortezaee K, Najafi M, Farhood B, Ahmadi A, Shabeeb D, Musa AE. NF‐κB targeting for overcoming tumor resistance and normal tissues toxicity. J Cell Physiol 2019; 234:17187-17204. [DOI: 10.1002/jcp.28504] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/22/2019] [Accepted: 03/05/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy School of Medicine, Kurdistan University of Medical Sciences Sanandaj Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department School of Paramedical Sciences, Kermanshah University of Medical Sciences Kermanshah Iran
| | - Bagher Farhood
- Departments of Medical Physics and Radiology Faculty of Paramedical Sciences, Kashan University of Medical Sciences Kashan Iran
| | - Amirhossein Ahmadi
- Pharmaceutical Sciences Research Center Faculty of Pharmacy, Mazandaran University of Medical Sciences Sari Iran
| | - Dheyauldeen Shabeeb
- Department of Physiology College of Medicine, University of Misan Misan Iraq
| | - Ahmed E. Musa
- Department of Medical Physics Tehran University of Medical Sciences (International Campus) Tehran Iran
| |
Collapse
|
9
|
Morel KL, Ormsby RJ, Solly EL, Tran LNK, Sweeney CJ, Klebe S, Cordes N, Sykes PJ. Chronic low dose ethanol induces an aggressive metastatic phenotype in TRAMP mice, which is counteracted by parthenolide. Clin Exp Metastasis 2018; 35:649-661. [PMID: 29936575 DOI: 10.1007/s10585-018-9915-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 06/18/2018] [Indexed: 11/29/2022]
Abstract
Despite advances in prostate cancer therapy, dissemination and growth of metastases results in shortened survival. Here we examined the potential anti-cancer effect of the NF-κB inhibitor parthenolide (PTL) and its water soluble analogue dimethylaminoparthenolide (DMAPT) on tumour progression and metastasis in the TRansgenic Adenocarcinoma of the Mouse Prostate (TRAMP) model of prostate cancer. Six-week-old male TRAMP mice received PTL (40 mg/kg in 10% ethanol/saline), DMAPT (100 mg/kg in sterile water), or vehicle controls by oral gavage thrice weekly until palpable tumour formation. DMAPT treatment slowed normal tumour development in TRAMP mice, extending the time-to-palpable prostate tumour by 20%. PTL did not slow overall tumour development, while the ethanol/saline vehicle used to administer PTL unexpectedly induced an aggressive metastatic tumour phenotype. Chronic ethanol/saline vehicle upregulated expression of NF-κB, MMP2, integrin β1, collagen IV, and laminin, and induced vascular basement membrane degradation in primary prostate tumours, as well as increased metastatic spread to the lung and liver. All of these changes were largely prevented by co-administration with PTL. DMAPT (in water) reduced metastasis to below that of water-control. These data suggest that DMAPT has the potential to be used as a cancer preventive and anti-metastatic therapy for prostate cancer. Although low levels of ethanol consumption have not been shown to strongly correlate with prostate cancer epidemiology, these results would support a potential effect of chronic low dose ethanol on metastasis and the TRAMP model provides a useful system in which to further explore the mechanisms involved.
Collapse
Affiliation(s)
- Katherine L Morel
- Molecular Medicine and Pathology, Flinders Centre for Innovation in Cancer, Flinders University and Medical Centre, Bedford Park, Adelaide, SA, Australia.
