1
|
Hussain NM, O'Halloran M, McDermott B, Elahi MA. Fetal monitoring technologies for the detection of intrapartum hypoxia - challenges and opportunities. Biomed Phys Eng Express 2024; 10:022002. [PMID: 38118183 DOI: 10.1088/2057-1976/ad17a6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 12/20/2023] [Indexed: 12/22/2023]
Abstract
Intrapartum fetal hypoxia is related to long-term morbidity and mortality of the fetus and the mother. Fetal surveillance is extremely important to minimize the adverse outcomes arising from fetal hypoxia during labour. Several methods have been used in current clinical practice to monitor fetal well-being. For instance, biophysical technologies including cardiotocography, ST-analysis adjunct to cardiotocography, and Doppler ultrasound are used for intrapartum fetal monitoring. However, these technologies result in a high false-positive rate and increased obstetric interventions during labour. Alternatively, biochemical-based technologies including fetal scalp blood sampling and fetal pulse oximetry are used to identify metabolic acidosis and oxygen deprivation resulting from fetal hypoxia. These technologies neither improve clinical outcomes nor reduce unnecessary interventions during labour. Also, there is a need to link the physiological changes during fetal hypoxia to fetal monitoring technologies. The objective of this article is to assess the clinical background of fetal hypoxia and to review existing monitoring technologies for the detection and monitoring of fetal hypoxia. A comprehensive review has been made to predict fetal hypoxia using computational and machine-learning algorithms. The detection of more specific biomarkers or new sensing technologies is also reviewed which may help in the enhancement of the reliability of continuous fetal monitoring and may result in the accurate detection of intrapartum fetal hypoxia.
Collapse
Affiliation(s)
- Nadia Muhammad Hussain
- Discipline of Electrical & Electronic Engineering, University of Galway, Ireland
- Translational Medical Device Lab, Lambe Institute for Translational Research, University Hospital Galway, Ireland
| | - Martin O'Halloran
- Discipline of Electrical & Electronic Engineering, University of Galway, Ireland
- Translational Medical Device Lab, Lambe Institute for Translational Research, University Hospital Galway, Ireland
| | - Barry McDermott
- Translational Medical Device Lab, Lambe Institute for Translational Research, University Hospital Galway, Ireland
- College of Medicine, Nursing & Health Sciences, University of Galway, Ireland
| | - Muhammad Adnan Elahi
- Discipline of Electrical & Electronic Engineering, University of Galway, Ireland
- Translational Medical Device Lab, Lambe Institute for Translational Research, University Hospital Galway, Ireland
| |
Collapse
|
2
|
Navalón P, Merchan-Naranjo J, Ghosn F, Almansa B, Chafer-Pericas C, González-Peñas J, Rodríguez-Toscano E, Zeballos S, Arriaga M, Castro Castro P, Blanco Bravo D, Vento M, Pina-Camacho L, García-Blanco A. Study of the pathophysiological mechanisms associated with the onset and course of neurodevelopmental disorders in preterm infants (the PeriSTRESS-PremTEA study): Rationale, objectives, design and sample description. SPANISH JOURNAL OF PSYCHIATRY AND MENTAL HEALTH 2024; 17:19-27. [PMID: 33618030 DOI: 10.1016/j.rpsm.2021.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/03/2020] [Accepted: 02/13/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND There are few studies exploring the pathophysiological pathways that may condition differentially the emergence/course of neurodevelopmental disorders (ND) in very preterm and extremely preterm newborns (VPTN/EPTN). Furthermore, there are no established biological markers predictive of ND in this population. The aim of this study is four-fold: in two cohorts of VPTN/EPTN (i) to characterize the emergence/course of ND up to corrected-age 6 years, (ii) to identify those factors (from prenatal stages up to age 6 years) that explain the interindividual differences related to emergence/course of ND, (iii) to identify in the first hours/days of life a urinary metabolomic biomarker profile predictive of ND, and (iv) to determine longitudinally variations in DNA methylation patterns predictive of ND. METHODS Observational, longitudinal, prospective, six-year follow-up, multicentre collaborative study. Two cohorts are being recruited: the PeriSTRESS-Valencia-cohort (n=26 VPTN, 18 EPTN, and 122 born-at-term controls), and the PremTEA-Madrid-cohort (n=49 EPTN and n=29 controls). RESULTS We describe the rationale, objectives and design of the PeriSTRESS-PremTEA project and show a description at birth of the recruited samples. CONCLUSIONS The PeriSTRESS-PremTEA project could help improve early identification of clinical, environmental and biological variables involved in the physiopathology of ND in VPTN/EPTN. It could also help to improve the early identification of non-invasive ND biomarkers in this population. This may allow early ND detection as well as early and personalised intervention for these children.
