1
|
Cansız D, Özokan G, Bilginer A, Işıkoğlu S, Mızrak Z, Ünal İ, Beler M, Alturfan AA, Emekli-Alturfan E. Effects of benzoic acid synthesized from Cinnamomum cassia by green chemistry on valproic acid-induced neurotoxicity in zebrafish embryos. Toxicol Mech Methods 2024; 34:833-843. [PMID: 38888055 DOI: 10.1080/15376516.2024.2364899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/02/2024] [Indexed: 06/20/2024]
Abstract
Benzoic acid, the most basic aromatic carboxylic acid, is produced industrially and used in cosmetic, hygiene, and pharmaceutical items as a flavoring ingredient and/or preservative. The significance of sodium benzoate, a metabolite of cinnamon, used as a food preservative and FDA-approved medication to treat urea cycle abnormalities in humans, has been shown to raise the levels of neurotrophic factors. Valproic acid (VPA), a commonly used anti-epileptic and mood-stabilizing medication, causes behavioral and intellectual problems and is a commonly used agent to induce animal model for autism. Aim of this study is to determine the effects of benzoic acid synthesized from Cinnamomum Cassia by green chemistry method on gene expressions related to autism development in case of VPA toxicity. Zebrafish embryos were exposed to low and high doses of benzoic acid for 72 h post-fertilization. Locomotor activities were determined. Acetylcholinesterase (AchE), lipid peroxidation, nitric oxide (NO), sialic acid (SA), glutathione (GSH)-S-transferase, catalase (CAT), and superoxide dismutase (SOD) activities were determined spectrophotometrically. eif4b, adsl, and shank3a expressions were determined by RT-PCR as autism-related genes. Although high-dose benzoic acid inhibited locomotor activity, benzoic acid at both doses ameliorated VPA-induced disruption in oxidant-antioxidant balance and inflammation in zebrafish embryos and was effective in improving the impaired expression of autism-related genes.
Collapse
Affiliation(s)
- Derya Cansız
- Istanbul Medipol University, Faculty of Medicine, Medical Biochemistry, Istanbul, Türkiye
| | - Gökhan Özokan
- BioArge Laboratories, Yıldız Technical University Technocity, Istanbul, Türkiye
| | - Abdulkerim Bilginer
- BioArge Laboratories, Yıldız Technical University Technocity, Istanbul, Türkiye
| | - Semanur Işıkoğlu
- Department of Biochemistry, Institute of Health Sciences, Faculty of Pharmacy, Marmara University, Istanbul, Türkiye
| | - Zülal Mızrak
- Department of Biochemistry, Institute of Health Sciences, Faculty of Pharmacy, Marmara University, Istanbul, Türkiye
| | - İsmail Ünal
- Department of Biochemistry, Institute of Health Sciences, Faculty of Pharmacy, Marmara University, Istanbul, Türkiye
| | - Merih Beler
- Department of Biochemistry, Institute of Health Sciences, Faculty of Pharmacy, Marmara University, Istanbul, Türkiye
| | - A Ata Alturfan
- Department of Biochemistry, Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Türkiye
| | - Ebru Emekli-Alturfan
- Department of Basic Medical Sciences, Faculty of Dentistry, Marmara University, Istanbul, Türkiye
| |
Collapse
|
2
|
Guerra-Ojeda S, Suarez A, Belmonte B, Marchio P, Genovés P, Arias OJ, Aldasoro M, Vila JM, Serna E, Mauricio MD. Sodium valproate treatment reverses endothelial dysfunction in aorta from rabbits with acute myocardial infarction. Eur J Pharmacol 2024; 970:176475. [PMID: 38438061 DOI: 10.1016/j.ejphar.2024.176475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
Sodium valproate (VPA), a histone deacetylase (HDAC) inhibitor, could be a promising candidate to treat acute myocardial infarction (AMI). In this study, AMI was induced in New Zealand White rabbits by occluding the left circumflex coronary artery for 1 h, followed by reperfusion. The animals were distributed into three experimental groups: the sham-operated group (SHAM), the AMI group and the AMI + VPA group (AMI treated with VPA 500 mg/kg/day). After 5 weeks, abdominal aorta was removed and used for isometric recording of tension in organ baths or protein expression by Western blot, and plasma for the determination of nitrate/nitrite (NOx) levels by colorimetric assay. Our results indicated that AMI induced a reduction of the endothelium-dependent response to acetylcholine without modifying the endothelium-independent response to sodium nitroprusside, leading to endothelial dysfunction. VPA treatment reversed AMI-induced endothelial dysfunction and even increased NO sensitivity in vascular smooth muscle. This response was consistent with an antioxidant effect of VPA, as it was able to reverse the superoxide dismutase 1 (SOD 1) down-regulation induced by AMI. Our experiments also ruled out that the VPA mechanism was related to eNOS, iNOS, sGC and arginase expression or changes in NOx plasma levels. Therefore, we conclude that VPA improves vasodilation by increasing NO bioavailability, likely due to its antioxidant effect. Since endothelial dysfunction was closely related to AMI, VPA treatment could increase aortic blood flow, making it a potential agent in reperfusion therapy that can prevent the vascular damage.
Collapse
Affiliation(s)
- Sol Guerra-Ojeda
- Department of Physiology. School of Medicine, University of Valencia, Spain; Institute of Health Research INCLIVA, Valencia, Spain
| | - Andrea Suarez
- Department of Physiology. School of Medicine, University of Valencia, Spain; Institute of Health Research INCLIVA, Valencia, Spain
| | - Begoña Belmonte
- Department of Physiology. School of Medicine, University of Valencia, Spain; Institute of Health Research INCLIVA, Valencia, Spain
| | - Patricia Marchio
- Department of Physiology. School of Medicine, University of Valencia, Spain; Institute of Health Research INCLIVA, Valencia, Spain
| | - Patricia Genovés
- Department of Physiology. School of Medicine, University of Valencia, Spain; Institute of Health Research INCLIVA, Valencia, Spain; Center for Biomedical Research Network on Cardiovascular Diseases (CIBER-CV), Madrid, Spain
| | - Oscar Julian Arias
- Department of Physiology. School of Medicine, University of Valencia, Spain; Institute of Health Research INCLIVA, Valencia, Spain; Center for Biomedical Research Network on Cardiovascular Diseases (CIBER-CV), Madrid, Spain; Department of Biomedical Sciences, CEU Cardenal Herrera, Valencia, Spain
| | - Martin Aldasoro
- Department of Physiology. School of Medicine, University of Valencia, Spain; Institute of Health Research INCLIVA, Valencia, Spain
| | - José M Vila
- Department of Physiology. School of Medicine, University of Valencia, Spain; Institute of Health Research INCLIVA, Valencia, Spain
| | - Eva Serna
- Department of Physiology. School of Medicine, University of Valencia, Spain; Institute of Health Research INCLIVA, Valencia, Spain
| | - Maria D Mauricio
- Department of Physiology. School of Medicine, University of Valencia, Spain; Institute of Health Research INCLIVA, Valencia, Spain.
