1
|
Miller L, Hébert CD, Grimes SD, Toomey JS, Oh JY, Rose JJ, Patel RP. Safety and toxicology assessment of sodium nitrite administered by intramuscular injection. Toxicol Appl Pharmacol 2021; 429:115702. [PMID: 34464673 PMCID: PMC8459319 DOI: 10.1016/j.taap.2021.115702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/02/2021] [Accepted: 08/23/2021] [Indexed: 10/20/2022]
Abstract
Intramuscular (IM) injection of nitrite (1-10 mg/kg) confers survival benefit and protects against lung injury after exposure to chlorine gas in preclinical models. Herein, we evaluated safety/toxicity parameters after single, and repeated (once daily for 7 days) IM injection of nitrite in male and female Sprague Dawley rats and Beagle dogs. The repeat dose studies were performed in compliance with the Federal Drug Administration's (FDA) Good Laboratory Practices Code of Federal Regulations (21 CFR Part 58). Parameters evaluated consisted of survival, clinical observations, body weights, clinical pathology, plasma drug levels, methemoglobin and macroscopic and microscopic pathology. In rats and dogs, single doses of ≥100 mg/kg and 60 mg/kg resulted in death and moribundity, while repeated administration of ≤30 or ≤ 10 mg/kg/day, respectively, was well tolerated. Therefore, the maximum tolerated dose following repeated administration in rats and dogs were determined to be 30 mg/kg/day and 10 mg/kg/day, respectively. Effects at doses below the maximum tolerated dose (MTD) were limited to emesis (in dogs only) and methemoglobinemia (in both species) with clinical signs (e.g. blue discoloration of lips) being dose-dependent, transient and reversible. These signs were not considered adverse, therefore the No Observed Adverse Effect Level (NOAEL) for both rats and dogs was 10 mg/kg/day in males (highest dose tested for dogs), and 3 mg/kg/day in females. Toxicokinetic assessment of plasma nitrite showed no difference between male and females, with Cmax occurring between 5 mins and 0.5 h (rats) or 0.25 h (dogs). In summary, IM nitrite was well tolerated in rats and dogs at doses previously shown to confer protection against chlorine gas toxicity.
Collapse
Affiliation(s)
- Lutfiya Miller
- Intertek Health Sciences, Inc., Pharmaceuticals & Healthcare, Mississauga, ON, Canada
| | | | | | - James S Toomey
- Southern Research, Birmingham, AL, United States of America
| | - Joo-Yeun Oh
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jason J Rose
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rakesh P Patel
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
2
|
Addis DR, Aggarwal S, Lazrak A, Jilling T, Matalon S. Halogen-Induced Chemical Injury to the Mammalian Cardiopulmonary Systems. Physiology (Bethesda) 2021; 36:272-291. [PMID: 34431415 DOI: 10.1152/physiol.00004.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The halogens chlorine (Cl2) and bromine (Br2) are highly reactive oxidizing elements with widespread industrial applications and a history of development and use as chemical weapons. When inhaled, depending on the dose and duration of exposure, they cause acute and chronic injury to both the lungs and systemic organs that may result in the development of chronic changes (such as fibrosis) and death from cardiopulmonary failure. A number of conditions, such as viral infections, coexposure to other toxic gases, and pregnancy increase susceptibility to halogens significantly. Herein we review their danger to public health, their mechanisms of action, and the development of pharmacological agents that when administered post-exposure decrease morbidity and mortality.
Collapse
Affiliation(s)
- Dylan R Addis
- Department of Anesthesiology and Perioperative Medicine, Division of Cardiothoracic Anesthesiology, University of Alabama at Birmingham, Birmingham, Alabama.,Comprehensive Cardiovascular Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Saurabh Aggarwal
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, Alabama.,Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Ahmed Lazrak
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, Alabama.,Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Tamas Jilling
- Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama.,Department of Pediatrics, Division of Neonatology, Children's Hospital, University of Alabama at Birmingham, Birmingham, Alabama
| | - Sadis Matalon
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, Alabama.,Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
3
|
Radbel J, Laskin DL, Laskin JD, Kipen HM. Disease-modifying treatment of chemical threat agent-induced acute lung injury. Ann N Y Acad Sci 2020; 1480:14-29. [PMID: 32726497 DOI: 10.1111/nyas.14438] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/10/2020] [Accepted: 06/21/2020] [Indexed: 02/04/2023]
Abstract
Acute respiratory distress syndrome (ARDS) is a highly morbid lung pathology induced by exposure to chemical warfare agents, including vesicants, phosgene, chlorine, and ricin. In this review, we describe the pathology associated with the development of ARDS in humans and experimental models of acute lung injury following animal exposure to these high-priority threat agents. Potential future approaches to disease-modifying treatment used in preclinical animal studies, including antioxidants, anti-inflammatories, biologics, and mesenchymal stem cells, are also described. As respiratory pathologies, including ARDS, are the major cause of morbidity and mortality following exposure to chemical threat agents, understanding mechanisms of disease pathogenesis is key to the development of efficacious therapeutics beyond the primary intervention principle, which remains mechanical ventilation.
Collapse
Affiliation(s)
- Jared Radbel
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Health, School of Public Health, Rutgers University, Piscataway, New Jersey
| | - Howard M Kipen
- Department of Environmental and Occupational Health, School of Public Health, Rutgers University, Piscataway, New Jersey
| |
Collapse
|
4
|
Addis DR, Molyvdas A, Ambalavanan N, Matalon S, Jilling T. Halogen exposure injury in the developing lung. Ann N Y Acad Sci 2020; 1480:30-43. [PMID: 32738176 DOI: 10.1111/nyas.14445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/19/2020] [Accepted: 07/30/2020] [Indexed: 12/27/2022]
Abstract
Owing to a high-volume industrial usage of the halogens chlorine (Cl2 ) and bromine (Br2 ), they are stored and transported in abundance, creating a risk for accidental or malicious release to human populations. Despite extensive efforts to understand the mechanisms of toxicity upon halogen exposure and to develop specific treatments that could be used to treat exposed individuals or large populations, until recently, there has been little to no effort to determine whether there are specific features and or the mechanisms of halogen exposure injury in newborns or children. We established a model of neonatal halogen exposure and published our initial findings. In this review, we aim to contrast and compare the findings in neonatal mice exposed to Br2 with the findings published on adult mice exposed to Br2 and the neonatal murine models of bronchopulmonary dysplasia. Despite remarkable similarities across these models in overall alveolar architecture, there are distinct functional and apparent mechanistic differences that are characteristic of each model. Understanding the mechanistic and functional features that are characteristic of the injury process in neonatal mice exposed to halogens will allow us to develop countermeasures that are appropriate for, and effective in, this unique population.
