1
|
Lin W, Chen H, Chen X, Guo C. The Roles of Neutrophil-Derived Myeloperoxidase (MPO) in Diseases: The New Progress. Antioxidants (Basel) 2024; 13:132. [PMID: 38275657 PMCID: PMC10812636 DOI: 10.3390/antiox13010132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/06/2024] [Accepted: 01/12/2024] [Indexed: 01/27/2024] Open
Abstract
Myeloperoxidase (MPO) is a heme-containing peroxidase, mainly expressed in neutrophils and, to a lesser extent, in monocytes. MPO is known to have a broad bactericidal ability via catalyzing the reaction of Cl- with H2O2 to produce a strong oxidant, hypochlorous acid (HOCl). However, the overproduction of MPO-derived oxidants has drawn attention to its detrimental role, especially in diseases characterized by acute or chronic inflammation. Broadly speaking, MPO and its derived oxidants are involved in the pathological processes of diseases mainly through the oxidation of biomolecules, which promotes inflammation and oxidative stress. Meanwhile, some researchers found that MPO deficiency or using MPO inhibitors could attenuate inflammation and tissue injuries. Taken together, MPO might be a promising target for both prognostic and therapeutic interventions. Therefore, understanding the role of MPO in the progress of various diseases is of great value. This review provides a comprehensive analysis of the diverse roles of MPO in the progression of several diseases, including cardiovascular diseases (CVDs), neurodegenerative diseases, cancers, renal diseases, and lung diseases (including COVID-19). This information serves as a valuable reference for subsequent mechanistic research and drug development.
Collapse
Affiliation(s)
- Wei Lin
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China;
| | - Huili Chen
- Center of System Pharmacology and Pharmacometrics, College of Pharmacy, University of Florida, Gainesville, FL 32611, USA;
| | - Xijing Chen
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China;
| | - Chaorui Guo
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China;
| |
Collapse
|
2
|
Understanding Myeloperoxidase-Induced Damage to HDL Structure and Function in the Vessel Wall: Implications for HDL-Based Therapies. Antioxidants (Basel) 2022; 11:antiox11030556. [PMID: 35326206 PMCID: PMC8944857 DOI: 10.3390/antiox11030556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 12/23/2022] Open
Abstract
Atherosclerosis is a disease of increased oxidative stress characterized by protein and lipid modifications in the vessel wall. One important oxidative pathway involves reactive intermediates generated by myeloperoxidase (MPO), an enzyme present mainly in neutrophils and monocytes. Tandem MS analysis identified MPO as a component of lesion derived high-density lipoprotein (HDL), showing that the two interact in the arterial wall. MPO modifies apolipoprotein A1 (apoA-I), paraoxonase 1 and certain HDL-associated phospholipids in human atheroma. HDL isolated from atherosclerotic plaques depicts extensive MPO mediated posttranslational modifications, including oxidation of tryptophan, tyrosine and methionine residues, and carbamylation of lysine residues. In addition, HDL associated plasmalogens are targeted by MPO, generating 2-chlorohexadecanal, a pro-inflammatory and endothelial barrier disrupting lipid that suppresses endothelial nitric oxide formation. Lesion derived HDL is predominantly lipid-depleted and cross-linked and exhibits a nearly 90% reduction in lecithin-cholesterol acyltransferase activity and cholesterol efflux capacity. Here we provide a current update of the pathophysiological consequences of MPO-induced changes in the structure and function of HDL and discuss possible therapeutic implications and options. Preclinical studies with a fully functional apoA-I variant with pronounced resistance to oxidative inactivation by MPO-generated oxidants are currently ongoing. Understanding the relationships between pathophysiological processes that affect the molecular composition and function of HDL and associated diseases is central to the future use of HDL in diagnostics, therapy, and ultimately disease management.
Collapse
|
3
|
Diab A, Valenzuela Ripoll C, Guo Z, Javaheri A. HDL Composition, Heart Failure, and Its Comorbidities. Front Cardiovasc Med 2022; 9:846990. [PMID: 35350538 PMCID: PMC8958020 DOI: 10.3389/fcvm.2022.846990] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/09/2022] [Indexed: 12/24/2022] Open
Abstract
Although research on high-density lipoprotein (HDL) has historically focused on atherosclerotic coronary disease, there exists untapped potential of HDL biology for the treatment of heart failure. Anti-oxidant, anti-inflammatory, and endothelial protective properties of HDL could impact heart failure pathogenesis. HDL-associated proteins such as apolipoprotein A-I and M may have significant therapeutic effects on the myocardium, in part by modulating signal transduction pathways and sphingosine-1-phosphate biology. Furthermore, because heart failure is a complex syndrome characterized by multiple comorbidities, there are complex interactions between heart failure, its comorbidities, and lipoprotein homeostatic mechanisms. In this review, we will discuss the effects of heart failure and associated comorbidities on HDL, explore potential cardioprotective properties of HDL, and review novel HDL therapeutic targets in heart failure.
Collapse
|
4
|
Jiang M, Zhao XM, Jiang ZS, Wang GX, Zhang DW. Protein tyrosine nitration in atherosclerotic endothelial dysfunction. Clin Chim Acta 2022; 529:34-41. [PMID: 35149004 DOI: 10.1016/j.cca.2022.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 11/29/2022]
Abstract
Accumulation of reactive oxygen species (ROS) can induce both protein tyrosine nitration and endothelial dysfunction in atherosclerosis. Endothelial dysfunction refers to impaired endothelium-dependent vasorelaxation that can be triggered by an imbalance in nitric oxide (NO) production and consumption. ROS reacts with NO to generate peroxynitrite, decreasing NO bioavailability. Peroxynitrite also promotes protein tyrosine nitration in vivo that can affect protein structure and function and further damage endothelial function. In this review, we discuss the process of protein tyrosine nitration, increased expression of nitrated proteins in cardiovascular disease and their association with endothelial dysfunction, and the interference of tyrosine nitration with antioxidants and the protective role in endothelial dysfunction. These may lead us to the conception that protein tyrosine nitration may be one of the causes of endothelial dysfunction, and help us gain information about the mechanism of endothelial dysfunction underlying atherosclerosis.
Collapse
Affiliation(s)
- Miao Jiang
- Institute of Cardiovascular Disease, Department of Pathophysiology, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic disease, Postdoctoral Research Station of Basic Medicine, University of South China, Hengyang, 421001, China; Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering Collage of Chongqing University, Chongqing, 400030, China
| | - Xiao-Mei Zhao
- College of Public Health, University of South China, Hengyang, 421001, Hunan, China
| | - Zhi-Sheng Jiang
- Institute of Cardiovascular Disease, Department of Pathophysiology, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic disease, Postdoctoral Research Station of Basic Medicine, University of South China, Hengyang, 421001, China.
| | - Gui-Xue Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering Collage of Chongqing University, Chongqing, 400030, China.
| | - Da-Wei Zhang
- Group on the Molecular and Cell Biology of Lipids, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
5
|
Homo Sapiens (Hsa)-microRNA (miR)-6727-5p Contributes to the Impact of High-Density Lipoproteins on Fibroblast Wound Healing In Vitro. MEMBRANES 2022; 12:membranes12020154. [PMID: 35207076 PMCID: PMC8876102 DOI: 10.3390/membranes12020154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 12/26/2022]
Abstract
Chronic, non-healing wounds are a significant cause of global morbidity and mortality, and strategies to improve delayed wound closure represent an unmet clinical need. High-density lipoproteins (HDL) can enhance wound healing, but exploitation of this finding is challenging due to the complexity and instability of these heterogeneous lipoproteins. The responsiveness of primary human neonatal keratinocytes, and neonatal and human dermal fibroblasts (HDF) to HDL was confirmed by cholesterol efflux, but promotion of ‘scrape’ wound healing occurred only in primary human neonatal (HDFn) and adult fibroblasts (HDFa). Treatment of human fibroblasts with HDL induced multiple changes in the expression of small non-coding microRNA sequences, determined by microchip array, including hsa-miR-6727-5p. Intriguingly, levels of hsa-miR-6727-5p increased in HDFn, but decreased in HDFa, after exposure to HDL. Delivery of a hsa-miR-6727-5p mimic elicited repression of different target genes in HDFn (ZNF584) and HDFa (EDEM3, KRAS), and promoted wound closure in HDFn. By contrast, a hsa-miR-6727-5p inhibitor promoted wound closure in HDFa. We conclude that HDL treatment exerts distinct effects on the expression of hsa-miR-6727-5p in neonatal and adult fibroblasts, and that this is a sequence which plays differential roles in wound healing in these cell types, but cannot replicate the myriad effects of HDL.
