1
|
Lessa TLADS, Correia TML, Santos TCD, da Silva RP, Silva BPD, Cavallini MCM, Rocha LS, Souza Peixoto A, Cugnasca BS, Cervi G, Correra TC, Gonçalves AC, Festuccia WTL, Cunha TM, Yatsuda R, de Magalhães ACM, Dos Santos AA, Meotti FC, Queiroz RF. A novel diselenide attenuates the carrageenan-induced inflammation by reducing neutrophil infiltration and the resulting tissue damage in mice. Free Radic Res 2024; 58:229-248. [PMID: 38588405 DOI: 10.1080/10715762.2024.2336566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/06/2024] [Indexed: 04/10/2024]
Abstract
Selenium-containing compounds have emerged as promising treatment for redox-based and inflammatory diseases. This study aimed to investigate the in vitro and in vivo anti-inflammatory activity of a novel diselenide named as dibenzyl[diselanediyIbis(propane-3-1diyl)] dicarbamate (DD). DD reacted with HOCl (k = 9.2 x 107 M-1s-1), like glutathione (k = 1.2 x 108 M-1s-1), yielding seleninic and selenonic acid derivatives, and it also decreased HOCl formation by activated human neutrophils (IC50=4.6 μM) and purified myeloperoxidase (MPO) (IC50=3.8 μM). However, tyrosine, MPO-I and MPO-II substrates, did not restore HOCl formation in presence of DD. DD inhibited the oxidative burst in dHL-60 cells with no toxicity up to 25 µM for 48h. Next, an intraperitoneal administration of 25, 50, and 75 mg/kg DD decreased total leukocyte, neutrophil chemotaxis, and inflammation markers (MPO activity, lipid peroxidation, albumin exudation, nitrite, TNF-α, IL-1β, CXCL1/KC, and CXCL2/MIP-2) on a murine model of carrageenan-induced peritonitis. Likewise, 50 mg/kg DD (i.p.) decreased carrageenan-induced paw edema over 5h. Histological and immunohistochemistry analyses of the paw tissue showed decreased neutrophil count, edema area, and MPO, carbonylated, and nitrated protein staining. Furthermore, DD treatment decreased the fMLP-induced chemotaxis of human neutrophils (IC50=3.7 μM) in vitro with no toxicity. Lastly, DD presented no toxicity in a single-dose model using mice (50 mg/kg, i.p.) over 15 days and in Artemia salina bioassay (50 to 2000 µM), corroborating findings from in silico toxicological study. Altogether, these results demonstrate that DD attenuates carrageenan-induced inflammation mainly by reducing neutrophil migration and the resulting damage from MPO-mediated oxidative burst.
Collapse
Affiliation(s)
- Tássia Liz Araújo Dos Santos Lessa
- Programa Multicêntrico de Pós-Graduação em Bioquímica e Biologia Molecular, Universidade Estadual do Sudoeste da Bahia, Vitória da Conquista, Brazil
| | - Thiago Macêdo Lopes Correia
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal da Bahia, Vitória da Conquista, Brazil
| | - Talita Costa Dos Santos
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal da Bahia, Vitória da Conquista, Brazil
| | | | | | - Maria Cláudia Magalhães Cavallini
- Center for Research in Inflammatory Diseases, Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Leonardo Silva Rocha
- Programa Multicêntrico de Pós-Graduação em Bioquímica e Biologia Molecular, Universidade Estadual do Sudoeste da Bahia, Vitória da Conquista, Brazil
| | | | | | - Gustavo Cervi
- Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Thiago C Correra
- Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | | | | | - Thiago Mattar Cunha
- Center for Research in Inflammatory Diseases, Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Regiane Yatsuda
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal da Bahia, Vitória da Conquista, Brazil
- Instituto Multidisciplinar de Saúde, Universidade Federal da Bahia, Vitória da Conquista, Brazil
| | - Amélia Cristina Mendes de Magalhães
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal da Bahia, Vitória da Conquista, Brazil
- Instituto Multidisciplinar de Saúde, Universidade Federal da Bahia, Vitória da Conquista, Brazil
| | | | | | - Raphael Ferreira Queiroz
- Programa Multicêntrico de Pós-Graduação em Bioquímica e Biologia Molecular, Universidade Estadual do Sudoeste da Bahia, Vitória da Conquista, Brazil
- Departamento de Ciências da Saúde, Universidade Estadual do Sudoeste da Bahia, Vitória da Conquista, Brazil
| |
Collapse
|
2
|
Müller E, von Gunten U, Tolu J, Bouchet S, Winkel LHE. Reactions of hypobromous acid with dimethyl selenide, dimethyl diselenide and other organic selenium compounds: kinetics and product formation. ENVIRONMENTAL SCIENCE : WATER RESEARCH & TECHNOLOGY 2024; 10:620-630. [PMID: 38434173 PMCID: PMC10905664 DOI: 10.1039/d3ew00787a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/02/2024] [Indexed: 03/05/2024]
Abstract
Selenium (Se) is an essential micronutrient for many living organisms particularly due to its unique redox properties. We recently found that the sulfur (S) analog for dimethyl selenide (DMSe), i.e. dimethyl sulfide (DMS), reacts fast with the marine oxidant hypobromous acid (HOBr) which likely serves as a sink of marine DMS. Here we investigated the reactivity of HOBr with dimethyl selenide and dimethyl diselenide (DMDSe), which are the main volatile Se compounds biogenically produced in marine waters. In addition, the reactivity of HOBr with further organic Se compounds was tested, i.e., SeMet (as N-acetylated-SeMet), and selenocystine (SeCys2 as N-acetylated-SeCys2), as well as the phenyl-analogs of DMSe and DMDSe, respectively, diphenyl selenide (DPSe) and diphenyl diselenide (DPDSe). Apparent second-order rate constants at pH 8 for the reactions of HOBr with the studied Se compounds were (7.1 ± 0.7) × 107 M-1 s-1 for DMSe, (4.3 ± 0.4) × 107 M-1 s-1 for DMDSe, (2.8 ± 0.3) × 108 M-1 s-1 for SeMet, (3.8 ± 0.2) × 107 M-1 s-1 for SeCys2, (3.5 ± 0.1) × 107 M-1 s-1 for DPSe, and (8.0 ± 0.4) × 106 M-1 s-1 for DPDSe, indicating a very high reactivity of all selected Se compounds with HOBr. The reactivity between HOBr and DMSe is lower than for DMS and therefore this reaction is likely not relevant for marine DMSe abatement. However, the high reactivity of SeMet with HOBr suggests that SeMet may act as a relevant quencher of HOBr.