| |
Collapse
|
3
|
Kılıçaslan AK, Emir BS, Yıldız S, Kılıçaslan G, Kurt O. Arterial Stiffness in Patients with Bipolar Disorder. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2023; 21:516-525. [PMID: 37424419 PMCID: PMC10335908 DOI: 10.9758/cpn.22.1009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 09/21/2022] [Accepted: 01/03/2023] [Indexed: 07/11/2023]
Abstract
Objective Bipolar disorder (BD) is an inflammatory and metabolic disease. The disease and the drugs used to treat it may affect cardiovascular disease (CVD) risk. The aim of this study is to investigate arterial stiffness in patients with BD and compare them with healthy controls. Methods Thirty-nine patients with BD type I in remission and 39 healthy control subjects were included in the study. Carotid and femoral artery intima-media thickness (IMT) and arterial thickness parameters were measured by Doppler ultrasonography. Results The elastic modulus value of the carotid artery was significantly higher in the patients than in the control group (p = 0.015). Although the IMT of both carotid and femoral artery was thicker in patients than in healthy control subjects, this difference was not statistically significant (p = 0.105; p = 0.391). There was a significant positive correlation between chlorpromazine equivalent dose and femoral elastic modulus value (p = 0.021, r = 0.539). There was a positive correlation between lithium equivalent dose and carotid compliance; a significant negative correlation between lithium equivalent dose and carotid elastic modulus was also determined (both p = 0.007, r = 0.466; p = 0.027, r = -0.391, respectively). No predictor was observed between drug dose and arterial stiffness parameters. Conclusion Arterial stiffness might be investigated for its potential to reduce CVD risk in patients with BD. Given the established CVD complications in this patient population, further studies are needed to determine whether the results are specific to antipsychotic treatment or BD and to clarify the potential arterial protective effects of mood stabilizers.
Collapse
Affiliation(s)
| | - Burcu Sırlıer Emir
- Department of Psychiatry, Elazığ Fethi Sekin City Hospital, Elazığ, Turkey
| | - Sevler Yıldız
- Department of Psychiatry, University of Binali Yıldırım, Erzincan, Turkey
| | - Gülhan Kılıçaslan
- Department of Radiology, Elazığ Fethi Sekin City Hospital, Elazığ, Turkey
| | - Osman Kurt
- Adıyaman Provincial Health Directorate, Adıyaman, Turkey
| |
Collapse
|
4
|
Liu F, Wang Y, Huang X, Liu D, Ding W, Lai H, Wang C, Ji Q. LINC02015 modulates the cell proliferation and apoptosis of aortic vascular smooth muscle cells by transcriptional regulation and protein interaction network. Cell Death Discov 2023; 9:301. [PMID: 37596272 PMCID: PMC10439127 DOI: 10.1038/s41420-023-01601-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 07/31/2023] [Accepted: 08/10/2023] [Indexed: 08/20/2023] Open
Abstract
Long intergenic nonprotein coding RNA 2015 (LINC02015) is a long non-coding RNA that has been found elevated in various cell proliferation-related diseases. However, the functions and interactive mechanism of LINC02015 remain unknown. This study aimed to explore the role of LINC02015 in the cell proliferation and apoptosis of vascular smooth muscle cells (VSMCs) to explain the pathogenesis of aortic diseases. Ascending aorta samples and angiotensin-II (AT-II) treated primary human aortic VSMCs (HAVSMCs) were used to evaluate the LINC02015 expression. RNA sequencing, chromatin isolation by RNA purification sequencing, RNA pull-down, and mass spectrometry (MS) were applied to explore the potential interacting mechanisms. LINC02015 expression was found elevated in aortic dissection and AT-II-treated HAVSMCs. Cell proliferation and cell cycle were activated in HAVSMCs with LINC02015 knockdown. The cyclins family and caspase family were found to participate in regulating the cell cycle and apoptosis via the NF-κB signaling pathway. RXRA was discovered as a possible hub gene for LINC02015 transcriptional regulating networks. Besides, the protein interaction network of LINC02015 was revealed with candidate regulating molecules. It was concluded that the knockdown of LINC02015 could promote cell proliferation and inhibit the apoptosis of HAVSMCs through an RXRA-related transcriptional regulation network, which could provide a potential therapeutic target for aortic diseases.
Collapse
Affiliation(s)
- Fangyu Liu
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Municipal Institute for Cardiovascular Diseases, Shanghai, 200032, China
| | - Yulin Wang
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xitong Huang
- Department of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Dingqian Liu
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wenjun Ding
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Hao Lai
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Chunsheng Wang
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Shanghai Municipal Institute for Cardiovascular Diseases, Shanghai, 200032, China.
| | - Qiang Ji
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
5
|
Solone XKV, Caldara AL, Wells B, Qiao H, Wade LR, Salerno JC, Helms KA, Smith KER, McMurry JL, Chrestensen CA. MAP kinases differentially bind and phosphorylate NOS3 via two unique NOS3 sites. FEBS Open Bio 2022; 12:1075-1086. [PMID: 35182051 PMCID: PMC9063426 DOI: 10.1002/2211-5463.13384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/12/2022] [Accepted: 02/17/2022] [Indexed: 11/25/2022] Open
Abstract
Nitric oxide synthase 3 (NOS3) is a major vasoprotective enzyme that catalyzes the conversion of l-arginine to nitric oxide (NO) in response to a significant number of signaling pathways. Here, we provide evidence that NOS3 interactions with MAP kinases have physiological relevance. Binding interactions of NOS3 with c-Jun N-terminal kinase (JNK1α1 ), p38α, and ERK2 were characterized using optical biosensing with full-length NOS3 and NOS3 specific peptides and phosphopeptides. Like p38α and ERK2, JNK1α1 exhibited high-affinity binding to full-length NOS3 (KD 15 nm). Rate constants exhibited fast-on, slow-off binding (kon = 4106 m-1 s-1 ; koff = 6.2 × 10-5 s-1 ). Further analysis using synthetic NOS3 peptides revealed two MAP kinase binding sites unique to NOS3. p38α evinced similar affinity with both NOS3 binding sites. For ERK2 and JNK1α1, the affinity at the two sites differed. However, NOS3 peptides with a phosphate at either S114 or S633 did not meaningfully interact with the kinases. Immunoblotting revealed that each kinase phosphorylated NOS3 with a unique pattern. JNK1α1 predominantly phosphorylated NOS3 at S114, ERK2 at S600, and p38α phosphorylated both residues. In vitro production of NO was unchanged by phosphorylation at these sites. In human microvascular endothelial cells, endogenous interactions of all the MAP kinases with NOS3 were captured using proximity ligation assay in resting cells. Our results underscore the importance of MAP kinase interactions, identifying two unique NOS3 interaction sites with potential for modulation by MAP kinase phosphorylation (S114) and other signaling inputs, like protein kinase A (S633).