Collapse
|
6
|
Kameda T, Horiuchi Y, Shimano S, Yano K, Lai SJ, Ichimura N, Tohda S, Kurihara Y, Tozuka M, Ohkawa R. Effect of myeloperoxidase oxidation and N-homocysteinylation of high-density lipoprotein on endothelial repair function. Biol Chem 2021; 403:265-277. [PMID: 34448387 DOI: 10.1515/hsz-2021-0247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 08/09/2021] [Indexed: 11/15/2022]
Abstract
Endothelial cell (EC) migration is essential for healing vascular injuries. Previous studies suggest that high-density lipoprotein (HDL) and apolipoprotein A-I (apoA-I), the major protein constituent of HDL, have endothelial healing functions. In cardiovascular disease, HDL is modified by myeloperoxidase (MPO) and N-homocysteine, resulting in apoA-I/apoA-II heterodimer and N-homocysteinylated (N-Hcy) apoA-I formation. This study investigated whether these modifications attenuate HDL-mediated endothelial healing. Wound healing assays were performed to analyze the effect of MPO-oxidized HDL and N-Hcy HDL in vitro. HDL obtained from patients with varying troponin I levels were also examined. MPO-oxidized HDL reduces EC migration compared to normal HDL in vitro, and N-Hcy HDL showed a decreasing trend toward EC migration. EC migration after treatment with HDL from patients was decreased compared to HDL isolated from healthy controls. Increased apoA-I/apoA-II heterodimer and N-Hcy apoA-I levels were also detected in HDL from patients. Wound healing cell migration was significantly negatively correlated with the ratio of apoA-I/apoA-II heterodimer to total apoA-II and N-Hcy apoA-I to total apoA-I. MPO-oxidized HDL containing apoA-I/apoA-II heterodimers had a weaker endothelial healing function than did normal HDL. These results indicate that MPO-oxidized HDL and N-Hcy HDL play a key role in the pathogenesis of cardiovascular disease.
Collapse
Affiliation(s)
- Takahiro Kameda
- Analytical Laboratory Chemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Yuna Horiuchi
- Analytical Laboratory Chemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan.,Department of Clinical Laboratory Medicine, Juntendo University Urayasu Hospital, 2-1-1 Tomioka, Urayasu City, Chiba, 279-0021, Japan
| | - Shitsuko Shimano
- Clinical Laboratory, Medical Hospital, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Kouji Yano
- Division of Clinical Medicine, Research and Education Center for Clinical Pharmacy, Kitasato University School of Pharmacy, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Shao-Jui Lai
- Analytical Laboratory Chemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Naoya Ichimura
- Clinical Laboratory, Medical Hospital, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Shuji Tohda
- Clinical Laboratory, Medical Hospital, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Yuriko Kurihara
- Department of Medical Technology, School of Health Sciences, Tokyo University of Technology, 5-23-22 Nishikamata, Ota-ku, Tokyo, 144-8535, Japan
| | - Minoru Tozuka
- Analytical Laboratory Chemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan.,Life Science Research Center, Nagano Children's Hospital, 3100 Toyoshina, Azumino, 399-8288, Japan
| | - Ryunosuke Ohkawa
- Analytical Laboratory Chemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| |
Collapse
|
7
|
Garcia C, Blesso CN. Antioxidant properties of anthocyanins and their mechanism of action in atherosclerosis. Free Radic Biol Med 2021; 172:152-166. [PMID: 34087429 DOI: 10.1016/j.freeradbiomed.2021.05.040] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/14/2021] [Accepted: 05/29/2021] [Indexed: 12/20/2022]
Abstract
Atherosclerosis develops due to lipid accumulation in the arterial wall and sclerosis as result of increased hyperlipidemia, oxidative stress, lipid oxidation, and protein oxidation. However, improving antioxidant status through diet may prevent the progression of atherosclerotic cardiovascular disease. It is believed that polyphenol-rich plants contribute to the inverse relationship between fruit and vegetable intake and chronic disease. Anthocyanins are flavonoid polyphenols with antioxidant properties that have been associated with reduced risk of cardiovascular disease. The consumption of anthocyanins increases total antioxidant capacity, antioxidant defense enzymes, and HDL antioxidant properties by several measures in preclinical and clinical populations. Anthocyanins appear to impart antioxidant actions via direct antioxidant properties, as well as indirectly via inducing intracellular Nrf2 activation and antioxidant gene expression. These actions counter oxidative stress and inflammatory signaling in cells present in atherosclerotic plaques, including macrophages and endothelial cells. Overall, anthocyanins may protect against atherosclerosis and cardiovascular disease through their effects on cellular antioxidant status, oxidative stress, and inflammation; however, their underlying mechanisms of action appear to be complex and require further elucidation.
Collapse
Affiliation(s)
- Chelsea Garcia
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, 06269, United States
| | - Christopher N Blesso
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, 06269, United States.
| |
Collapse
|
8
|
Effects of lipoproteins on endothelial cells and macrophages function and its possible implications on fetal adverse outcomes associated to maternal hypercholesterolemia during pregnancy. Placenta 2021; 106:79-87. [PMID: 33706211 DOI: 10.1016/j.placenta.2021.02.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/03/2021] [Accepted: 02/25/2021] [Indexed: 11/23/2022]
Abstract
Hypercholesterolemia is one of the main risk factors associated with atherosclerosis and cardiovascular disease, the leading cause of death worldwide. During pregnancy, maternal hypercholesterolemia develops, and it can occur in a physiological (MPH) or supraphysiological (MSPH) manner, where MSPH is associated with endothelial dysfunction and early atherosclerotic lesions in the fetoplacental vasculature. In the pathogenesis of atherosclerosis, endothelial activation and endothelial dysfunction, characterized by an imbalance in the bioavailability of nitric oxide, contribute to the early stages of this disease. Macrophages conversion to foam cells, cholesterol efflux from these cells and its differentiation into a pro- or anti-inflammatory phenotype are also important processes that contribute to atherosclerosis. In adults it has been reported that native and modified HDL and LDL play an important role in endothelial and macrophage function. In this review it is proposed that fetal lipoproteins could be also relevant factors involved in the detrimental vascular effects described in MSPH. Changes in the composition and function of neonatal lipoproteins compared to adults has been reported and, although in MSPH pregnancies the fetal lipid profile does not differ from MPH, differences in the lipidomic profiles of umbilical venous blood have been reported, which could have implications in the vascular function. In this review we summarize the available information regarding the effects of lipoproteins on endothelial and macrophage function, emphasizing its possible implications on fetal adverse outcomes associated to maternal hypercholesterolemia during pregnancy.
Collapse
|
9
|
Peterson SJ, Choudhary A, Kalsi AK, Zhao S, Alex R, Abraham NG. OX-HDL: A Starring Role in Cardiorenal Syndrome and the Effects of Heme Oxygenase-1 Intervention. Diagnostics (Basel) 2020; 10:E976. [PMID: 33233550 PMCID: PMC7699797 DOI: 10.3390/diagnostics10110976] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 12/14/2022] Open
Abstract
In this review, we will evaluate how high-density lipoprotein (HDL) and the reverse cholesterol transport (RCT) pathway are critical for proper cardiovascular-renal physiology. We will begin by reviewing the basic concepts of HDL cholesterol synthesis and pathway regulation, followed by cardiorenal syndrome (CRS) pathophysiology. After explaining how the HDL and RCT pathways become dysfunctional through oxidative processes, we will elaborate on the potential role of HDL dysfunction in CRS. We will then present findings on how HDL function and the inducible antioxidant gene heme oxygenase-1 (HO-1) are interconnected and how induction of HO-1 is protective against HDL dysfunction and important for the proper functioning of the cardiovascular-renal system. This will substantiate the proposal of HO-1 as a novel therapeutic target to prevent HDL dysfunction and, consequently, cardiovascular disease, renal dysfunction, and the onset of CRS.