Collapse
Affiliation(s)
- Emanuel Müller
- Swiss Federal Institute of Aquatic Science and Technology, Department of Water Resources and Drinking Water (W+T), Eawag Ueberlandstrasse 133 CH-8600 Duebendorf Switzerland +41 58 765 5601
- Swiss Federal Institute of Technology, Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environment Systems (D-USYS), ETH Zurich Universitätsstrasse 16 8092 Zürich Switzerland
| | - Urs von Gunten
- Swiss Federal Institute of Aquatic Science and Technology, Department of Water Resources and Drinking Water (W+T), Eawag Ueberlandstrasse 133 CH-8600 Duebendorf Switzerland +41 58 765 5601
- School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
- Swiss Federal Institute of Technology, Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environment Systems (D-USYS), ETH Zurich Universitätsstrasse 16 8092 Zürich Switzerland
| | - Julie Tolu
- Swiss Federal Institute of Aquatic Science and Technology, Department of Water Resources and Drinking Water (W+T), Eawag Ueberlandstrasse 133 CH-8600 Duebendorf Switzerland +41 58 765 5601
- Swiss Federal Institute of Technology, Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environment Systems (D-USYS), ETH Zurich Universitätsstrasse 16 8092 Zürich Switzerland
| | - Sylvain Bouchet
- Swiss Federal Institute of Aquatic Science and Technology, Department of Water Resources and Drinking Water (W+T), Eawag Ueberlandstrasse 133 CH-8600 Duebendorf Switzerland +41 58 765 5601
- Swiss Federal Institute of Technology, Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environment Systems (D-USYS), ETH Zurich Universitätsstrasse 16 8092 Zürich Switzerland
| | - Lenny H E Winkel
- Swiss Federal Institute of Aquatic Science and Technology, Department of Water Resources and Drinking Water (W+T), Eawag Ueberlandstrasse 133 CH-8600 Duebendorf Switzerland +41 58 765 5601
- Swiss Federal Institute of Technology, Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environment Systems (D-USYS), ETH Zurich Universitätsstrasse 16 8092 Zürich Switzerland
| |
Collapse
|
3
|
Anghinoni JM, Birmann PT, da Rocha MJ, Gomes CS, Davies MJ, Brüning CA, Savegnago L, Lenardão EJ. Recent Advances in the Synthesis and Antioxidant Activity of Low Molecular Mass Organoselenium Molecules. Molecules 2023; 28:7349. [PMID: 37959771 PMCID: PMC10649092 DOI: 10.3390/molecules28217349] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/17/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Selenium is an essential trace element in living organisms, and is present in selenoenzymes with antioxidant activity, like glutathione peroxidase (GPx) and thioredoxin reductase (TrxR). The search for small selenium-containing molecules that mimic selenoenzymes is a strong field of research in organic and medicinal chemistry. In this review, we review the synthesis and bioassays of new and known organoselenium compounds with antioxidant activity, covering the last five years. A detailed description of the synthetic procedures and the performed in vitro and in vivo bioassays is presented, highlighting the most active compounds in each series.
Collapse
Affiliation(s)
- João M. Anghinoni
- Laboratory of Clean Organic Synthesis (LASOL), Center of Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), P.O. Box 354, Pelotas 96010-900, RS, Brazil; (J.M.A.); (C.S.G.)
| | - Paloma T. Birmann
- Neurobiotechnology Research Group (GPN), Federal University of Pelotas (UFPel), P.O. Box 354, Pelotas 96010-900, RS, Brazil;
| | - Marcia J. da Rocha
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Center of Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), P.O. Box 354, Pelotas 96010-900, RS, Brazil;
| | - Caroline S. Gomes
- Laboratory of Clean Organic Synthesis (LASOL), Center of Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), P.O. Box 354, Pelotas 96010-900, RS, Brazil; (J.M.A.); (C.S.G.)
| | - Michael J. Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Building 12.6, Blegdamsvej 3, 2200 Copenhagen, Denmark;
| | - César A. Brüning
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Center of Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), P.O. Box 354, Pelotas 96010-900, RS, Brazil;
| | - Lucielli Savegnago
- Neurobiotechnology Research Group (GPN), Federal University of Pelotas (UFPel), P.O. Box 354, Pelotas 96010-900, RS, Brazil;
| | - Eder J. Lenardão
- Laboratory of Clean Organic Synthesis (LASOL), Center of Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), P.O. Box 354, Pelotas 96010-900, RS, Brazil; (J.M.A.); (C.S.G.)