Collapse
Affiliation(s)
- Xzaviar K. V. Solone
- Department of Molecular & Cellular BiologyKennesaw State UniversityGAUSA
- Present address:
Department of Molecular Genetics and MicrobiologyUniversity of FloridaGainesvilleFLUSA
| | - Amber L. Caldara
- Department of Molecular & Cellular BiologyKennesaw State UniversityGAUSA
| | - Brady Wells
- Department of Chemistry & BiochemistryKennesaw State UniversityGAUSA
| | - Hao Qiao
- Department of Chemistry & BiochemistryKennesaw State UniversityGAUSA
| | - Lydia R. Wade
- Department of Chemistry & BiochemistryKennesaw State UniversityGAUSA
| | - John C. Salerno
- Department of Molecular & Cellular BiologyKennesaw State UniversityGAUSA
| | - Katy A. Helms
- Department of Molecular & Cellular BiologyKennesaw State UniversityGAUSA
- Present address:
Wake Forest Medical CenterWinston‐SalemNCUSA
| | | | | | | |
Collapse
|
6
|
Lee H, Hwang YJ, Park JH, Cho DH. Valproic acid decreases vascular smooth muscle cell proliferation via protein phosphatase 2A-mediated p70 S6 kinase inhibition. Biochem Biophys Res Commun 2022; 606:94-99. [PMID: 35339758 DOI: 10.1016/j.bbrc.2022.03.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/16/2022] [Accepted: 03/19/2022] [Indexed: 11/18/2022]
Abstract
Valproic acid (VPA) has been used to treat epilepsy and bipolar disorder. Although the abnormal proliferation of vascular smooth muscle cells (VSMCs) is a well-established contributor to the development of various vascular diseases including atherosclerosis, the effect of VPA on VSMC proliferation and its mechanism of action have not been fully revealed. Herein, we investigated the molecular mechanism by which VPA inhibits rat VSMC proliferation. VPA dose-dependently decreased VSMC proliferation, which was accompanied by the dose-dependent decrease in phosphorylation of p70 S6 kinase (p70S6K) at Thr389 (p-p70S6K-Thr389), and overexpression of the p70S6K-T389E mutant gene significantly reversed VPA-inhibited VSMC proliferation. Co-treatment with okadaic acid, a specific protein phosphatase 2A (PP2A) inhibitor, significantly restored p-p70S6K-Thr389. Furthermore, knockdown of PP2Ac gene expression by siRNA significantly reversed VPA-inhibited p-p70S6K-Thr389 and VSMC proliferation. Confocal microscopic analyses and co-immunoprecipitation results clearly showed that the physical binding of p70S6K and PP2Ac was promoted by VPA. Valpromide, a VPA's structural derivative with no histone deacetylase (HDAC) inhibition activity, as well as VPA and sodium butyrate, an HDAC inhibitor similar to VPA, decreased VSMC proliferation and p-p70S6K-Thr389, indicating that HDAC is not involved in VPA-inhibited VSMC proliferation. Finally, the inhibitory effects of VPA on p-p70S6K-Thr389 and VSMC proliferation were reiterated in a platelet-derived growth factor (PDGF)-induced in vitro atherosclerosis model. In conclusion, our results demonstrate that VPA decreased cell proliferation via PP2A-mediated inhibition of p-p70S6K-Thr389 in basal and PDGF-stimulated VSMCs. The results suggest that VPA could be used in the treatment and prevention of atherosclerosis and in-stent restenosis.
Collapse
Affiliation(s)
- Hansol Lee
- Department of Pharmacology, Yeungnam University College of Medicine, 170 Hyunchung-ro, Nam-gu, Daegu, 42415, South Korea
| | - Yun-Jin Hwang
- Department of Pharmacology, Yeungnam University College of Medicine, 170 Hyunchung-ro, Nam-gu, Daegu, 42415, South Korea
| | - Jung-Hyun Park
- AbT R&D Center, Azothbio Inc., 520 Misa-daero, Hanam-si, Gyeonggi-do, 12925, South Korea
| | - Du-Hyong Cho
- Department of Pharmacology, Yeungnam University College of Medicine, 170 Hyunchung-ro, Nam-gu, Daegu, 42415, South Korea.
| |
Collapse
|
7
|
Chen X, He Y, Fu W, Sahebkar A, Tan Y, Xu S, Li H. Histone Deacetylases (HDACs) and Atherosclerosis: A Mechanistic and Pharmacological Review. Front Cell Dev Biol 2020; 8:581015. [PMID: 33282862 PMCID: PMC7688915 DOI: 10.3389/fcell.2020.581015] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis (AS), the most common underlying pathology for coronary artery disease, is a chronic inflammatory, proliferative disease in large- and medium-sized arteries. The vascular endothelium is important for maintaining vascular health. Endothelial dysfunction is a critical early event leading to AS, which is a major risk factor for stroke and myocardial infarction. Accumulating evidence has suggested the critical roles of histone deacetylases (HDACs) in regulating vascular cell homeostasis and AS. The purpose of this review is to present an updated view on the roles of HDACs (Class I, Class II, Class IV) and HDAC inhibitors in vascular dysfunction and AS. We also elaborate on the novel therapeutic targets and agents in atherosclerotic cardiovascular diseases.