Collapse
Affiliation(s)
- Stephen J. Peterson
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA;
- Department of Medicine, New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY 11215, USA; (A.C.); (A.K.K.); (S.Z.)
| | - Abu Choudhary
- Department of Medicine, New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY 11215, USA; (A.C.); (A.K.K.); (S.Z.)
| | - Amardeep K. Kalsi
- Department of Medicine, New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY 11215, USA; (A.C.); (A.K.K.); (S.Z.)
| | - Shuyang Zhao
- Department of Medicine, New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY 11215, USA; (A.C.); (A.K.K.); (S.Z.)
| | - Ragin Alex
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA;
| | - Nader G. Abraham
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA;
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
- Department of Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
| |
Collapse
|
10
|
Myeloperoxidase: A versatile mediator of endothelial dysfunction and therapeutic target during cardiovascular disease. Pharmacol Ther 2020; 221:107711. [PMID: 33137376 DOI: 10.1016/j.pharmthera.2020.107711] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/01/2020] [Indexed: 02/06/2023]
Abstract
Myeloperoxidase (MPO) is a prominent mammalian heme peroxidase and a fundamental component of the innate immune response against microbial pathogens. In recent times, MPO has received considerable attention as a key oxidative enzyme capable of impairing the bioactivity of nitric oxide (NO) and promoting endothelial dysfunction; a clinically relevant event that manifests throughout the development of inflammatory cardiovascular disease. Increasing evidence indicates that during cardiovascular disease, MPO is released intravascularly by activated leukocytes resulting in its transport and sequestration within the vascular endothelium. At this site, MPO catalyzes various oxidative reactions that are capable of promoting vascular inflammation and impairing NO bioactivity and endothelial function. In particular, MPO catalyzes the production of the potent oxidant hypochlorous acid (HOCl) and the catalytic consumption of NO via the enzyme's NO oxidase activity. An emerging paradigm is the ability of MPO to also influence endothelial function via non-catalytic, cytokine-like activities. In this review article we discuss the implications of our increasing knowledge of the versatility of MPO's actions as a mediator of cardiovascular disease and endothelial dysfunction for the development of new pharmacological agents capable of effectively combating MPO's pathogenic activities. More specifically, we will (i) discuss the various transport mechanisms by which MPO accumulates into the endothelium of inflamed or diseased arteries, (ii) detail the clinical and basic scientific evidence identifying MPO as a significant cause of endothelial dysfunction and cardiovascular disease, (iii) provide an up-to-date coverage on the different oxidative mechanisms by which MPO can impair endothelial function during cardiovascular disease including an evaluation of the contributions of MPO-catalyzed HOCl production and NO oxidation, and (iv) outline the novel non-enzymatic mechanisms of MPO and their potential contribution to endothelial dysfunction. Finally, we deliver a detailed appraisal of the different pharmacological strategies available for targeting the catalytic and non-catalytic modes-of-action of MPO in order to protect against endothelial dysfunction in cardiovascular disease.
Collapse
|
11
|
Altered HDL metabolism in metabolic disorders: insights into the therapeutic potential of HDL. Clin Sci (Lond) 2020; 133:2221-2235. [PMID: 31722013 DOI: 10.1042/cs20190873] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/18/2019] [Accepted: 10/25/2019] [Indexed: 12/18/2022]
Abstract
Metabolic disorders are associated with an increased risk of cardiovascular disease (CVD), and are commonly characterized by a low plasma level of high-density lipoprotein cholesterol (HDL-C). Although cholesterol lowering medications reduce CVD risk in these patients, they often remain at increased risk of CVD. Therapeutic strategies that raise HDL-C levels and improve HDL function are a potential treatment option for reducing residual CVD risk in these individuals. Over the past decade, understanding of the metabolism and cardioprotective functions of HDLs has improved, with preclinical and clinical studies both indicating that the ability of HDLs to mediate reverse cholesterol transport, inhibit inflammation and reduce oxidation is impaired in metabolic disorders. These cardioprotective effects of HDLs are supported by the outcomes of epidemiological, cell and animal studies, but have not been confirmed in several recent clinical outcome trials of HDL-raising agents. Recent studies suggest that HDL function may be clinically more important than plasma levels of HDL-C. However, at least some of the cardioprotective functions of HDLs are lost in acute coronary syndrome and stable coronary artery disease patients. HDL dysfunction is also associated with metabolic abnormalities. This review is concerned with the impact of metabolic abnormalities, including dyslipidemia, obesity and Type 2 diabetes, on the metabolism and cardioprotective functions of HDLs.
Collapse
|
12
|
LDL and HDL Oxidative Modification and Atherosclerosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1276:157-169. [PMID: 32705599 DOI: 10.1007/978-981-15-6082-8_10] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Low-density lipoprotein (LDL) and high-density lipoprotein (HDL) are two kinds of common lipoproteins in plasma. The level of LDL cholesterol in plasma is positively correlated with atherosclerosis (AS), which is related to the complex macromolecular components, especially the easy oxygenation of protein and lipid components. However, the plasma HDL cholesterol level is negatively correlated with AS, but the results of recent studies show that the oxidative modified HDL in pathological state will not reduce and may aggravate the occurrence and development of AS. Therefore, the oxidative modification of lipoproteins is closely related to vascular homeostasis, which has become a hot research area for a long time.
Collapse
|
13
|
Liu D, Ji L, Zhao M, Wang Y, Guo Y, Li L, Zhang D, Xu L, Pan B, Su J, Xiang S, Pennathur S, Li J, Gao J, Liu P, Willard B, Zheng L. Lysine glycation of apolipoprotein A-I impairs its anti-inflammatory function in type 2 diabetes mellitus. J Mol Cell Cardiol 2018; 122:47-57. [PMID: 30092227 DOI: 10.1016/j.yjmcc.2018.08.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/22/2018] [Accepted: 08/01/2018] [Indexed: 12/16/2022]
Abstract
Apolipoprotein A-I (apoA-I), the major protein compontent of high-density lipoprotein (HDL), exerts many anti-atherogenic functions. This study aimed to reveal whether nonenzymatic glycation of specific sites of apoA-I impaired its anti-inflammatory effects in type 2 diabetes mellitus (T2DM). LC-MS/MS was used to analyze the specific sites and the extent of apoA-I glycation either modified by glucose in vitro or isolated from T2DM patients. Cytokine release in THP-1 monocyte-derived macrophages was tested by ELISA. Activation of NF-kappa B pathway was detected by western blot. The binding affinity of apoA-I to THP-1 cells was measured using 125I-labeled apoA-I. We identified seven specific lysine (Lys, K) residues of apoA-I (K12, K23, K40, K96, K106, K107 and K238) that were susceptible to be glycated either in vitro or in vivo. Glycation of apoA-I impaired its abilities to inhibit the release of TNF-α and IL-1β against lipopolysaccharide (LPS) in THP-1 cells. Besides, the glycation levels of these seven K sites in apoA-I were inversely correlated with its anti-inflammatory abilities. Furthermore, glycated apoA-I had a lower affinity to THP-1 cells than native apoA-I had. We generated mutant apoA-I (K107E, M-apoA-I) with a substitution of glutamic acid (Glu, E) for lysine at the 107th site, and found that compared to wild type apoA-I (WT-apoA-I), M-apoA-I decreased its anti-inflammatory effects in THP-1 cells. We also modeled the location of these seven K residues on apoA-I which allowed us to infer the conformational alteration of glycated apoA-I and HDL. In summary, glycation of these seven K residues altered the conformation of apoA-I and consequently impaired the protective effects of apoA-I, which may partly account for the increased risk of cardiovascular disease (CVD) in diabetic subjects.