Collapse
Affiliation(s)
- Pablo Navalón
- Neonatal Research Group, La Fe Health Research Institute, Valencia, España; Department of Psychiatry, La Fe University and Polytechnic Hospital, Valencia, España
| | - Jéssica Merchan-Naranjo
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañon, CIBERSAM, IiSGM, School of Medicine, Universidad Complutense, Madrid, España
| | - Farah Ghosn
- Neonatal Research Group, La Fe Health Research Institute, Valencia, España
| | - Belén Almansa
- Neonatal Research Group, La Fe Health Research Institute, Valencia, España
| | | | - Javier González-Peñas
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañon, CIBERSAM, IiSGM, School of Medicine, Universidad Complutense, Madrid, España
| | - Elisa Rodríguez-Toscano
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañon, CIBERSAM, IiSGM, School of Medicine, Universidad Complutense, Madrid, España
| | - Susana Zeballos
- Department of Neonatology, Hospital General Universitario Gregorio Marañon, School of Medicine, Universidad Complutense, Madrid, España
| | - María Arriaga
- Department of Neonatology, Hospital General Universitario Gregorio Marañon, School of Medicine, Universidad Complutense, Madrid, España
| | - Pedro Castro Castro
- Section of Neuropaediatrics, Department of Paediatrics, Hospital General Universitario Gregorio Marañon, School of Medicine, Universidad Complutense, Madrid, España
| | - Dorotea Blanco Bravo
- Department of Neonatology, Hospital General Universitario Gregorio Marañon, School of Medicine, Universidad Complutense, Madrid, España
| | - Máximo Vento
- Neonatal Research Group, La Fe Health Research Institute, Valencia, España
| | - Laura Pina-Camacho
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañon, CIBERSAM, IiSGM, School of Medicine, Universidad Complutense, Madrid, España.
| | - Ana García-Blanco
- Neonatal Research Group, La Fe Health Research Institute, Valencia, España; Department of Personality, Assessment and Psychological Treatments, University of Valencia, España
| |
Collapse
|
3
|
Tran NT, Kowalski GM, Muccini AM, Nitsos I, Hale N, Snow RJ, Walker DW, Ellery SJ. Creatine supplementation reduces the cerebral oxidative and metabolic stress responses to acute in utero hypoxia in the late-gestation fetal sheep. J Physiol 2022; 600:3193-3210. [PMID: 35587817 PMCID: PMC9542404 DOI: 10.1113/jp282840] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/22/2022] [Indexed: 11/24/2022] Open
Abstract
Abstract Prophylactic creatine treatment may reduce hypoxic brain injury due to its ability to sustain intracellular ATP levels thereby reducing oxidative and metabolic stress responses during oxygen deprivation. Using microdialysis, we investigated the real‐time in vivo effects of fetal creatine supplementation on cerebral metabolism following acute in utero hypoxia caused by umbilical cord occlusion (UCO). Fetal sheep (118 days’ gestational age (dGA)) were implanted with an inflatable Silastic cuff around the umbilical cord and a microdialysis probe inserted into the right cerebral hemisphere for interstitial fluid sampling. Creatine (6 mg kg−1 h−1) or saline was continuously infused intravenously from 122 dGA. At 131 dGA, a 10 min UCO was induced. Hourly microdialysis samples were obtained from −24 to 72 h post‐UCO and analysed for percentage change of hydroxyl radicals (•OH) and interstitial metabolites (lactate, pyruvate, glutamate, glycerol, glycine). Histochemical markers of protein and lipid oxidation were assessed at post‐mortem 72 h post‐UCO. Prior to UCO, creatine treatment reduced pyruvate and glycerol concentrations in the microdialysate outflow. Creatine treatment reduced interstitial cerebral •OH outflow 0 to 24 h post‐UCO. Fetuses with higher arterial creatine concentrations before UCO presented with reduced levels of hypoxaemia (PO2 and SO2) during UCO which associated with reduced interstitial cerebral pyruvate, lactate and •OH accumulation. No effects of creatine treatment on immunohistochemical markers of oxidative stress were found. In conclusion, fetal creatine treatment decreased cerebral outflow of •OH and was associated with an improvement in cerebral bioenergetics following acute hypoxia.