Collapse
Affiliation(s)
- Xiaona Chen
- Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanhong He
- The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenjun Fu
- The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Polish Mother's Memorial Hospital Research Institute, Łódź, Poland
| | - Yuhui Tan
- Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Suowen Xu
- Department of Endocrinology, First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hong Li
- Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
8
|
Park JH, Cho DH, Hwang YJ, Lee JY, Lee HJ, Jo I. Activation of ATM/Akt/CREB/eNOS Signaling Axis by Aphidicolin Increases NO Production and Vessel Relaxation in Endothelial Cells and Rat Aortas. Biomol Ther (Seoul) 2020; 28:549-560. [PMID: 32394671 PMCID: PMC7585642 DOI: 10.4062/biomolther.2020.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/26/2020] [Accepted: 04/06/2020] [Indexed: 11/28/2022] Open
Abstract
Although DNA damage responses (DDRs) are reported to be involved in nitric oxide (NO) production in response to genotoxic stresses, the precise mechanism of DDR-mediated NO production has not been fully understood. Using a genotoxic agent aphidicolin, we investigated how DDRs regulate NO production in bovine aortic endothelial cells. Prolonged (over 24 h) treatment with aphidicolin increased NO production and endothelial NO synthase (eNOS) protein expression, which was accompanied by increased eNOS dimer/monomer ratio, tetrahydrobiopterin levels, and eNOS mRNA expression. A promoter assay using 5'-serially deleted eNOS promoters revealed that Tax-responsive element site, located at -962 to -873 of the eNOS promoter, was responsible for aphidicolin-stimulated eNOS gene expression. Aphidicolin increased CREB activity and ectopic expression of dominantnegative inhibitor of CREB, A-CREB, repressed the stimulatory effects of aphidicolin on eNOS gene expression and its promoter activity. Co-treatment with LY294002 decreased the aphidicolin-stimulated increase in p-CREB-Ser133 level, eNOS expression, and NO production. Furthermore, ectopic expression of dominant-negative Akt construct attenuated aphidicolin-stimulated NO production. Aphidicolin increased p-ATM-Ser1981 and the knockdown of ATM using siRNA attenuated all stimulatory effects of aphidicolin on p-Akt-Ser473, p-CREB-Ser133, eNOS expression, and NO production. Additionally, these stimulatory effects of aphidicolin were similarly observed in human umbilical vein endothelial cells. Lastly, aphidicolin increased acetylcholine-induced vessel relaxation in rat aortas, which was accompanied by increased p-ATM-Ser1981, p-Akt-Ser473, p-CREB-Ser133, and eNOS expression. In conclusion, our results demonstrate that in response to aphidicolin, activation of ATM/Akt/CREB/eNOS signaling cascade mediates increase of NO production and vessel relaxation in endothelial cells and rat aortas.
Collapse
Affiliation(s)
- Jung-Hyun Park
- Department of Molecular Medicine, Ewha Womans University College of Medicine, Seoul 07804, Republic of Korea
| | - Du-Hyong Cho
- Department of Pharmacology, Yeungnam University College of Medicine, Daegu 42415, Republic of Korea
| | - Yun-Jin Hwang
- Department of Pharmacology, Yeungnam University College of Medicine, Daegu 42415, Republic of Korea
| | - Jee Young Lee
- Department of Molecular Medicine, Ewha Womans University College of Medicine, Seoul 07804, Republic of Korea
| | - Hyeon-Ju Lee
- Department of Molecular Medicine, Ewha Womans University College of Medicine, Seoul 07804, Republic of Korea
| | - Inho Jo
- Department of Molecular Medicine, Ewha Womans University College of Medicine, Seoul 07804, Republic of Korea
| |
Collapse
|
9
|
Lee HJ, Park JH, Oh SY, Cho DH, Kim S, Jo I. Zearalenone-Induced Interaction between PXR and Sp1 Increases Binding of Sp1 to a Promoter Site of the eNOS, Decreasing Its Transcription and NO Production in BAECs. Toxins (Basel) 2020; 12:toxins12060421. [PMID: 32630586 PMCID: PMC7354576 DOI: 10.3390/toxins12060421] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 11/16/2022] Open
Abstract
Zearalenone (ZEN) is a non-steroidal mycotoxin that has various toxicological impacts on mammalian health. Here, we found that ZEN significantly affected the production of nitric oxide (NO) and the expression of endothelial NO synthase (eNOS) of bovine aortic endothelial cells (BAECs). A promoter analysis using 5′-serially deleted human eNOS promoter revealed that the proximal region (−135 to +22) was responsible for ZEN-mediated reduction of the human eNOS promoter activity. This effect was reversed by mutation of two specificity protein 1 (Sp1) binding elements in the human eNOS promoter. A chromatin immunoprecipitation assay revealed that ZEN increased Sp1 binding to the bovine eNOS promoter region (−113 to −12), which is homologous to −135 to +22 of the human eNOS promoter region. We also found that ZEN promoted the binding of the pregnane X receptor (PXR) to Sp1 of the bovine eNOS, consequently decreasing eNOS expression. This reduction of eNOS could have contributed to the decreased acetylcholine-induced vessel relaxation upon ZEN treatment in our ex vivo study using mouse aortas. In conclusion, our data demonstrate that ZEN decreases eNOS expression by enhancing the binding of PXR-Sp1 to the eNOS promoter, thereby decreasing NO production and potentially causing vessel dysfunction.
Collapse
Affiliation(s)
- Hyeon-Ju Lee
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (H.-J.L.); (J.-H.P.); (S.-Y.O.)
| | - Jung-Hyun Park
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (H.-J.L.); (J.-H.P.); (S.-Y.O.)
| | - Se-Young Oh
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (H.-J.L.); (J.-H.P.); (S.-Y.O.)
| | - Du-Hyong Cho
- Department of Pharmacology, College of Medicine, Yeungnam University, 170 Hyunchung-ro, Nam-gu, Daegu 42415, Korea; (D.-H.C.); (S.K.)
| | - Suji Kim
- Department of Pharmacology, College of Medicine, Yeungnam University, 170 Hyunchung-ro, Nam-gu, Daegu 42415, Korea; (D.-H.C.); (S.K.)
| | - Inho Jo
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (H.-J.L.); (J.-H.P.); (S.-Y.O.)
- Correspondence: ; Tel.: 82-2-6986-6267
| |
Collapse
|
10
|
Schmitz SL, Abosi OJ, Persons JE, Sinkey CA, Fiedorowicz JG. Impact of Mood on Endothelial Function and Arterial Stiffness in Bipolar Disorder. HEART AND MIND 2019; 2:78-84. [PMID: 31650094 DOI: 10.4103/hm.hm_20_19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Previous research in bipolar disorder demonstrates greater than expected vascular dysfunction later in the course of illness, proportionate to the cumulative burden of mood symptoms. However, little is known about the effect of acute mood states on vascular function. Here we examine the relation between vascular function and mood state in individuals with bipolar disorder. Method This prospective study followed 40 individuals with bipolar disorder for up to 6 months. Participants were assessed for mood state and vascular function at baseline, 2 weeks, and 6 months. Mood state was determined using clinician-administered Montgomery-Åsberg Depression Rating Scale and Young Mania Rating Scale. Vascular function was assessed by flow-mediated dilation (FMD) of the brachial artery, forearm vascular resistance (FVR), and arterial stiffness. Results Participants had a mean age of 30.1 years and 75% were male. Primary outcome measures FMD and nitroglycerine-mediated dilation were not found to have statistically significant associations with depressive or manic symptoms. In unadjusted models, higher manic symptoms were significantly associated with increased FVR nitroprusside-mediated dilation and diastolic blood pressure. In adjusted models, higher depressive symptoms were significantly associated with increases in augmentation index adjusted for heart rate of 75 bpm, and higher manic symptoms remained associated with increases in diastolic blood pressure. Conclusion FMD may have limited sensitivity as a biomarker for measuring short-term effects of mood state. Longer-term prospective studies are needed to clarify the temporal relation between chronic mood symptoms and vascular function in bipolar disorder.
