1
|
Leopold J, Schiller J. (Chemical) Roles of HOCl in Rheumatic Diseases. Antioxidants (Basel) 2024; 13:921. [PMID: 39199167 PMCID: PMC11351306 DOI: 10.3390/antiox13080921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/16/2024] [Accepted: 07/26/2024] [Indexed: 09/01/2024] Open
Abstract
Chronic rheumatic diseases such as rheumatoid arthritis (RA) are characterized by a dysregulated immune response and persistent inflammation. The large number of neutrophilic granulocytes in the synovial fluid (SF) from RA patients leads to elevated enzyme activities, for example, from myeloperoxidase (MPO) and elastase. Hypochlorous acid (HOCl), as the most important MPO-derived product, is a strong reactive oxygen species (ROS) and known to be involved in the processes of cartilage destruction (particularly regarding the glycosaminoglycans). This review will discuss open questions about the contribution of HOCl in RA in order to improve the understanding of oxidative tissue damaging. First, the (chemical) composition of articular cartilage and SF and the mechanisms of cartilage degradation will be discussed. Afterwards, the products released by neutrophils during inflammation will be summarized and their effects towards the individual, most abundant cartilage compounds (collagen, proteoglycans) and selected cellular components (lipids, DNA) discussed. New developments about neutrophil extracellular traps (NETs) and the use of antioxidants as drugs will be outlined, too. Finally, we will try to estimate the effects induced by these different agents and their contributions in RA.
Collapse
Affiliation(s)
- Jenny Leopold
- Institute for Medical Physics and Biophysics, Medical Faculty, Leipzig University, 04103 Leipzig, Germany;
| | | |
Collapse
|
2
|
Cruz LC, Habibovic A, Dempsey B, Massafera MP, Janssen-Heininger YMW, Lin MCJ, Hoffman ET, Weiss DJ, Huang SK, van der Vliet A, Meotti FC. Identification of tyrosine brominated extracellular matrix proteins in normal and fibrotic lung tissues. Redox Biol 2024; 71:103102. [PMID: 38430684 PMCID: PMC10912723 DOI: 10.1016/j.redox.2024.103102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/17/2024] [Accepted: 02/21/2024] [Indexed: 03/05/2024] Open
Abstract
Peroxidasin (PXDN) is a secreted heme peroxidase that catalyzes the oxidative crosslinking of collagen IV within the extracellular matrix (ECM) via intermediate hypobromous acid (HOBr) synthesis from hydrogen peroxide and bromide, but recent findings have also suggested alternative ECM protein modifications by PXDN, including incorporation of bromide into tyrosine residues. In this work, we sought to identify the major target proteins for tyrosine bromination by HOBr or by PXDN-mediated oxidation in ECM from mouse teratocarcinoma PFHR9 cells. We detected 61 bromotyrosine (BrY)-containing peptides representing 23 proteins in HOBr-modified ECM from PFHR9 cells, among which laminins displayed the most prominent bromotyrosine incorporation. Moreover, we also found that laminin α1, laminin β1, and tubulointerstitial nephritis antigen-like (TINAGL1) contained BrY in untreated PFHR9 cells, which depended on PXDN. We extended these analyses to lung tissues from both healthy mice and mice with experimental lung fibrosis, and in lung tissues obtained from human subjects. Analysis of ECM-enriched mouse lung tissue extracts showed that 83 ECM proteins were elevated in bleomycin-induced fibrosis, which included various collagens and laminins, and PXDN. Similarly, mRNA and protein expression of PXDN and laminin α/β1 were enhanced in fibrotic mouse lung tissues, and also in mouse bone-marrow-derived macrophages or human fibroblasts stimulated with transforming growth factor β1, a profibrotic growth factor. We identified 11 BrY-containing ECM proteins, including collagen IV α2, collagen VI α1, TINAGL1, and various laminins, in both healthy and mouse fibrotic lung tissues, although the relative extent of tyrosine bromination of laminins was not significantly increased during fibrosis. Finally, we also identified 7 BrY-containing ECM proteins in human lung tissues, again including collagen IV α2, collagen VI α1, and TINAGL1. Altogether, this work demonstrates the presence of several bromotyrosine-modified ECM proteins, likely involving PXDN, even in normal lung tissues, suggesting a potential biological function for these modifications.
Collapse
Affiliation(s)
- Litiele Cezar Cruz
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, SP, Brazil; Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, VT, USA
| | - Aida Habibovic
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, VT, USA
| | - Bianca Dempsey
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, SP, Brazil
| | - Mariana P Massafera
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, SP, Brazil
| | | | - Miao-Chong Joy Lin
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, VT, USA
| | - Evan T Hoffman
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Daniel J Weiss
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Steven K Huang
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, VT, USA.
| | - Flavia C Meotti
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, SP, Brazil.
| |
Collapse
|
3
|
Roy A, Gauld JW. Sulfilimine bond formation in collagen IV. Chem Commun (Camb) 2024; 60:646-657. [PMID: 38116662 DOI: 10.1039/d3cc05715a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The collagen IV network plays a crucial role in providing structural support and mechanical integrity to the basement membrane and surrounding tissues. A key aspect of this network is the formation of intra- and inter-collagen fibril crosslinks. One particular crosslink, an inter-residue sulfilimine bond, has been found, so far, to be unique to collagen IV. More specifically, these crosslinks are primarily formed between methionine and lysine or hydroxylysine residues and can occur within a single collagen fibril or between different collagen fibrils. Due to its significance as the major crosslink in the collagen IV network, the sulfilimine bond plays critical roles in tissue development and various human diseases. While the proposed reaction mechanism for sulfilimine bond formation is supported by experimental evidence, the precise nature of this bond remained uncertain until computational studies were conducted. The process involves the reaction of hypohalous acids (e.g., HOBr, HOCl), produced by a peroxidasin enzyme in the basement membrane, with the sidechain sulfur of methionine or sidechain nitrogen of lysine/hydroxylysine residues in collagen IV, to form halosulfonium or haloamine intermediates, respectively. The halosulfonium/haloamine then reacts with the sidechain amine/sulfide of the lysine (or hydroxylysine) or methionine respectively, eventually resulting in the formation of the sulfilimine (MetSNLys/Hyl) crosslink. The sulfilimine product formed not only plays a crucial role in physiological processes but also finds applications in various industrial and pharmaceutical contexts. In this review, we provide a comprehensive summary of existing studies, including our own research, aimed at understanding the reaction mechanism, protonation states, characteristic nature, and dynamic behavior of the sulfilimine bond in collagen IV. The goal is to offer readers an overview of this critically important biochemical bond.
Collapse
Affiliation(s)
- Anupom Roy
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada.
| | - James W Gauld
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada.
| |
Collapse
|
4
|
Bora JR, Mahalakshmi R. Empowering canonical biochemicals with cross-linked novelty: Recursions in applications of protein cross-links. Proteins 2023:10.1002/prot.26571. [PMID: 37589191 PMCID: PMC7616502 DOI: 10.1002/prot.26571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/18/2023]
Abstract
Diversity in the biochemical workhorses of the cell-that is, proteins-is achieved by the innumerable permutations offered primarily by the 20 canonical L-amino acids prevalent in all biological systems. Yet, proteins are known to additionally undergo unusual modifications for specialized functions. Of the various post-translational modifications known to occur in proteins, the recently identified non-disulfide cross-links are unique, residue-specific covalent modifications that confer additional structural stability and unique functional characteristics to these biomolecules. We review an exclusive class of amino acid cross-links encompassing aromatic and sulfur-containing side chains, which not only confer superior biochemical characteristics to the protein but also possess additional spectroscopic features that can be exploited as novel chromophores. Studies of their in vivo reaction mechanism have facilitated their specialized in vitro applications in hydrogels and protein anchoring in monolayer chips. Furthering the discovery of unique canonical cross-links through new chemical, structural, and bioinformatics tools will catalyze the development of protein-specific hyperstable nanostructures, superfoods, and biotherapeutics.