![]() Key points Fetal hypoxia can cause persistent metabolic and oxidative stress responses that disturb energy homeostasis in the brain. Creatine in its phosphorylated form is an endogenous phosphagen; therefore, supplementation is a proposed prophylactic treatment for fetal hypoxia. Fetal sheep instrumented with a cerebral microdialysis probe were continuously infused with or without creatine‐monohydrate for 10 days before induction of 10 min umbilical cord occlusion (UCO; 131 days’ gestation). Cerebral interstitial fluid was collected up to 72 h following UCO. Prior to UCO, fetal creatine supplementation reduced interstitial cerebral pyruvate and glycerol concentrations. Fetal creatine supplementation reduced cerebral hydroxyl radical efflux up to 24 h post‐UCO. Fetuses with higher arterial creatine concentrations before UCO and reduced levels of systemic hypoxaemia during UCO were associated with reduced cerebral interstitial pyruvate, lactate and •OH following UCO. Creatine supplementation leads to some improvements in cerebral bioenergetics following in utero acute hypoxia.
Collapse
Affiliation(s)
- Nhi Thao Tran
- School of Health & Biomedical Sciences, RMIT University, Bundoora, Melbourne, Victoria, Australia.,The Ritchie Centre, Hudson Institute of Medical Research, Monash Medical Centre, Clayton, Melbourne, Victoria, Australia
| | - Greg M Kowalski
- Institute for Physical Activity & Nutrition, Deakin University, Burwood, School of Exercise & Nutrition Sciences, Deakin University, Geelong Melbourne, Victoria, Australia.,Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Anna M Muccini
- The Ritchie Centre, Hudson Institute of Medical Research, Monash Medical Centre, Clayton, Melbourne, Victoria, Australia.,Genetic Research Services, University of Queensland, Queensland, Australia
| | - Ilias Nitsos
- The Ritchie Centre, Hudson Institute of Medical Research, Monash Medical Centre, Clayton, Melbourne, Victoria, Australia.,Department of Obstetrics & Gynecology, Monash University, Clayton, Melbourne, Victoria, Australia
| | - Nadia Hale
- School of Health & Biomedical Sciences, RMIT University, Bundoora, Melbourne, Victoria, Australia.,The Ritchie Centre, Hudson Institute of Medical Research, Monash Medical Centre, Clayton, Melbourne, Victoria, Australia
| | - Rod J Snow
- Institute for Physical Activity & Nutrition, Deakin University, Burwood, School of Exercise & Nutrition Sciences, Deakin University, Geelong Melbourne, Victoria, Australia
| | - David W Walker
- School of Health & Biomedical Sciences, RMIT University, Bundoora, Melbourne, Victoria, Australia
| | - Stacey J Ellery
- The Ritchie Centre, Hudson Institute of Medical Research, Monash Medical Centre, Clayton, Melbourne, Victoria, Australia.,Department of Obstetrics & Gynecology, Monash University, Clayton, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Martini S, Castellini L, Parladori R, Paoletti V, Aceti A, Corvaglia L. Free Radicals and Neonatal Brain Injury: From Underlying Pathophysiology to Antioxidant Treatment Perspectives. Antioxidants (Basel) 2021; 10:2012. [PMID: 34943115 PMCID: PMC8698308 DOI: 10.3390/antiox10122012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/09/2021] [Accepted: 12/16/2021] [Indexed: 01/23/2023] Open
Abstract