Collapse
Affiliation(s)
- Samantha L Schmitz
- Department of Psychiatry, The University of Iowa, Iowa City, Iowa, 52242
| | - Oluchi J Abosi
- Department of Psychiatry, The University of Iowa, Iowa City, Iowa, 52242.,Department of Epidemiology, College of Public Health, The University of Iowa, Iowa City, Iowa, 52242
| | - Jane E Persons
- Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, 52242
| | - Christine A Sinkey
- Department of Ophthalmology, The University of Iowa, Iowa City, Iowa, 52242
| | - Jess G Fiedorowicz
- Department of Psychiatry, The University of Iowa, Iowa City, Iowa, 52242.,Department of Epidemiology, College of Public Health, The University of Iowa, Iowa City, Iowa, 52242.,Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, 52242.,François M. Abboud Cardiovascular Research Center, The University of Iowa, Iowa City, Iowa, 52242.,Department of Internal Medicine, The University of Iowa, Iowa City, Iowa, 52242.,Iowa Neuroscience Institute, Obesity Research and Education Initiative The University of Iowa, Iowa City, Iowa, 52242
| |
Collapse
|
11
|
Ornoy A, Koren G, Yanai J. Is post exposure prevention of teratogenic damage possible: Studies on diabetes, valproic acid, alcohol and anti folates in pregnancy: Animal studies with reflection to human. Reprod Toxicol 2018; 80:92-104. [DOI: 10.1016/j.reprotox.2018.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 05/06/2018] [Accepted: 05/25/2018] [Indexed: 12/20/2022]
|
12
|
Leong IL, Tsai TY, Wong KL, Shiao LR, Cheng KS, Chan P, Leung YM. Valproic acid inhibits ATP-triggered Ca 2+ release via a p38-dependent mechanism in bEND.3 endothelial cells. Fundam Clin Pharmacol 2018; 32:499-506. [PMID: 29752814 DOI: 10.1111/fcp.12381] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 04/22/2018] [Accepted: 05/04/2018] [Indexed: 01/06/2023]
Abstract
Valproic acid (VA) is currently used to treat epilepsy and bipolar disorder. It has also been demonstrated to promote neuroprotection and neurogenesis. Although beneficial actions of VA on brain blood vessels have also been demonstrated, the effects of VA on brain endothelial cell (EC) Ca2+ signaling are hitherto unreported. In this report, we examined the effects of VA on agonist-triggered Ca2+ signaling in mouse cortical bEND.3 EC. While VA (100 μm) did not cause an acute inhibition of ATP-triggered Ca2+ signaling, a 30-min VA treatment strongly suppressed ATP-triggered intracellular Ca2+ release; however, such treatment did not affect Ca2+ release triggered by cyclopiazonic acid, an inhibitor of SERCA Ca2+ pump, suggesting there was no reduction in Ca2+ store size. VA-activated p38 signaling, and VA-induced inhibition of ATP-triggered Ca2+ release was prevented by SB203580, a p38 inhibitor, suggesting VA caused the inhibition by activating p38. Remarkably, VA treatment did not affect acetylcholine-triggered Ca2+ release, suggesting VA may not inhibit inositol 1,4,5-trisphosphate-induced Ca2+ release per se, and may not act directly on Gq or phospholipase C. Taken together, our results suggest VA treatment, via a p38-dependent mechanism, led to an inhibition of purinergic receptor-effector coupling.
Collapse
Affiliation(s)
- Iat-Lon Leong
- Division of Cardiology, Department of Internal Medicine, Kiang Wu Hospital, 33 Estrada do Repouso, Macau, China
| | - Tien-Yao Tsai
- School of Medicine, College of Medicine, Fu Jen Catholic University, 510 Zhongzheng Road, New Taipei City, Taiwan.,Cardiovascular Division, Fu Jen Catholic University Hospital, 69 Guizi Road, New Taipei City, Taiwan
| | - Kar-Lok Wong
- Department of Anesthesiology, China Medical University Hospital, 2 Yude Road, Taichung, Taiwan
| | - Lian-Ru Shiao
- Department of Physiology, China Medical University, 91 Hsuehshi Road, Taichung, Taiwan
| | - Ka-Shun Cheng
- Department of Anesthesiology, China Medical University Hospital, 2 Yude Road, Taichung, Taiwan.,Department of Anesthesiology, The Qingdao University Yuhuangding Hospital, 20 Yuhuangding East Road, Yantai, Shandong, China
| | - Paul Chan
- Division of Cardiology, Department of Medicine, Taipei Medical University Wan Fang Hospital, 111 Xinglong Road, Taipei, Taiwan
| | - Yuk-Man Leung
- Department of Physiology, China Medical University, 91 Hsuehshi Road, Taichung, Taiwan
| |
Collapse
|
13
|
Son MS, Park CH, Kim JW. Effect of Valproic Acid on Nitric Oxide and Nitric Oxide Synthase in Trabecular Meshwork Cell. JOURNAL OF THE KOREAN OPHTHALMOLOGICAL SOCIETY 2018. [DOI: 10.3341/jkos.2018.59.6.543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Myung Seo Son
- Department of Ophthalmology, Catholic University of Daegu School of Medicine, Daegu, Korea
| | | | - Jae Woo Kim
- Department of Ophthalmology, Catholic University of Daegu School of Medicine, Daegu, Korea
| |
Collapse
|
14
|
Doytcheva P, Bächler T, Tarasco E, Marzolla V, Engeli M, Pellegrini G, Stivala S, Rohrer L, Tona F, Camici GG, Vanhoutte PM, Matter CM, Lutz TA, Lüscher TF, Osto E. Inhibition of Vascular c-Jun N-Terminal Kinase 2 Improves Obesity-Induced Endothelial Dysfunction After Roux-en-Y Gastric Bypass. J Am Heart Assoc 2017; 6:JAHA.117.006441. [PMID: 29138180 PMCID: PMC5721746 DOI: 10.1161/jaha.117.006441] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background Roux‐en‐Y gastric bypass (RYGB) reduces obesity‐associated comorbidities and cardiovascular mortality. RYGB improves endothelial dysfunction, reducing c‐Jun N‐terminal kinase (JNK) vascular phosphorylation. JNK activation links obesity with insulin resistance and endothelial dysfunction. Herein, we examined whether JNK1 or JNK2 mediates obesity‐induced endothelial dysfunction and if pharmacological JNK inhibition can mimic RYGB vascular benefits. Methods and Results After 7 weeks of a high‐fat high‐cholesterol diet, obese rats underwent RYGB or sham surgery; sham–operated ad libitum–fed rats received, for 8 days, either the control peptide D‐TAT or the JNK peptide inhibitor D‐JNKi‐1 (20 mg/kg per day subcutaneous). JNK peptide inhibitor D‐JNKi‐1 treatment improved endothelial vasorelaxation in response to insulin and glucagon‐like peptide‐1, as observed after RYGB. Obesity increased aortic phosphorylation of JNK2, but not of JNK1. RYGB and JNK peptide inhibitor D‐JNKi‐1 treatment blunted aortic JNK2 phosphorylation via activation of glucagon‐like peptide‐1–mediated signaling. The inhibitory phosphorylation of insulin receptor substrate‐1 was reduced, whereas the protein kinase B/endothelial NO synthase pathway was increased and oxidative stress was decreased, resulting in improved vascular NO bioavailability. Conclusions Decreased aortic JNK2 phosphorylation after RYGB rapidly improves obesity‐induced endothelial dysfunction. Pharmacological JNK inhibition mimics the endothelial protective effects of RYGB. These findings highlight the therapeutic potential of novel strategies targeting vascular JNK2 against the severe cardiovascular disease associated with obesity.