Collapse
Affiliation(s)
- Dylan R Addis
- Department of Anesthesiology and Perioperative Medicine, the University of Alabama at Birmingham School of Medicine, Birmingham, Alabama.,Division of Molecular and Translational Biomedicine, Pulmonary Injury and Repair Center, the University of Alabama at Birmingham School of Medicine, Birmingham, Alabama.,UAB Comprehensive Cardiovascular Center, the University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| | - Adam Molyvdas
- Department of Anesthesiology and Perioperative Medicine, the University of Alabama at Birmingham School of Medicine, Birmingham, Alabama.,Division of Molecular and Translational Biomedicine, Pulmonary Injury and Repair Center, the University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| | - Namasivayam Ambalavanan
- Division of Neonatology, Department of Pediatrics, the University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| | - Sadis Matalon
- Department of Anesthesiology and Perioperative Medicine, the University of Alabama at Birmingham School of Medicine, Birmingham, Alabama.,Division of Molecular and Translational Biomedicine, Pulmonary Injury and Repair Center, the University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| | - Tamas Jilling
- Division of Neonatology, Department of Pediatrics, the University of Alabama at Birmingham School of Medicine, Birmingham, Alabama.,Department of Pediatrics, the University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| |
Collapse
|
5
|
Kapil V, Khambata RS, Jones DA, Rathod K, Primus C, Massimo G, Fukuto JM, Ahluwalia A. The Noncanonical Pathway for In Vivo Nitric Oxide Generation: The Nitrate-Nitrite-Nitric Oxide Pathway. Pharmacol Rev 2020; 72:692-766. [DOI: 10.1124/pr.120.019240] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
6
|
Choking agents and chlorine gas – History, pathophysiology, clinical effects and treatment. Toxicol Lett 2020; 320:73-79. [DOI: 10.1016/j.toxlet.2019.12.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 12/19/2022]
|
7
|
Ågren L, Elfsmark L, Akfur C, Hägglund L, Ekstrand-Hammarström B, Jonasson S. N-acetyl cysteine protects against chlorine-induced tissue damage in an ex vivo model. Toxicol Lett 2020; 322:58-65. [PMID: 31962155 DOI: 10.1016/j.toxlet.2020.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 01/17/2023]
Abstract
High-level concentrations of chlorine (Cl2) can cause life-threatening lung injuries and the objective in this study was to understand the pathogenesis of short-term sequelae of Cl2-induced lung injury and to evaluate whether pre-treatment with the antioxidant N-acetyl cysteine (NAC) could counteract these injuries using Cl2-exposed precision-cut lung slices (PCLS). The lungs of Sprague-Dawley rats were filled with agarose solution and cut into 250 μm-thick slices that were exposed to Cl2 (20-600 ppm) and incubated for 30 min. The tissue slices were pre-treated with NAC (5-25 mM) before exposure to Cl2. Toxicological responses were analyzed after 5 h by measurement of LDH, WST-1 and inflammatory mediators (IL-1β, IL-6 and CINC-1) in medium or lung tissue homogenate. Exposure to Cl2 induced a concentration-dependent cytotoxicity (LDH/WST-1) and IL-1β release in medium. Similar cytokine response was detected in tissue homogenate. Contraction of larger airways was measured using electric-field-stimulation method, 200 ppm and control slices had similar contraction level (39 ± 5%) but in the 400 ppm Cl2 group, the evoked contraction was smaller (7 ± 3%) possibly due to tissue damage. NAC-treatment improved cell viability and reduced tissue damage and the contraction was similar to control levels (50 ± 11%) in the NAC treated Cl2-exposed slices. In conclusion, Cl2 induced a concentration-dependent lung tissue damage that was effectively prevented with pre-treatment with NAC. There is a great need to improve the medical treatment of acute lung injury and this PCLS method offers a way to identify and to test new concepts of treatment of Cl2-induced lung injuries.
Collapse
Affiliation(s)
- Lina Ågren
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden
| | - Linda Elfsmark
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden
| | - Christine Akfur
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden
| | - Lars Hägglund
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden
| | | | - Sofia Jonasson
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden.
| |
Collapse
|
8
|
Huynh Tuong A, Despréaux T, Loeb T, Salomon J, Mégarbane B, Descatha A. Emergency management of chlorine gas exposure - a systematic review. Clin Toxicol (Phila) 2019; 57:77-98. [PMID: 30672349 DOI: 10.1080/15563650.2018.1519193] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Chlorine exposure can lead to pulmonary obstruction, reactive airway dysfunction syndrome, acute respiratory distress syndrome and, rarely, death. OBJECTIVE We performed a systematic review of published animal and human data regarding the management of chlorine exposure. METHODS Three databases were searched from 2007 to 2017 using the following keywords "("chlorine gas" OR "chlorine-induced" OR" chlorine-exposed") AND ("therapy" OR "treatment" OR "post-exposure")". Forty-five relevant papers were found: 22 animal studies, 6 reviews, 19 case reports and 1 human randomized controlled study. General management: Once the casualty has been removed from the source of exposure and adequately decontaminated, chlorine-exposed patients should receive supportive care. Humidified oxygen: If dyspnea and hypoxemia are present, humidified oxygen should be administered. Inhaled bronchodilators: The use of nebulized or inhaled bronchodilators to counteract bronchoconstriction is standard therapy, and the combination of ipratropium bromide with beta2-agonists effectively reversed bronchoconstriction, airway irritation and increased airway resistance in experimental studies. Inhaled sodium bicarbonate: In a randomized controlled trial, humidified oxygen, intravenous prednisolone and inhaled salbutamol were compared with nebulized sodium bicarbonate. The only additional benefit of sodium bicarbonate was to increase the forced expiratory volume in one second, 2 and 4 h after administration. Corticosteroids: Dexamethasone 100 mg/kg intraperitoneally (IP) reduced lung edema when given within 1 h of chlorine inhalation and when administered within 6 h significantly decreased (p < 0.01) the leukocyte count in the bronchoalveolar lavage (BAL). As corticosteroids were never given alone in clinical studies, it is impossible to assess whether they had an additional beneficial effect. Antioxidants: An ascorbic acid/deferoxamine combination (equivalent to 100 mg/kg and 15 mg/kg, respectively) was administered intramuscularly 1 h after chlorine exposure, then every 12 h up to 60 h, then as an aerosol, and produced a significant reduction (p < 0.05) in BAL leukocytes and a significant reduction (p < 0.007) in mortality at 72 h. The single clinical case reported was uninterpretable. Sodium nitrite: Sodium nitrite 10 mg/kg intramuscularly (IM), 30 min post-chlorine exposure in mice and rabbits significantly reduced (p < 0.01) the number of leukocytes and the protein concentration in BAL and completely reversed mortality in rabbits and decreased mortality by about 50% in mice. No clinical studies have reported the use of sodium nitrite. Dimethylthiourea: Dimethylthiourea 100 mg/kg IP significantly decreased (p < 0.05) lymphocytes and neutrophils in BAL fluid 24 h after chlorine exposure in experimental studies. No clinical studies have been undertaken. AEOL 10150: Administration of AEOL10150 5 mg/kg IP at 1 h and 9 h post-chlorine exposure reduced significantly the neutrophil (p < 0.001) and macrophage (p < 0.05) bronchoalveolar cell counts. Transient receptor potential vanilloid 4 (TRPV4): IM or IP TRPV4 reduced significantly (p < 0.001) bronchoalveolar neutrophil and macrophage counts to baseline at 24 h. No clinical studies have been performed. Reparixin and triptolide: In experimental studies, triptolide 100-1000 µg/kg IP 1 h post-exposure caused a significant decrease (p < 0.001) in bronchoalveolar neutrophils, whereas reparixin 15 mg/kg IP 1 h post-exposure produced no benefit. Rolipram: Nanoemulsion formulated rolipram administered intramuscularly returned airway resistance to baseline. Rolipram (40%)/poly(lactic-co-glycolic acid) (60%) 0.36 mg/mouse given intramuscularly 1 h post-exposure significantly reduced (p < 0.05) extravascular lung water by 20% at t + 6 h. Prophylactic antibiotics: Studies in patients have failed to demonstrate benefit. Sevoflurane: Sevoflurane has been used in one intubated patient in addition to beta2-agonists. Although the peak inspiratory pressure was decreased after 60 min, the role of sevofluorine is not known. CONCLUSIONS Various therapies seem promising based on animal studies or case reports. However, these recommendations are based on low-level quality data. A systematic list of outcomes to monitor and improve may help to design optimal therapeutic protocols to manage chlorine-exposed patients.