| | - Rebecca J Ormsby
- Molecular Medicine and Pathology, Flinders Centre for Innovation in Cancer, Flinders University and Medical Centre, Bedford Park, Adelaide, SA, Australia
| | - Emma L Solly
- Molecular Medicine and Pathology, Flinders Centre for Innovation in Cancer, Flinders University and Medical Centre, Bedford Park, Adelaide, SA, Australia
| | - Linh N K Tran
- Molecular Medicine and Pathology, Flinders Centre for Innovation in Cancer, Flinders University and Medical Centre, Bedford Park, Adelaide, SA, Australia
| | | | - Sonja Klebe
- Department of Anatomical Pathology, Flinders University and SA Pathology at Flinders Medical Centre, Bedford Park, SA, Australia
| | - Nils Cordes
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden; Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pamela J Sykes
- Molecular Medicine and Pathology, Flinders Centre for Innovation in Cancer, Flinders University and Medical Centre, Bedford Park, Adelaide, SA, Australia
| |
Collapse
|
10
|
Lamture G, Crooks PA, Borrelli MJ. Actinomycin-D and dimethylamino-parthenolide synergism in treating human pancreatic cancer cells. Drug Dev Res 2018; 79:287-294. [PMID: 30295945 PMCID: PMC6193836 DOI: 10.1002/ddr.21441] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/13/2018] [Indexed: 12/11/2022]
Abstract
Preclinical Research & Development Pancreatic cancer is the third leading cause of death in the US with a poor 5-year survival rate of 8.5%. A novel anti-cancer drug, dimethylamino parthenolide (DMAPT), is the water-soluble analog of the natural sesquiterpene lactone, parthenolide. The putative modes of action of DMAPT are inhibition of the Nuclear chain factor kappa-light-chain enhancer of activated B cells (NFκB) pathway and depletion of glutathione levels; the latter causing cancer cells to be more susceptible to oxidative stress-induced cell death. Actinomycin-D (ActD) is a polypeptide antibiotic that binds to DNA, and inhibits RNA and protein synthesis by inhibiting RNA polymerase II. A phase 2 clinical trial indicated that ActD could be a potent drug against pancreatic cancer; however, it was not a favored drug due to toxicity issues. New drug entities and methods of drug delivery, used alone or in combination, are needed to treat pancreatic cancer more effectively. Thus, it was postulated that combining DMAPT and ActD would result in synergistic inhibition of Panc-1 pancreatic cancer cell growth because DMAPT's inhibition of NFκB would enhance induction of apoptosis by ActD, via phosphorylation of c-Jun, by minimizing NFκB inhibition of c-Jun phosphorylation. Combining these two drugs induced a higher level of cell death than each drug alone. A fixed drug ratio of DMAPT: ActD (1,200:1) was used. Data from metabolic (MTT) and colony formation assays were analyzed for synergism with CompuSyn software, which utilizes the Chou-Talalay equation. The analyses indicated synergism and moderate synergism at combination concentrations of DMAPT/ActD of 12/0.01 and 18/0.015 μM, respectively.
Collapse
Affiliation(s)
- Gauri Lamture
- University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Peter A Crooks
- University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | | |
Collapse
|
11
|
Deraska PV, O'Leary C, Reavis HD, Labe S, Dinh TK, Lazaro JB, Sweeney C, D'Andrea AD, Kozono D. NF-κB inhibition by dimethylaminoparthenolide radiosensitizes non-small-cell lung carcinoma by blocking DNA double-strand break repair. Cell Death Discov 2018. [PMID: 29531807 PMCID: PMC5841323 DOI: 10.1038/s41420-017-0008-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Despite optimal chemotherapy, radiotherapy (RT), and/or surgery, non-small-cell lung carcinoma (NSCLC) remains the leading cause of cancer-related death in the US and worldwide. Thoracic RT, a mainstay in the treatment of locally advanced NSCLC, is often restricted in efficacy by a therapeutic index limited by sensitivity of tissues surrounding the malignancy. Therefore, radiosensitizers that can improve the therapeutic index are a vital unmet need. Inhibition of the NF-κB pathway is a proposed mechanism of radiosensitization. Here we demonstrate that inhibition of the canonical NF-κB pathway by dimethylaminoparthenolide (DMAPT) radiosensitizes NSCLC by blocking DNA double-strand break (DSB) repair. NF-κB inhibition results in significant impairment of both homologous recombination (HR) and non-homologous end joining (NHEJ), as well as reductions in ionizing radiation (IR)-induced DNA repair biomarkers. NF-κB inhibition by DMAPT shows preclinical potential for further investigation as a NSCLC radiosensitizer.