Collapse
Affiliation(s)
- Petia Doytcheva
- Center for Molecular Cardiology, University of Zurich, Switzerland.,University Heart Center, Cardiology, University Hospital Zurich, Switzerland.,Institute of Veterinary Physiology, Vetsuisse Faculty University of Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Switzerland
| | - Thomas Bächler
- Department of Surgery, Cantonal Hospital Fribourg, Fribourg, Switzerland
| | - Erika Tarasco
- Institute of Veterinary Physiology, Vetsuisse Faculty University of Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Switzerland
| | - Vincenzo Marzolla
- Center for Molecular Cardiology, University of Zurich, Switzerland.,University Heart Center, Cardiology, University Hospital Zurich, Switzerland.,Laboratory of Cardiovascular Endocrinology, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Pisana, Rome, Italy
| | - Michael Engeli
- Center for Molecular Cardiology, University of Zurich, Switzerland.,University Heart Center, Cardiology, University Hospital Zurich, Switzerland
| | - Giovanni Pellegrini
- Laboratory for Animal Model Pathology, Institute for Veterinary Pathology, Vetsuisse Faculty University of Zurich, Switzerland
| | - Simona Stivala
- Center for Molecular Cardiology, University of Zurich, Switzerland.,University Heart Center, Cardiology, University Hospital Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Switzerland
| | - Lucia Rohrer
- Institute of Clinical Chemistry, University Hospital Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Switzerland
| | - Francesco Tona
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Italy
| | - Giovanni G Camici
- Center for Molecular Cardiology, University of Zurich, Switzerland.,University Heart Center, Cardiology, University Hospital Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Switzerland
| | - Paul M Vanhoutte
- State Key Laboratory for Pharmaceutical Biotechnologies & Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Schwerzenbach, Switzerland
| | - Christian M Matter
- Center for Molecular Cardiology, University of Zurich, Switzerland.,University Heart Center, Cardiology, University Hospital Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Switzerland
| | - Thomas A Lutz
- Zurich Center for Integrative Human Physiology, University of Zurich, Switzerland
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zurich, Switzerland.,University Heart Center, Cardiology, University Hospital Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Switzerland
| | - Elena Osto
- Center for Molecular Cardiology, University of Zurich, Switzerland .,University Heart Center, Cardiology, University Hospital Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Switzerland.,Laboratory of Translational Nutrition Biology Federal Institute of Technology Zurich (ETHZ), Schwerzenbach, Switzerland
| |
Collapse
|
15
|
A mass spectrometry-based strategy combined with bioinformatics: A simple preclinical model for profiling valproic-acid-induced major proteins and modifications in human liver cells. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Kageyama Y, Kasahara T, Morishita H, Mataga N, Deguchi Y, Tani M, Kuroda K, Hattori K, Yoshida S, Inoue K, Kato T. Search for plasma biomarkers in drug-free patients with bipolar disorder and schizophrenia using metabolome analysis. Psychiatry Clin Neurosci 2017; 71:115-123. [PMID: 27676126 DOI: 10.1111/pcn.12461] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/22/2016] [Accepted: 09/22/2016] [Indexed: 12/18/2022]
Abstract
AIM There is an urgent need for diagnostic biomarkers of bipolar disorder (BD) and schizophrenia (SZ); however, confounding effects of medication hamper biomarker discovery. In this study, we conducted metabolome analyses to identify novel plasma biomarkers in drug-free patients with BD and SZ. METHODS We comprehensively analyzed plasma metabolites using capillary electrophoresis time-of-flight mass spectrometry in patients with SZ (n = 17), BD (n = 6), and major depressive disorder (n = 9) who had not received psychotropics for at least 2 weeks, and in matched healthy controls (n = 19). The results were compared with previous reports, or verified in an independent sample set using an alternative analytical approach. RESULTS Lower creatine level and higher 2-hydroxybutyric acid level were observed in SZ than in controls (uncorrected P = 0.016 and 0.043, respectively), whereas they were unaltered in a previously reported dataset. Citrulline was nominally significantly decreased in BD compared to controls (uncorrected P = 0.043); however, this finding was not replicated in an independent sample set of medicated patients with BD. N-methyl-norsalsolinol, a metabolite of dopamine, was suggested as a candidate biomarker of BD; however, it was not detected by the other analytical method. Levels of betaine, a previously reported candidate biomarker of schizophrenia, were unchanged in the current dataset. CONCLUSION Our preliminary findings suggest that the effect of confounding factors, such as duration of illness and medication, should be carefully controlled when searching for plasma biomarkers. Further studies are required to establish robust biomarkers for these disorders.