Free radicals play a role of paramount importance in the development of neonatal brain injury. Depending on the pathophysiological mechanisms underlying free radical overproduction and upon specific neonatal characteristics, such as the GA-dependent maturation of antioxidant defenses and of cerebrovascular autoregulation, different profiles of injury have been identified. The growing evidence on the detrimental effects of free radicals on the brain tissue has led to discover not only potential biomarkers for oxidative damage, but also possible neuroprotective therapeutic approaches targeting oxidative stress. While a more extensive validation of free radical biomarkers is required before considering their use in routine neonatal practice, two important treatments endowed with antioxidant properties, such as therapeutic hypothermia and magnesium sulfate, have become part of the standard of care to reduce the risk of neonatal brain injury, and other promising therapeutic strategies are being tested in clinical trials. The implementation of currently available evidence is crucial to optimize neonatal neuroprotection and to develop individualized diagnostic and therapeutic approaches addressing oxidative brain injury, with the final aim of improving the neurological outcome of this population.
Collapse
Affiliation(s)
- Silvia Martini
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (A.A.); (L.C.)
- Neonatal Intensive Care Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Laura Castellini
- School of Medicine and Surgery, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy;
| | - Roberta Parladori
- Specialty School of Pediatrics, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy;
| | - Vittoria Paoletti
- Neonatal Intensive Care Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Arianna Aceti
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (A.A.); (L.C.)
- Neonatal Intensive Care Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Luigi Corvaglia
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (A.A.); (L.C.)
- Neonatal Intensive Care Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| |
Collapse
|
5
|
High Oxygen Does Not Increase Reperfusion Injury Assessed with Lipid Peroxidation Biomarkers after Cardiac Arrest: A Post Hoc Analysis of the COMACARE Trial. J Clin Med 2021; 10:jcm10184226. [PMID: 34575337 PMCID: PMC8471647 DOI: 10.3390/jcm10184226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 12/02/2022] Open
Abstract
The products of polyunsaturated fatty acid peroxidation are considered reliable biomarkers of oxidative injury in vivo. We investigated ischemia-reperfusion-related oxidative injury by determining the levels of lipid peroxidation biomarkers (isoprostane, isofuran, neuroprostane, and neurofuran) after cardiac arrest and tested the associations between the biomarkers and different arterial oxygen tensions (PaO2). We utilized blood samples collected during the COMACARE trial (NCT02698917). In the trial, 123 patients resuscitated from out-of-hospital cardiac arrest were treated with a 10–15 kPa or 20–25 kPa PaO2 target during the initial 36 h in the intensive care unit. We measured the biomarker levels at admission, and 24, 48, and 72 h thereafter. We compared biomarker levels in the intervention groups and in groups that differed in oxygen exposure prior to randomization. Blood samples for biomarker determination were available for 112 patients. All four biomarker levels peaked at 24 h; the increase appeared greater in younger patients and in patients without bystander-initiated life support. No association between the lipid peroxidation biomarkers and oxygen exposure either before or after randomization was found. Increases in the biomarker levels during the first 24 h in intensive care suggest continuing oxidative stress, but the clinical relevance of this remains unresolved.