Collapse
Affiliation(s)
- Donghui Liu
- The Institute of Cardiovascular Sciences, Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Health Science Center, 100191 Beijing, China; Department of Cardiology, the Affiliated Cardiovascular Hospital of Xiamen University, Medical College of Xiamen University, Xiamen, Fujian 361004, China
| | - Liang Ji
- The Institute of Cardiovascular Sciences, Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Health Science Center, 100191 Beijing, China
| | - Mingming Zhao
- The Institute of Cardiovascular Sciences, Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Health Science Center, 100191 Beijing, China
| | - Yang Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yansong Guo
- Department of Cardiovascular Medicine, Fujian Provincial Hospital, Fuzhou, China
| | - Ling Li
- Proteomics Laboratory, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Dongmei Zhang
- Proteomics Laboratory, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Liang Xu
- Department of Cardiology, the First Affiliated Hospital of Fujian Medical University, Fujian 350005, China
| | - Bing Pan
- The Institute of Cardiovascular Sciences, Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Health Science Center, 100191 Beijing, China
| | - Jinzi Su
- Department of Cardiology, the First Affiliated Hospital of Fujian Medical University, Fujian 350005, China
| | - Song Xiang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, 294 Taiyuan Road, Shanghai 200031, China
| | | | - Jingxuan Li
- The Institute of Cardiovascular Sciences, Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Health Science Center, 100191 Beijing, China
| | - Jianing Gao
- The Institute of Cardiovascular Sciences, Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Health Science Center, 100191 Beijing, China
| | - Pingsheng Liu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Belinda Willard
- Proteomics Laboratory, Cleveland Clinic, Cleveland, OH 44195, USA.
| | - Lemin Zheng
- The Institute of Cardiovascular Sciences, Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Health Science Center, 100191 Beijing, China.
| |
Collapse
|
14
|
Kimak E, Zięba B, Duma D, Solski J. Myeloperoxidase level and inflammatory markers and lipid and lipoprotein parameters in stable coronary artery disease. Lipids Health Dis 2018; 17:71. [PMID: 29618370 PMCID: PMC5885314 DOI: 10.1186/s12944-018-0718-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 03/25/2018] [Indexed: 02/07/2023] Open
Abstract
Background Myeloperoxidase (MPO) impairing endothelial functions. We investigated whether increasing concentration of myeloperoxidase (MPO) and inflammatory markers induce progression and incident acute coronary syndrome (ACS) in stable coronary artery disease (SCAD) patients. Therefore, the concentration of MPO, lipids, lipoproteins (apo(apolipoprotein) AI, apoB, lipoprotein associated phospholipase A2 (LpPLA2) level), inflammatory markers (high sensitivity C-reactive protein (hsCRP), tumor necrosis factor-α (TNF-α), interleukine-6 (IL-6) concentration) were examined. Methods This study concerned 67 SCAD patients divided into groups: all patients, patients with MPO < 200 ng/ml, MPO 200–300 ng/ml, MPO > 300 ng/ml concentration and 15 controls. ApoAI, apoB and hsCRP levels were examined using the immunonephelometric method, and MPO, LpPLA2, IL-6, TNF-α concentration was performed by using Quantikine ELISA kit R&D Systems. Results In the all patients, and in group with MPO 200–300 ng/ml TC, LDL-C, nonHDL-C, LpPLA2 concentration and TC/HDL-C, LDL-C/HDL-C ratios were insignificant, and significantly higher concentration of TG, apoB, MPO, inflammatory markers and TG/HDL-C, MPO/apoAI, MPO/HDL-C ratios but HDL-C, apoAI level and HDL-C/apoAI ratio were significantly reduced. In the group of patients with MPO < 200 ng/ml, level of TC, LDL-C, nonHDL-C, apoAI, apoAII, LpPLA2 and MPO and LDL-C/HDL-C ratio were in-significant, HDL-C was decreased but apoB, TG, inflammatory markers, apoB/apoAI, TG/HDL-C, MPO/apoAI, MPO/HDL-C ratio were significantly increased. In the group of patients with MPO > 300 ng/ml concentration of TC, LDL-C, nonHDL-C, apoAII, LpPLA2 and LDL-C/HDL-C ratios were not significant, but HDL-C and apoAI concentrations were significantly decreased. The concentrations of TG, apoB, MPO and inflammatory markers and TG/HDL-C, MPO/apoAI, MPO/HDL-C ratios were significantly increased compared to the controls. The apoAI concentration was significantly decreased and the concentration of MPO and hsCRP as well as MPO/apoAI and MPO/HDL-C ratios were significantly higher as compared to the group of patients with MPO < 200 ng/ml. Spearman’s correlation test showed a positive correlation between MPO concentration and MPO/apoAI and MPO/HDL-C ratios in all patients and MPO < 200 ng/ml, MPO 200–300 ng/ml. The patients with MPO > 300 ng/ml showed a positive correlation between the concentration of MPO and the level of hsCRP and IL-6, and a negative correlation between MPO/apoAI ratio and the concentration of HDL-C, apoAI and apoAII. Conclusion The results suggest that moderate dyslipidemia and dyslipoproteinemia deepening of inflammation, and inflammation slowly induce increase MPO concentration which decrease apoAI and HDL-C level and disturb HDLs function. The increasing MPO level and MPO/HDL-C, MPO/apoAI ratios can differentiate the SCAD patients at the risk of acute coronary syndrome (ACAD) and stroke.
Collapse
Affiliation(s)
- Elżbieta Kimak
- Department of Laboratory Diagnostics, Medical University, Street Chodźki 1, 20-093, Lublin, Poland.
| | - Bartosz Zięba
- Department of Laboratory Diagnostics, Medical University, Street Chodźki 1, 20-093, Lublin, Poland.,Department of Cardiology of the Provincial Specialistics Cardinal Stefan Wyszynski Hospital, Lublin, Poland
| | - Dariusz Duma
- Department of Laboratory Diagnostics, Medical University, Street Chodźki 1, 20-093, Lublin, Poland
| | - Janusz Solski
- Department of Laboratory Diagnostics, Medical University, Street Chodźki 1, 20-093, Lublin, Poland
| |
Collapse
|
15
|
Kareinen I, Baumann M, Nguyen SD, Maaninka K, Anisimov A, Tozuka M, Jauhiainen M, Lee-Rueckert M, Kovanen PT. Chymase released from hypoxia-activated cardiac mast cells cleaves human apoA-I at Tyr 192 and compromises its cardioprotective activity. J Lipid Res 2018; 59:945-957. [PMID: 29581158 DOI: 10.1194/jlr.m077503] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 03/22/2018] [Indexed: 01/05/2023] Open
Abstract
ApoA-I, the main structural and functional protein of HDL particles, is cardioprotective, but also highly sensitive to proteolytic cleavage. Here, we investigated the effect of cardiac mast cell activation and ensuing chymase secretion on apoA-I degradation using isolated rat hearts in the Langendorff perfusion system. Cardiac mast cells were activated by injection of compound 48/80 into the coronary circulation or by low-flow myocardial ischemia, after which lipid-free apoA-I was injected and collected in the coronary effluent for cleavage analysis. Mast cell activation by 48/80 resulted in apoA-I cleavage at sites Tyr192 and Phe229, but hypoxic activation at Tyr192 only. In vitro, the proteolytic end-product of apoA-I with either rat or human chymase was the Tyr192-truncated fragment. This fragment, when compared with intact apoA-I, showed reduced ability to promote migration of cultured human coronary artery endothelial cells in a wound-healing assay. We propose that C-terminal truncation of apoA-I by chymase released from cardiac mast cells during ischemia impairs the ability of apoA-I to heal damaged endothelium in the ischemic myocardium.
Collapse
Affiliation(s)
- Ilona Kareinen
- Wihuri Research Institute, Helsinki, Finland; Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Marc Baumann
- Protein Chemistry Unit, Institute of Biomedicine/Anatomy, University of Helsinki, Helsinki, Finland
| | | | | | - Andrey Anisimov
- Wihuri Research Institute, Helsinki, Finland; Translational Cancer Biology Program, University of Helsinki, Helsinki, Finland
| | - Minoru Tozuka
- Analytical Laboratory Chemistry, Graduate School of Health Care Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Matti Jauhiainen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland; National Institute for Health and Welfare, Helsinki, Finland
| | | | | |
Collapse
|
16
|
Shi Y, Zhang G, Wang Y, Ren C, Wen L, Zhu W, Chen X, Liao N. Presence of circulating tumor cells is associated with metabolic-related variables in postoperative patients with early-stage breast cancer. Chin J Cancer Res 2018; 30:340-350. [PMID: 30046228 DOI: 10.21147/j.issn.1000-9604.2018.03.06] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Objective Although circulating tumor cells (CTCs) have been well-established as promising prognostic biomarkers in both early breast cancer and metastatic settings, little is known regarding the prognostic relevance of CTCs in the long-term postoperative monitoring of patients with non-metastatic breast cancer (non-MBC). In this study, we investigated the associations of CTCs with clinicopathological features and metabolic-related variables, such as obesity and hyperglycemia. Methods In this retrospective study, we recruited 264 patients with postoperative stage I-III breast cancer at Guangdong General Hospital from January 2009 to December 2015. The prevalence and number of CTCs were assessed using the CellSearch System at a median time of 19.0 months [interquartile range (IQR), 7.8-33.0] after surgery. The CTC assay results were correlated with the clinicopathological features and metabolic-related variables. A multivariate logistic regression analysis was performed to further determine the independent predictors of CTCs. Results CTCs were detected in 10.6% of all patients. The positive rate of CTCs in patients with infiltrating ductal carcinoma was lower than that in patients with other pathological types (9.0% vs. 28.6%, P=0.020). More importantly, the presence of CTCs was correlated with blood glucose level (P=0.015) and high-density lipoprotein level (P=0.030). The multivariate logistic regression analysis showed that the pathological type [odds ratio (OR): 1.757, 95% CI: 1.021-3.023; P=0.042] and blood glucose level (OR: 1.218, 95% CI: 1.014-1.465; P=0.035) were independent predictors of the presence of CTCs. Conclusions This study revealed potential associations between CTCs and metabolic-related factors in Chinese patients with non-MBC and supports the hypothesis that metabolic dysfunction in breast cancer patients might influence the biological activity of metastatic breast cancer, leading to a higher prevalence of CTCs.