Collapse
Affiliation(s)
- Yuki Kageyama
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Brain Science Institute, Saitama, Japan.,Department of Neuropsychiatry, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Takaoki Kasahara
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Brain Science Institute, Saitama, Japan
| | - Hiromasa Morishita
- Research Resources Center, RIKEN Brain Science Institute, Saitama, Japan
| | - Nobuko Mataga
- Research Resources Center, RIKEN Brain Science Institute, Saitama, Japan
| | - Yasuhiko Deguchi
- Department of Neuropsychiatry, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | | | - Kenji Kuroda
- Department of Psychiatry, Hannan Hospital, Osaka, Japan
| | - Kotaro Hattori
- Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Sumiko Yoshida
- Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo, Japan.,Department of Laboratory Medicine, National Center of Neurology and Psychiatry Hospital, Tokyo, Japan
| | - Koki Inoue
- Department of Neuropsychiatry, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Tadafumi Kato
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Brain Science Institute, Saitama, Japan
| |
Collapse
|
17
|
Chistiakov DA, Orekhov AN, Bobryshev YV. Treatment of cardiovascular pathology with epigenetically active agents: Focus on natural and synthetic inhibitors of DNA methylation and histone deacetylation. Int J Cardiol 2016; 227:66-82. [PMID: 27852009 DOI: 10.1016/j.ijcard.2016.11.204] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 11/06/2016] [Indexed: 12/20/2022]
Abstract
Cardiovascular disease (CVD) retains a leadership as a major cause of human death worldwide. Although a substantial progress was attained in the development of cardioprotective and vasculoprotective drugs, a search for new efficient therapeutic strategies and promising targets is under way. Modulation of epigenetic CVD mechanisms through administration epigenetically active agents is one of such new approaches. Epigenetic mechanisms involve heritable changes in gene expression that are not linked to the alteration of DNA sequence. Pathogenesis of CVDs is associated with global genome-wide changes in DNA methylation and histone modifications. Epigenetically active compounds that influence activity of epigenetic modulators such as DNA methyltransferases (DNMTs), histone acetyltransferases, histone deacetylases (HDACs), etc. may correct these pathogenic changes in the epigenome and therefore be used for CVD therapy. To date, many epigenetically active natural substances (such as polyphenols and flavonoids) and synthetic compounds such as DNMT inhibitors or HDAC inhibitors are known. Both native and chemical DNMT and HDAC inhibitors possess a wide range of cytoprotective activities such as anti-inflammatory, antioxidant, anti-apoptotic, anti-anfibrotic, and anti-hypertrophic properties, which are beneficial of treatment of a variety of CVDs. However, so far, only synthetic DNMT inhibitors enter clinical trials while synthetic HDAC inhibitors are still under evaluation in preclinical studies. In this review, we consider epigenetic mechanisms such as DNA methylation and histone modifications in cardiovascular pathology and the epigenetics-based therapeutic approaches focused on the implementation of DNMT and HDAC inhibitors.
Collapse
Affiliation(s)
- Dimitry A Chistiakov
- Department of Molecular Genetic Diagnostics and Cell Biology, Division of Laboratory Medicine, Institute of Pediatrics, Research Center for Children's Health, 119991, Moscow, Russia
| | - Alexander N Orekhov
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, 125315, Russia; Department of Biophysics, Biological Faculty, Moscow State University, Moscow, 119991, Russia; Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow, 121609, Russia; National Research Center for Preventive Medicine, Moscow, 101000, Russia
| | - Yuri V Bobryshev
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, 125315, Russia; Faculty of Medicine, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia; School of Medicine, University of Western Sydney, Campbelltown, NSW 2560, Australia.
| |
Collapse
|
18
|
Ke P, Shao BZ, Xu ZQ, Wei W, Han BZ, Chen XW, Su DF, Liu C. Activation of Cannabinoid Receptor 2 Ameliorates DSS-Induced Colitis through Inhibiting NLRP3 Inflammasome in Macrophages. PLoS One 2016; 11:e0155076. [PMID: 27611972 PMCID: PMC5017608 DOI: 10.1371/journal.pone.0155076] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 04/24/2016] [Indexed: 12/31/2022] Open
Abstract
Activation of cannabinoid receptor 2 (CB2R) ameliorates inflammation, but the underlying mechanism remains unclear. In the present study, we examined whether activation of CB2R could suppress the nucleotide-binding domain and leucine-rich repeat protein 3 (NLRP3) inflammasome. In peritoneal macrophages isolated from C57BL/6 mice, LPS/DSS challenge for 24 h increased the expression of the components of NLRP3 inflammasome NLRP3, Casp-1 p20/Casp-1 p45 ratio, proIL-1β and IL-1β and also enhanced autophagy (LC3-II/LC3-I ratio, Beclin-1 and SQSTM1). Pretreatment of peritoneal macrophages with HU 308, a selective CB2R agonist, attenuated LPS/DSS-induced NLRP3 inflammasome activation, but further enhanced autophagy. In comparison with wild-type (WT) control, peritoneal macrophages from CB2R knockout (KO) mice had more robust NLRP3 inflammasome activation and attenuated autophagy upon LPS/DSS challenge. Knockdown autophagy-related gene 5 (Atg5) with a siRNA in peritoneal macrophages attenuated the inhibitory effects of HU 308 on LPS/DSS-induced NLRP3 inflammasome activation in vitro. In vivo, HU308 treatment attenuated DSS-induced colitis mice associated with reduced colon inflammation and inhibited NLRP3 inflammasome activation in wild-type mice. In CB2R KO mice, DSS-induced inflammation and NLRP3 inflammasome activation were more pronounced than those in WT control. Finally, we demonstrated that AMPK-mTOR-P70S6K signaling pathway was involved in this CB2R-mediated process. We conclude that activation of CB2R ameliorates DSS-induced colitis through enhancing autophagy that may inhibit NLRP3 inflammasome activation in macrophages.