| |
Collapse
|
4
|
Antioxidant Strategies to Modulate NETosis and the Release of Neutrophil Extracellular Traps during Chronic Inflammation. Antioxidants (Basel) 2023; 12:antiox12020478. [PMID: 36830036 PMCID: PMC9952818 DOI: 10.3390/antiox12020478] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Extracellular traps are released by neutrophils and other immune cells as part of the innate immune response to combat pathogens. Neutrophil extracellular traps (NETs) consist of a mesh of DNA and histone proteins decorated with various anti-microbial granule proteins, such as elastase and myeloperoxidase (MPO). In addition to their role in innate immunity, NETs are also strongly linked with numerous pathological conditions, including atherosclerosis, sepsis and COVID-19. This has led to significant interest in developing strategies to inhibit NET release. In this study, we have examined the efficacy of different antioxidant approaches to selectively modulate the inflammatory release of NETs. PLB-985 neutrophil-like cells were shown to release NETs on exposure to phorbol myristate acetate (PMA), hypochlorous acid or nigericin, a bacterial peptide derived from Streptomyces hygroscopicus. Studies with the probe R19-S indicated that treatment of the PLB-985 cells with PMA, but not nigericin, resulted in the production of HOCl. Therefore, studies were extended to examine the efficacy of a range of antioxidant compounds that modulate HOCl production by MPO to prevent NETosis. It was shown that thiocyanate, selenocyanate and various nitroxides could prevent NETosis in PLB-985 neutrophils exposed to PMA and HOCl, but not nigericin. These results were confirmed in analogous experiments with freshly isolated primary human neutrophils. Taken together, these data provide new information regarding the utility of supplementation with MPO inhibitors and/or HOCl scavengers to prevent NET release, which could be important to more specifically target pathological NETosis in vivo.
Collapse
|
5
|
Cheshchevik VT, Krylova NG, Сheshchevik NG, Lapshina EA, Semenkova GN, Zavodnik IB. Role of mitochondrial calcium in hypochlorite induced oxidative damage of cells. Biochimie 2021; 184:104-115. [PMID: 33607241 DOI: 10.1016/j.biochi.2021.02.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/09/2021] [Accepted: 02/10/2021] [Indexed: 11/29/2022]
Abstract
Hypochlorite (HOCl) is one of the most important mediators of inflammatory processes. Recent evidence demonstrates that changes in intracellular calcium pool play a significant role in the damaging effects of hypochlorite and other oxidants. Mitochondria are shown to be one of the intracellular targets of hypochlorite. But little is known about the mitochondrial calcium pool changes in HOCl-induced mitochondrial dysfunction. Using isolated rat liver mitochondria, we showed the oxidative damage of mitochondria (GSH oxidation and mixed protein-glutathione formation without membrane lipid peroxidation) and alterations in the mitochondrial functional parameters (decrease of respiratory activity and efficiency of oxidative phosphorylation, NADH and FADH coenzyme levels, and membrane potential) under hypochlorite action (50-300 μM). Simultaneously, the mitochondrial calcium release and swelling were demonstrated. In the presence of EGTA, the damaging effects of HOCl were less pronounced, reflecting direct involvement of mitochondrial Ca2+ in mechanisms of oxidant-induced injury. Furthermore, exposure of HeLa cells to hypochlorite resulted in a considerable increase in cytoplasmic calcium concentrations and a decrease in mitochondrial ones. Applying specific inhibitors of calcium transfer systems, we demonstrated that mitochondria play a key role in the redistribution of cytoplasmic Ca2+ ions under hypochlorite action and act as mediators of calcium release from the endoplasmic reticulum into the cytoplasm.
Collapse
Affiliation(s)
- Vitali T Cheshchevik
- Department of Biotechnology, Polessky State University, ulitsa Dnieprovskoy Flotilii, 23, 225710, Pinsk, Belarus.
| | - Nina G Krylova
- Department of Biophysics, Belarusian State University, Prospekt Nezavisimosti 4, 220030, Minsk, Belarus
| | - Nina G Сheshchevik
- Department of Biotechnology, Polessky State University, ulitsa Dnieprovskoy Flotilii, 23, 225710, Pinsk, Belarus
| | - Elena A Lapshina
- Department of Biochemistry, Yanka Kupala State University of Grodno, Bulvar Leninskogo Komsomola 50, 230030, Grodno, Belarus
| | - Galina N Semenkova
- Department of Biophysics, Belarusian State University, Prospekt Nezavisimosti 4, 220030, Minsk, Belarus
| | - Ilya B Zavodnik
- Department of Biochemistry, Yanka Kupala State University of Grodno, Bulvar Leninskogo Komsomola 50, 230030, Grodno, Belarus
| |
Collapse
|
6
|
Myeloperoxidase: Mechanisms, reactions and inhibition as a therapeutic strategy in inflammatory diseases. Pharmacol Ther 2021; 218:107685. [DOI: 10.1016/j.pharmthera.2020.107685] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/09/2020] [Indexed: 12/17/2022]
|
7
|
Flouda K, Gammelgaard B, Davies MJ, Hawkins CL. Modulation of hypochlorous acid (HOCl) induced damage to vascular smooth muscle cells by thiocyanate and selenium analogues. Redox Biol 2021; 41:101873. [PMID: 33550113 PMCID: PMC7868818 DOI: 10.1016/j.redox.2021.101873] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 02/08/2023] Open
Abstract
The production of hypochlorous acid (HOCl) by myeloperoxidase (MPO) plays a key role in immune defense, but also induces host tissue damage, particularly in chronic inflammatory pathologies, including atherosclerosis. This has sparked interest in the development of therapeutic approaches that decrease HOCl formation during chronic inflammation, including the use of alternative MPO substrates. Thiocyanate (SCN−) supplementation decreases HOCl production by favouring formation of hypothiocyanous acid (HOSCN), which is more selectively toxic to bacterial cells. Selenium-containing compounds are also attractive therapeutic agents as they react rapidly with HOCl and can be catalytically recycled. In this study, we examined the ability of SCN−, selenocyanate (SeCN−) and selenomethionine (SeMet) to modulate HOCl-induced damage to human coronary artery smooth muscle cells (HCASMC), which are critical to both normal vessel function and lesion formation in atherosclerosis. Addition of SCN− prevented HOCl-induced cell death, altered the pattern and extent of intracellular thiol oxidation, and decreased perturbations to calcium homeostasis and pro-inflammatory signaling. Protection was also observed with SeCN− and SeMet, though SeMet was less effective than SeCN− and SCN−. Amelioration of damage was detected with sub-stoichiometric ratios of the added compound to HOCl. The effects of SCN− are consistent with conversion of HOCl to HOSCN. Whilst SeCN− prevented HOCl-induced damage to a similar extent to SCN−, the resulting product hyposelenocyanous acid (HOSeCN), was more toxic to HCASMC than HOSCN. These results provide support for the use of SCN− and/or selenium analogues as scavengers, to decrease HOCl-induced cellular damage and HOCl production at inflammatory sites in atherosclerosis and other pathologies. HOCl induces extensive smooth muscle cell death and irreversible thiol oxidation. Addition of SCN− decreases the extent of HOCl-induced cell damage. SeCN− has similar protective effects to SCN− towards HOCl-induced cell damage. HOSeCN is less toxic than HOCl but more damaging than HOSCN. SeMet modulates HOCl-induced damage but less effectively than SCN− or SeCN−.