Collapse
Affiliation(s)
- Alice Huynh Tuong
- a AP-HP, EMS (Samu 92) Occupational Health Unit , Poincaré Hospital , Garches , France.,b Population-based Epidemiologic Cohorts Unit , INSERM, UMS011 , Villejuif , France.,c Aging and Chronic Diseases: Epidemiological and Public Health Approaches , INSERM, U1168 , Villejuif , France
| | - Thomas Despréaux
- a AP-HP, EMS (Samu 92) Occupational Health Unit , Poincaré Hospital , Garches , France.,b Population-based Epidemiologic Cohorts Unit , INSERM, UMS011 , Villejuif , France.,c Aging and Chronic Diseases: Epidemiological and Public Health Approaches , INSERM, U1168 , Villejuif , France
| | - Thomas Loeb
- a AP-HP, EMS (Samu 92) Occupational Health Unit , Poincaré Hospital , Garches , France
| | - Jérôme Salomon
- d Versailles Saint Quentin-en-Yvelines University , Institut Pasteur, INSERM, UMR 1181 , Paris , France.,e Department of Acute Medicine , CHU PIFO, APHP, Poincaré Hospital , Garches , France
| | - Bruno Mégarbane
- f Department of Medical and Toxicological Critical Care Medicine , APHP, Lariboisière Hospital , Paris , France.,g Paris-Diderot University, INSERM UMR-S 1144 , Paris , France
| | - Alexis Descatha
- a AP-HP, EMS (Samu 92) Occupational Health Unit , Poincaré Hospital , Garches , France.,b Population-based Epidemiologic Cohorts Unit , INSERM, UMS011 , Villejuif , France.,c Aging and Chronic Diseases: Epidemiological and Public Health Approaches , INSERM, U1168 , Villejuif , France
| |
Collapse
|
9
|
Honavar J, Doran S, Ricart K, Matalon S, Patel RP. Nitrite therapy prevents chlorine gas toxicity in rabbits. Toxicol Lett 2017; 271:20-25. [PMID: 28237808 DOI: 10.1016/j.toxlet.2017.02.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 02/03/2017] [Accepted: 02/20/2017] [Indexed: 10/20/2022]
Abstract
Chlorine (Cl2) gas exposure and toxicity remains a concern in military and industrial sectors. While post-Cl2 exposure damage to the lungs and other tissues has been documented and major underlying mechanisms elucidated, no targeted therapeutics that are effective when administered post-exposure, and which are amenable to mass-casualty scenarios have been developed. Our recent studies show nitrite administered by intramuscular (IM) injection post-Cl2 exposure is effective in preventing acute lung injury and improving survival in rodent models. Our goal in this study was to develop a rabbit model of Cl2 toxicity and test whether nitrite affords protection in a non-rodent model. Exposure of New Zealand White rabbits to Cl2 gas (600ppm, 45min) caused significant increases in protein and neutrophil accumulation in the airways and ∼35% mortality over 18h. Nitrite administered 30min post Cl2 exposure by a single IM injection, at 1mg/kg or 10mg/kg, prevented indices of acute lung injury at 6h by up to 50%. Moreover, all rabbits that received nitrite survived over the study period. These data provide further rationale for developing nitrite as post-exposure therapeutic to mitigate against Cl2 gas exposure injury.
Collapse
Affiliation(s)
- Jaideep Honavar
- Department of Pathology, University of Alabama at Birmingham, Birmingham AL 35294, United States
| | - Stephen Doran
- Department of Anesthesiology, University of Alabama at Birmingham, Birmingham AL 35294, United States; Center for Free Radical Biology and Lung Injury and Repair Center, University of Alabama at Birmingham, Birmingham AL 35294, United States
| | - Karina Ricart
- Department of Pathology, University of Alabama at Birmingham, Birmingham AL 35294, United States
| | - Sadis Matalon
- Department of Anesthesiology, University of Alabama at Birmingham, Birmingham AL 35294, United States; Center for Free Radical Biology and Lung Injury and Repair Center, University of Alabama at Birmingham, Birmingham AL 35294, United States
| | - Rakesh P Patel
- Department of Pathology, University of Alabama at Birmingham, Birmingham AL 35294, United States; Center for Free Radical Biology and Lung Injury and Repair Center, University of Alabama at Birmingham, Birmingham AL 35294, United States.
| |
Collapse
|
10
|
Acute respiratory changes and pulmonary inflammation involving a pathway of TGF-β1 induction in a rat model of chlorine-induced lung injury. Toxicol Appl Pharmacol 2016; 309:44-54. [DOI: 10.1016/j.taap.2016.08.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 08/23/2016] [Accepted: 08/28/2016] [Indexed: 12/13/2022]
|
11
|
Peleli M, Zollbrecht C, Montenegro MF, Hezel M, Zhong J, Persson EG, Holmdahl R, Weitzberg E, Lundberg JO, Carlström M. Enhanced XOR activity in eNOS-deficient mice: Effects on the nitrate-nitrite-NO pathway and ROS homeostasis. Free Radic Biol Med 2016; 99:472-484. [PMID: 27609225 DOI: 10.1016/j.freeradbiomed.2016.09.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 08/16/2016] [Accepted: 09/02/2016] [Indexed: 01/19/2023]
Abstract
Xanthine oxidoreductase (XOR) is generally known as the final enzyme in purine metabolism and as a source of reactive oxygen species (ROS). In addition, this enzyme has been suggested to mediate nitric oxide (NO) formation via reduction of inorganic nitrate and nitrite. This NO synthase (NOS)-independent pathway for NO generation is of particular importance during certain conditions when NO bioavailability is diminished due to reduced activity of endothelial NOS (eNOS) or increased oxidative stress, including aging and cardiovascular disease. The exact interplay between NOS- and XOR-derived NO generation is not fully elucidated yet. The aim of the present study was to investigate if eNOS deficiency is associated with changes in XOR expression and activity and the possible impact on nitrite, NO and ROS homeostasis. Plasma levels of nitrate and nitrite were similar between eNOS deficient (eNOS-/-) and wildtype (wt) mice. XOR activity was upregulated in eNOS-/- compared with wt, but not in nNOS-/-, iNOS-/- or wt mice treated with the non-selective NOS inhibitor L-NAME. Following an acute dose of nitrate, plasma nitrite increased more in eNOS-/- compared with wt, and this augmented response was abolished by the selective XOR inhibitor febuxostat. Livers from eNOS-/- displayed higher nitrite reducing capacity compared with wt, and this effect was attenuated by febuxostat. Dietary supplementation with nitrate increased XOR expression and activity, but concomitantly reduced superoxide generation. The latter effect was also seen in vitro after nitrite administration. Treatment with febuxostat elevated blood pressure in eNOS-/-, but not in wt mice. A high dose of dietary nitrate reduced blood pressure in naïve eNOS-/- mice, and again this effect was abolished by febuxostat. In conclusion, eNOS deficiency is associated with an upregulation of XOR facilitating the nitrate-nitrite-NO pathway and decreasing the generation of ROS. This interplay between XOR and eNOS is proposed to play a significant role in NO homeostasis and blood pressure regulation.