Collapse
Affiliation(s)
- Ping Ke
- Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Bo-Zong Shao
- Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Zhe-Qi Xu
- Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Wei Wei
- Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences; Hangzhou, Zhejiang, China
| | - Bin-Ze Han
- Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Xiong-Wen Chen
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania, 19140, United States of America
| | - Ding-Feng Su
- Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Chong Liu
- Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai, China
| |
Collapse
|
19
|
Hwang S, Lee HJ, Kim G, Won KJ, Park YS, Jo I. CCN1 acutely increases nitric oxide production via integrin αvβ3-Akt-S6K-phosphorylation of endothelial nitric oxide synthase at the serine 1177 signaling axis. Free Radic Biol Med 2015; 89:229-40. [PMID: 26393424 DOI: 10.1016/j.freeradbiomed.2015.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 07/14/2015] [Accepted: 08/05/2015] [Indexed: 11/30/2022]
Abstract
Although CCN1 (also known as cysteine-rich, angiogenic inducer 61, CYR61) has been reported to promote angiogenesis and neovascularization in endothelial cells (ECs), its effects on endothelial nitric oxide (NO) production have never been studied. Using human umbilical vein ECs, we investigated whether and how CCN1 regulates NO production. CCN1 acutely increased NO production in a time- and dose-dependent manner, which was accompanied by increased phosphorylation of endothelial NO synthase (eNOS) at serine 1177 (eNOS-Ser(1177)), but not that of eNOS-Thr(495) or eNOS-Ser(114). The level of total eNOS expression was unaltered. Treatment with either LY294002, a selective inhibitor of phosphoinositide 3-kinase known as an upstream kinase of Akt, or H-89, an inhibitor of protein kinase A, mitogen- and stress-activated protein kinase 1, Rho-associated protein kinase 2, and ribosomal protein S6 kinase (S6K), inhibited CCN1-stimulated eNOS-Ser(1177) phosphorylation and subsequent NO production. Ectopic expression of small interfering RNA against Akt and S6K significantly inhibited the effects of CCN1. Consistently, CCN1 increased the phosphorylation of Akt-Ser(473) and S6K-Thr(389). However, CCN1 did not alter the expression or secretion of VEGF, a known downstream factor of CCN1 and a potential upstream factor of Akt-mediated eNOS-Ser(1177) phosphorylation. Furthermore, neutralization of integrin αvβ3 with corresponding antibody completely reversed all of the observed effects of CCN1. Moreover, CCN1 increased acetylcholine-induced relaxation in the rat aortas. Finally, we also found that CCN1-stimulated eNOS-Ser(1177) phosphorylation and NO production are true for other types of EC tested. In conclusion, CCN1 acutely increases NO production via activation of a signaling axis in integrin αvβ3-Akt-S6K-eNOS-Ser(1177) phosphorylation, suggesting an important role for CCN1 in vasodilation.
Collapse
Affiliation(s)
- Soojin Hwang
- Department of Molecular Medicine, School of Medicine, Ewha Womans University, Seoul 158-710, Republic of Korea
| | - Hyeon-Ju Lee
- Department of Molecular Medicine, School of Medicine, Ewha Womans University, Seoul 158-710, Republic of Korea
| | - Gyungah Kim
- Department of Molecular Medicine, School of Medicine, Ewha Womans University, Seoul 158-710, Republic of Korea
| | - Kyung-Jong Won
- Department of Medical Science, School of Medicine, Konkuk University, Chungju 380-701, Republic of Korea
| | - Yoon Shin Park
- Department of Molecular Medicine, School of Medicine, Ewha Womans University, Seoul 158-710, Republic of Korea
| | - Inho Jo
- Department of Molecular Medicine, School of Medicine, Ewha Womans University, Seoul 158-710, Republic of Korea.
| |
Collapse
|
20
|
Prevention of valproic acid-induced neural tube defects by sildenafil citrate. Reprod Toxicol 2015; 56:175-9. [DOI: 10.1016/j.reprotox.2015.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 03/05/2015] [Accepted: 03/11/2015] [Indexed: 11/19/2022]
|
21
|
Seo J, Lee JY, Sung MS, Byun CJ, Cho DH, Lee HJ, Park JH, Cho HS, Cho SJ, Jo I. Arsenite Acutely Decreases Nitric Oxide Production via the ROS-Protein Phosphatase 1-Endothelial Nitric Oxide Synthase-Thr(497) Signaling Cascade. Biomol Ther (Seoul) 2014; 22:510-8. [PMID: 25489418 PMCID: PMC4256030 DOI: 10.4062/biomolther.2014.106] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 10/16/2014] [Accepted: 10/22/2014] [Indexed: 11/17/2022] Open
Abstract
Chronic (>24 h) exposure of arsenite, an environmental toxicant, has shown the decreased nitric oxide (NO) production in endothelial cells (EC) by decreasing endothelial NO synthase (eNOS) expression and/or its phosphorylation at serine 1179 (eNOS-Ser1179 in bovine sequence), which is associated with increased risk of vascular diseases. Here, we investigated the acute (<24 h) effect of arsenite on NO production using bovine aortic EC (BAEC). Arsenite acutely increased the phosphorylation of eNOS-Thr497, but not of eNOS-Ser116 or eNOS-Ser1179, which was accompanied by decreased NO production. The level of eNOS expression was unaltered under this condition. Treatment with arsenite also induced reactive oxygen species (ROS) production, and pretreatment with a ROS scavenger N-acetyl-L-cysteine (NAC) completely reversed the observed effect of arsenite on eNOS-Thr497 phosphorylation. Although protein kinase C (PKC) and protein phosphatase 1 (PP1) were reported to be involved in eNOS-Thr497 phosphorylation, treatment with PKC inhibitor, Ro318425, and overexpression of various PKC isoforms did not affect the arsenite-stimulated eNOS-Thr497 phosphorylation. In contrast, treatment with PP1 inhibitor, calyculin A, mimicked the observed effect of arsenite on eNOS-Thr497 phosphorylation. Lastly, we found decreased cellular PP1 activity in arsenite-treated cells, which was reversed by NAC. Overall, our study demonstrates firstly that arsenite acutely decreases NO production at least in part by increasing eNOS-Thr497 phosphorylation via ROS-PP1 signaling pathway, which provide the molecular mechanism underlying arsenite-induced increase in vascular disease.
Collapse
Affiliation(s)
- Jungwon Seo
- Department of Molecular Medicine, School of Medicine, Ewha Womans University, Seoul 158-710 ; Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan 570-749
| | - Jee Young Lee
- Department of Molecular Medicine, School of Medicine, Ewha Womans University, Seoul 158-710
| | - Min-Sun Sung
- Department of Molecular Medicine, School of Medicine, Ewha Womans University, Seoul 158-710
| | | | - Du-Hyong Cho
- Department of Pharmacology, School of Medicine, Eulji University, Daejeon 301-768
| | - Hyeon-Ju Lee
- Department of Molecular Medicine, School of Medicine, Ewha Womans University, Seoul 158-710
| | - Jung-Hyun Park
- Department of Molecular Medicine, School of Medicine, Ewha Womans University, Seoul 158-710
| | - Ho-Seong Cho
- Biosafety Research Institute and College of Veterinary Medicine, Chonbuk National University, Jeonju 561-756
| | - Sung-Jin Cho
- Department of Biology, College of Natural Sciences, Chungbuk National University, Cheongju 362-763, Republic of Korea
| | - Inho Jo
- Department of Molecular Medicine, School of Medicine, Ewha Womans University, Seoul 158-710
| |
Collapse
|