Collapse
Affiliation(s)
- Konstantina Flouda
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen, DK-2200, Denmark
| | - Bente Gammelgaard
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, Copenhagen, DK-2100, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen, DK-2200, Denmark
| | - Clare L Hawkins
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen, DK-2200, Denmark.
| |
Collapse
|
8
|
Carroll L, Gardiner K, Ignasiak M, Holmehave J, Shimodaira S, Breitenbach T, Iwaoka M, Ogilby PR, Pattison DI, Davies MJ. Interaction kinetics of selenium-containing compounds with oxidants. Free Radic Biol Med 2020; 155:58-68. [PMID: 32439383 DOI: 10.1016/j.freeradbiomed.2020.05.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/07/2020] [Accepted: 05/10/2020] [Indexed: 02/03/2023]
Abstract
Selenium compounds have been identified as potential oxidant scavengers for biological applications due to the nucleophilicity of Se, and the ease of oxidation of the selenium centre. Previous studies have reported apparent second order rate constants for a number of oxidants (e.g. HOCl, ONOOH) with some selenium species, but these data are limited. Here we provide apparent second order rate constants for reaction of selenols (RSeH), selenides (RSeR') and diselenides (RSeSeR') with biologically-relevant oxidants (HOCl, H2O2, other peroxides) as well as overall consumption data for the excited state species singlet oxygen (1O2). Selenols show very high reactivity with HOCl and 1O2, with rate constants > 108 M-1 s-1, whilst selenides and diselenides typically react with rate constants one- (selenides) or two- (diselenides) orders of magnitude slower. Rate constants for reaction of diselenides with H2O2 and other hydroperoxides are much slower, with k for H2O2 being <1 M-1 s-1, and for amino acid and peptide hydroperoxides ~102 M-1 s-1. The rate constants determined for HOCl and 1O2 with these selenium species are greater than, or similar to, rate constants for amino acid side chains on proteins, including the corresponding sulfur-centered species (Cys and Met), suggesting that selenium containing compounds may be effective oxidant scavengers. Some of these reactions may be catalytic in nature due to ready recycling of the oxidized selenium species. These data may aid the development of highly efficacious, and catalytic, oxidant scavengers.
Collapse
Affiliation(s)
- Luke Carroll
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Kelly Gardiner
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark; The Heart Research Institute, Sydney, Australia; Sydney Medical School, University of Sydney, Australia
| | - Marta Ignasiak
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark; Department of Chemistry, Adam Mickiewicz University, Poznan, Poland
| | | | - Shingo Shimodaira
- Brain Korea (BK21), Dept. of Chemistry, KAIST 373-1, Daejeon, South Korea
| | | | - Michio Iwaoka
- Department of Chemistry, Tokai University, Hiratsuka, Japan
| | - Peter R Ogilby
- Department of Chemistry, Aarhus University, Aarhus, Denmark
| | - David I Pattison
- The Heart Research Institute, Sydney, Australia; Sydney Medical School, University of Sydney, Australia; Department of Plant and Environmental Sciences, University of Copenhagen, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark; The Heart Research Institute, Sydney, Australia; Sydney Medical School, University of Sydney, Australia.
| |
Collapse
|
9
|
Davies MJ, Hawkins CL. The Role of Myeloperoxidase in Biomolecule Modification, Chronic Inflammation, and Disease. Antioxid Redox Signal 2020; 32:957-981. [PMID: 31989833 DOI: 10.1089/ars.2020.8030] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Significance: The release of myeloperoxidase (MPO) by activated leukocytes is critical in innate immune responses. MPO produces hypochlorous acid (HOCl) and other strong oxidants, which kill bacteria and other invading pathogens. However, MPO also drives the development of numerous chronic inflammatory pathologies, including atherosclerosis, neurodegenerative disease, lung disease, arthritis, cancer, and kidney disease, which are globally responsible for significant patient mortality and morbidity. Recent Advances: The development of imaging approaches to precisely identify the localization of MPO and the molecular targets of HOCl in vivo is an important advance, as typically the involvement of MPO in inflammatory disease has been inferred by its presence, together with the detection of biomarkers of HOCl, in biological fluids or diseased tissues. This will provide valuable information in regard to the cell types responsible for releasing MPO in vivo, together with new insight into potential therapeutic opportunities. Critical Issues: Although there is little doubt as to the value of MPO inhibition as a protective strategy to mitigate tissue damage during chronic inflammation in experimental models, the impact of long-term inhibition of MPO as a therapeutic strategy for human disease remains uncertain, in light of the potential effects on innate immunity. Future Directions: The development of more targeted MPO inhibitors or a treatment regimen designed to reduce MPO-associated host tissue damage without compromising pathogen killing by the innate immune system is therefore an important future direction. Similarly, a partial MPO inhibition strategy may be sufficient to maintain adequate bacterial activity while decreasing the propagation of inflammatory pathologies.