Collapse
Affiliation(s)
- Peter V Deraska
- 1Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA USA
| | - Colin O'Leary
- 1Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA USA
| | - Hunter D Reavis
- 1Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA USA
| | - Shelby Labe
- 1Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA USA
| | - Tru-Khang Dinh
- 1Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA USA
| | - Jean-Bernard Lazaro
- 1Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA USA.,2Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA USA
| | - Christopher Sweeney
- 3Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA USA
| | - Alan D D'Andrea
- 1Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA USA.,2Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA USA.,4Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA USA
| | - David Kozono
- 1Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA USA
| |
Collapse
|
12
|
Mendonca MS, Turchan WT, Alpuche ME, Watson CN, Estabrook NC, Chin-Sinex H, Shapiro JB, Imasuen-Williams IE, Rangel G, Gilley DP, Huda N, Crooks PA, Shapiro RH. DMAPT inhibits NF-κB activity and increases sensitivity of prostate cancer cells to X-rays in vitro and in tumor xenografts in vivo. Free Radic Biol Med 2017; 112:318-326. [PMID: 28782644 PMCID: PMC6322835 DOI: 10.1016/j.freeradbiomed.2017.08.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 07/20/2017] [Accepted: 08/01/2017] [Indexed: 01/22/2023]
Abstract
Constitutive activation of the pro-survival transcription factor NF-κB has been associated with resistance to both chemotherapy and radiation therapy in many human cancers, including prostate cancer. Our lab and others have demonstrated that the natural product parthenolide can inhibit NF-κB activity and sensitize PC-3 prostate cancers cells to X-rays in vitro; however, parthenolide has poor bioavailability in vivo and therefore has little clinical utility in this regard. We show here that treatment of PC-3 and DU145 human prostate cancer cells with dimethylaminoparthenolide (DMAPT), a parthenolide derivative with increased bioavailability, inhibits constitutive and radiation-induced NF-κB binding activity and slows prostate cancer cell growth. We also show that DMAPT increases single and fractionated X-ray-induced killing of prostate cancer cells through inhibition of DNA double strand break repair and also that DMAPT-induced radiosensitization is, at least partially, dependent upon the alteration of intracellular thiol reduction-oxidation chemistry. Finally, we demonstrate that the treatment of PC-3 prostate tumor xenografts with oral DMAPT in addition to radiation therapy significantly decreases tumor growth and results in significantly smaller tumor volumes compared to xenografts treated with either DMAPT or radiation therapy alone, suggesting that DMAPT might have a potential clinical role as a radiosensitizing agent in the treatment of prostate cancer.
Collapse
Affiliation(s)
- Marc S Mendonca
- Departments of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN 46202 USA; Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202 USA.
| | - William T Turchan
- Departments of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN 46202 USA; Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Melanie E Alpuche
- Departments of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Christopher N Watson
- Departments of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN 46202 USA; Richard L. Roudebush, VA Medical Center, Indianapolis, IN 46202 USA
| | - Neil C Estabrook
- Departments of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Helen Chin-Sinex
- Departments of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Jeremy B Shapiro
- Departments of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Imade E Imasuen-Williams
- Departments of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Gabriel Rangel
- Departments of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - David P Gilley
- Department of Chemistry and Applied Sciences, South Dakota School of Mines and Technology, Rapid City, SD 57701 USA
| | - Nazmul Huda
- Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Peter A Crooks
- College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Ronald H Shapiro
- Departments of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN 46202 USA; Richard L. Roudebush, VA Medical Center, Indianapolis, IN 46202 USA
| |
Collapse
|
13
|