Collapse
Affiliation(s)
- Maria Peleli
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Christa Zollbrecht
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Marcelo F Montenegro
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Michael Hezel
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jianghong Zhong
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Erik G Persson
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Rikard Holmdahl
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Eddie Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jon O Lundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| | - Mattias Carlström
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
12
|
A Nitric Oxide-Releasing Self-Assembled Peptide Amphiphile Nanomatrix for Improving the Biocompatibility of Microporous Hollow Fibers. ASAIO J 2016; 61:589-95. [PMID: 26102178 DOI: 10.1097/mat.0000000000000257] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Oxygenators are critical components of extracorporeal circuits used frequently in cardiopulmonary bypass and intensive care, but platelet activation and induction of a complex inflammatory response are usually observed with their use. To improve the biocompatibility of oxygenators, we developed a nitric oxide (NO)-releasing, self-assembled peptide amphiphile nanomatrix. The nanomatrix formed a homogenous coating over the microporous hollow fibers as demonstrated by scanning electron microscopy. We quantitated platelet adhesion to the artificial fibers by measuring absorbance/area of platelets (Abs/A; nm/m2) using acid phosphatase assay. There was a 17-fold decrease in platelet adhesion to the nanomatrix (Abs/A = 0.125) compared with collagen controls (Abs/A = 2.07; p < 0.05) and a 22-fold decrease compared with uncoated fibers (Abs/A = 2.75; p < 0.05). Importantly, the nanomatrix coating did not impede oxygen transfer in water through coated fiber modules (p > 0.05) in a benchtop test circuit at different flow rates as estimated by change in partial pressure of oxygen in relation to water velocity through fibers. These findings demonstrate the feasibility of coating microporous hollow fibers with a NO-releasing self-assembled amphiphile nanomatrix that may improve the biocompatibility of the hollow fibers without affecting their gas exchange capacity.
Collapse
|
13
|
Ford DA, Honavar J, Albert CJ, Duerr MA, Oh JY, Doran S, Matalon S, Patel RP. Formation of chlorinated lipids post-chlorine gas exposure. J Lipid Res 2016; 57:1529-40. [PMID: 27324796 DOI: 10.1194/jlr.m069005] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Indexed: 01/12/2023] Open
Abstract
Exposure to chlorine (Cl2) gas can occur during accidents and intentional release scenarios. However, biomarkers that specifically indicate Cl2 exposure and Cl2-derived products that mediate postexposure toxicity remain unclear. We hypothesized that chlorinated lipids (Cl-lipids) formed by direct reactions between Cl2 gas and plasmalogens serve as both biomarkers and mediators of post-Cl2 gas exposure toxicities. The 2-chloropalmitaldehyde (2-Cl-Pald), 2-chlorostearaldehyde (2-Cl-Sald), and their oxidized products, free- and esterified 2-chloropalmitic acid (2-Cl-PA) and 2-chlorostearic acid were detected in the lungs and plasma of mouse and rat models of Cl2 gas exposure. Levels of Cl-lipids were highest immediately post-Cl2 gas exposure, and then declined over 72 h with levels remaining 20- to 30-fold higher at 24 h compared with baseline. Glutathione adducts of 2-Cl-Pald and 2-Cl-Sald also increased with levels peaking at 4 h in plasma. Notably, 3-chlorotyrosine also increased after Cl2 gas exposure, but returned to baseline within 24 h. Intranasal administration of 2-Cl-PA or 2-Cl-Pald at doses similar to those formed in the lung after Cl2 gas exposure led to increased distal lung permeability and inflammation and systemic endothelial dysfunction characterized by loss of eNOS-dependent vasodilation. These data suggest that Cl-lipids could serve as biomarkers and mediators for Cl2 gas exposure and toxicity.
Collapse
Affiliation(s)
- David A Ford
- Department of Biochemistry and Molecular Biology and Center for Cardiovascular Research, Saint Louis University, St. Louis, MO
| | - Jaideep Honavar
- Departments of Pathology, University of Alabama at Birmingham, Birmingham, AL
| | - Carolyn J Albert
- Department of Biochemistry and Molecular Biology and Center for Cardiovascular Research, Saint Louis University, St. Louis, MO
| | - Mark A Duerr
- Department of Biochemistry and Molecular Biology and Center for Cardiovascular Research, Saint Louis University, St. Louis, MO
| | - Joo Yeun Oh
- Departments of Pathology, University of Alabama at Birmingham, Birmingham, AL
| | - Stephen Doran
- Anesthesiology, University of Alabama at Birmingham, Birmingham, AL
| | - Sadis Matalon
- Anesthesiology, University of Alabama at Birmingham, Birmingham, AL Centers for Free Radical Biology University of Alabama at Birmingham, Birmingham, AL Lung Injury and Repair, University of Alabama at Birmingham, Birmingham, AL
| | - Rakesh P Patel
- Departments of Pathology, University of Alabama at Birmingham, Birmingham, AL Centers for Free Radical Biology University of Alabama at Birmingham, Birmingham, AL Lung Injury and Repair, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
14
|
Stapley R, Rodriguez C, Oh JY, Honavar J, Brandon A, Wagener BM, Marques MB, Weinberg JA, Kerby JD, Pittet JF, Patel RP. Red blood cell washing, nitrite therapy, and antiheme therapies prevent stored red blood cell toxicity after trauma-hemorrhage. Free Radic Biol Med 2015; 85:207-18. [PMID: 25933588 PMCID: PMC4508223 DOI: 10.1016/j.freeradbiomed.2015.04.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 04/02/2015] [Accepted: 04/20/2015] [Indexed: 12/29/2022]
Abstract
Transfusion of stored red blood cells (RBCs) is associated with increased morbidity and mortality in trauma patients. Pro-oxidant, pro-inflammatory, and nitric oxide (NO) scavenging properties of stored RBCs are thought to underlie this association. In this study we determined the effects of RBC washing and nitrite and antiheme therapy on stored RBC-dependent toxicity in the setting of trauma-induced hemorrhage. A murine (C57BL/6) model of trauma-hemorrhage and resuscitation with 1 or 3 units of RBCs stored for 0-10 days was used. Tested variables included washing RBCs to remove lower MW components that scavenge NO, NO-repletion therapy using nitrite, or mitigation of free heme toxicity by heme scavenging or preventing TLR4 activation. Stored RBC toxicity was determined by assessment of acute lung injury indices (airway edema and inflammation) and survival. Transfusion with 5 day RBCs increased acute lung injury indexed by BAL protein and neutrophil accumulation. Washing 5 day RBCs prior to transfusion did not decrease this injury, whereas nitrite therapy did. Transfusion with 10 day RBCs elicited a more severe injury resulting in ~90% lethality, compared to <15% with 5 day RBCs. Both washing and nitrite therapy significantly protected against 10 day RBC-induced lethality, suggesting that washing may be protective when the injury stimulus is more severe. Finally, a spectral deconvolution assay was developed to simultaneously measure free heme and hemoglobin in stored RBC supernatants, which demonstrated significant increases of both in stored human and mouse RBCs. Transfusion with free heme partially recapitulated the toxicity mediated by stored RBCs. Furthermore, inhibition of TLR4 signaling, which is stimulated by heme, using TAK-242, or hemopexin-dependent sequestration of free heme significantly protected against both 5 day and 10 day mouse RBC-dependent toxicity. These data suggest that RBC washing, nitrite therapy, and/or antiheme and TLR4 strategies may prevent stored RBC toxicities.