Collapse
Affiliation(s)
- Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen N, Denmark
| | - Clare L Hawkins
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen N, Denmark
| |
Collapse
|
10
|
Zacharias T, Flouda K, Jepps TA, Gammelgaard B, Schiesser CH, Davies MJ. Effects of a novel selenium substituted-sugar (1,4-anhydro-4-seleno-d-talitol, SeTal) on human coronary artery cell lines and mouse aortic rings. Biochem Pharmacol 2020; 173:113631. [DOI: 10.1016/j.bcp.2019.113631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 09/03/2019] [Indexed: 12/17/2022]
|
11
|
Shu N, Cheng Q, Arnér ESJ, Davies MJ. Inhibition and crosslinking of the selenoprotein thioredoxin reductase-1 by p-benzoquinone. Redox Biol 2019; 28:101335. [PMID: 31590044 PMCID: PMC6812298 DOI: 10.1016/j.redox.2019.101335] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/23/2019] [Accepted: 09/26/2019] [Indexed: 11/03/2022] Open
Abstract
Quinones are common in nature, and often cytotoxic. Their proposed toxicity mechanisms involve redox cycling with radical generation, and/or reactions with nucleophiles, such as protein cysteine (Cys) residues, forming adducts via Michael addition reactions. The selenenyl anion of selenocysteine (Sec) is a stronger nucleophile, more prevalent at physiological pH, and more reactive than the corresponding thiolate anion of Cys. We therefore hypothesized that Sec residues should be readily modified by quinones and with potential consequences for the structure and function of selenoproteins. Here, we report data on the interaction of p-benzoquinone (BQ) with the selenoprotein thioredoxin reductase-1 (TrxR1), which exposes an accessible Sec residue upon physiological reduction by NADPH. Our results reveal that BQ targets NADPH-reduced TrxR1 and inhibits its activity using 5,5′-dithiobis(2-nitrobenzoic acid) or juglone as model substrates, consistent with the targeting of both the Cys and Sec residues of TrxR1. In the absence of NADPH, BQ modified the non-catalytic Cys residues, leading to subunit crosslinking, mainly through disulfides, which also resulted in some loss of activity. This crosslinking was time-dependent and independent of the Sec residue. Addition of NADPH after BQ pre-treatment could resolve the disulfide-linked crosslinking. TrxR activity loss was also observed upon incubation of J774A.1 cells or cell lysates with BQ. These data suggest that BQ readily targets TrxR1, albeit in a rather complex manner, which results in structural changes and loss of enzyme activity. We suggest that TrxR1 targeting can explain some of the cytotoxicity of BQ, and potentially also that of other quinone compounds.
Collapse
Affiliation(s)
- Nan Shu
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Qing Cheng
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Michael J Davies
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
| |
Collapse
|
12
|
The science of licking your wounds: Function of oxidants in the innate immune system. Biochem Pharmacol 2019; 163:451-457. [DOI: 10.1016/j.bcp.2019.03.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 03/08/2019] [Indexed: 02/07/2023]
|
13
|
Davies MJ, Schiesser CH. 1,4-Anhydro-4-seleno-d-talitol (SeTal): a remarkable selenium-containing therapeutic molecule. NEW J CHEM 2019. [DOI: 10.1039/c9nj02185j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
1,4-Anhydro-4-seleno-d-talitol is an exceptional selenium-containing small molecule with significant therapeutic potential; its beneficial actions firmly establish a new therapeutic paradigm in which selenium plays a central role.
Collapse
Affiliation(s)
- Michael J. Davies
- Department of Biomedical Sciences, University of Copenhagen
- Denmark
- Seleno Therapeutics Pty. Ltd
- Australia
| | | |
Collapse
|
14
|
|
15
|
Casaril AM, Ignasiak MT, Chuang CY, Vieira B, Padilha NB, Carroll L, Lenardão EJ, Savegnago L, Davies MJ. Selenium-containing indolyl compounds: Kinetics of reaction with inflammation-associated oxidants and protective effect against oxidation of extracellular matrix proteins. Free Radic Biol Med 2017; 113:395-405. [PMID: 29055824 DOI: 10.1016/j.freeradbiomed.2017.10.344] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 10/14/2017] [Accepted: 10/16/2017] [Indexed: 12/27/2022]
Abstract
Activated white blood cells generate multiple oxidants in response to invading pathogens. Thus, hypochlorous acid (HOCl) is generated via the reaction of myeloperoxidase (from neutrophils and monocytes) with hydrogen peroxide, and peroxynitrous acid (ONOOH), a potent oxidizing and nitrating agent is formed from superoxide radicals and nitric oxide, generated by stimulated macrophages. Excessive or misplaced production of these oxidants has been linked to multiple human pathologies, including cardiovascular disease. Atherosclerosis is characterized by chronic inflammation and the presence of oxidized materials, including extracellular matrix (ECM) proteins, within the artery wall. Here we investigated the potential of selenium-containing indoles to afford protection against these oxidants, by determining rate constants (k) for their reaction, and quantifying the extent of damage on isolated ECM proteins and ECM generated by human coronary artery endothelial cells (HCAECs). The novel selenocompounds examined react with HOCl with k 0.2-1.0 × 108M-1s-1, and ONOOH with k 4.5-8.6 - × 105M-1s-1. Reaction with H2O2 is considerably slower (k < 0.25M-1s-1). The selenocompound 2-phenyl-3-(phenylselanyl)imidazo[1,2-a]pyridine provided protection to human serum albumin (HSA) against HOCl-mediated damage (as assessed by SDS-PAGE) and damage to isolated matrix proteins induced by ONOOH, with a concomitant decrease in the levels of the biomarker 3-nitrotyrosine. Structural damage and generation of 3-nitroTyr on HCAEC-ECM were also reduced. These data demonstrate that the novel selenium-containing compounds show high reactivity with oxidants and may modulate oxidative and nitrosative damage at sites of inflammation, contributing to a reduction in tissue dysfunction and atherogenesis.