Collapse
Affiliation(s)
- Jinam Ravindra Bora
- Department of Biological Sciences, Molecular Biophysics Laboratory, Indian Institute of Science Education and Research, Bhopal, India
| | - Radhakrishnan Mahalakshmi
- Department of Biological Sciences, Molecular Biophysics Laboratory, Indian Institute of Science Education and Research, Bhopal, India
| |
Collapse
|
5
|
Roy A, Gauld JW. Molecular Dynamics Investigation on the Effects of Protonation and Lysyl Hydroxylation on Sulfilimine Cross-links in Collagen IV. ACS OMEGA 2022; 7:39680-39689. [PMID: 36385809 PMCID: PMC9647856 DOI: 10.1021/acsomega.2c03360] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Collagen IV networks are an essential component of basement membranes that are important for their structural integrity and thus that of an organism's tissues. Improper functioning of these networks has been associated with several diseases. Cross-links, such as sulfilimine bonds interconnecting NC1 domains, are critical for forming and mechanically stabilizing these collagen IV networks. More specifically, the sulfilimine cross-links form between methionine (Met93) and lysine/hydroxylsine (Lys211/Hyl211) residues of NC1 domains. Therefore, the dynamic nature of the sulfilimine bond in collagen IV is crucial for network formation. To understand the dynamic nature of a neutral and protonated sulfilimine bond in collagen IV, we performed molecular dynamics (MD) simulations on four sulfilimine cross-linked systems (i.e., Met93S-NLys211, Met93S-NHLys211 +, Met93S-NHyl211, and Met93S-NHHyl211 +) of collagen IV. The MD results showed that the neutral Met93S-NLys211 system has the smallest protein backbone and showed the cross-linked residues' RMSD value. The conformational change analyses showed that the conformations of the sulfilimine cross-linked residues take on a U-shape for the Met93S-NHyl211 and Met93S-HNHyl211 + systems, whereas the conformations of the sulfilimine cross-linked residues are more open for the Met93S-NLys211, and Met93S-NHLys211 + systems. Protonation is a crucial biochemical process to stabilize the protein structure or the biological cross-links. Furthermore, the protonation of the sulfilimine bond could potentially influence hydrogen bond interaction with near amino acid residues, and according to water distribution analyses, the sulfilimine bond can potentially exist in one or more protonation states.
Collapse
|
6
|
Nascimento RO, Prado FM, Massafera MP, Di Mascio P, Ronsein GE. Dehydromethionine is a common product of methionine oxidation by singlet molecular oxygen and hypohalous acids. Free Radic Biol Med 2022; 187:17-28. [PMID: 35580773 DOI: 10.1016/j.freeradbiomed.2022.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 10/18/2022]
Abstract
Methionine is one of the main targets for biological oxidants. Its reaction with the majority of oxidants generates only methionine sulfoxide. However, when N-terminal methionine reacts with hypohalous acids (HOCl and HOBr) or singlet molecular oxygen (1O2), it can also generate a cyclic product called dehydromethionine (DHM). Previously, DHM was suggested as a biomarker of oxidative stress induced by hypohalous acids. However, DHM can also be generated by 1O2 -oxidation of methionine, and the contribution of this pathway of DHM formation in a context of a site-specific redox imbalance in an organism is unknown. In this work, a through comparison of the reactions of hypohalous acids and 1O2 with methionine, either free or inserted in peptides and proteins was undertaken. In addition, we performed methionine photooxidation in heavy water (H218O) to determine the influence of the pH in the mechanism of DHM formation. We showed that for free methionine, or methionine-containing peptides, the yields of DHM formation in the reactions with 1O2 were close to those achieved by HOBr oxidation, but much higher than the yields obtained with HOCl as the oxidant. This was true for all pH tested (5, 7.4, and 9). Interestingly, for the protein ubiquitin, DHM yields after reaction with 1O2 were higher than those obtained with both hypohalous acids. Our results indicate that 1O2 may also be an important source of DHM in biological systems.
Collapse
Affiliation(s)
| | - Fernanda Manso Prado
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, 05508-000, Brazil
| | - Mariana Pereira Massafera
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, 05508-000, Brazil
| | - Paolo Di Mascio
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, 05508-000, Brazil.
| | - Graziella Eliza Ronsein
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, 05508-000, Brazil.
| |
Collapse
|
7
|
Du X, He X, Liu Q, Di R, Liu Q, Chu M. Comparative Transcriptomics Reveals the Key lncRNA and mRNA of Sunite Sheep Adrenal Gland Affecting Seasonal Reproduction. Front Vet Sci 2022; 9:816241. [PMID: 35464356 PMCID: PMC9024317 DOI: 10.3389/fvets.2022.816241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/03/2022] [Indexed: 12/30/2022] Open
Abstract
The hypothalamic–pituitary–adrenal (HPA) axis plays an important role in the growth and development of mammals. Recently, lncRNA transcripts have emerged as an area of importance in sheep photoperiod and seasonal estrus studies. This research aims to identify lncRNA and mRNA that are differentially expressed in the sheep adrenal gland in long (LP) or short (SP) photoperiods using transcriptome sequencing and bioinformatics analysis based on the OVX + E2 (Bilateral ovariectomy and estradiol-implanted) model. We found significant differences in the expression of lncRNAs in LP42 (where LP is for 42 days) vs. SP-LP42 (where SP is for 42 days followed by LP for 42 days) (n = 304), SP42 (where SP is for 42 days) vs. SP-LP42 (n = 1,110) and SP42 vs. LP42 (n = 928). Cluster analysis and enrichment analysis identified SP42 vs. LP42 as a comparable group of interest and found the following candidate genes related to reproductive phenotype: FGF16, PLGF, CDKN1A, SEMA7A, EDG1, CACNA1C and ADCY5. FGF16 (Up-regulated lncRNA MSTRG.242136 and MSTRG.236582) is the only up-regulated gene that is closely related to oocyte maturation. However, EDG1 (Down-regulated lncRNA MSTRG.43609) and CACNA1C may be related to precocious puberty in sheep. PLGF (Down-regulated lncRNA MSTRG.146618 and MSTRG.247208) and CDKN1A (Up-regulated lncRNA MSTRG.203610 and MSTRG.129663) are involved in the growth and differentiation of placental and retinal vessels, and SEMA7A (Up-regulated lncRNA MSTRG.250579) is essential for the development of gonadotropin-releasing hormone (GnRH) neurons. These results identify novel candidate genes that may regulate sheep seasonality and may lead to new methods for the management of sheep reproduction. This study provides a basis for further explanation of the basic molecular mechanism of the adrenal gland, but also provides a new idea for a comprehensive understanding of seasonal estrus characteristics in Sunite sheep.
Collapse
Affiliation(s)
- Xiaolong Du
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoyun He
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qiuyue Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ran Di
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingqing Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Mingxing Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Mingxing Chu
| |
Collapse
|
8
|
Roy A, Alnakhli TH, Gauld JW. Computational insights into the formation and nature of the sulfilimine bond in collagen-IV. RSC Adv 2022; 12:21092-21102. [PMID: 35919832 PMCID: PMC9306264 DOI: 10.1039/d2ra02105f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/18/2022] [Indexed: 12/20/2022] Open
Abstract
Collagen IV is essential component of basement membrane in the tissues. It provides proper cellular structure by the formation of sulfilimine bond (S
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
N) between methionine and lysine or hydroxylysine (cross-links) residues which can be formed with or without post-translational modification. The sulfilimine bond has critical roles in tissue development and human diseases. Peroxidasin, a basement membrane peroxidase, generates reactive halogen species including hypobromous (HOBr) acid and hypochlorous (HOCl) acid which help to form halosulfonium or haloamine. The sulfilamine bond can be formed either by the formation of halosulfonium or by the formation of halomine. The aim of the study is the investigation of the formation of sulfilimine bond and its nature in collagen IV using multi-scale approach that included MD, QM-cluster, systematic series of small models, and NBO analysis. These results suggest that sulfilimine bond can be formed either via brominated/chlorinated halosulfonium or haloamine pathway. The results of systematic series of small model indicate that the formation of sulfilimine complex from halosulfonium happens through the formation of positively charged halosulfonated sulfilimine complex. It also suggests that the formation of sulfilimine complex from haloamine occurs through the formation of positively charged sulfilimine complex where the S and N bond forms and halogen goes off at the same time. Furthermore, the NBO analysis suggest the S and N bond is strongly polarized toward nitrogen in both single protonated and neutral system, Nδ− ← Sδ+ and also indicate the existence of a coordinate covalent (i.e. dative) bond. The proposed mechanisms for formation of the sulfilimine bond in collagen IV, and effects of protonation on the nature and properties of the bond have been computationally examined.![]()
Collapse
Affiliation(s)
- Anupom Roy
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | - Taqred H. Alnakhli
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | - James W. Gauld
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| |
Collapse
|
9
|
Fuentes-Lemus E, Hägglund P, López-Alarcón C, Davies MJ. Oxidative Crosslinking of Peptides and Proteins: Mechanisms of Formation, Detection, Characterization and Quantification. Molecules 2021; 27:15. [PMID: 35011250 PMCID: PMC8746199 DOI: 10.3390/molecules27010015] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 12/14/2022] Open
Abstract
Covalent crosslinks within or between proteins play a key role in determining the structure and function of proteins. Some of these are formed intentionally by either enzymatic or molecular reactions and are critical to normal physiological function. Others are generated as a consequence of exposure to oxidants (radicals, excited states or two-electron species) and other endogenous or external stimuli, or as a result of the actions of a number of enzymes (e.g., oxidases and peroxidases). Increasing evidence indicates that the accumulation of unwanted crosslinks, as is seen in ageing and multiple pathologies, has adverse effects on biological function. In this article, we review the spectrum of crosslinks, both reducible and non-reducible, currently known to be formed on proteins; the mechanisms of their formation; and experimental approaches to the detection, identification and characterization of these species.