Collapse
Affiliation(s)
- Yumei Shi
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China.,Department of Breast Cancer, Cancer Center, Guangdong General Hospital and Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Guochun Zhang
- Department of Breast Cancer, Cancer Center, Guangdong General Hospital and Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Yulei Wang
- Department of Breast Cancer, Cancer Center, Guangdong General Hospital and Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Chongyang Ren
- Department of Breast Cancer, Cancer Center, Guangdong General Hospital and Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Lingzhu Wen
- Department of Breast Cancer, Cancer Center, Guangdong General Hospital and Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Wenzhen Zhu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China.,Department of Breast Cancer, Cancer Center, Guangdong General Hospital and Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Xiaoqing Chen
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China.,Department of Breast Cancer, Cancer Center, Guangdong General Hospital and Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Ning Liao
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China.,Department of Breast Cancer, Cancer Center, Guangdong General Hospital and Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| |
Collapse
|
17
|
He D, Zhao M, Wu C, Zhang W, Niu C, Yu B, Jin J, Ji L, Willard B, Mathew AV, Chen YE, Pennathur S, Yin H, He Y, Pan B, Zheng L. Apolipoprotein A-1 mimetic peptide 4F promotes endothelial repairing and compromises reendothelialization impaired by oxidized HDL through SR-B1. Redox Biol 2017; 15:228-242. [PMID: 29277016 PMCID: PMC5975068 DOI: 10.1016/j.redox.2017.11.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/24/2017] [Accepted: 11/29/2017] [Indexed: 01/24/2023] Open
Abstract
Disruption of endothelial monolayer integrity is the primary instigating factor for many cardiovascular diseases. High density lipoprotein (HDL) oxidized by heme enzyme myeloperoxidase (MPO) is dysfunctional in promoting endothelial repair. Apolipoprotein A-1 mimetic 4F with its pleiotropic benefits has been proven effective in many in vivo models. In this study we investigated whether 4F promotes endothelial repair and restores the impaired function of oxidized HDL (Cl/NO2-HDL) in promoting re-endothelialization. We demonstrate that 4F and Cl/NO2-HDL act on scavenger receptor type I (SR-B1) using human aorta endothelial cells (HAEC) and SR-B1 (-/-) mouse aortic endothelial cells. Wound healing, transwell migration, lamellipodia formation and single cell migration assay experiments show that 4F treatment is associated with a recovery of endothelial cell migration and associated with significantly increased endothelial nitric oxide synthase (eNOS) activity, Akt phosphorylation and SR-B1 expression. 4F increases NO generation and diminishes oxidative stress. In vivo, 4F can stimulate cell proliferation and re-endothelialization in the carotid artery after treatment with Cl/NO2-HDL in a carotid artery electric injury model but fails to do so in SR-B1(-/-) mice. These findings demonstrate that 4F promotes endothelial cell migration and has a potential therapeutic benefit against early endothelial injury in cardiovascular diseases. 4F restores the decreased ability of Cl/NO2-HDL in promoting endothelial repair. 4F increases NO generation and diminishes oxidative stress. 4F increases eNOS activity, Akt phosphorylation and SR-B1 expression. 4F can stimulate re-endothelialization in a carotid artery electric injury model.
Collapse
Affiliation(s)
- Dan He
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Science Center, Peking University, Beijing 100191, China
| | - Mingming Zhao
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Science Center, Peking University, Beijing 100191, China
| | - Congying Wu
- The Institute of Systems Biomedicine, Department of Medical Genetics, Peking University Health Science Center, Beijing 100191, China
| | - Wenjing Zhang
- The Military General Hospital of Beijing, Beijing 100700, China
| | - Chenguang Niu
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Science Center, Peking University, Beijing 100191, China
| | - Baoqi Yu
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Science Center, Peking University, Beijing 100191, China
| | - Jingru Jin
- The Military General Hospital of Beijing, Beijing 100700, China
| | - Liang Ji
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Science Center, Peking University, Beijing 100191, China
| | - Belinda Willard
- Proteomics Laboratory, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Anna V Mathew
- Department of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Y Eugene Chen
- Department of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Huiyong Yin
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (INS), Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai 200031, China
| | - Yuan He
- National Research Institute for Health and Family Planning, Beijing 100081, China
| | - Bing Pan
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Science Center, Peking University, Beijing 100191, China.
| | - Lemin Zheng
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Science Center, Peking University, Beijing 100191, China.
| |
Collapse
|
18
|
Dipeptidyl peptidase‑4 inhibitor sitagliptin prevents high glucose‑induced apoptosis via activation of AMP‑activated protein kinase in endothelial cells. Mol Med Rep 2017; 15:4346-4351. [PMID: 28440488 DOI: 10.3892/mmr.2017.6501] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 02/09/2017] [Indexed: 11/05/2022] Open
Abstract
Diabetes mellitus (DM), which is a chronic metabolic disorder, is the primary risk factor of life‑threatening vascular complications. Endothelial apoptosis is important in the development of the initial vascular lesion preceding the diabetic disease. Sitagliptin is a dipeptidyl peptidase‑4 (DPP‑4) inhibitor and extensively used in the clinical treatment of DM. DPP‑4 inhibitors have been demonstrated to be beneficial in the improvement of endothelial homeostasis, however the molecular mechanism by which they exhibit these effects remains to be elucidated. The effect of sitagliptin on endothelial apoptosis was examined in cultured human umbilical vein endothelial cells (HUVECs) incubated with high glucose (HG). The present study demonstrated that treatment of HUVECs with HG increased reactive oxygen species (ROS) production, stimulated mitochondrial depolarization and resulted in cell apoptosis. Pretreatment of HUVECs with sitagliptin significantly prevented HG‑induced endothelial apoptosis. It was further demonstrated that sitagliptin effectively inhibited ROS generation and mitochondrial membrane potential collapse. Similarly, adenosine monophosphate‑activated protein kinase (AMPK) activation by sitagliptin protected against HG‑induced ROS production, mitochondrial membrane potential collapse and endothelial cell apoptosis, as detected via western blotting and flow cytometry analysis. The present study therefore revealed a novel mechanism of sitagliptin‑mediated AMPK activation in preventing endothelial apoptosis and indicated the therapeutic potential of sitagliptin in vascular complications associated with endothelial apoptosis.