Collapse
Affiliation(s)
- Ryan Stapley
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Cilina Rodriguez
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Joo-Yeun Oh
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jaideep Honavar
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Angela Brandon
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Brant M Wagener
- Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Marisa B Marques
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jordan A Weinberg
- Department of Surgery, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jeffrey D Kerby
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jean-Francois Pittet
- Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Center for Free Radical Biology and Pulmonary Injury Repair Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Rakesh P Patel
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Center for Free Radical Biology and Pulmonary Injury Repair Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
15
|
Jurkuvenaite A, Benavides GA, Komarova S, Doran SF, Johnson M, Aggarwal S, Zhang J, Darley-Usmar VM, Matalon S. Upregulation of autophagy decreases chlorine-induced mitochondrial injury and lung inflammation. Free Radic Biol Med 2015; 85:83-94. [PMID: 25881550 PMCID: PMC4508227 DOI: 10.1016/j.freeradbiomed.2015.03.039] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/06/2015] [Accepted: 03/24/2015] [Indexed: 12/14/2022]
Abstract
The mechanisms of toxicity during exposure of the airways to chlorinated biomolecules generated during the course of inflammation and to chlorine (Cl2) gas are poorly understood. We hypothesized that lung epithelial cell mitochondria are damaged by Cl2 exposure and activation of autophagy mitigates this injury. To address this, NCI-H441 (human lung adenocarcinoma epithelial) cells were exposed to Cl2 (100 ppm/15 min) and bioenergetics were assessed. One hour after Cl2, cellular bioenergetic function and mitochondrial membrane potential were decreased. These changes were associated with increased MitoSOX signal, and treatment with the mitochondrial redox modulator MitoQ attenuated these bioenergetic defects. At 6h postexposure, there was significant increase in autophagy, which was associated with an improvement of mitochondrial function. Pretreatment of H441 cells with trehalose (an autophagy activator) improved bioenergetic function, whereas 3-methyladenine (an autophagy inhibitor) resulted in increased bioenergetic dysfunction 1h after Cl2 exposure. These data indicate that Cl2 induces bioenergetic dysfunction, and autophagy plays a protective role in vitro. Addition of trehalose (2 vol%) to the drinking water of C57BL/6 mice for 6 weeks, but not 1 week, before Cl2 (400 ppm/30 min) decreased white blood cells in the bronchoalveolar lavage fluid at 6h after Cl2 by 70%. Acute administration of trehalose delivered through inhalation 24 and 1h before the exposure decreased alveolar permeability but not cell infiltration. These data indicate that Cl2 induces bioenergetic dysfunction associated with lung inflammation and suggests that autophagy plays a protective role.
Collapse
Affiliation(s)
- Asta Jurkuvenaite
- Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Pulmonary Injury and Repair Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Gloria A Benavides
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294,USA; Center for Free Radical Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Svetlana Komarova
- Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Stephen F Doran
- Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Michelle Johnson
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294,USA; Center for Free Radical Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Saurabh Aggarwal
- Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Pulmonary Injury and Repair Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Center for Free Radical Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jianhua Zhang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294,USA; Center for Free Radical Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Veterans Administration Medical Center, Birmingham, AL 35233, USA
| | - Victor M Darley-Usmar
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294,USA; Center for Free Radical Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Sadis Matalon
- Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Pulmonary Injury and Repair Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Center for Free Radical Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
16
|
Song W, Yu Z, Doran SF, Ambalavanan N, Steele C, Garantziotis S, Matalon S. Respiratory syncytial virus infection increases chlorine-induced airway hyperresponsiveness. Am J Physiol Lung Cell Mol Physiol 2015; 309:L205-10. [PMID: 26071553 DOI: 10.1152/ajplung.00159.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 06/08/2015] [Indexed: 12/21/2022] Open
Abstract
Exposure to chlorine (Cl2) damages airway and alveolar epithelia resulting in acute lung injury and reactive airway hyperresponsiveness (AHR) to methacholine. However, little is known about the effect of preexisting respiratory disease on Cl2-induced lung injury. By using a murine respiratory syncytial virus (RSV) infection model, we found that preexisting RSV infection increases Cl2 (187 ppm for 30 min)-induced lung inflammation and airway AHR at 24 h after exposure (5 days after infection). RSV infection and Cl2 exposure synergistically induced oxygen desaturation and neutrophil infiltration and increased MCP-1, MIP-1β, IL-10, IFN-γ, and RANTES concentrations in the bronchoalveolar lavage fluid (BALF). In contrast, levels of type 2 cytokines (i.e., IL-4, IL-5, IL-9, and IL-13) were not significantly affected by either RSV infection or Cl2 exposure. Cl2 exposure, but not RSV infection, induced AHR to methacholine challenge as measured by flexiVent. Moreover, preexisting RSV infection amplified BALF levels of hyaluronan (HA) and AHR. The Cl2-induced AHR was mitigated by treatment with inter-α-trypsin inhibitor antibody, which inhibits HA signaling, suggesting a mechanism of HA-mediated AHR from exacerbated oxidative injury. Our results show for the first time that preexisting RSV infection predisposes the lung to Cl2-induced injury. These data emphasize the necessity for further research on the effects of Cl2 in vulnerable populations and the development of appropriate treatments.
Collapse
Affiliation(s)
- Weifeng Song
- Department of Anesthesiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Zhihong Yu
- Department of Anesthesiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Stephen F Doran
- Department of Anesthesiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Namasivayam Ambalavanan
- Department of Pediatrics (Neonatology), School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Chad Steele
- Department of Medicine (Pulmonary, Critical Care and Sleep), and the Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Stavros Garantziotis
- Laboratory of Respiratory Biology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Sadis Matalon
- Department of Anesthesiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama;
| |
Collapse
|
17
|
Kelley EE. A new paradigm for XOR-catalyzed reactive species generation in the endothelium. Pharmacol Rep 2015; 67:669-74. [PMID: 26321266 DOI: 10.1016/j.pharep.2015.05.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 05/06/2015] [Accepted: 05/08/2015] [Indexed: 01/14/2023]
Abstract
A plethora of vascular pathology is associated with inflammation, hypoxia and elevated rates of reactive species generation. A critical source of these reactive species is the purine catabolizing enzyme xanthine oxidoreductase (XOR) as numerous reports over the past 30 years have demonstrated XOR inhibition to be salutary. Despite this long standing association between increased vascular XOR activity and negative clinical outcomes, recent reports reveal a new paradigm whereby the enzymatic activity of XOR mediates beneficial outcomes by catalyzing the one electron reduction of nitrite (NO2(-)) to nitric oxide (NO) when NO2(-) and/or nitrate (NO3(-)) levels are enhanced either via dietary or pharmacologic means. These observations seemingly countervail numerous reports of improved outcomes in similar models upon XOR inhibition in the absence of NO2(-) treatment affirming the need for a more clear understanding of the mechanisms underpinning the product identity of XOR. To establish the micro-environmental conditions requisite for in vivo XOR-catalyzed oxidant and NO production, this review assesses the impact of pH, O2 tension, enzyme-endothelial interactions, substrate concentrations and catalytic differences between xanthine oxidase (XO) and xanthine dehydrogenase (XDH). As such, it reveals critical information necessary to distinguish if pursuit of NO2(-) supplementation will afford greater benefit than inhibition strategies and thus enhance the efficacy of current approaches to treat vascular pathology.