Collapse
Affiliation(s)
- Eduardo Fuentes-Lemus
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, 2200 Copenhagen, Denmark; (E.F.-L.); (P.H.)
| | - Per Hägglund
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, 2200 Copenhagen, Denmark; (E.F.-L.); (P.H.)
| | - Camilo López-Alarcón
- Departamento de Química Física, Facultad de Química y de Farmacia, Pontificia Universidad Catolica de Chile, Santiago 7820436, Chile;
| | - Michael J. Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, 2200 Copenhagen, Denmark; (E.F.-L.); (P.H.)
| |
Collapse
|
10
|
Pehrsson M, Mortensen JH, Manon-Jensen T, Bay-Jensen AC, Karsdal MA, Davies MJ. Enzymatic cross-linking of collagens in organ fibrosis - resolution and assessment. Expert Rev Mol Diagn 2021; 21:1049-1064. [PMID: 34330194 DOI: 10.1080/14737159.2021.1962711] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Enzymatic cross-linking of the collagens within the extracellular matrix (ECM) catalyzed by enzymes such as lysyl oxidase (LOX) and lysyl oxidase like-enzymes 1-4 (LOXL), transglutaminase 2 (TG2), and peroxidasin (PXDN) contribute to fibrosis progression through extensive collagen cross-linking. Studies in recent years have begun elucidating the important role of collagen cross-linking in perpetuating progression of organ fibrosis independently of inflammation through an increasingly stiff and noncompliant ECM. Therefore, collagen cross-linking and the cross-linking enzymes have become new targets in anti-fibrotic therapy as well as targets of novel biomarkers to properly assess resolution of the fibrotic ECM.Areas covered: The enzymatic actions of enzymes catalyzing collagen cross-linking and their relevance in organ fibrosis. Potential biomarkers specifically quantifying proteolytic fragments of collagen cross-linking is discussed based on Pubmed search done in November 2020 as well as the authors knowledge.Expert opinion: Current methods for the assessment of fibrosis involve the use of invasive and/or cumbersome and expensive methods such as tissue biopsies. Thus, an unmet need exists for the development and validation of minimally invasive biomarkers of proteolytic fragments of cross-linked collagens. These biomarkers may aid in the development and proper assessment of fibrosis resolution in coming years.
Collapse
Affiliation(s)
- Martin Pehrsson
- Department of Biomedical Science, University of Copenhagen, Copenhagen, Denmark.,Biomarkers & Research, Nordic Bioscience A/S, Herlev, Denmark
| | | | | | | | | | | |
Collapse
|
11
|
Hawkins CL, Davies MJ. Role of myeloperoxidase and oxidant formation in the extracellular environment in inflammation-induced tissue damage. Free Radic Biol Med 2021; 172:633-651. [PMID: 34246778 DOI: 10.1016/j.freeradbiomed.2021.07.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 12/30/2022]
Abstract
The heme peroxidase family generates a battery of oxidants both for synthetic purposes, and in the innate immune defence against pathogens. Myeloperoxidase (MPO) is the most promiscuous family member, generating powerful oxidizing species including hypochlorous acid (HOCl). Whilst HOCl formation is important in pathogen removal, this species is also implicated in host tissue damage and multiple inflammatory diseases. Significant oxidant formation and damage occurs extracellularly as a result of MPO release via phagolysosomal leakage, cell lysis, extracellular trap formation, and inappropriate trafficking. MPO binds strongly to extracellular biomolecules including polyanionic glycosaminoglycans, proteoglycans, proteins, and DNA. This localizes MPO and subsequent damage, at least partly, to specific sites and species, including extracellular matrix (ECM) components and plasma proteins/lipoproteins. Biopolymer-bound MPO retains, or has enhanced, catalytic activity, though evidence is also available for non-catalytic effects. These interactions, particularly at cell surfaces and with the ECM/glycocalyx induce cellular dysfunction and altered gene expression. MPO binds with higher affinity to some damaged ECM components, rationalizing its accumulation at sites of inflammation. MPO-damaged biomolecules and fragments act as chemo-attractants and cell activators, and can modulate gene and protein expression in naïve cells, consistent with an increasing cycle of MPO adhesion, activity, damage, and altered cell function at sites of leukocyte infiltration and activation, with subsequent tissue damage and dysfunction. MPO levels are used clinically both diagnostically and prognostically, and there is increasing interest in strategies to prevent MPO-mediated damage; therapeutic aspects are not discussed as these have been reviewed elsewhere.
Collapse
Affiliation(s)
- Clare L Hawkins
- Department of Biomedical Sciences, University of Copenhagen, Panum Institute, Blegdamsvej 3B, Copenhagen N, DK-2200, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, University of Copenhagen, Panum Institute, Blegdamsvej 3B, Copenhagen N, DK-2200, Denmark.
| |
Collapse
|
12
|
Myeloperoxidase: Mechanisms, reactions and inhibition as a therapeutic strategy in inflammatory diseases. Pharmacol Ther 2021; 218:107685. [DOI: 10.1016/j.pharmthera.2020.107685] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/09/2020] [Indexed: 12/17/2022]
|
13
|
Ma CP, Guo ZM, Zhang FL, Su JY. Molecular identification, expression and function analysis of peroxidasin in Chilo suppressalis. INSECT SCIENCE 2020; 27:1173-1185. [PMID: 31829500 DOI: 10.1111/1744-7917.12743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/21/2019] [Accepted: 12/07/2019] [Indexed: 06/10/2023]
Abstract
Peroxidasin plays a unique role in the formation and stability of extracellular matrix (ECM) in the animal kingdom; however, it was only characterized in Diptera, not in other insect orders. In this study peroxidasin (CsPxd) was first identified and characterized from Chilo suppressalis, a lepidopteran pest. CsPxd complementary DNA with a 4080 bp open reading frame encodes a peptide of 1359 amino acids; the derived amino acid sequence of CsPxd harbors the typical structural characteristics of peroxidasin family in heme-peroxidase superfamily, including the signal peptide at N-terminal, leucine-rich repeat domain, Ig-loop motifs and peroxidase domain, signifying the extracellular location of protein and the involvement in ECM formation. Eukaryotic expression reveals CsPxd protein displays peroxidase activity on H2 O2 , justifying the membership of peroxidase. Phyletic analysis shows the monophyletic evolution pattern of peroxidasin in insect phyle, and moreover only one peroxidasin is present in each species of insects, suggesting its evolutionary conservation on function. Peroxidasin messenger RNA is mainly expressed in egg and the final instar larvae stage. Injection of peroxidasin double-stranded RNA into the final instar larvae impacts the cuticle sclerotization during the metamorphosis from larvae to pupa, and eventually lead to lethality of larvae and pupa. These results suggest the presence of collagen crosslink in chorion and cuticle of insects, and indicate peroxidasin plays a role in the development of chorion and cuticle; furthermore peroxidasin might be the one of potential target genes for pest control using RNA interference.