Collapse
|
19
|
Zhou B, Zu L, Chen Y, Zheng X, Wang Y, Pan B, Dong M, Zhou E, Zhao M, Zhang Y, Zheng L, Gao W. Myeloperoxidase-oxidized high density lipoprotein impairs atherosclerotic plaque stability by inhibiting smooth muscle cell migration. Lipids Health Dis 2017; 16:3. [PMID: 28069011 PMCID: PMC5223295 DOI: 10.1186/s12944-016-0388-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/08/2016] [Indexed: 12/30/2022] Open
Abstract
Background High density lipoprotein (HDL) has been proved to be a protective factor for coronary heart disease. Notably, HDL in atherosclerotic plaques can be nitrated (NO2-oxHDL) and chlorinated (Cl-oxHDL) by myeloperoxidase (MPO), likely compromising its cardiovascular protective effects. Method Here we determined the effects of NO2-oxHDL and Cl-oxHDL on SMC migration using wound healing and transwell assays, proliferation using MTT and BrdU assays, and apoptosis using Annexin-V assay in vitro, as well as on atherosclerotic plaque stability in vivo using a coratid artery collar implantation mice model. Results Our results showed that native HDL promoted SMC proliferation and migration, whereas NO2-oxHDL and Cl-oxHDL inhibited SMC migration and reduced capacity of stimulating SMC proliferation as well as migration, respectively. OxHDL had no significant influence on SMC apoptosis. In addition, we found that ERK1/2-phosphorylation was significantly lower when SMCs were incubated with NO2-oxHDL and Cl-oxHDL. Furthermore, transwell experiments showed that differences between native HDL, NO2-oxHDL and Cl-oxHDL was abolished after PD98059 (MAPK kinase inhibitor) treatment. In aortic SMCs from scavenger receptor BI (SR-BI) deficient mice, differences between migration of native HDL, NO2-oxHDL and Cl-oxHDL treated SMCs vanished, indicating SR-BI’s possible role in HDL-associated SMC migration. Importantly, NO2-oxHDL and Cl-oxHDL induced neointima formation and reduced SMC positive staining cells in atherosclerotic plaque, resulting in elevated vulnerable index of atherosclerotic plaque. Conclusion These findings implicate MPO-catalyzed oxidization of HDL may contribute to atherosclerotic plaque instability by inhibiting SMC proliferation and migration through MAPK-ERK pathway which was dependent on SR-BI. Electronic supplementary material The online version of this article (doi:10.1186/s12944-016-0388-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Boda Zhou
- Department of Cardiology, Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, and Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides of Ministry of Health, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Lingyun Zu
- Department of Cardiology, Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, and Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides of Ministry of Health, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Yong Chen
- Department of Neurology, People's Hospital of Deyang City, Deyang, 618000, China
| | - Xilong Zheng
- Department Biochemistry & Molecular Biology, the University of Calgary, Alberta, Canada
| | - Yuhui Wang
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Bing Pan
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Min Dong
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Enchen Zhou
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Mingming Zhao
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Youyi Zhang
- Department of Cardiology, Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, and Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides of Ministry of Health, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Lemin Zheng
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China.
| | - Wei Gao
- Department of Cardiology, Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, and Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides of Ministry of Health, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China.
| |
Collapse
|
20
|
Peterson SJ, Vanella L, Bialczak A, Schragenheim J, Li M, Bellner L, Shapiro JI, Abraham NG. Oxidized HDL and Isoprostane Exert a Potent Adipogenic Effect on Stem Cells: Where in the Lineage? ACTA ACUST UNITED AC 2016; 2. [PMID: 29430566 PMCID: PMC5807016 DOI: 10.16966/2472-6990.109] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Stephen J Peterson
- Weill Cornell Medical College, Department of Medicine, New York Methodist Hospital, Brooklyn, NY 11215, USA
| | - Luca Vanella
- Departments of Medicine & Pharmacology, New York Medical College, Valhalla, NY 10595, USA.,Marshall University, Joan C. Edwards School of Medicine, Huntington, WV 25701, USA
| | - Angelica Bialczak
- Departments of Medicine & Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | - Joseph Schragenheim
- Departments of Medicine & Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | - Ming Li
- Departments of Medicine & Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | - Lars Bellner
- Departments of Medicine & Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | - Joseph I Shapiro
- Marshall University, Joan C. Edwards School of Medicine, Huntington, WV 25701, USA
| | - Nader G Abraham
- Departments of Medicine & Pharmacology, New York Medical College, Valhalla, NY 10595, USA.,Marshall University, Joan C. Edwards School of Medicine, Huntington, WV 25701, USA
| |
Collapse
|
21
|
Li Y, Zhao M, He D, Zhao X, Zhang W, Wei L, Huang E, Ji L, Zhang M, Willard B, Fu Z, Wang L, Pan B, Zheng L, Ji L. HDL in diabetic nephropathy has less effect in endothelial repairing than diabetes without complications. Lipids Health Dis 2016; 15:76. [PMID: 27074994 PMCID: PMC4831084 DOI: 10.1186/s12944-016-0246-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 04/08/2016] [Indexed: 12/13/2022] Open
Abstract
Background Diabetic nephropathy has a high cardiovascular risk with a low-level HDL(high density lipoprotein) in epidemiologic studies. Glycated HDL in diabetes can diminish the capacity to stimulate endothelial cell migration, but the mechanism has not been adequately explored in diabetic nephropathy. We performed this study to find out whether HDL in diabetic nephropathy is more dysfunctional than HDL in diabetes without complications. Methods Endothelial cells were treated with N-HDL (normal), D-HDL (T2DM[type 2 diabetes mellitus] without complications), DN-HDL (T2DM nephropathy), N-apoA-I (normal apoA-I), and G-apoA-I (glycated apoA-I in vitro). Cell migration capacity was measured with wound-healing and transwell migration assay in vitro and electric carotid injury model in vivo. Protein glycation levels were measured with nanoLC-MS/MS. PI3K expression and Akt phosphorylation were analyzed by western blot. Results In wound-healing assay, DN-HDL showed a 17.12 % decrease compared with D-HDL (p < 0.05). DN-HDL showed a 29.85 % decrease in comparison with D-HDL (p < 0.001) in transwell assay. In the electric carotid injury model, D-HDL and DN-HDL impaired the re-endothelialization capacity; DN-HDL was less effective than D-HDL. Meanwhile, DN-HDL was found to have a significantly higher protein glycation level than D-HDL (p < 0.001). PI3K expression and Akt phosphorylation were reduced significantly in DN-HDL in comparison with D-HDL and N-HDL. Conclusions We found that HDL from diabetic nephropathy has a higher level of glycation and induced less cell migration in vitro and in vivo compared with that from diabetes without nephropathy. This finding suggests that diabetic nephropathy has higher levels of glycated HDL and partially explains why patients with DN have a higher risk of cardiovascular disease. Electronic supplementary material The online version of this article (doi:10.1186/s12944-016-0246-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yufeng Li
- Department of Endocrinology and Metabolism, Peking University People's Hospital, No.11 Xizhimen Nan Dajie, Xicheng District, Beijing, 100044, China.,Department of Endocrinology and Metabolism, Capital Medical University Pinggu Teaching Hospital, Beijing, 101200, China
| | - Mingming Zhao
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Peking University Health Science Center, No.38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Dan He
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Peking University Health Science Center, No.38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Xuyang Zhao
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Peking University Health Science Center, No.38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Wenjing Zhang
- Department of Obstetrics, The Military General Hospital of Beijing, Beijing, 100700, China
| | - Lixin Wei
- Department of Nephrology, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, China
| | - Edgar Huang
- School of Informatics and Computing, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, USA
| | - Liang Ji
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Peking University Health Science Center, No.38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Meng Zhang
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Peking University Health Science Center, No.38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Belinda Willard
- Cleveland Clinic Lerner Research Institute Mass Spectrometry Laboratory for Protein Sequencing, Cleveland, Ohio, USA
| | - Zuodi Fu
- Department of Endocrinology and Metabolism, Capital Medical University Pinggu Teaching Hospital, Beijing, 101200, China
| | - Lijuan Wang
- Department of Endocrinology and Metabolism, Capital Medical University Pinggu Teaching Hospital, Beijing, 101200, China
| | - Bing Pan
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Peking University Health Science Center, No.38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Lemin Zheng
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Peking University Health Science Center, No.38 Xueyuan Road, Haidian District, Beijing, 100191, China.
| | - Linong Ji
- Department of Endocrinology and Metabolism, Peking University People's Hospital, No.11 Xizhimen Nan Dajie, Xicheng District, Beijing, 100044, China.