Morel KL, Ormsby RJ, Bezak E, Sweeney CJ, Sykes PJ. Parthenolide Selectively Sensitizes Prostate Tumor Tissue to Radiotherapy while Protecting Healthy Tissues In Vivo. Radiat Res 2017; 187:501-512. [PMID: 28398879 DOI: 10.1667/rr14710.1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Radiotherapy is widely used in cancer treatment, however the benefits can be limited by radiation-induced damage to neighboring normal tissues. Parthenolide (PTL) exhibits anti-inflammatory and anti-tumor properties and selectively induces radiosensitivity in prostate cancer cell lines, while protecting primary prostate epithelial cell lines from radiation-induced damage. Low doses of radiation have also been shown to protect from subsequent high-dose-radiation-induced apoptosis as well as DNA damage. These properties of PTL and low-dose radiation could be used to improve radiotherapy by killing more tumor cells and less normal cells. Sixteen-week-old male Transgenic Adenocarcinoma of the Mouse Prostate (TRAMP) and C57BL/6J mice were treated with PTL (40 mg/kg), dimethylaminoparthenolide (DMAPT, a PTL analogue with increased bioavailability) (100 mg/kg), or vehicle control three times over one week prior to combinations of low (10 mGy) and high (6 Gy) doses of whole-body X-irradiation. Tissues were analyzed for apoptosis at a range of time points up to 72 h postirradiation. Both PTL and DMAPT protected normal tissues, but not prostate tumor tissues, from a significant proportion of high-dose-radiation-induced apoptosis. DMAPT provided superior protection compared to PTL in normal dorsolateral prostate (71.7% reduction, P = 0.026), spleen (48.2% reduction, P = 0.0001) and colorectal tissue (38.0% reduction, P = 0.0002), and doubled radiation-induced apoptosis in TRAMP prostate tumor tissue (101.3% increase, P = 0.039). Both drugs induced the greatest radiosensitivity in TRAMP prostate tissue in areas with higher grade prostatic intraepithelial neoplasia (PIN) lesions. A 10 mGy dose delivered 3 h prior to a 6 Gy dose induced a radioadaptive apoptosis response in normal C57Bl/6J prostate (28.4% reduction, P = 0.045) and normal TRAMP spleen (13.6% reduction, P = 0.047), however the low-dose-adaptive radioprotection did not significantly add to the PTL/DMAPT-induced protection in normal tissues, nor did it affect tumor kill. These results support the use of the more bioavailable DMAPT and low-dose radiation, alone or in combination as useful radioprotectors of normal tissues to alleviate radiotherapy-induced side-effects in patients. The enhanced radiosensitisation in prostate tissues displaying high-grade PIN suggests that DMAPT also holds promise for targeted therapy of advanced prostate cancer, which may go on to become metastatic. The redox mechanisms involved in the differential radioprotection observed here suggest that increased radiotherapy efficacy by DMAPT is more broadly applicable to a range of cancer types.
Collapse
Affiliation(s)
- Katherine L Morel
- a Molecular Medicine and Pathology, Flinders Centre for Innovation in Cancer, Flinders University and Medical Centre, Bedford Park, Adelaide, South Australia
| | - Rebecca J Ormsby
- a Molecular Medicine and Pathology, Flinders Centre for Innovation in Cancer, Flinders University and Medical Centre, Bedford Park, Adelaide, South Australia
| | - Eva Bezak
- b Medical Radiation, School of Health Sciences, University of South Australia, Adelaide, South Australia
| | | | - Pamela J Sykes
- a Molecular Medicine and Pathology, Flinders Centre for Innovation in Cancer, Flinders University and Medical Centre, Bedford Park, Adelaide, South Australia
| |
Collapse
|
14
|
Ren Y, Yu J, Kinghorn AD. Development of Anticancer Agents from Plant-Derived Sesquiterpene Lactones. Curr Med Chem 2017; 23:2397-420. [PMID: 27160533 DOI: 10.2174/0929867323666160510123255] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 04/26/2016] [Accepted: 05/09/2016] [Indexed: 12/24/2022]
Abstract
Sesquiterpene lactones are of considerable interest due to their potent bioactivities, including cancer cell cytotoxicity and antineoplastic efficacy in in vivo studies. Among these compounds, artesunate, dimethylaminoparthenolide, and L12ADT peptide prodrug, a derivative of thapsigargin, are being evaluated in the current cancer clinical or preclinical trials. Based on the structures of several antitumor sesquiterpene lactones, a number of analogues showing greater potency have been either isolated as natural products or partially synthesized, and some potential anticancer agents that have emerged from this group of lead compounds have been investigated extensively. The present review focuses on artemisinin, parthenolide, thapsigargin, and their naturally occurring or synthetic analogues showing potential anticancer activity. This provides an overview of the advances in the development of these types of sesquiterpene lactones as potential anticancer agents, including their structural characterization, synthesis and synthetic modification, and antitumor potential, with the mechanism of action and structure-activity relationships also discussed. It is hoped that this will be helpful in stimulating the further interest in developing sesquiterpene lactones and their derivatives as new anticancer agents.