Collapse
|
6
|
Andries A, Rozenski J, Vermeersch P, Mekahli D, Van Schepdael A. Recent progress in the LC-MS/MS analysis of oxidative stress biomarkers. Electrophoresis 2020; 42:402-428. [PMID: 33280143 DOI: 10.1002/elps.202000208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/17/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022]
Abstract
The presence of a dynamic and balanced equilibrium between the production of reactive oxygen (ROS) and nitrogen (RNS) species and the in-house antioxidant defense mechanisms is characteristic for a healthy body. During oxidative stress (OS), this balance is switched to increased production of ROS and RNS, exceeding the capacity of physiological antioxidant systems. This can cause damage to biological molecules, leading to loss of function and even cell death. Nowadays, there is increasing scientific and clinical interest in OS and the associated parameters to measure the degree of OS in biofluids. An increasing number of reports using LC-MS/MS methods for the analysis of OS biomarkers can be found. Since bioanalysis is usually complicated by matrix effects, various types of cleanup procedures are used to effectively separate the biomarkers from the matrix. This is an essential part of the analysis to prepare a reproducible and homogenous solution suitable for injection onto the column. The present review gives a summary of the chromatographic methods used for the determination of OS biomarkers in both urine and plasma, serum, and whole blood samples. The first part mainly describes the biological background of the different OS biomarkers, while the second part reports examples of chromatographic methods for the analysis of different metabolites connected with OS in biofluids, covering a period from 2015 till early 2020. The selected examples mainly include LC-MS/MS methods for isoprostanes, oxidized proteins, oxidized lipoproteins, and DNA/RNA biomarkers. The last part explains the clinical relevance of this review.
Collapse
Affiliation(s)
- Asmin Andries
- Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, KU Leuven - University of Leuven, Leuven, Belgium
| | - Jef Rozenski
- KU Leuven - Rega Institute for Medical Research, Medicinal Chemistry, Leuven, Belgium
| | - Pieter Vermeersch
- Clinical Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium.,Center for Metabolic Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Djalila Mekahli
- Department of Development and Regeneration, Laboratory of Pediatrics, PKD group, KU Leuven - University of Leuven, Leuven, Belgium.,Department of Pediatric Nephrology, University Hospitals Leuven, Leuven, Belgium
| | - Ann Van Schepdael
- Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, KU Leuven - University of Leuven, Leuven, Belgium
| |
Collapse
|
7
|
Seif El Dein HM, Fahmy N, El Din ZE, Morgan M, Fattah MA, Eltatawy SS. Correlation between increased serum malondialdehyde and spectrum of cranial ultrasonography findings in hypoxic ischemic encephalopathy: could it be used as a predictor of disease severity? THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2020. [PMCID: PMC7718592 DOI: 10.1186/s43055-020-00369-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Hypoxic ischemic encephalopathy (HIE) is a major cause of mortality and morbidity in neonates. Malondialdehyde (MDH) is a colorless lipid that can be used as a marker for oxidative stress. Cranial ultrasound sensitivity and specificity in detection of neonatal HIE ought to be further investigated. This study aims to detect whether serum (MDH) can be used as an indicator for HIE severity and to assess the role of cranial ultrasound in diagnosis of HIE neurological disorders, correlating ultrasound findings to MDA levels.
Results
Statistically significant differences were found between the serum MDA levels in patients compared to controls as well as among serum MDA in patients with advancing Sarnat stages (I, II, III) P value < 0.001. Statistically significant levels of serum MDA were found in patients with ischemic US findings compared to those with normal scan; 36.4% of cases with ischemic US findings were diagnosed as Sarnat stage II while 63.6% were diagnosed with stage III with a statistically significant difference (P = 0.016).
Conclusion
Cranial ultrasound can be used for diagnosis of neonatal hypoxic ischemic insults, with lower sensitivity in mild cases and increased sensitivity in severe cases; and when combined with measuring serum MDA levels, it can be used as a diagnostic marker and as a predictor for severity of HIE.