Collapse
Affiliation(s)
- Angela M Casaril
- Grupo de Pesquisa em Neurobiotecnologia - GPN - Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900 Pelotas, RS, Brazil
| | - Marta T Ignasiak
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark; Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Christine Y Chuang
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Beatriz Vieira
- Laboratório de Síntese Orgânica Limpa - LASOL - Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900 Pelotas, RS, Brazil
| | - Nathalia B Padilha
- Laboratório de Síntese Orgânica Limpa - LASOL - Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900 Pelotas, RS, Brazil
| | - Luke Carroll
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Eder J Lenardão
- Laboratório de Síntese Orgânica Limpa - LASOL - Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900 Pelotas, RS, Brazil
| | - Lucielli Savegnago
- Grupo de Pesquisa em Neurobiotecnologia - GPN - Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900 Pelotas, RS, Brazil
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark.
| |
Collapse
|
16
|
Kleniewska P, Pawliczak R. The participation of oxidative stress in the pathogenesis of bronchial asthma. Biomed Pharmacother 2017; 94:100-108. [PMID: 28756367 DOI: 10.1016/j.biopha.2017.07.066] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/13/2017] [Accepted: 07/14/2017] [Indexed: 12/11/2022] Open
Abstract
Reactive oxygen species are produced during oxygen reduction and are characterized by high reactivity. They participate in many important physiological processes, but if produced in high concentrations they lead to oxidative stress development and disturb pro-oxidative/anti-oxidative balance towards the oxidation reaction - leading to damage of lipids, proteins, carbohydrates or nucleic acids. Asthma is a chronic inflammatory disease of the airways of various pathogenesis and clinical symptoms, prevalence in recent years has increased significantly. Recently published literature point out the involvement of reactive oxygen species in the pathogenesis of asthma. Changes in the protein and lipid oxidation lead, among others, to pathological changes in the respiratory epithelial cells, an increase in vascular permeability, mucus overproduction, smooth muscle contraction or airway hyperresponsiveness (AHR). The aim of this study is to present the current state of knowledge on the influence of oxidative stress parameters on asthma development.
Collapse
Affiliation(s)
- Paulina Kleniewska
- Department of Immunopathology, Faculty of Biomedical Sciences and Postgraduate Training, Medical University of Lodz, 7/9 Zeligowskiego St, bldg 2 Rm 122, 90-752 Lodz, Poland
| | - Rafał Pawliczak
- Department of Immunopathology, Faculty of Biomedical Sciences and Postgraduate Training, Medical University of Lodz, 7/9 Zeligowskiego St, bldg 2 Rm 122, 90-752 Lodz, Poland.
| |
Collapse
|
17
|
Carroll L, Pattison DI, Fu S, Schiesser CH, Davies MJ, Hawkins CL. Catalytic oxidant scavenging by selenium-containing compounds: Reduction of selenoxides and N-chloramines by thiols and redox enzymes. Redox Biol 2017; 12:872-882. [PMID: 28458184 PMCID: PMC5408155 DOI: 10.1016/j.redox.2017.04.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 04/15/2017] [Accepted: 04/17/2017] [Indexed: 01/04/2023] Open
Abstract
Myeloperoxidase produces strong oxidants during the immune response to destroy invading pathogens. However, these oxidants can also cause tissue damage, which contributes to the development of numerous inflammatory diseases. Selenium containing compounds, including selenomethionine (SeMet) and 1,4-anhydro-5-seleno-D-talitol (SeTal), react rapidly with different MPO-derived oxidants to form the respective selenoxides (SeMetO and SeTalO). This study investigates the susceptibility of these selenoxides to undergo reduction back to the parent compounds by intracellular reducing systems, including glutathione (GSH) and the glutathione reductase and thioredoxin reductase systems. GSH is shown to reduce SeMetO and SeTalO, with consequent formation of GSSG with apparent second order rate constants, k2, in the range 103–104 M−1 s−1. Glutathione reductase reduces both SeMetO and SeTalO at the expense of NADPH via formation of GSSG, whereas thioredoxin reductase acts only on SeMetO. The presence of SeMet and SeTal also increased the rate at which NADPH was consumed by the glutathione reductase system in the presence of N-chloramines. In contrast, the presence of SeMet and SeTal reduced the rate of NADPH consumption by the thioredoxin reductase system after addition of N-chloramines, consistent with the rapid formation of selenoxides, but only slow reduction by thioredoxin reductase. These results support a potential role of seleno compounds to act as catalytic scavengers of MPO-derived oxidants, particularly in the presence of glutathione reductase and NADPH, assuming that sufficient plasma levels of the parent selenoether can be achieved in vivo following supplementation. Selenoxides react with thiols including GSH by a two-step mechanism. The reaction is proposed to occur via a selenosulfide intermediate. The thioredoxin reductase system recycles selenomethionine selenoxide. The glutathione reductase system reduces both N-chloramines and selenoxides. Selenoxides can increase the reduction of N-chloramines by antioxidant systems.