Collapse
Affiliation(s)
- Chun-Ping Ma
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Zi-Mu Guo
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Feng-Li Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jian-Ya Su
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
14
|
Kintsu H, Nishimura R, Negishi L, Kuriyama I, Tsuchihashi Y, Zhu L, Nagata K, Suzuki M. Identification of methionine -rich insoluble proteins in the shell of the pearl oyster, Pinctada fucata. Sci Rep 2020; 10:18335. [PMID: 33110152 PMCID: PMC7591529 DOI: 10.1038/s41598-020-75444-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/12/2020] [Indexed: 11/30/2022] Open
Abstract
The molluscan shell is a biomineral that comprises calcium carbonate and organic matrices controlling the crystal growth of calcium carbonate. The main components of organic matrices are insoluble chitin and proteins. Various kinds of proteins have been identified by solubilizing them with reagents, such as acid or detergent. However, insoluble proteins remained due to the formation of a solid complex with chitin. Herein, we identified these proteins from the nacreous layer, prismatic layer, and hinge ligament of Pinctada fucata using mercaptoethanol and trypsin. Most identified proteins contained a methionine-rich region in common. We focused on one of these proteins, NU-5, to examine the function in shell formation. Gene expression analysis of NU-5 showed that NU-5 was highly expressed in the mantle, and a knockdown of NU-5 prevented the formation of aragonite tablets in the nacre, which suggested that NU-5 was required for nacre formation. Dynamic light scattering and circular dichroism revealed that recombinant NU-5 had aggregation activity and changed its secondary structure in the presence of calcium ions. These findings suggest that insoluble proteins containing methionine-rich regions may be important for scaffold formation, which is an initial stage of biomineral formation.
Collapse
Affiliation(s)
- Hiroyuki Kintsu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.,Center for Health and Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba-city, Ibaraki, 305-8506, Japan
| | - Ryo Nishimura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Lumi Negishi
- Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Isao Kuriyama
- Mie Prefecture Fisheries Research Institute, 3564-3 Hamajima, Hamajima-cho, Shima-city, Mie, 517-0404, Japan
| | - Yasushi Tsuchihashi
- Mie Prefecture Fisheries Research Institute, 3564-3 Hamajima, Hamajima-cho, Shima-city, Mie, 517-0404, Japan
| | - Lingxiao Zhu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Koji Nagata
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Michio Suzuki
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
15
|
Panasenko OM, Torkhovskaya TI, Gorudko IV, Sokolov AV. The Role of Halogenative Stress in Atherogenic Modification of Low-Density Lipoproteins. BIOCHEMISTRY (MOSCOW) 2020; 85:S34-S55. [PMID: 32087053 DOI: 10.1134/s0006297920140035] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review discusses formation of reactive halogen species (RHS) catalyzed by myeloperoxidase (MPO), an enzyme mostly present in leukocytes. An imbalance between the RHS production and body's ability to remove or neutralize them leads to the development of halogenative stress. RHS reactions with proteins, lipids, carbohydrates, and antioxidants in the content of low-density lipoproteins (LDLs) of the human blood are described. MPO binds site-specifically to the LDL surface and modifies LDL properties and structural organization, which leads to the LDL conversion into proatherogenic forms captured by monocytes/macrophages, which causes accumulation of cholesterol and its esters in these cells and their transformation into foam cells, the basis of atherosclerotic plaques. The review describes the biomarkers of MPO enzymatic activity and halogenative stress, as well as the involvement of the latter in the development of atherosclerosis.
Collapse
Affiliation(s)
- O M Panasenko
- Federal Research and Clinical Center of Physico-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia.
| | - T I Torkhovskaya
- Federal Research and Clinical Center of Physico-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia.,Orekhovich Institute of Biomedical Chemistry, Moscow, 119121, Russia
| | - I V Gorudko
- Belarusian State University, Minsk, 220030, Belarus
| | - A V Sokolov
- Federal Research and Clinical Center of Physico-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia. .,Institute of Experimental Medicine, St. Petersburg, 197376, Russia
| |
Collapse
|
16
|
Hypochlorous acid-mediated modification of proteins and its consequences. Essays Biochem 2019; 64:75-86. [DOI: 10.1042/ebc20190045] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/03/2019] [Accepted: 12/06/2019] [Indexed: 01/06/2023]
Abstract
AbstractMyeloperoxidase (MPO) is a mammalian heme peroxidase released by activated immune cells, which forms chemical oxidants, including hypochlorous acid (HOCl), to kill bacteria and other invading pathogens. In addition to this important role in the innate immune system, there is significant evidence from numerous chronic inflammatory pathologies for the elevated production of HOCl and associated oxidative modification of proteins and damage to host tissue. Proteins are major targets for HOCl in biological systems, owing to their abundance and the high reactivity of several amino acid side-chains with this oxidant. As such, there is significant interest in understanding the molecular mechanisms involved in HOCl-mediated protein damage and defining the consequences of these reactions. Exposure of proteins to HOCl results in a wide range of oxidative modifications and the formation of chlorinated products, which alter protein structure and enzyme activity, and impact the function of biological systems. This review describes the reactivity of HOCl with proteins, including the specific pathways involved in side-chain modification, backbone fragmentation and aggregation, and outlines examples of some of the biological consequences of these reactions, particularly in relation to the development of chronic inflammatory disease.
Collapse
|
17
|
Leinisch F, Mariotti M, Hägglund P, Davies MJ. Structural and functional changes in RNAse A originating from tyrosine and histidine cross-linking and oxidation induced by singlet oxygen and peroxyl radicals. Free Radic Biol Med 2018; 126:73-86. [PMID: 30031072 DOI: 10.1016/j.freeradbiomed.2018.07.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/12/2018] [Accepted: 07/16/2018] [Indexed: 12/21/2022]
Abstract
Oxidation can be induced by multiple processes in biological samples, with proteins being important targets due to their high abundance and reactivity. Oxidant reactions with proteins are not comprehensively understood, but it is known that structural and functional changes may be a cause, or a consequence, of disease. The mechanisms of oxidation of the model protein RNAse A by singlet oxygen (1O2) were examined and compared to peroxyl radical (ROO•) oxidation, both common biological oxidants. This protein is a prototypic member of the RNAse family that exhibits antiviral activity by cleaving single-stranded RNA. RNAse A lacks tryptophan and cysteine residues which are major oxidant targets, but contains multiple histidine, tyrosine and methionine residues; these were therefore hypothesized to be the major sites of damage. 1O2 and ROO• induce different patterns and extents of damage; both induce cross-links and side-chain oxidation, and 1O2 exposure modulates enzymatic activity. Multiple products have been characterized including methionine sulfoxide and sulfone, alcohols, DOPA, 2-oxohistidine, histidine-derived ring-opened species and inter- and intra-molecular cross-links (di-tyrosine, histidine-lysine, histidine-arginine, tyrosine-lysine). In addition to methionine modification, which appears not to be causative to activity loss, singlet oxygen also induces alteration to specific histidine, tyrosine and proline residues, including modification and cross-linking of the active site histidine, His12. The high homology among the RNAse family suggests that similar modifications may occur in humans, and be associated with the increased risk of viral infections in people with diabetes, as markers for 1O2 have been found in early stages of this pathology.
Collapse
Affiliation(s)
- Fabian Leinisch
- Dept. of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Michele Mariotti
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Per Hägglund
- Dept. of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark; Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Michael J Davies
- Dept. of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
18
|
Glennon-Alty L, Hackett AP, Chapman EA, Wright HL. Neutrophils and redox stress in the pathogenesis of autoimmune disease. Free Radic Biol Med 2018; 125:25-35. [PMID: 29605448 DOI: 10.1016/j.freeradbiomed.2018.03.049] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/22/2018] [Accepted: 03/28/2018] [Indexed: 12/18/2022]
Abstract
Polymorphonuclear leukocytes, or neutrophils, are specialist phagocytic cells of the innate immune system. Their primary role is host defence against micro-organisms, which they kill via phagocytosis, followed by release of reactive oxygen species (ROS) and proteolytic enzymes within the phagosome. ROS are generated via the action of the NADPH oxidase (also known as NOX2), in a process termed the 'Respiratory Burst'. This process consumes large amounts of oxygen, which is converted into the highly-reactive superoxide radical O2- and H2O2. Subsequent activation of myeloperoxidase (MPO) generates secondary oxidants and chloroamines that are highly microbiocidal in nature, which together with proteases such as elastase and gelatinase provide a toxic intra-phagosomal environment able to kill a broad range of micro-organisms. However, under certain circumstances such as during an auto-immune response, neutrophils can be triggered to release ROS and proteases extracellularly causing damage to host tissues, modification of host proteins, lipids and DNA and dysregulation of oxidative homeostasis. This review describes the range of ROS species produced by human neutrophils with a focus on the implications of neutrophil redox products in autoimmune inflammation.