Collapse
Affiliation(s)
- Eric E Kelley
- University of Pittsburgh, School of Medicine, Department of Anesthesiology and Vascular Medicine Institute, Pittsburgh, USA.
| |
Collapse
|
18
|
Kelley EE. Dispelling dogma and misconceptions regarding the most pharmacologically targetable source of reactive species in inflammatory disease, xanthine oxidoreductase. Arch Toxicol 2015; 89:1193-207. [PMID: 25995007 DOI: 10.1007/s00204-015-1523-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 04/27/2015] [Indexed: 01/04/2023]
Abstract
Xanthine oxidoreductase (XOR), the molybdoflavin enzyme responsible for the terminal steps of purine degradation in humans, is also recognized as a significant source of reactive species contributory to inflammatory disease. In animal models and clinical studies, inhibition of XOR has resulted in diminution of symptoms and enhancement of function in a number of pathologies including heart failure, diabetes, sickle cell anemia, hypertension and ischemia-reperfusion injury. For decades, XOR involvement in pathologic processes has been established by salutary outcomes attained from treatment with the XOR inhibitor allopurinol. This has served to frame a working dogma that elevation of XOR-specific activity is associated with enhanced rates of reactive species generation that mediate negative outcomes. While adherence to this narrowly focused practice of designating elevated XOR activity to be "bad" has produced some benefit, it has also led to significant underdevelopment of the processes mediating XOR regulation, identification of alternative reactants and products as well as micro-environmental factors that alter enzymatic activity. This is exemplified by recent reports: (1) identifying XOR as a nitrite reductase and thus a source of beneficial nitric oxide ((•)NO) under in vivo conditions similar to those where XOR inhibition has been assumed an optimal treatment choice, (2) describing XOR-derived uric acid (UA) as a critical pro-inflammatory mediator in vascular and metabolic disease and (3) ascribing an antioxidant/protective role for XOR-derived UA. When taken together, these proposed and countervailing functions of XOR affirm the need for a more comprehensive evaluation of product formation as well as the factors that govern product identity. As such, this review will critically evaluate XOR-catalyzed oxidant, (•)NO and UA formation as well as identify factors that mediate their production, inhibition and the resultant impact on inflammatory disease.
Collapse
Affiliation(s)
- Eric E Kelley
- Department of Anesthesiology and Vascular Medicine Institute, School of Medicine, University of Pittsburgh, W1357 BST, 200 Lothrop Street, Pittsburgh, PA, 15213, USA,
| |
Collapse
|
19
|
Lazrak A, Creighton J, Yu Z, Komarova S, Doran SF, Aggarwal S, Emala CW, Stober VP, Trempus CS, Garantziotis S, Matalon S. Hyaluronan mediates airway hyperresponsiveness in oxidative lung injury. Am J Physiol Lung Cell Mol Physiol 2015; 308:L891-903. [PMID: 25747964 DOI: 10.1152/ajplung.00377.2014] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 03/03/2015] [Indexed: 02/07/2023] Open
Abstract
Chlorine (Cl2) inhalation induces severe oxidative lung injury and airway hyperresponsiveness (AHR) that lead to asthmalike symptoms. When inhaled, Cl2 reacts with epithelial lining fluid, forming by-products that damage hyaluronan, a constituent of the extracellular matrix, causing the release of low-molecular-weight fragments (L-HA, <300 kDa), which initiate a series of proinflammatory events. Cl2 (400 ppm, 30 min) exposure to mice caused an increase of L-HA and its binding partner, inter-α-trypsin-inhibitor (IαI), in the bronchoalveolar lavage fluid. Airway resistance following methacholine challenge was increased 24 h post-Cl2 exposure. Intratracheal administration of high-molecular-weight hyaluronan (H-HA) or an antibody against IαI post-Cl2 exposure decreased AHR. Exposure of human airway smooth muscle (HASM) cells to Cl2 (100 ppm, 10 min) or incubation with Cl2-exposed H-HA (which fragments it to L-HA) increased membrane potential depolarization, intracellular Ca(2+), and RhoA activation. Inhibition of RhoA, chelation of intracellular Ca(2+), blockade of cation channels, as well as postexposure addition of H-HA, reversed membrane depolarization in HASM cells. We propose a paradigm in which oxidative lung injury generates reactive species and L-HA that activates RhoA and Ca(2+) channels of airway smooth muscle cells, increasing their contractility and thus causing AHR.
Collapse
Affiliation(s)
- Ahmed Lazrak
- Department of Anesthesiology and Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Judy Creighton
- Department of Anesthesiology and Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Zhihong Yu
- Department of Anesthesiology and Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Svetlana Komarova
- Department of Anesthesiology and Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Stephen F Doran
- Department of Anesthesiology and Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Saurabh Aggarwal
- Department of Anesthesiology and Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Charles W Emala
- Department of Anesthesiology, Columbia University, New York, New York; and
| | - Vandy P Stober
- Laboratory of Respiratory Biology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Carol S Trempus
- Laboratory of Respiratory Biology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Stavros Garantziotis
- Laboratory of Respiratory Biology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Sadis Matalon
- Department of Anesthesiology and Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama;
| |
Collapse
|
20
|
Nitrite reduction by molybdoenzymes: a new class of nitric oxide-forming nitrite reductases. J Biol Inorg Chem 2015; 20:403-33. [DOI: 10.1007/s00775-014-1234-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 12/14/2014] [Indexed: 02/07/2023]
|
21
|
Yuan S, Patel RP, Kevil CG. Working with nitric oxide and hydrogen sulfide in biological systems. Am J Physiol Lung Cell Mol Physiol 2014; 308:L403-15. [PMID: 25550314 DOI: 10.1152/ajplung.00327.2014] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Nitric oxide (NO) and hydrogen sulfide (H2S) are gasotransmitter molecules important in numerous physiological and pathological processes. Although these molecules were first known as environmental toxicants, it is now evident that that they are intricately involved in diverse cellular functions with impact on numerous physiological and pathogenic processes. NO and H2S share some common characteristics but also have unique chemical properties that suggest potential complementary interactions between the two in affecting cellular biochemistry and metabolism. Central among these is the interactions between NO, H2S, and thiols that constitute new ways to regulate protein function, signaling, and cellular responses. In this review, we discuss fundamental biochemical principals, molecular functions, measurement methods, and the pathophysiological relevance of NO and H2S.
Collapse
Affiliation(s)
- Shuai Yuan
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, Louisiana; and
| | - Rakesh P Patel
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Christopher G Kevil
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, Louisiana; and
| |
Collapse
|
22
|
Honavar J, Doran S, Oh JY, Steele C, Matalon S, Patel RP. Nitrite therapy improves survival postexposure to chlorine gas. Am J Physiol Lung Cell Mol Physiol 2014; 307:L888-94. [PMID: 25326579 DOI: 10.1152/ajplung.00079.2014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Exposure to relatively high levels of chlorine (Cl₂) gas can occur in mass-casualty scenarios associated with accidental or intentional release. Recent studies have shown a significant postexposure injury phase to the airways, pulmonary, and systemic vasculatures mediated in part by oxidative stress, inflammation, and dysfunction in endogenous nitric oxide homeostasis pathways. However, there is a need for therapeutics that are amenable to rapid and easy administration in the field and that display efficacy toward toxicity after chlorine exposure. In this study, we tested whether nitric oxide repletion using nitrite, by intramuscular injection after Cl₂ exposure, could prevent Cl₂ gas toxicity. C57bl/6 male mice were exposed to 600 parts per million Cl₂ gas for 45 min, and 24-h survival was determined with or without postexposure intramuscular nitrite injection. A single injection of nitrite (10 mg/kg) administered either 30 or 60 min postexposure significantly improved 24-h survival (from ∼20% to 50%). Survival was associated with decreased neutrophil accumulation in the airways. Rendering mice neutropenic before Cl₂ exposure improved survival and resulted in loss of nitrite-dependent survival protection. Interestingly, female mice were more sensitive to Cl₂-induced toxicity compared with males and were also less responsive to postexposure nitrite therapy. These data provide evidence for efficacy and define therapeutic parameters for a single intramuscular injection of nitrite as a therapeutic after Cl₂ gas exposure that is amenable to administration in mass-casualty scenarios.