| |
Collapse
|
22
|
Peterson SJ, Vanella L, Gotlinger K, Jiang H, Singh SP, Sodhi K, Maher E, O’Hanlon K, Shapiro JI, Abraham NG. Oxidized HDL is a potent inducer of adipogenesis and causes activation of the Ang-II and 20-HETE systems in human obese females. Prostaglandins Other Lipid Mediat 2016; 123:68-77. [DOI: 10.1016/j.prostaglandins.2016.04.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 04/22/2016] [Accepted: 04/27/2016] [Indexed: 10/21/2022]
|
23
|
Huang X, He D, Ming J, He Y, Zhou C, Ren H, He X, Wang C, Jin J, Ji L, Willard B, Pan B, Zheng L. High-density lipoprotein of patients with breast cancer complicated with type 2 diabetes mellitus promotes cancer cells adhesion to vascular endothelium via ICAM-1 and VCAM-1 upregulation. Breast Cancer Res Treat 2016; 155:441-55. [PMID: 26872904 DOI: 10.1007/s10549-016-3696-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 01/30/2016] [Indexed: 10/22/2022]
Abstract
Adhesion of disseminating tumor cells to vascular endothelium is a pivotal starting point in the metastasis cascade. We have shown previously that diabetic high-density lipoprotein (HDL) has the capability of promoting breast cancer metastasis, and this report summarizes our more recent work studying the role of abnormal HDL in facilitating the adhesion of the circulating tumor cells to the endothelium. This is an initiating step in breast cancer metastasis, and this work assesses the role of ICAM-1 and VCAM-1 in this process. MDA-MB-231, MCF 7, and human umbilical vein endothelial cells (HUVECs) were treated with normal HDL from healthy controls (N-HDL), HDL from breast cancer patients (B-HDL), or HDL from breast cancer patients complicated with type 2 diabetes mellitus (BD-HDL), and the cell adhesion abilities were determined. ICAM-1 and VCAM-1 expression as well as the protein kinase C (PKC) activity were evaluated. The effect of PKC inhibitor and PKC siRNA on adhesion was also studied. The immunohistochemical staining of ICAM-1, VCAM-1, and E-selectin from breast cancer patients and breast cancer patients complicated with type 2 diabetes mellitus (T2DM) were examined. Our results indicate that BD-HDL promoted an increase in breast cancer cell adhesion to HUVECs and stimulated higher ICAM-1 and VCAM-1 expression on the cells surface of both breast cancer and HUVEC cells, along with the activation of PKC. Increased tumor cell (TC)-HUVEC adhesion, as well as ICAM-1 and VCAM-1 expression induced by BD-HDL, could be inhibited by staurosporine and PKC siRNA. In addition, a Db/db type 2 diabetes mouse model has more TC-Vascular Endothelium adhesion compared to a normal model. However, BD patients have a lower expression of ICAM-1, VCAM-1, and E-selectin in their tumor tissues. BD-HDL facilitates the adhesion of tumor cells to vascular endothelium by upregulating the expression of ICAM-1 and VCAM-1, thereby promoting the initial progression of breast cancer metastasis. This work indicates a prospective utilization of HDL-based strategies in the treatment of breast cancer patients with type 2 diabetes.
Collapse
Affiliation(s)
- Xiaoqin Huang
- Department of Operating Room, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 40010, China
| | - Dan He
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
| | - Jia Ming
- Department of Operating Room, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 40010, China
| | - Yubin He
- The Military General Hospital of Beijing, Beijing, 100700, China
| | - Champion Zhou
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
| | - Hui Ren
- Auckland Bioengineering Institute, The University of Auckland, Auckland, 1142, New Zealand
| | - Xin He
- Tianjin Key Laboratory of Radiation Medicine and Nuclear Medicine, Institution of Radiation Medicine, Beijing Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Chenguang Wang
- Tianjin Key Laboratory of Radiation Medicine and Nuclear Medicine, Institution of Radiation Medicine, Beijing Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jingru Jin
- The Military General Hospital of Beijing, Beijing, 100700, China
| | - Liang Ji
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
| | - Belinda Willard
- Proteomics Core Laboratory, Research Core Services, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Bing Pan
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Peking University Health Science Center, Beijing, 100191, China.
| | - Lemin Zheng
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
24
|
Lv P, Tong X, Peng Q, Liu Y, Jin H, Liu R, Sun W, Pan B, Zheng L, Huang Y. Treatment with the herbal medicine, naoxintong improves the protective effect of high-density lipoproteins on endothelial function in patients with type 2 diabetes. Mol Med Rep 2016; 13:2007-16. [PMID: 26781332 PMCID: PMC4768949 DOI: 10.3892/mmr.2016.4792] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 12/23/2015] [Indexed: 12/28/2022] Open
Abstract
The protective effect of high-density lipoprotein (HDL) on endothelial function is impaired in patients with type 2 diabetes mellitus (T2DM), which may result in atherosclerotic complications. Naoxintong (NXT) is a compound preparation that includes Radix Astragali, Angelicae sinensis, Radix Paeoniae Rubra and Ligusticum wallichii. It is widely administered in China to prevent atherosclerotic complications. In the present study, NXT was administered to 69 patients with T2DM. HDLs were isolated from patient blood samples prior to and following the intervention. In vitro endothelial functions of HDL, including proliferation, migration, angiogenesis, and anti-apoptosis were investigated by bromodeoxyuridine, wound healing, Transwell and Matrigel tube formation assays on human umbilical vein endothelial cells (HUVECs). The results from the present study demonstrated that HUVECs treated with HDL isolated from diabetic patients following NXT therapy exhibited increased proliferative effects (10–27%; P<0.05), and improved migration ability (15–35%; P<0.05), anti-apoptotic function (23–34%; P<0.05) and angiogenesis (30–54%; P<0.001). Furthermore, the phosphorylation levels of Akt (26–36%; P<0.01) and extracellular signal-regulated kinase (16–80%; P<0.01) were increased following NXT therapy. The present in vitro study demonstrates that the protective effect of HDL on endothelial function is markedly impaired in diabetic patients who tend to develop atherosclerosis, and the impaired function may be partly abrogated by NXT.
Collapse
Affiliation(s)
- Pu Lv
- Department of Neurology, Peking University First Hospital, Beijing 100034, P.R. China
| | - Xunliang Tong
- Department of Neurology, Peking University First Hospital, Beijing 100034, P.R. China
| | - Qing Peng
- Department of Neurology, Peking University First Hospital, Beijing 100034, P.R. China
| | - Yuanyuan Liu
- Department of Neurology, Peking University First Hospital, Beijing 100034, P.R. China
| | - Haiqiang Jin
- Department of Neurology, Peking University First Hospital, Beijing 100034, P.R. China
| | - Ran Liu
- Department of Neurology, Peking University First Hospital, Beijing 100034, P.R. China
| | - Wei Sun
- Department of Neurology, Peking University First Hospital, Beijing 100034, P.R. China
| | - Bing Pan
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Lemin Zheng
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Yining Huang
- Department of Neurology, Peking University First Hospital, Beijing 100034, P.R. China
| |
Collapse
|
25
|
Plasma Nitration of High-Density and Low-Density Lipoproteins in Chronic Kidney Disease Patients Receiving Kidney Transplants. Mediators Inflamm 2015; 2015:352356. [PMID: 26648662 PMCID: PMC4662997 DOI: 10.1155/2015/352356] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 10/14/2015] [Accepted: 10/19/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Functional abnormalities of high-density lipoprotein (HDL) could contribute to cardiovascular disease in chronic kidney disease patients. We measured a validated marker of HDL dysfunction, nitrated apolipoprotein A-I, in kidney transplant recipients to test the hypothesis that a functioning kidney transplant reduces serum nitrated apoA-I concentrations. METHODS Concentrations of nitrated apoA-I and apoB were measured using indirect sandwich ELISA assays on sera collected from each transplant subject before transplantation and at 1, 3, and 12 months after transplantation. Patients were excluded if they have history of diabetes, treatment with lipid-lowering medications or HIV protease inhibitors, prednisone dose > 15 mg/day, nephrotic range proteinuria, serum creatinine > 1.5 mg/dL, or active inflammatory disease. Sera from 18 transplanted patients were analyzed. Four subjects were excluded due to insufficient data. Twelve and eight patients had creatinine < 1.5 mg/dL at 3 and 12 months after transplantation, respectively. RESULTS. Nitrated apoA-I was significantly reduced at 12 months after transplantation (p = 0.039). The decrease in apoA-I nitration was associated with significant reduction in myeloperoxidase (MPO) activity (p = 0.047). In contrast to apoA-I, nitrated apoB was not affected after kidney transplantation. CONCLUSIONS Patients with well-functioning grafts had significant reduction in nitrated apoA-I 12 months after kidney transplantation. Further studies are needed in a large cohort to determine if nitrated apoA-I can be used as a valuable marker for cardiovascular risk stratification in chronic kidney disease.
Collapse
|
26
|
Dysfunctional High-Density Lipoprotein: An Innovative Target for Proteomics and Lipidomics. CHOLESTEROL 2015; 2015:296417. [PMID: 26634153 PMCID: PMC4655037 DOI: 10.1155/2015/296417] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 10/12/2015] [Accepted: 10/12/2015] [Indexed: 02/02/2023]
Abstract
High-Density Lipoprotein-Cholesterol (HDL-C) is regarded as an important protective factor against cardiovascular disease, with abundant evidence of an inverse relationship between its serum levels and risk of cardiovascular disease, as well as various antiatherogenic, antioxidant, and anti-inflammatory properties. Nevertheless, observations of hereditary syndromes featuring scant HDL-C concentration in absence of premature atherosclerotic disease suggest HDL-C levels may not be the best predictor of cardiovascular disease. Indeed, the beneficial effects of HDL may not depend solely on their concentration, but also on their quality. Distinct subfractions of this lipoprotein appear to be constituted by specific protein-lipid conglomerates necessary for different physiologic and pathophysiologic functions. However, in a chronic inflammatory microenvironment, diverse components of the HDL proteome and lipid core suffer alterations, which propel a shift towards a dysfunctional state, where HDL-C becomes proatherogenic, prooxidant, and proinflammatory. This heterogeneity highlights the need for further specialized molecular studies in this aspect, in order to achieve a better understanding of this dysfunctional state; with an emphasis on the potential role for proteomics and lipidomics as valuable methods in the search of novel therapeutic approaches for cardiovascular disease.