Collapse
Affiliation(s)
- Laurence Glennon-Alty
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, 6 West Derby Street, L7 8TX Liverpool, UK; Liverpool Health Partners, University of Liverpool, Liverpool, UK
| | - Angela P Hackett
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, 6 West Derby Street, L7 8TX Liverpool, UK
| | - Elinor A Chapman
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, 6 West Derby Street, L7 8TX Liverpool, UK
| | - Helen L Wright
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, 6 West Derby Street, L7 8TX Liverpool, UK.
| |
Collapse
|
19
|
Hägglund P, Mariotti M, Davies MJ. Identification and characterization of protein cross-links induced by oxidative reactions. Expert Rev Proteomics 2018; 15:665-681. [DOI: 10.1080/14789450.2018.1509710] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Per Hägglund
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Michele Mariotti
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Michael J. Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
20
|
Luan D, Gao X, Kong F, Song X, Zheng A, Liu X, Xu K, Tang B. Cyclic Regulation of the Sulfilimine Bond in Peptides and NC1 Hexamers via the HOBr/H 2Se Conjugated System. Anal Chem 2018; 90:9523-9528. [PMID: 29938494 DOI: 10.1021/acs.analchem.8b02228] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The sulfilimine bond (-S═N-), found in the collagen IV scaffold, significantly stabilizes the architecture via the formation of sulfilimine cross-links. However, precisely governing the formation and breakup process of the sulfilimine bond in living organisms for better life functions still remains a challenge. Hence, we established a new way to regulate the breaking and formation of the sulfilimine bond through hydrogen selenide (H2Se) and hypobromous acid (HOBr), which can be easily controlled at simulated physiological conditions. This novel strategy provides a circulation regulation system to modulate the sulfilimine bond in peptides and NC1 hexamers, which can offer a substantial system for further study of the physiological function of collagen IV.
Collapse
Affiliation(s)
- Dongrui Luan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , People's Republic of China
| | - Xiaonan Gao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , People's Republic of China
| | - Fanpeng Kong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , People's Republic of China
| | - Xiaoxiao Song
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , People's Republic of China
| | - Aishan Zheng
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , People's Republic of China
| | - Xiaojun Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , People's Republic of China
| | - Kehua Xu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , People's Republic of China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , People's Republic of China
| |
Collapse
|
21
|
Sirokmány G, Kovács HA, Lázár E, Kónya K, Donkó Á, Enyedi B, Grasberger H, Geiszt M. Peroxidasin-mediated crosslinking of collagen IV is independent of NADPH oxidases. Redox Biol 2018; 16:314-321. [PMID: 29573705 PMCID: PMC5952998 DOI: 10.1016/j.redox.2018.03.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 03/13/2018] [Indexed: 12/19/2022] Open
Abstract
Collagen IV is a major component of the basement membrane in epithelial tissues. The NC1 domains of collagen IV protomers are covalently linked together through sulfilimine bonds, the formation of which is catalyzed by peroxidasin. Although hydrogen peroxide is essential for this reaction, the exact source of the oxidant remains elusive. Members of the NOX/DUOX NADPH oxidase family are specifically devoted to the production of superoxide and hydrogen peroxide. Our aim in this study was to find out if NADPH oxidases contribute in vivo to the formation of collagen IV sulfilimine crosslinks. We used multiple genetically modified in vivo model systems to provide a detailed assessment of this question. Our data indicate that in various peroxidasin-expressing tissues sulfilimine crosslinks between the NC1 domains of collagen IV can be readily detected in the absence of functioning NADPH oxidases. We also analyzed how subatmospheric oxygen levels influence the collagen IV network in collagen-producing cultured cells with rapid matrix turnover. We showed that collagen IV crosslinks remain intact even under strongly hypoxic conditions. Our hypothesis is that during collagen IV network formation PXDN cooperates with a NOX/DUOX-independent H2O2 source that is functional also at very low ambient oxygen levels.
Collapse
Affiliation(s)
- Gábor Sirokmány
- Department of Physiology, Faculty of Medicine, Semmelweis University, PO Box 259, H-1444 Budapest, Hungary; "Momentum" Peroxidase Enzyme Research Group of the Semmelweis University and the Hungarian Academy of Sciences, Budapest, Hungary
| | - Hajnal A Kovács
- Department of Physiology, Faculty of Medicine, Semmelweis University, PO Box 259, H-1444 Budapest, Hungary; "Momentum" Peroxidase Enzyme Research Group of the Semmelweis University and the Hungarian Academy of Sciences, Budapest, Hungary
| | - Enikő Lázár
- Department of Physiology, Faculty of Medicine, Semmelweis University, PO Box 259, H-1444 Budapest, Hungary; "Momentum" Peroxidase Enzyme Research Group of the Semmelweis University and the Hungarian Academy of Sciences, Budapest, Hungary
| | - Krisztina Kónya
- Department of Physiology, Faculty of Medicine, Semmelweis University, PO Box 259, H-1444 Budapest, Hungary; "Momentum" Peroxidase Enzyme Research Group of the Semmelweis University and the Hungarian Academy of Sciences, Budapest, Hungary
| | - Ágnes Donkó
- Department of Physiology, Faculty of Medicine, Semmelweis University, PO Box 259, H-1444 Budapest, Hungary; "Momentum" Peroxidase Enzyme Research Group of the Semmelweis University and the Hungarian Academy of Sciences, Budapest, Hungary
| | - Balázs Enyedi
- Department of Physiology, Faculty of Medicine, Semmelweis University, PO Box 259, H-1444 Budapest, Hungary
| | - Helmut Grasberger
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Miklós Geiszt
- Department of Physiology, Faculty of Medicine, Semmelweis University, PO Box 259, H-1444 Budapest, Hungary; "Momentum" Peroxidase Enzyme Research Group of the Semmelweis University and the Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
22
|
Bathish B, Turner R, Paumann-Page M, Kettle AJ, Winterbourn CC. Characterisation of peroxidasin activity in isolated extracellular matrix and direct detection of hypobromous acid formation. Arch Biochem Biophys 2018; 646:120-127. [PMID: 29626421 DOI: 10.1016/j.abb.2018.03.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/29/2018] [Accepted: 03/30/2018] [Indexed: 11/23/2022]
Abstract
Peroxidasin is a heme peroxidase that catalyses the oxidation of bromide by hydrogen peroxide to form an essential sulfilimine cross-link between methionine and hydroxylysine residues in collagen IV. We investigated cross-linking by peroxidasin embedded in extracellular matrix isolated from cultured epithelial cells and its sensitivity to alternative substrates and peroxidase inhibitors. Peroxidasin showed peroxidase activity as measured with hydrogen peroxide and Amplex red. Using a specific mass spectrometry assay that measures NADH bromohydrin, we showed definitively that the enzyme releases hypobromous acid (HOBr). Less than 1 μM of the added hydrogen peroxide was used by peroxidasin. The remainder was consumed by catalase activity that was associated with the matrix. Results from NADH bromohydrin measurements indicates that low micromolar HOBr generated by peroxidasin was sufficient for maximum sulfilimine cross-linking, whereas 100 μM reagent HOBr or taurine bromamine was less efficient. This implies selectivity for the enzymatic process. Physiological concentrations of thiocyanate and urate partially inhibited cross-link formation. 4-Aminobenzoic acid hydrazide, a commonly used myeloperoxidase inhibitor, also inhibited peroxidasin, whereas acetaminophen and a 2-thioxanthine were much less effective. In conclusion, HOBr is produced by peroxidasin in the extracellular matrix. It appears to be directed at the site of collagen IV sulfilimine formation but the released HOBr may also undergo other reactions.
Collapse
Affiliation(s)
- Boushra Bathish
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Rufus Turner
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Martina Paumann-Page
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Anthony J Kettle
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Christine C Winterbourn
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand.
| |
Collapse
|
23
|
Petkowski JJ, Bains W, Seager S. Natural Products Containing a Nitrogen-Sulfur Bond. JOURNAL OF NATURAL PRODUCTS 2018; 81:423-446. [PMID: 29364663 DOI: 10.1021/acs.jnatprod.7b00921] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Only about 100 natural products are known to contain a nitrogen-sulfur (N-S) bond. This review thoroughly categorizes N-S bond-containing compounds by structural class. Information on biological source, biological activity, and biosynthesis is included, if known. We also review the role of N-S bond functional groups as post-translational modifications of amino acids in proteins and peptides, emphasizing their role in the metabolism of the cell.