Collapse
Affiliation(s)
- Luke Carroll
- The Heart Research Institute, 7 Eliza St, Newtown, NSW 2042, Australia; Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia; Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Blegdamsvej 3, Copenhagen N 2200, Denmark
| | - David I Pattison
- The Heart Research Institute, 7 Eliza St, Newtown, NSW 2042, Australia; Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
| | - Shanlin Fu
- University of Technology Sydney, Centre for Forensic Science, Ultimo, NSW 2007, Australia
| | - Carl H Schiesser
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria 3010, Australia
| | - Michael J Davies
- The Heart Research Institute, 7 Eliza St, Newtown, NSW 2042, Australia; Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia; Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Blegdamsvej 3, Copenhagen N 2200, Denmark
| | - Clare L Hawkins
- The Heart Research Institute, 7 Eliza St, Newtown, NSW 2042, Australia; Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia; Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Blegdamsvej 3, Copenhagen N 2200, Denmark.
| |
Collapse
|
18
|
Rocha KC, Vieira MLDS, Beltrame RL, Cartum J, Alves SIPMDN, Azzalis LA, Junqueira VBC, Pereira EC, Fonseca FLA. Impact of Selenium Supplementation in Neutropenia and Immunoglobulin Production in Childhood Cancer Patients. J Med Food 2017; 19:560-8. [PMID: 27266340 DOI: 10.1089/jmf.2015.0145] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Essential to human health, selenium (Se) has enzymatic functions of fundamental importance to human biology due to its effects on DNA damage repair, its antioxidant properties, and cancer prevention. The best studied relationships between Se and the immune system is its role in the functions of neutrophils and of lymphocytes. Despite these observations, it is not yet clear by which mechanism Se is able to modify the immune status. This was a double-blind, crossover study: Group 1 received Se and Group 2 received placebo (30 days). After this, Group 1 received placebo and Group 2 received Se (30 days). Every 30 days, blood samples were collected for white blood cell count, red blood cell count, and Ig level measurement (IgA, IgG, IgE, IgM). Of the 36 patients, 17 were suffering from leukemia/lymphomas (LL) and 19 from solid tumors (ST). In the ST group's leukogram, a significant increase in neutrophils was observed after Se usage (P = .0192). During the analyzed period, Se minimized the triggering of neutropenia cases in both groups. IgA and IgG levels in ST patients were significantly higher than those identified in LL patients after Se usage (P = .0051 and P = .0055). For IgA, a significant increase in its production, after Se usage, was observed in the ST group when compared to the LL (P = .0011). The same did not occur to the IgM and IgE immunoglobulins. In our study, the supplementation with Se reduced the neutropenic cases (LL and ST patients) and reduced IgG and IgA levels in LL and increased in ST group.
Collapse
Affiliation(s)
- Katya Cristina Rocha
- 1 Department of Pathology, Faculty of Medicine of ABC, Santo André, São Paulo, Brazil
| | | | | | - Jairo Cartum
- 1 Department of Pathology, Faculty of Medicine of ABC, Santo André, São Paulo, Brazil
| | - Sarah Isabel P M do N Alves
- 2 Institute of Environmental Sciences, Chemistry and Pharmacy, Federal University of São Paulo, Diadema, São Paulo, Brazil
| | - Ligia Ajaime Azzalis
- 2 Institute of Environmental Sciences, Chemistry and Pharmacy, Federal University of São Paulo, Diadema, São Paulo, Brazil
| | | | - Edimar Cristiano Pereira
- 2 Institute of Environmental Sciences, Chemistry and Pharmacy, Federal University of São Paulo, Diadema, São Paulo, Brazil
| | | |
Collapse
|
19
|
Dong A, Wang YJ, Gao Y, Gao T, Gao G. Chemical Insights into Antibacterial N-Halamines. Chem Rev 2017; 117:4806-4862. [DOI: 10.1021/acs.chemrev.6b00687] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Alideertu Dong
- College
of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People’s Republic of China
| | - Yan-Jie Wang
- Department
of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC, Canada V6T 1Z3
| | - Yangyang Gao
- College
of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People’s Republic of China
| | - Tianyi Gao
- College
of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People’s Republic of China
| | - Ge Gao
- College
of Chemistry, Jilin University, Changchun 130021, People’s Republic of China
| |
Collapse
|
20
|
Ng HH, Leo CH, O'Sullivan K, Alexander SA, Davies MJ, Schiesser CH, Parry LJ. 1,4-Anhydro-4-seleno-d-talitol (SeTal) protects endothelial function in the mouse aorta by scavenging superoxide radicals under conditions of acute oxidative stress. Biochem Pharmacol 2016; 128:34-45. [PMID: 28027880 DOI: 10.1016/j.bcp.2016.12.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 12/23/2016] [Indexed: 02/07/2023]
Abstract
Hyperglycaemia increases the generation of reactive oxidants in blood vessels and is a major cause of endothelial dysfunction. A water-soluble selenium-containing sugar (1,4-Anhydro-4-seleno-d-talitol, SeTal) has potent antioxidant activity in vitro and is a promising treatment to accelerate wound healing in diabetic mice. One possible mechanism of SeTal action is a direct effect on blood vessels. Therefore, we tested the hypothesis that SeTal prevents endothelial dysfunction by scavenging reactive oxidants in isolated mouse aorta under conditions of acute oxidative stress induced by hyperglycaemia. Aortae were isolated from C57BL/6 male mice and mounted on a wire-myograph to assess vascular function. In the presence of a superoxide radical generator, pyrogallol, 300μM and 1mM of SeTal effectively prevented endothelial dysfunction compared to other selenium-containing compounds. In a second set of ex vivo experiments, mouse aortae were incubated for three days with either normal or high glucose, and co-incubated with SeTal at 37°C in 5% CO2. High glucose significantly reduced the sensitivity to the endothelium-dependent agonist, acetylcholine (ACh), increased superoxide production and decreased basal nitric oxide (NO) availability. SeTal (1mM) co-treatment prevented high glucose-induced endothelial dysfunction and oxidative stress in the mouse aorta. The presence of a cyclooxygenase inhibitor, indomethacin significantly improved the sensitivity to ACh in high glucose-treated aortae, but had no effect in SeTal-treated aortae. Our data show that SeTal has potent antioxidant activity in isolated mouse aortae and prevents high glucose-induced endothelial dysfunction by decreasing superoxide levels, increasing basal NO availability and normalising the contribution of vasoconstrictor prostanoids.