Collapse
Affiliation(s)
| | | | - A Douglas Kinghorn
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| |
Collapse
|
15
|
Penthala NR, Janganati V, Alpe TL, Apana SM, Berridge MS, Crooks PA, Borrelli MJ. N-[ 11CH 3]Dimethylaminoparthenolide (DMAPT) uptake into orthotopic 9LSF glioblastoma tumors in the rat. Bioorg Med Chem Lett 2016; 26:5883-5886. [PMID: 27866815 DOI: 10.1016/j.bmcl.2016.11.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 11/04/2016] [Accepted: 11/07/2016] [Indexed: 11/27/2022]
Abstract
The aim of this study was to determine the uptake of intravenously administered N-[11CH3]-dimethylaminoparthenolide (DMAPT) into orthotopic 9LSF glioblastoma brain tumors in Fisher 344 rats from positron emission tomography (PET) imaging studies. [11C]methyl iodide (11CH3I) was utilized as a [11C]-labeling reagent to label the precursor methylaminoparthenolide (MAPT) intermediate. From PET imaging studies it was found that brain uptake of N-[11CH3]DMAPT into brain tumor tissue was rapid (30min), and considerably higher than that in the normal brain tissue.
Collapse
Affiliation(s)
- Narsimha Reddy Penthala
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205-7199, USA
| | - Venumadhav Janganati
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205-7199, USA
| | - Terri L Alpe
- College of Medicine, Department of Radiology, University of Arkansas for Medical Sciences, Little Rock, AR 72205-7199, USA
| | | | | | - Peter A Crooks
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205-7199, USA.
| | - Michael J Borrelli
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205-7199, USA; College of Medicine, Department of Radiology, University of Arkansas for Medical Sciences, Little Rock, AR 72205-7199, USA.
| |
Collapse
|
16
|
Turchan WT, Shapiro RH, Sevigny GV, Chin-Sinex H, Pruden B, Mendonca MS. Irradiated human endothelial progenitor cells induce bystander killing in human non-small cell lung and pancreatic cancer cells. Int J Radiat Biol 2016; 92:427-33. [PMID: 27258472 DOI: 10.1080/09553002.2016.1186299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Purpose To investigate whether irradiated human endothelial progenitor cells (hEPC) could induce bystander killing in the A549 non-small cell lung cancer (NSCLC) cells and help explain the improved radiation-induced tumor cures observed in A549 tumor xenografts co-injected with hEPC. Materials and methods We investigated whether co-injection of CBM3 hEPC with A549 NSCLC cells would alter tumor xenograft growth rate or tumor cure after a single dose of 0 or 5 Gy of X-rays. We then utilized dual chamber Transwell dishes, to test whether medium from irradiated CBM3 and CBM4 hEPC would induce bystander cell killing in A549 cells, and as an additional control, in human pancreatic cancer MIA PaCa-2 cells. The CBM3 and CBM4 hEPC were plated into the upper Transwell chamber and the A549 or MIA PaCa-2 cells were plated in the lower Transwell chamber. The top inserts with the CBM3 or CBM4 hEPC cells were subsequently removed, irradiated, and then placed back into the Transwell dish for 3 h to allow for diffusion of any potential bystander factors from the irradiated hEPC in the upper chamber through the permeable membrane to the unirradiated cancer cells in the lower chamber. After the 3 h incubation, the cancer cells were re-plated for clonogenic survival. Results We found that co-injection of CBM3 hEPC with A549 NSCLC cells significantly increased the tumor growth rate compared to A549 cells alone, but paradoxically also increased A549 tumor cure after a single dose of 5 Gy of X-rays (p < 0.05). We hypothesized that irradiated hEPC may be inducing bystander killing in the A549 NSCLC cells in tumor xenografts, thus improving tumor cure. Bystander studies clearly showed that exposure to the medium from irradiated CBM3 and CBM4 hEPC induced significant bystander killing and decreased the surviving fraction of A549 and MIA PaCa-2 cells to 0.46 (46%) ± 0.22 and 0.74 ± 0.07 (74%) respectively (p < 0.005, p < 0.0001). In addition, antibody depletion studies demonstrated that the bystander killing induced in both A549 and MIA PaCa-2 cells was mediated by the cytokines TNF-α and TGF-β (p < 0.05). Conclusions These data provide evidence that irradiated hEPC can induce strong bystander killing in A549 and MIA PaCa-2 human cancer cells and that this bystander killing is mediated by the cytokines TNF-α and TGF-β.