Collapse
Affiliation(s)
- Janusz J Petkowski
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - William Bains
- Rufus Scientific , 37 The Moor, Melbourn, Royston, Herts SG8 6ED, U.K
| | - Sara Seager
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department of Physics, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
24
|
Carroll L, Pattison DI, Davies JB, Anderson RF, Lopez-Alarcon C, Davies MJ. Formation and detection of oxidant-generated tryptophan dimers in peptides and proteins. Free Radic Biol Med 2017; 113:132-142. [PMID: 28962874 DOI: 10.1016/j.freeradbiomed.2017.09.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 09/21/2017] [Accepted: 09/24/2017] [Indexed: 01/08/2023]
Abstract
Free radicals are produced during physiological processes including metabolism and the immune response, as well as on exposure to multiple external stimuli. Many radicals react rapidly with proteins resulting in side-chain modification, backbone fragmentation, aggregation, and changes in structure and function. Due to its low oxidation potential, the indole ring of tryptophan (Trp) is a major target, with this resulting in the formation of indolyl radicals (Trp•). These undergo multiple reactions including ring opening and dimerization which can result in protein aggregation. The factors that govern Trp• dimerization, the rate constants for these reactions and the exact nature of the products are not fully elucidated. In this study, second-order rate constants were determined for Trp• dimerization in Trp-containing peptides to be 2-6 × 108M-1s-1 by pulse radiolysis. Peptide charge and molecular mass correlated negatively with these rate constants. Exposure of Trp-containing peptides to steady-state radiolysis in the presence of NaN3 resulted in consumption of the parent peptide, and detection by LC-MS of up to 4 different isomeric Trp-Trp cross-links. Similar species were detected with other oxidants, including CO3•- (from the HCO3- -dependent peroxidase activity of bovine superoxide dismutase) and peroxynitrous acid (ONOOH) in the presence or absence of HCO3-. Trp-Trp species were also isolated and detected after alkaline hydrolysis of the oxidized peptides and proteins. These studies demonstrate that Trp• formed on peptides and proteins undergo rapid recombination reactions to form Trp-Trp cross-linked species. These products may serve as markers of radical-mediated protein damage, and represent an additional pathway to protein aggregation in cellular dysfunction and disease.
Collapse
Affiliation(s)
- Luke Carroll
- The Heart Research Institute, Newtown, Australia; Sydney Medical School, University of Sydney, Australia; Panum Institute, University of Copenhagen, Denmark
| | - David I Pattison
- The Heart Research Institute, Newtown, Australia; Sydney Medical School, University of Sydney, Australia
| | - Justin B Davies
- Australian Nuclear Science and Technology Organisation, Lucas Heights, Australia
| | | | | | - Michael J Davies
- The Heart Research Institute, Newtown, Australia; Sydney Medical School, University of Sydney, Australia; Panum Institute, University of Copenhagen, Denmark.
| |
Collapse
|
25
|
Escobar-Álvarez E, Leinisch F, Araya G, Monasterio O, Lorentzen LG, Silva E, Davies MJ, López-Alarcón C. The peroxyl radical-induced oxidation of Escherichia coli FtsZ and its single tryptophan mutant (Y222W) modifies specific side-chains, generates protein cross-links and affects biological function. Free Radic Biol Med 2017; 112:60-68. [PMID: 28733212 DOI: 10.1016/j.freeradbiomed.2017.07.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 06/23/2017] [Accepted: 07/17/2017] [Indexed: 10/19/2022]
Abstract
FtsZ (filamenting temperature-sensitive mutant Z) is a key protein in bacteria cell division. The wild-type Escherichia coli FtsZ sequence (FtsZwt) contains three tyrosine (Tyr, Y) and sixteen methionine (Met, M) residues. The Tyr at position 222 is a key residue for FtsZ polymerization. Mutation of this residue to tryptophan (Trp, W; mutant Y222W) inhibits GTPase activity resulting in an extended time in the polymerized state compared to FtsZwt. Protein oxidation has been highlighted as a determinant process for bacteria resistance and consequently oxidation of FtsZwt and the Y222W mutant, by peroxyl radicals (ROO•) generated from AAPH (2,2'-azobis(2-methylpropionamidine) dihydrochloride) was studied. The non-oxidized proteins showed differences in their polymerization behavior, with this favored by the presence of Trp at position 222. AAPH-treatment of the proteins inhibited polymerization. Protein integrity studies using SDS-PAGE revealed the presence of both monomers and oligomers (dimers, trimers and high mass material) on oxidation. Western blotting indicated the presence of significant levels of protein carbonyls. Amino acid analysis showed that Tyr, Trp (in the Y222W mutant), and Met were consumed by ROO•. Quantification of the number of moles of amino acid consumed per mole of ROO• shows that most of the initial oxidant can be accounted for at low radical fluxes, with Met being a major target. Western blotting provided evidence for di-tyrosine cross-links in the dimeric and trimeric proteins, confirming that oxidation of Tyr residues, at positions 339 and/or 371, are critical to ROO•-mediated crosslinking of both the FtsZwt and Y222W mutant protein. These findings are in agreement with di-tyrosine, N-formyl kynurenine, and kynurenine quantification assessed by UPLC, and with LC-MS data obtained for AAPH-treated protein samples.
Collapse
Affiliation(s)
- Elizabeth Escobar-Álvarez
- Departamento de Química Física, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fabian Leinisch
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Gissela Araya
- Laboratorio de Biología Estructural y Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Octavio Monasterio
- Laboratorio de Biología Estructural y Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Lasse G Lorentzen
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Eduardo Silva
- Departamento de Química Física, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Camilo López-Alarcón
- Departamento de Química Física, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
26
|
Leinisch F, Mariotti M, Rykaer M, Lopez-Alarcon C, Hägglund P, Davies MJ. Peroxyl radical- and photo-oxidation of glucose 6-phosphate dehydrogenase generates cross-links and functional changes via oxidation of tyrosine and tryptophan residues. Free Radic Biol Med 2017; 112:240-252. [PMID: 28756310 DOI: 10.1016/j.freeradbiomed.2017.07.025] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/11/2017] [Accepted: 07/25/2017] [Indexed: 02/05/2023]
Abstract
Protein oxidation is a frequent event as a result of the high abundance of proteins in biological samples and the multiple processes that generate oxidants. The reactions that occur are complex and poorly understood, but can generate major structural and functional changes on proteins. Current data indicate that pathophysiological processes and multiple human diseases are associated with the accumulation of damaged proteins. In this study we investigated the mechanisms and consequences of exposure of the key metabolic enzyme glucose-6-phosphate dehydrogenase (G6PDH) to peroxyl radicals (ROO•) and singlet oxygen (1O2), with particular emphasis on the role of Trp and Tyr residues in protein cross-linking and fragmentation. Cross-links and high molecular mass aggregates were detected by SDS-PAGE and Western blotting using specific antibodies. Amino acid analysis has provided evidence for Trp and Tyr consumption and formation of oxygenated products (diols, peroxides, N-formylkynurenine, kynurenine) from Trp, and di-tyrosine (from Tyr). Mass spectrometric data obtained after trypsin-digestion in the presence of H216O and H218O, has allowed the mapping of specific cross-linked residues and their locations. These data indicate that specific Tyr-Trp and di-Tyr cross-links are formed from residues that are proximal and surface-accessible, and that the extent of Trp oxidation varies markedly between sites. Limited modification at other residues is also detected. These data indicate that Trp and Tyr residues are readily modified by ROO• and 1O2 with this giving products that impact significantly on protein structure and function. The formation of such cross-links may help rationalize the accumulation of damaged proteins in vivo.