Collapse
Affiliation(s)
- Jaideep Honavar
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Stephen Doran
- Department of Anesthesiology University of Alabama at Birmingham, Birmingham, Alabama
| | - Joo-Yeun Oh
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Chad Steele
- Department of Medicine University of Alabama at Birmingham, Birmingham, Alabama
| | - Sadis Matalon
- Department of Anesthesiology University of Alabama at Birmingham, Birmingham, Alabama; Center for Free Radical Biology and Lung Injury and Repair Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Rakesh P Patel
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama; Center for Free Radical Biology and Lung Injury and Repair Center, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
23
|
Zarogiannis SG, Wagener BM, Basappa S, Doran S, Rodriguez CA, Jurkuvenaite A, Pittet JF, Matalon S. Postexposure aerosolized heparin reduces lung injury in chlorine-exposed mice. Am J Physiol Lung Cell Mol Physiol 2014; 307:L347-54. [PMID: 25038191 DOI: 10.1152/ajplung.00152.2014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Chlorine (Cl2) is a highly reactive oxidant gas that, when inhaled, may cause acute lung injury culminating in death from respiratory failure. In this study, we tested the hypothesis that exposure of mice to Cl2 causes intra-alveolar and systemic activation of the coagulation cascade that plays an important role in development of lung injury. C57Bl/6 mice were exposed to Cl2 (400 for 30 min or 600 ppm for 45 min) in environmental chambers and then returned to room air for 1 or 6 h. Native coagulation (NATEM) parameters such as blood clotting time and clot formation time were measured in whole blood by the viscoelastic technique. D-dimers and thrombin-anti-thrombin complexes were measured in both plasma and bronchoalveolar lavage fluid (BALF) by ELISA. Our results indicate that mice exposed to Cl2 gas had significantly increased clotting time, clot formation time, and D-dimers compared with controls. The thrombin-anti-thrombin complexes were also increased in the BALF of Cl2 exposed animals. To test whether increased coagulation contributed to the development of acute lung injury, mice exposed to Cl2 and returned to room air were treated with aerosolized heparin or vehicle for 20 min. Aerosolized heparin significantly reduced protein levels and the number of inflammatory cells in the BALF at 6 h postexposure. These findings highlight the importance of coagulation abnormities in the development of Cl2-induced lung injury.
Collapse
Affiliation(s)
- Sotirios G Zarogiannis
- Department of Anesthesiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and Center for Pulmonary Injury and Repair, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Brant M Wagener
- Department of Anesthesiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Susanna Basappa
- Department of Anesthesiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Stephen Doran
- Department of Anesthesiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Cilina A Rodriguez
- Department of Anesthesiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Asta Jurkuvenaite
- Department of Anesthesiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and Center for Pulmonary Injury and Repair, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jean Francois Pittet
- Department of Anesthesiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and Center for Pulmonary Injury and Repair, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Sadis Matalon
- Department of Anesthesiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and Center for Pulmonary Injury and Repair, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
24
|
Honavar J, Bradley E, Bradley K, Oh JY, Vallejo MO, Kelley EE, Cantu-Medellin N, Doran S, Dell'italia LJ, Matalon S, Patel RP. Chlorine gas exposure disrupts nitric oxide homeostasis in the pulmonary vasculature. Toxicology 2014; 321:96-102. [PMID: 24769334 DOI: 10.1016/j.tox.2014.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 04/04/2014] [Accepted: 04/15/2014] [Indexed: 10/25/2022]
Abstract
Exposure to chlorine (Cl2) gas during industrial accidents or chemical warfare leads to significant airway and distal lung epithelial injury that continues post exposure. While lung epithelial injury is prevalent, relatively little is known about whether Cl2 gas also promotes injury to the pulmonary vasculature. To determine this, rats were subjected to a sub-lethal Cl2 gas exposure (400 ppm, 30 min) and then brought back to room air. Pulmonary arteries (PA) were isolated from rats at various times post-exposure and contractile (phenylephrine) and nitric oxide (NO)-dependent vasodilation (acetylcholine and mahmanonoate) responses measured ex vivo. PA contractility did not change, however significant inhibition of NO-dependent vasodilation was observed that was maximal at 24-48 h post exposure. Superoxide dismutase restored NO-dependent vasodilation suggesting a role for increased superoxide formation. This was supported by ∼2-fold increase in superoxide formation (measured using 2-hydroethidine oxidation to 2-OH-E+) from PA isolated from Cl2 exposed rats. We next measured PA pressures in anesthetized rats. Surprisingly, PA pressures were significantly (∼4 mmHg) lower in rats that had been exposed to Cl2 gas 24 h earlier suggesting that deficit in NO-signaling observed in isolated PA experiments did not manifest as increased PA pressures in vivo. Administration of the iNOS selective inhibitor 1400W, restored PA pressures to normal in Cl2 exposed, but not control rats suggesting that any deficit in NO-signaling due to increased superoxide formation in the PA, is offset by increased NO-formation from iNOS. These data indicate that disruption of endogenous NO-signaling mechanisms that maintain PA tone is an important aspect of post-Cl2 gas exposure toxicity.
Collapse
Affiliation(s)
- Jaideep Honavar
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Eddie Bradley
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Kelley Bradley
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Joo Yeun Oh
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Matthew O Vallejo
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Eric E Kelley
- Department of Anesthesiology, University of Pittsburgh, PA, United States
| | | | - Stephen Doran
- Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Louis J Dell'italia
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, United States; Birmingham VA Medical Center, United States
| | - Sadis Matalon
- Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, AL 35294, United States; Centers for Free Radical Biology and Lung Injury and Repair, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Rakesh P Patel
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, United States; Centers for Free Radical Biology and Lung Injury and Repair, University of Alabama at Birmingham, Birmingham, AL 35294, United States.
| |
Collapse
|
25
|
Affiliation(s)
- Luisa B. Maia
- REQUIMTE/CQFB, Departamento
de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - José J. G. Moura
- REQUIMTE/CQFB, Departamento
de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
26
|
Massa CB, Scott P, Abramova E, Gardner C, Laskin DL, Gow AJ. Acute chlorine gas exposure produces transient inflammation and a progressive alteration in surfactant composition with accompanying mechanical dysfunction. Toxicol Appl Pharmacol 2014; 278:53-64. [PMID: 24582687 DOI: 10.1016/j.taap.2014.02.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 01/29/2014] [Accepted: 02/04/2014] [Indexed: 12/17/2022]
Abstract
Acute Cl2 exposure following industrial accidents or military/terrorist activity causes pulmonary injury and severe acute respiratory distress. Prior studies suggest that antioxidant depletion is important in producing dysfunction, however a pathophysiologic mechanism has not been elucidated. We propose that acute Cl2 inhalation leads to oxidative modification of lung lining fluid, producing surfactant inactivation, inflammation and mechanical respiratory dysfunction at the organ level. C57BL/6J mice underwent whole-body exposure to an effective 60ppm-hour Cl2 dose, and were euthanized 3, 24 and 48h later. Whereas pulmonary architecture and endothelial barrier function were preserved, transient neutrophilia, peaking at 24h, was noted. Increased expression of ARG1, CCL2, RETLNA, IL-1b, and PTGS2 genes was observed in bronchoalveolar lavage (BAL) cells with peak change in all genes at 24h. Cl2 exposure had no effect on NOS2 mRNA or iNOS protein expression, nor on BAL NO3(-) or NO2(-). Expression of the alternative macrophage activation markers, Relm-α and mannose receptor was increased in alveolar macrophages and pulmonary epithelium. Capillary surfactometry demonstrated impaired surfactant function, and altered BAL phospholipid and surfactant protein content following exposure. Organ level respiratory function was assessed by forced oscillation technique at 5 end expiratory pressures. Cl2 exposure had no significant effect on either airway or tissue resistance. Pulmonary elastance was elevated with time following exposure and demonstrated PEEP refractory derecruitment at 48h, despite waning inflammation. These data support a role for surfactant inactivation as a physiologic mechanism underlying respiratory dysfunction following Cl2 inhalation.