Collapse
Affiliation(s)
- William T Turchan
- a Department of Radiation Oncology, Radiation and Cancer Biology Laboratory , Indianapolis , IN 46202 , USA
| | - Ronald H Shapiro
- a Department of Radiation Oncology, Radiation and Cancer Biology Laboratory , Indianapolis , IN 46202 , USA
| | - Garrett V Sevigny
- a Department of Radiation Oncology, Radiation and Cancer Biology Laboratory , Indianapolis , IN 46202 , USA
| | - Helen Chin-Sinex
- a Department of Radiation Oncology, Radiation and Cancer Biology Laboratory , Indianapolis , IN 46202 , USA
| | - Benjamin Pruden
- a Department of Radiation Oncology, Radiation and Cancer Biology Laboratory , Indianapolis , IN 46202 , USA
| | - Marc S Mendonca
- a Department of Radiation Oncology, Radiation and Cancer Biology Laboratory , Indianapolis , IN 46202 , USA ;,b Department of Medical and Molecular Genetics , Indiana University School of Medicine , Indianapolis , IN 46202 , USA
| |
Collapse
|
17
|
Allen KT, Chin-Sinex H, DeLuca T, Pomerening JR, Sherer J, Watkins JB, Foley J, Jesseph JM, Mendonca MS. Dichloroacetate alters Warburg metabolism, inhibits cell growth, and increases the X-ray sensitivity of human A549 and H1299 NSC lung cancer cells. Free Radic Biol Med 2015; 89:263-73. [PMID: 26393423 DOI: 10.1016/j.freeradbiomed.2015.08.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 07/02/2015] [Accepted: 08/06/2015] [Indexed: 12/22/2022]
Abstract
We investigated whether altering Warburg metabolism (aerobic glycolysis) by treatment with the metabolic agent dichloroacetate (DCA) could increase the X-ray-induced cell killing of the radiation-resistant human non-small-cell lung cancer (NSCLC) cell lines A549 and H1299. Treatment with 50mM DCA decreased lactate production and glucose consumption in both A549 and H1299, clear indications of attenuated aerobic glycolysis. In addition, we found that DCA treatment also slowed cell growth, increased population-doubling time, and altered cell cycle distribution. Furthermore, we report that treatment with 50mM DCA significantly increased single and fractionated X-ray-induced cell killing of A549 and H1299 cells. Assay of DNA double-strand break repair by neutral comet assays demonstrated that DCA inhibited both the fast and the slow kinetics of X-ray-induced DSB repair in both A549 and H1299 NSCL cancer cells. Taken together the data suggest a correlation between an attenuated aerobic glycolysis and enhanced cytotoxicity and radiation-induced cell killing in radiation-resistant NSCLC cells.