Collapse
Affiliation(s)
- Fabian Leinisch
- Dept. of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Michele Mariotti
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Martin Rykaer
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Camilo Lopez-Alarcon
- Departamento de Química Física, Facultad de Química, Pontificia Universidad Catolica de Chile, Avda. Vicuña Mackenna 4860, Santiago, Chile
| | - Per Hägglund
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Michael J Davies
- Dept. of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
27
|
Colon S, Page-McCaw P, Bhave G. Role of Hypohalous Acids in Basement Membrane Homeostasis. Antioxid Redox Signal 2017; 27:839-854. [PMID: 28657332 PMCID: PMC5647493 DOI: 10.1089/ars.2017.7245] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 06/26/2017] [Indexed: 12/19/2022]
Abstract
SIGNIFICANCE Basement membranes (BMs) are sheet-like structures of specialized extracellular matrix that underlie nearly all tissue cell layers including epithelial, endothelial, and muscle cells. BMs not only provide structural support but are also critical for the development, maintenance, and repair of organs. Animal heme peroxidases generate highly reactive hypohalous acids extracellularly and, therefore, target BMs for oxidative modification. Given the importance of BMs in tissue structure and function, hypohalous acid-mediated oxidative modifications of BM proteins represent a key mechanism in normal development and pathogenesis of disease. Recent Advances: Peroxidasin (PXDN), a BM-associated animal heme peroxidase, generates hypobromous acid (HOBr) to form sulfilimine cross-links within the collagen IV network of BM. These cross-links stabilize BM and are critical for animal tissue development. These findings highlight a paradoxical anabolic role for HOBr, which typically damages protein structure leading to dysfunction. CRITICAL ISSUES The molecular mechanism whereby PXDN uses HOBr as a reactive intermediate to cross-link collagen IV, yet avoid collateral damage to nearby BM proteins, remains unclear. FUTURE DIRECTIONS The exact identification and functional impact of specific hypohalous acid-mediated modifications of BM proteins need to be addressed to connect these modifications to tissue development and pathogenesis of disease. As seen with the sulfilimine cross-link of collagen IV, hypohalous acid oxidative events may be beneficial in select situations rather than uniformly deleterious. Antioxid. Redox Signal. 27, 839-854.
Collapse
Affiliation(s)
- Selene Colon
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Biological Sciences, Tennessee State University, Nashville, Tennessee
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Patrick Page-McCaw
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Gautam Bhave
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
28
|
Bekeschus S, Wende K, Hefny MM, Rödder K, Jablonowski H, Schmidt A, Woedtke TV, Weltmann KD, Benedikt J. Oxygen atoms are critical in rendering THP-1 leukaemia cells susceptible to cold physical plasma-induced apoptosis. Sci Rep 2017; 7:2791. [PMID: 28584285 PMCID: PMC5459849 DOI: 10.1038/s41598-017-03131-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 04/25/2017] [Indexed: 12/12/2022] Open
Abstract
Cold physical plasma has been suggested as a powerful new tool in oncology. However, some cancer cells such as THP-1 leukaemia cells have been shown to be resistant towards plasma-induced cell death, thereby serving as a good model for optimizing plasmas in order to foster pro-apoptotic anticancer effects. A helium/oxygen radio frequency driven atmospheric plasma profoundly induced apoptosis in THP-1 cells whereas helium, humidified helium, and humidified helium/oxygen plasmas were inefficient. Hydrogen peroxide – previously shown as central plasma-derived agent – did not participate in the killing reaction but our results suggest hypochlorous acid to be responsible for the effect observed. Proteomic analysis of THP-1 cells exposed to He/O2 plasma emphasized a prominent growth retardation, cell stress, apoptosis, and a pro-immunogenic profile. Altogether, a plasma setting that inactivates previously unresponsive leukaemia cells is presented. Crucial reactive species in the plasma and liquid environment were identified and discussed, deciphering the complexity of plasma from the gas phase into the liquid down to the cellular response mechanism. These results may help tailoring plasmas for clinical applications such as oxidation-insensitive types of cancer.
Collapse
Affiliation(s)
- Sander Bekeschus
- Leibniz-Institute for Plasma Science and Technology (INP Greifswald) ZIK plasmatis, Greifswald, Germany.
| | - Kristian Wende
- Leibniz-Institute for Plasma Science and Technology (INP Greifswald) ZIK plasmatis, Greifswald, Germany
| | - Mohamed Mokhtar Hefny
- Coupled Plasma-Solid State Systems, Faculty of Physics and Astronomy, Ruhr University Bochum, Bochum, Germany.,Basic Science Department, Faculty of Engineering and Technology, Future University in Egypt, Cairo, Egypt
| | - Katrin Rödder
- Leibniz-Institute for Plasma Science and Technology (INP Greifswald) ZIK plasmatis, Greifswald, Germany
| | - Helena Jablonowski
- Leibniz-Institute for Plasma Science and Technology (INP Greifswald) ZIK plasmatis, Greifswald, Germany
| | - Anke Schmidt
- Leibniz-Institute for Plasma Science and Technology (INP Greifswald) ZIK plasmatis, Greifswald, Germany
| | - Thomas von Woedtke
- Leibniz-Institute for Plasma Science and Technology (INP Greifswald) ZIK plasmatis, Greifswald, Germany.,Institute for Hygiene and Environmental Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Klaus-Dieter Weltmann
- Leibniz-Institute for Plasma Science and Technology (INP Greifswald) ZIK plasmatis, Greifswald, Germany
| | - Jan Benedikt
- Coupled Plasma-Solid State Systems, Faculty of Physics and Astronomy, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
29
|
Kuznetsova T, Kulahava T, Zholnerevich I, Amaegberi N, Semenkova G, Shadyro O, Arnhold J. Morphometric characteristics of neutrophils stimulated by adhesion and hypochlorite. Mol Immunol 2017; 87:317-324. [PMID: 28544986 DOI: 10.1016/j.molimm.2017.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/03/2017] [Accepted: 05/06/2017] [Indexed: 11/18/2022]
Abstract
The aim of this work was to compare cell form, size and volume as well as the locomotor activity of polymorphonuclear leukocytes (PMNLs) stimulated by adhesion to glass and exposed to hypochlorous acid at non-toxic dose. After 20min of adhesion to a glass surface, volume, cell surface area and projection area of PMNLs were equaled to 143.1±21.4μm3, 288.8±28.8μm2 and 248.3±32.3μm2, respectively. Projection area of PMNLs exposed to NaOCl was noticeably enlarged as compared with control samples. The cell volume of 20min adherent cells exposed to NaOCl was enlarged in comparison with both control cells and 5min adhered exposed to NaOCl cells. NaOCl exposure induced a degranulation of PMNLs as measured by lysozyme release. Granules could be found both above the cell surface and on the substratum near the cell. The S/V ratio for PMNLs increased (from 1.52 to 2.02μm-1) with the increasing of cell activation time. But at NaOCl addition the reverse tendency was observed (from 2.10 to 1.87μm-1). In cells exposed to NaOCl the redistribution and decrease of concentration of F-actin took place. This observation supports the hypothesis that the priming of PMNLs with hypochlorous acid modifies cell motility and morphology and reflects also on other functions.
Collapse
Affiliation(s)
- Tatsiana Kuznetsova
- N.I. Pirogov Russian National Research Medical University, Moscow, Russian Federation.
| | - Tatsiana Kulahava
- Department of Biophysics, Faculty of Physics, Belarusian State University, Minsk, Belarus.
| | - Ivan Zholnerevich
- Department of Biophysics, Faculty of Physics, Belarusian State University, Minsk, Belarus.
| | - Nadezda Amaegberi
- Department of Radiation Chemistry and Pharmaceutical Technologies, Faculty of Chemistry, Belarusian State University, Minsk, Belarus.
| | - Galina Semenkova
- Department of Radiation Chemistry and Pharmaceutical Technologies, Faculty of Chemistry, Belarusian State University, Minsk, Belarus.
| | - Oleg Shadyro
- Department of Radiation Chemistry and Pharmaceutical Technologies, Faculty of Chemistry, Belarusian State University, Minsk, Belarus.
| | - Juergen Arnhold
- Institute for Medical Physics and Biophysics, Medical Faculty, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
30
|
Ng HP, Valentine VG, Wang G. CFTR targeting during activation of human neutrophils. J Leukoc Biol 2016; 100:1413-1424. [DOI: 10.1189/jlb.4a0316-130rr] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-activated chloride channel, plays critical roles in phagocytic host defense. However, how activated neutrophils regulate CFTR channel distribution subcellularly is not well defined. To investigate, we tested multiple Abs against different CFTR domains, to examine CFTR expression in human peripheral blood neutrophils by flow cytometry. The data confirmed that resting neutrophils had pronounced CFTR expression. Activation of neutrophils with soluble or particulate agonists did not significantly increase CFTR expression level, but induced CFTR redistribution to cell surface. Such CFTR mobilization correlated with cell-surface recruitment of formyl-peptide receptor during secretory vesicle exocytosis. Intriguingly, neutrophils from patients with ΔF508-CF, despite expression of the mutant CFTR, showed little cell-surface mobilization upon stimulation. Although normal neutrophils effectively targeted CFTR to their phagosomes, ΔF508-CF neutrophils had impairment in that process, resulting in deficient hypochlorous acid production. Taken together, activated neutrophils regulate CFTR distribution by targeting this chloride channel to the subcellular sites of activation, and ΔF508-CF neutrophils fail to achieve such targeting, thus undermining their host defense function.