Collapse
|
27
|
Low n-6/n-3 PUFA Ratio Improves Lipid Metabolism, Inflammation, Oxidative Stress and Endothelial Function in Rats Using Plant Oils as n-3 Fatty Acid Source. Lipids 2015; 51:49-59. [DOI: 10.1007/s11745-015-4091-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 10/19/2015] [Indexed: 01/10/2023]
|
28
|
Gkolfinopoulou C, Stratikos E, Theofilatos D, Kardassis D, Voulgari PV, Drosos AA, Chroni A. Impaired Antiatherogenic Functions of High-density Lipoprotein in Patients with Ankylosing Spondylitis. J Rheumatol 2015; 42:1652-60. [DOI: 10.3899/jrheum.141532] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2015] [Indexed: 10/23/2022]
Abstract
Objective.Ankylosing spondylitis (AS) is a chronic inflammatory disease associated with increased risk of cardiovascular disease (CVD). High-density lipoprotein (HDL) exerts a series of antiatherogenic properties and protects from CVD. We evaluated whether HDL antiatherogenic properties are impaired in patients with AS.Methods.HDL (apoB-depleted serum) was isolated from 35 patients with AS and 35 age- and sex-matched controls. We measured the antioxidant capacity of HDL, the ability of HDL to induce cholesterol efflux, the activity of HDL-associated enzymes paraoxonase-1 (PON1) and myeloperoxidase (MPO), as well as the ability of HDL to induce Akt kinase activation.Results.HDL from patients with AS had decreased antioxidant capacity and decreased ability to promote cholesterol efflux from macrophages compared to controls. HDL-associated PON1 activity was lower and HDL-associated MPO activity higher in patients with AS compared to controls. Higher MPO activity correlated positively with lower antioxidant capacity of HDL in patients with AS. In addition, HDL from patients with AS had impaired endothelial Akt kinase activating properties that were inversely correlated with the MPO/PON1 ratio and positively correlated with the cholesterol efflux capacity of HDL.Conclusion.HDL from patients with AS displays impaired antiatherogenic properties. Attenuation of HDL properties may constitute a link between AS and CVD.
Collapse
|
29
|
3-nitrotyrosine modified proteins in atherosclerosis. DISEASE MARKERS 2015; 2015:708282. [PMID: 25814781 PMCID: PMC4359869 DOI: 10.1155/2015/708282] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 02/17/2015] [Indexed: 12/14/2022]
Abstract
Cardiovascular disease is the leading cause of premature death worldwide, and atherosclerosis is the main contributor. Lipid-laden macrophages, known as foam cells, accumulate in the subendothelial space of the lesion area and contribute to consolidate a chronic inflammatory environment where oxygen and nitrogen derived oxidants are released. Oxidatively modified lipids and proteins are present both in plasma as well as atherosclerotic lesions. A relevant oxidative posttranslational protein modification is the addition of a nitro group to the hydroxyphenyl ring of tyrosine residues, mediated by nitric oxide derived oxidants. Nitrotyrosine modified proteins were found in the lesion and also in plasma from atherosclerotic patients. Despite the fact of the low yield of nitration, immunogenic, proatherogenic, and prothrombotic properties acquired by 3-nitrotyrosine modified proteins are in agreement with epidemiological studies showing a significant correlation between the level of nitration found in plasma proteins and the prevalence of cardiovascular disease, supporting the usefulness of this biomarker to predict the outcome and to take appropriate therapeutic decisions in atherosclerotic disease.
Collapse
|
30
|
Kratzer A, Giral H, Landmesser U. High-density lipoproteins as modulators of endothelial cell functions: alterations in patients with coronary artery disease. Cardiovasc Res 2014; 103:350-61. [DOI: 10.1093/cvr/cvu139] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
31
|
Wang Y, Ji L, Jiang R, Zheng L, Liu D. Oxidized high-density lipoprotein induces the proliferation and migration of vascular smooth muscle cells by promoting the production of ROS. J Atheroscler Thromb 2013; 21:204-16. [PMID: 24225481 DOI: 10.5551/jat.19448] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIM As the major atheroprotective particle in plasma, high-density lipoprotein(HDL) is oxidized during atherosclerotic processes. Oxidized HDL(ox-HDL) may lose its cardioprotective properties and develop a proinflammatory and proatherogenic phenotype. The proliferation and migration of vascular smooth muscle cells(VSMCs) play a crucial role in atherogenesis. However, the influence of ox-HDL on VSMC proliferation and migration remains poorly understood. METHODS VSMCs were treated with native HDL(N-HDL) or ox-HDL at varying concentrations for different time intervals and used in several analyses. The degree of cell proliferation was assayed using CCK-8 kits. The level of cell migration was determined using a Transwell chamber and scratch-wound assay. The presence of intracellular reactive oxygen species(ROS) was detected based on ROS-mediated 2',7'-dichlorofluorescein fluorescence. The activation of NADPH oxidase was measured in terms of the Rac1 activity and NADP(+)/NADPH ratio. RESULTS Compared to N-HDL, ox-HDL significantly promoted VSMC proliferation and migration in a dose-dependent manner. In addition, ox-HDL remarkably activated NADPH oxidase and enhanced ROS generation in the VSMCs. Diphenyleneiodonium chloride, an inhibitor of NADPH oxidase, and N-acetylcysteine, a ROS scavenger, efficiently inhibited the ROS production triggered by ox-HDL and subsequently blocked the proliferating and migrating effects of ox-HDL in the VSMCs. CONCLUSIONS Ox-HDL significantly induces VSMC proliferation and migration by promoting NADPH oxidase activation and ROS production. Furthermore, the inhibition of NADPH oxidase and ROS generation blocks the proliferation and migration of VSMCs induced by ox-HDL. These proliferating and migrating effects of ox-HDL are closely related to its proinflammatory and proatherogenic roles.
Collapse
Affiliation(s)
- Yan Wang
- Division of Cardiology, the Affiliated Zhongshan Hospital of Xiamen University, Xiamen Heart Center
| | | | | | | | | |
Collapse
|
32
|
HDL cholesterol in cardiovascular diseases: the good, the bad, and the ugly? Int J Cardiol 2013; 168:3157-9. [PMID: 23962777 DOI: 10.1016/j.ijcard.2013.07.210] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 07/20/2013] [Indexed: 12/19/2022]
Abstract
Atherosclerotic cardiovascular diseases are the leading cause of death in developed and developing countries. HDL-raising therapeutic modalities (such as cholesterol ester transferase protein (CETP) inhibitors) are being developed to combat these diseases. However, recent setback of two CETP inhibitors (Torcetrapib and Dalcetrapib) has highlighted the importance of measuring qualitative functionality of HDL particles, rather than focusing quantitatively on HDL cholesterol serum concentrations. It has been known that, HDL from patients with coronary artery disease (CAD) (i.e., HDL(CAD)) limits the anti-inflammatory and endothelial repair properties of normal HDL, due to the activation of lectin-like oxidized LDL receptor-1 (LOX-1), thereby causing failure in endothelial nitric oxide (NO) production. A more recent study (Immunity 2013; 38: 754-768) also demonstrates that HDL from patients with chronic kidney dysfunction (CKD) (i.e., HDL(CKD)), unlike its healthy counterpart (i.e., HDL(Healthy)), promotes superoxide production, reduces NO bioavailability and raises blood pressure via toll-like receptor-2 (TLR-2) activation. This study provides novel insights into understanding why HDL-raising agents failed to demonstrate beneficial effects on cardiovascular mortality in large clinical trials and why CKD accelerates the development of atherosclerosis in CAD patients. Further research is warranted to elucidate whether HDL(CKD) and HDL(CAD) participate in other cellular processes in atherosclerosis, such as foam cell formation, the proliferation and migration of smooth muscle cells, and most importantly, plaque destabilization.
Collapse
|