Collapse
Affiliation(s)
- Kah Tan Allen
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN 47405, USA
| | - Helen Chin-Sinex
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Thomas DeLuca
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | - Jeremy Sherer
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - John B Watkins
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN 47405, USA
| | - John Foley
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN 47405, USA; Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jerry M Jesseph
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN 47405, USA
| | - Marc S Mendonca
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
18
|
Amorim MHR, Gil da Costa RM, Lopes C, Bastos MMSM. Sesquiterpene lactones: adverse health effects and toxicity mechanisms. Crit Rev Toxicol 2014; 43:559-79. [PMID: 23875764 DOI: 10.3109/10408444.2013.813905] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Sesquiterpene lactones (STLs) present a wide range of biological activities, mostly based on their alkylating capabilities, which underlie their therapeutic potential. These compounds are the active constituents of a variety of plants, frequently used as herbal remedies. STLs such as artemisinin and its derivatives are in use as first-line antimalarials while others, such as parthenolide, have recently reached cancer clinical trials. However, the toxicological profile of these compounds must be thoroughly characterized, since the same properties that make STL useful medicines can also cause severe toxicity. STL-containing plants have long been known to induce a contact dermatitis in exposed farm workers, and also to cause several toxic syndromes in farm animals. More recently, concerns are been raised regarding the genotoxic potential of these compounds and the embryotoxicity of artemisinins. A growing number of STLs are being reported to be mutagenic in different in vitro and in vivo assays. As yet no systematic studies have been published, but the genotoxicity of STLs seems to depend not so much on direct DNA alkylation as on oxidative DNA damage and other partially elucidated mechanisms. As the medicinal use of these compounds increases, further studies of their toxic potential are needed, especially those focusing on the structural determinants of genotoxicity and embryotoxicity.
Collapse
Affiliation(s)
- M Helena R Amorim
- Chemical Engineering Department, Faculty of Engineering, University of Porto, Portugal
| | | | | | | |
Collapse
|
19
|
Togano T, Watanabe M, Itoh K, Umezawa K, Masuda N, Higashihara M, Horie R. Activation of Akt involves resistance to NF-κB inhibition and abrogation of both triggers synergistic apoptosis in lung adenocarcinoma cells. Lung Cancer 2014; 83:139-45. [DOI: 10.1016/j.lungcan.2013.10.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 09/14/2013] [Accepted: 10/30/2013] [Indexed: 10/26/2022]
|
20
|
Sen S, Hassane DC, Corbett C, Becker MW, Jordan CT, Guzman ML. Novel mTOR inhibitory activity of ciclopirox enhances parthenolide antileukemia activity. Exp Hematol 2013; 41:799-807.e4. [PMID: 23660068 PMCID: PMC3809917 DOI: 10.1016/j.exphem.2013.04.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 04/07/2013] [Accepted: 04/29/2013] [Indexed: 10/26/2022]
Abstract
Ciclopirox, an antifungal agent commonly used for the dermatologic treatment of mycoses, has been shown recently to have antitumor properties. Although the exact mechanism of ciclopirox is unclear, its antitumor activity has been attributed to iron chelation and inhibition of the translation initiation factor eIF5A. In this study, we identify a novel function of ciclopirox in the inhibition of mTOR. As with other mTOR inhibitors, we show that ciclopirox significantly enhances the ability of the established preclinical antileukemia compound, parthenolide, to target acute myeloid leukemia. The combination of parthenolide and ciclopirox demonstrates greater toxicity against acute myeloid leukemia than treatment with either compound alone. We also demonstrate that the ability of ciclopirox to inhibit mTOR is specific to ciclopirox because neither iron chelators nor other eIF5A inhibitors affect mTOR activity, even at high doses. We have thus identified a novel function of ciclopirox that might be important for its antileukemic activity.