Collapse
Affiliation(s)
- Hang Pong Ng
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center , New Orleans, Louisiana
| | - Vincent G Valentine
- Department of Medicine, University of Texas Medical Branch , Galveston, Texas
| | - Guoshun Wang
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center , New Orleans, Louisiana
- Department of Genetics, Louisiana State University Health Sciences Center , New Orleans, Louisiana
- Department of Medicine, Louisiana State University Health Sciences Center , New Orleans, Louisiana
| |
Collapse
|
31
|
Magon NJ, Turner R, Gearry RB, Hampton MB, Sly PD, Kettle AJ. Oxidation of calprotectin by hypochlorous acid prevents chelation of essential metal ions and allows bacterial growth: Relevance to infections in cystic fibrosis. Free Radic Biol Med 2015; 86:133-44. [PMID: 26006104 DOI: 10.1016/j.freeradbiomed.2015.05.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 05/14/2015] [Accepted: 05/15/2015] [Indexed: 11/16/2022]
Abstract
Calprotectin provides nutritional immunity by sequestering manganese and zinc ions. It is abundant in the lungs of patients with cystic fibrosis but fails to prevent their recurrent infections. Calprotectin is a major protein of neutrophils and composed of two monomers, S100A8 and S100A9. We show that the ability of calprotectin to limit growth of Staphylococcus aureus and Pseudomonas aeruginosa is exquisitely sensitive to oxidation by hypochlorous acid. The N-terminal cysteine residue on S100A9 was highly susceptible to oxidation which resulted in cross-linking of the protein monomers. The N-terminal methionine of S100A8 was also readily oxidized by hypochlorous acid, forming both the methionine sulfoxide and the unique product dehydromethionine. Isolated human neutrophils formed these modifications on calprotectin when their myeloperoxidase generated hypochlorous acid. Up to 90% of the N-terminal amine on S100A8 in bronchoalveolar lavage fluid from young children with cystic fibrosis was oxidized. Oxidized calprotectin was higher in children with cystic fibrosis compared to disease controls, and further elevated in those patients with infections. Our data suggest that oxidative stress associated with inflammation in cystic fibrosis will stop metal sequestration by calprotectin. Consequently, strategies aimed at blocking extracellular myeloperoxidase activity should enable calprotectin to provide nutritional immunity within the airways.
Collapse
Affiliation(s)
- Nicholas J Magon
- Centre for Free Radical Research, Department of Pathology, University of Otago, Christchurch, New Zealand
| | - Rufus Turner
- Centre for Free Radical Research, Department of Pathology, University of Otago, Christchurch, New Zealand
| | - Richard B Gearry
- Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Mark B Hampton
- Centre for Free Radical Research, Department of Pathology, University of Otago, Christchurch, New Zealand
| | - Peter D Sly
- Centre for Free Radical Research, Department of Pathology, University of Otago, Christchurch, New Zealand; Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Anthony J Kettle
- Centre for Free Radical Research, Department of Pathology, University of Otago, Christchurch, New Zealand.
| |
Collapse
|
32
|
Abstract
The cysteine (Cys) proteome is a major component of the adaptive interface between the genome and the exposome. The thiol moiety of Cys undergoes a range of biologic modifications enabling biological switching of structure and reactivity. These biological modifications include sulfenylation and disulfide formation, formation of higher oxidation states, S-nitrosylation, persulfidation, metalation, and other modifications. Extensive knowledge about these systems and their compartmentalization now provides a foundation to develop advanced integrative models of Cys proteome regulation. In particular, detailed understanding of redox signaling pathways and sensing networks is becoming available to allow the discrimination of network structures. This research focuses attention on the need for atlases of Cys modifications to develop systems biology models. Such atlases will be especially useful for integrative studies linking the Cys proteome to imaging and other omics platforms, providing a basis for improved redox-based therapeutics. Thus, a framework is emerging to place the Cys proteome as a complement to the quantitative proteome in the omics continuum connecting the genome to the exposome.
Collapse
Affiliation(s)
- Young-Mi Go
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Joshua D Chandler
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Dean P Jones
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
33
|
Wang G, Nauseef WM. Salt, chloride, bleach, and innate host defense. J Leukoc Biol 2015; 98:163-72. [PMID: 26048979 DOI: 10.1189/jlb.4ru0315-109r] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 04/27/2015] [Indexed: 12/17/2022] Open
Abstract
Salt provides 2 life-essential elements: sodium and chlorine. Chloride, the ionic form of chlorine, derived exclusively from dietary absorption and constituting the most abundant anion in the human body, plays critical roles in many vital physiologic functions, from fluid retention and secretion to osmotic maintenance and pH balance. However, an often overlooked role of chloride is its function in innate host defense against infection. Chloride serves as a substrate for the generation of the potent microbicide chlorine bleach by stimulated neutrophils and also contributes to regulation of ionic homeostasis for optimal antimicrobial activity within phagosomes. An inadequate supply of chloride to phagocytes and their phagosomes, such as in CF disease and other chloride channel disorders, severely compromises host defense against infection. We provide an overview of the roles that chloride plays in normal innate immunity, highlighting specific links between defective chloride channel function and failures in host defense.
Collapse
Affiliation(s)
- Guoshun Wang
- *Departments of Microbiology and Immunology, Genetics, and Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA; and Department of Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, and Veterans Administration Medical Center, Iowa City, Iowa, USA
| | - William M Nauseef
- *Departments of Microbiology and Immunology, Genetics, and Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA; and Department of Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, and Veterans Administration Medical Center, Iowa City, Iowa, USA
| |
Collapse
|
34
|
Ignasiak MT, Pedzinski T, Rusconi F, Filipiak P, Bobrowski K, Houée-Levin C, Marciniak B. Photosensitized oxidation of methionine-containing dipeptides. From the transients to the final products. J Phys Chem B 2014; 118:8549-58. [PMID: 24946261 DOI: 10.1021/jp5039305] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Met residue oxidation has been studied for decades. Although many efforts have been made on the identification of free radicals, some doubts remain about their final fates, i.e., the nature of stable oxidation products. The photosensitized oxidation processes of two peptides, methionyl lysine (Met-Lys) and lysyl methionine (Lys-Met), were investigated using 3-carboxybenzophenone (3CB) as a sensitizer. Therefore, not only the transients were characterized but also the final products (by high-performance liquid chromatography and mass spectrometry) together with the quantum yields. As for the transients, the sulfur radical cations stabilized by a two-center three electron bonds with a nitrogen (S.·.N)(+) were identified in the case of Met-Lys. On the other hand, in Lys-Met, the intermolecular (S.·.S)(+) radical cations were found. The peptide-3CB adduct was the only stable product detected and was accompanied neither by sulfoxide formation nor by decarboxylation. It shows that both (S.·.N)(+) and (S.·.S)(+) radicals are converted into the relatively long-lived α-(alkylthio)alkyl radicals, which add to the 3CB-derived radicals. This addition reaction prevented all other oxidation processes such as formation of sulfoxide. The lysine residue was totally protected, which may also be of importance in biological processes.
Collapse
Affiliation(s)
- Marta T Ignasiak
- Faculty of Chemistry, Adam Mickiewicz University , Umultowska 89b, 61614 Poznan, Poland
| | | | | | | | | | | | | |
Collapse
|
35
|
Péterfi Z, Geiszt M. Peroxidasins: novel players in tissue genesis. Trends Biochem Sci 2014; 39:305-7. [PMID: 24924147 DOI: 10.1016/j.tibs.2014.05.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 05/16/2014] [Accepted: 05/23/2014] [Indexed: 01/04/2023]
Abstract
Stabilization of extracellular matrix by protein crosslinking is a universal and essential process in multicellular organisms. Recent findings revealed that peroxidasin, a unique heme-peroxidase, produces hypohalides to support matrix synthesis. Unexpectedly, the highly reactive and potentially damaging hypohalides mediate the formation of sulfilimine bonds between adjacent collagen IV protomers. This crosslink is a fundamental feature of basal membranes, defining peroxidasin-dependent oxidant generation and sulfilimine crosslink formation as an elemental mechanism of tissue biogenesis.
Collapse
Affiliation(s)
- Zalán Péterfi
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, H-1094, Hungary; Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Miklós Geiszt
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, H-1094, Hungary; "Lendület" Peroxidase Enzyme Research Group of the Semmelweis University and the Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|