Collapse
Affiliation(s)
- Hooi Hooi Ng
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Chen Huei Leo
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Kelly O'Sullivan
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Stefanie-Ann Alexander
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, VIC 3010, Australia.
| | - Michael J Davies
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark.
| | - Carl H Schiesser
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, VIC 3010, Australia.
| | - Laura J Parry
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
21
|
Storkey C, Pattison DI, Ignasiak MT, Schiesser CH, Davies MJ. Kinetics of reaction of peroxynitrite with selenium- and sulfur-containing compounds: Absolute rate constants and assessment of biological significance. Free Radic Biol Med 2015; 89:1049-56. [PMID: 26524402 DOI: 10.1016/j.freeradbiomed.2015.10.424] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 10/26/2015] [Accepted: 10/28/2015] [Indexed: 12/22/2022]
Abstract
Peroxynitrite (the physiological mixture of ONOOH and its anion, ONOO(-)) is a powerful biologically-relevant oxidant capable of oxidizing and damaging a range of important targets including sulfides, thiols, lipids, proteins, carbohydrates and nucleic acids. Excessive production of peroxynitrite is associated with several human pathologies including cardiovascular disease, ischemic-reperfusion injury, circulatory shock, inflammation and neurodegeneration. This study demonstrates that low-molecular-mass selenols (RSeH), selenides (RSeR') and to a lesser extent diselenides (RSeSeR') react with peroxynitrite with high rate constants. Low molecular mass selenols react particularly rapidly with peroxynitrite, with second order rate constants k2 in the range 5.1 × 10(5)-1.9 × 10(6)M(-1)s(-1), and 250-830 fold faster than the corresponding thiols (RSH) and many other endogenous biological targets. Reactions of peroxynitrite with selenides, including selenosugars are approximately 15-fold faster than their sulfur homologs with k2 approximately 2.5 × 10(3)M(-1)s(-1). The rate constants for diselenides and sulfides were slower with k2 0.72-1.3 × 10(3)M(-1)s(-1) and approximately 2.1 × 10(2)M(-1)s(-1) respectively. These studies demonstrate that both endogenous and exogenous selenium-containing compounds may modulate peroxynitrite-mediated damage at sites of acute and chronic inflammation, with this being of particular relevance at extracellular sites where the thiol pool is limited.
Collapse
Affiliation(s)
- Corin Storkey
- The Heart Research Institute, 7 Eliza Street, Newtown, NSW 2042, Australia; Faculty of Medicine, University of Sydney, Sydney, NSW 2006, Australia
| | - David I Pattison
- The Heart Research Institute, 7 Eliza Street, Newtown, NSW 2042, Australia; Faculty of Medicine, University of Sydney, Sydney, NSW 2006, Australia
| | - Marta T Ignasiak
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Belgdamsvej 3, Copenhagen 2200, Denmark
| | - Carl H Schiesser
- School of Chemistry, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | - Michael J Davies
- The Heart Research Institute, 7 Eliza Street, Newtown, NSW 2042, Australia; Faculty of Medicine, University of Sydney, Sydney, NSW 2006, Australia; Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Belgdamsvej 3, Copenhagen 2200, Denmark.
| |
Collapse
|
22
|
Carroll L, Davies MJ, Pattison DI. Reaction of low-molecular-mass organoselenium compounds (and their sulphur analogues) with inflammation-associated oxidants. Free Radic Res 2015; 49:750-67. [PMID: 25854915 DOI: 10.3109/10715762.2015.1018247] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Selenium is an essential trace element in mammals, with the majority specifically encoded as seleno-L-cysteine into a range of selenoproteins. Many of these proteins play a key role in modulating oxidative stress, via either direct detoxification of biological oxidants, or repair of oxidised residues. Both selenium- and sulphur-containing residues react readily with the wide range of oxidants (including hydrogen peroxide, radicals, singlet oxygen and hypochlorous, hypobromous, hypothiocyanous and peroxynitrous acids) that are produced during inflammation and have been implicated in the development of a range of inflammatory diseases. Whilst selenium has similar properties to sulphur, it typically exhibits greater reactivity with most oxidants, and there are considerable differences in the subsequent reactivity and ease of repair of the oxidised species that are formed. This review discusses the chemistry of low-molecular-mass organoselenium compounds (e.g. selenoethers, diselenides and selenols) with inflammatory oxidants, with a particular focus on the reaction kinetics and product studies, with the differences in reactivity between selenium and sulphur analogues described in the selected examples. These data provide insight into the therapeutic potential of low-molecular-mass selenium-containing compounds to modulate the activity of both radical and molecular oxidants and provide protection against inflammation-induced damage. Progress in their therapeutic development (including modulation of potential selenium toxicity by strategic design) is demonstrated by a brief summary of some recent studies where novel organoselenium compounds have been used as wound healing or radioprotection agents and in the prevention of cardiovascular disease.
Collapse
Affiliation(s)
- L Carroll
- The Heart Research Institute , Newtown, Sydney , Australia
| | | | | |
Collapse
|