Collapse
Affiliation(s)
- Christopher B Massa
- Department of Pharmacology & Toxicology, Ernest Mario School of Pharmacy, Rutgers University, USA
| | - Pamela Scott
- Department of Pharmacology & Toxicology, Ernest Mario School of Pharmacy, Rutgers University, USA
| | - Elena Abramova
- Department of Pharmacology & Toxicology, Ernest Mario School of Pharmacy, Rutgers University, USA
| | - Carol Gardner
- Department of Pharmacology & Toxicology, Ernest Mario School of Pharmacy, Rutgers University, USA
| | - Debra L Laskin
- Department of Pharmacology & Toxicology, Ernest Mario School of Pharmacy, Rutgers University, USA
| | - Andrew J Gow
- Department of Pharmacology & Toxicology, Ernest Mario School of Pharmacy, Rutgers University, USA.
| |
Collapse
|
27
|
Sparacino-Watkins CE, Tejero J, Sun B, Gauthier MC, Thomas J, Ragireddy V, Merchant BA, Wang J, Azarov I, Basu P, Gladwin MT. Nitrite reductase and nitric-oxide synthase activity of the mitochondrial molybdopterin enzymes mARC1 and mARC2. J Biol Chem 2014; 289:10345-10358. [PMID: 24500710 DOI: 10.1074/jbc.m114.555177] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mitochondrial amidoxime reducing component (mARC) proteins are molybdopterin-containing enzymes of unclear physiological function. Both human isoforms mARC-1 and mARC-2 are able to catalyze the reduction of nitrite when they are in the reduced form. Moreover, our results indicate that mARC can generate nitric oxide (NO) from nitrite when forming an electron transfer chain with NADH, cytochrome b5, and NADH-dependent cytochrome b5 reductase. The rate of NO formation increases almost 3-fold when pH was lowered from 7.5 to 6.5. To determine if nitrite reduction is catalyzed by molybdenum in the active site of mARC-1, we mutated the putative active site cysteine residue (Cys-273), known to coordinate molybdenum binding. NO formation was abolished by the C273A mutation in mARC-1. Supplementation of transformed Escherichia coli with tungsten facilitated the replacement of molybdenum in recombinant mARC-1 and abolished NO formation. Therefore, we conclude that human mARC-1 and mARC-2 are capable of catalyzing reduction of nitrite to NO through reaction with its molybdenum cofactor. Finally, expression of mARC-1 in HEK cells using a lentivirus vector was used to confirm cellular nitrite reduction to NO. A comparison of NO formation profiles between mARC and xanthine oxidase reveals similar Kcat and Vmax values but more sustained NO formation from mARC, possibly because it is not vulnerable to autoinhibition via molybdenum desulfuration. The reduction of nitrite by mARC in the mitochondria may represent a new signaling pathway for NADH-dependent hypoxic NO production.
Collapse
Affiliation(s)
- Courtney E Sparacino-Watkins
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261; Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Jesús Tejero
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Bin Sun
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261; Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Marc C Gauthier
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261; Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - John Thomas
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282
| | - Venkata Ragireddy
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Bonnie A Merchant
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Jun Wang
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Ivan Azarov
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Partha Basu
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282
| | - Mark T Gladwin
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261; Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213.
| |
Collapse
|
28
|
Xanthine oxidoreductase-catalyzed reactive species generation: A process in critical need of reevaluation. Redox Biol 2013; 1:353-8. [PMID: 24024171 PMCID: PMC3757702 DOI: 10.1016/j.redox.2013.05.002] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 05/19/2013] [Indexed: 12/13/2022] Open
Abstract
Nearly 30 years have passed since the discovery of xanthine oxidoreductase (XOR) as a critical source of reactive species in ischemia/reperfusion injury. Since then, numerous inflammatory disease processes have been associated with elevated XOR activity and allied reactive species formation solidifying the ideology that enhancement of XOR activity equates to negative clinical outcomes. However, recent evidence may shatter this paradigm by describing a nitrate/nitrite reductase capacity for XOR whereby XOR may be considered a crucial source of beneficial (•)NO under ischemic/hypoxic/acidic conditions; settings similar to those that limit the functional capacity of nitric oxide synthase. Herein, we review XOR-catalyzed reactive species generation and identify key microenvironmental factors whose interplay impacts the identity of the reactive species (oxidants vs. (•)NO) produced. In doing so, we redefine existing dogma and shed new light on an enzyme that has weathered the evolutionary process not as gadfly but a crucial component in the maintenance of homeostasis.
Collapse
Key Words
- Free radicals
- GAGs, glycosaminoglycans
- H2O2, hydrogen peroxide
- Hypoxia
- I/R, ischemia/reperfusion
- Inflammation
- NOS, nitric oxide synthase
- Nitric oxide
- Nitrite
- O2•−, superoxide
- Oxygen tension
- ROS, reactive oxygen species
- XDH, xanthine dehydrogenase
- XO, xanthine oxidase
- XOR, xanthine oxidoreductase)
- Xanthine oxidoreductase
- •NO, nitric oxide
Collapse
|
29
|
Cantu-Medellin N, Kelley EE. Xanthine oxidoreductase-catalyzed reduction of nitrite to nitric oxide: insights regarding where, when and how. Nitric Oxide 2013; 34:19-26. [PMID: 23454592 DOI: 10.1016/j.niox.2013.02.081] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 02/13/2013] [Accepted: 02/19/2013] [Indexed: 01/13/2023]
Abstract
Numerous inflammatory disorders are associated with elevated levels of xanthine oxidoreductase (XOR) and allied enhancement of reactive species formation contributory to systemic pathology. Despite a long standing association between increased XOR activity and negative clinical outcomes, recent reports describe a paradigm shift where XOR mediates beneficial actions by catalyzing the reduction of NO2(-) to NO. While provocative, these observations contradict reports of improved outcomes in similar models upon XOR inhibition as well as reports revealing strict anoxia as a requisite for XOR-mediated NO formation. To garner a more clear understanding of conditions necessary for in vivo XOR-catalyzed NO production, this review critically analyzes the impact of O2 tension, pH, substrate concentrations, glycoaminoglycan docking and inhibition strategies on the nitrite reductase activity of XOR and reveals a hypoxic milieu where this process may be operative. As such, information herein serves to link recent reports in which XOR activity has been identified as mediating the beneficial outcomes resulting from nitrite supplementation to a microenvironmental setting where XOR can serve as substantial source of NO.
Collapse
Affiliation(s)
- Nadiezhda Cantu-Medellin
- University of Pittsburgh, Department of Anesthesiology and Vascular Medicine Institute, United States
| | | |
Collapse
|