Collapse
Affiliation(s)
- Siddhartha Sen
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Medical College of Cornell University, New York, New York, USA
| | - Duane C. Hassane
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Medical College of Cornell University, New York, New York, USA
| | - Cheryl Corbett
- James P. Wilmot Cancer Center, University of Rochester School of Medicine, Rochester, New York, USA
| | - Michael W. Becker
- James P. Wilmot Cancer Center, University of Rochester School of Medicine, Rochester, New York, USA
| | - Craig T. Jordan
- James P. Wilmot Cancer Center, University of Rochester School of Medicine, Rochester, New York, USA
| | - Monica L. Guzman
- Weill Medical College of Cornell University, New York, New York, USA
| |
Collapse
|
21
|
Gu D, Liu H, Su GH, Zhang X, Chin-Sinex H, Hanenberg H, Mendonca MS, Shannon HE, Chiorean EG, Xie J. Combining hedgehog signaling inhibition with focal irradiation on reduction of pancreatic cancer metastasis. Mol Cancer Ther 2013; 12:1038-48. [PMID: 23468532 DOI: 10.1158/1535-7163.mct-12-1030] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pancreatic cancer often presents in advanced stages and is unresponsive to conventional treatments. Thus, the need to develop novel treatment strategies for pancreatic cancer has never been greater. Here, we report that combination of focal irradiation with hedgehog (Hh) signaling inhibition exerts better than additive effects on reducing metastases. In an orthotopic model, we found that focal irradiation alone effectively reduced primary tumor growth but did not significantly affect metastasis. We hypothesized that cancer stem cells (CSC) of pancreatic cancer are responsible for the residual tumors following irradiation, which may be regulated by Hh signaling. To test our hypothesis, we showed that tumor metastasis in our model was accompanied by increased expression of CSC cell surface markers as well as Hh target genes. We generated tumor spheres from orthotopic pancreatic and metastatic tumors, which have elevated levels of CSC markers relative to the parental cells and elevated expression of Hh target genes. Irradiation of tumor spheres further elevated CSC cell surface markers and increased Hh target gene expression. Combination of Hh signaling inhibition with radiation had more than additive effects on tumor sphere regeneration in vitro. This phenotype was observed in two independent cell lines. In our orthotopic animal model, focal radiation plus Hh inhibition had more than additive effects on reducing lymph node metastasis. We identified several potential molecules in mediating Hh signaling effects. Taken together, our data provide a rationale for combined use of Hh inhibition with irradiation for clinical treatment of patients with pancreatic cancer.
Collapse
Affiliation(s)
- Dongsheng Gu
- Division of Medical Oncology, IU Simon Cancer Center, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Cis-9,trans-11-conjugated linoleic acid affects lipid raft composition and sensitizes human colorectal adenocarcinoma HT-29 cells to X-radiation. Biochim Biophys Acta Gen Subj 2012; 1830:2233-42. [PMID: 23116821 DOI: 10.1016/j.bbagen.2012.10.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 09/29/2012] [Accepted: 10/18/2012] [Indexed: 11/21/2022]
Abstract
BACKGROUND Investigations concerned the mechanism of HT-29 cells radiosensitization by cis-9,trans-11-conjugated linoleic acid (c9,t11-CLA), a natural component of human diet with proven antitumor activity. METHODS The cells were incubated for 24h with 70μM c9,t11-CLA and then X-irradiated. The following methods were used: gas chromatography (incorporation of the CLA isomer), flow cytometry (cell cycle), cloning (survival), Western blotting (protein distribution in membrane fractions), and pulse-field gel electrophoresis (rejoining of DNA double-strand breaks). In parallel, DNA-PK activity, γ-H2AX foci numbers and chromatid fragmentation were estimated. Gene expression was analysed by RT-PCR and chromosomal aberrations by the mFISH method. Nuclear accumulation of the EGF receptor (EGFR) was monitored by ELISA. RESULTS AND CONCLUSIONS C9,t11-CLA sensitized HT-29 cells to X-radiation. This effect was not due to changes in cell cycle progression or DNA-repair-related gene expression. Post-irradiation DSB rejoining was delayed, corresponding with the insufficient DNA-PK activation, although chromosomal aberration frequencies did not increase. Distributions of cholesterol and caveolin-1 in cellular membrane fractions changed. The nuclear EGFR translocation, necessary to increase the DNA-PK activity in response to oxidative stress, was blocked. We suppose that c9,t11-CLA modified the membrane structure, thus disturbing the intracellular EGFR transport and the EGFR-dependent pro-survival signalling, both functionally associated with lipid raft properties. GENERAL SIGNIFICANCE The results point to the importance of the cell membrane interactions with the nucleus after injury inflicted by X -rays. Compounds like c9,t11-CLA, that specifically alter membrane properties, could be used to develop new anticancer strategies.
Collapse
|