Collapse
|
8
|
Phung AS, Bannenberg G, Vigor C, Reversat G, Oger C, Roumain M, Galano JM, Durand T, Muccioli GG, Ismail A, Wang SC. Chemical Compositional Changes in Over-Oxidized Fish Oils. Foods 2020; 9:foods9101501. [PMID: 33092165 PMCID: PMC7590219 DOI: 10.3390/foods9101501] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/12/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023] Open
Abstract
A recent study has reported that the administration during gestation of a highly rancid hoki liver oil, obtained by oxidation through sustained exposure to oxygen gas and incident light for 30 days, causes newborn mortality in rats. This effect was attributed to lipid hydroperoxides formed in the omega-3 long-chain polyunsaturated fatty acid-rich oil, while other chemical changes in the damaged oil were overlooked. In the present study, the oxidation condition employed to damage the hoki liver oil was replicated, and the extreme rancidity was confirmed. A detailed analysis of temporal chemical changes resulting from the sustained oxidative challenge involved measures of eicosapentaenoic acid/docosahexaenoic acid (EPA/DHA) omega-3 oil oxidative quality (peroxide value, para-anisidine value, total oxidation number, acid value, oligomers, antioxidant content, and induction time) as well as changes in fatty acid content, volatiles, isoprostanoids, and oxysterols. The chemical description was extended to refined anchovy oil, which is a more representative ingredient oil used in omega-3 finished products. The present study also analyzed the effects of a different oxidation method involving thermal exposure in the dark in contact with air, which is an oxidation condition that is more relevant to retail products. The two oils had different susceptibility to the oxidation conditions, resulting in distinct chemical oxidation signatures that were determined primarily by antioxidant protection as well as specific methodological aspects of the applied oxidative conditions. Unique isoprostanoids and oxysterols were formed in the over-oxidized fish oils, which are discussed in light of their potential biological activities.
Collapse
Affiliation(s)
- Austin S. Phung
- Department of Chemistry, University of California, Davis, CA 95616, USA;
| | - Gerard Bannenberg
- Global Organization for EPA and DHA Omega-3s (GOED), Salt Lake City, UT 84105, USA;
- Correspondence: (G.B.); (S.C.W.)
| | - Claire Vigor
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, 34093 Montpellier, France; (C.V.); (G.R.); (C.O.); (J.-M.G.); (T.D.)
| | - Guillaume Reversat
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, 34093 Montpellier, France; (C.V.); (G.R.); (C.O.); (J.-M.G.); (T.D.)
| | - Camille Oger
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, 34093 Montpellier, France; (C.V.); (G.R.); (C.O.); (J.-M.G.); (T.D.)
| | - Martin Roumain
- Louvain Drug Research Institute, Université Catholique de Louvain, 1200 Brussels, Belgium; (M.R.); (G.G.M.)
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, 34093 Montpellier, France; (C.V.); (G.R.); (C.O.); (J.-M.G.); (T.D.)
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, 34093 Montpellier, France; (C.V.); (G.R.); (C.O.); (J.-M.G.); (T.D.)
| | - Giulio G. Muccioli
- Louvain Drug Research Institute, Université Catholique de Louvain, 1200 Brussels, Belgium; (M.R.); (G.G.M.)
| | - Adam Ismail
- Global Organization for EPA and DHA Omega-3s (GOED), Salt Lake City, UT 84105, USA;
| | - Selina C. Wang
- Department of Food Science and Technology, University of California, Davis, CA 95616, USA
- Correspondence: (G.B.); (S.C.W.)
| |
Collapse
|
9
|
Martini S, Austin T, Aceti A, Faldella G, Corvaglia L. Free radicals and neonatal encephalopathy: mechanisms of injury, biomarkers, and antioxidant treatment perspectives. Pediatr Res 2020; 87:823-833. [PMID: 31655487 DOI: 10.1038/s41390-019-0639-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 09/19/2019] [Accepted: 09/22/2019] [Indexed: 12/11/2022]
Abstract
Neonatal encephalopathy (NE), most commonly a result of the disruption of cerebral oxygen delivery, is the leading cause of neurologic disability in term neonates. Given the key role of free radicals in brain injury development following hypoxia-ischemia-reperfusion, several oxidative biomarkers have been explored in preclinical and clinical models of NE. Among these, antioxidant enzyme activity, uric acid excretion, nitric oxide, malondialdehyde, and non-protein-bound iron have shown promising results as possible predictors of NE severity and outcome. Owing to high costs and technical complexity, however, their routine use in clinical practice is still limited. Several strategies aimed at reducing free radical production or upregulating physiological scavengers have been proposed for NE. Room-air resuscitation has proved to reduce oxidative stress following perinatal asphyxia and is now universally adopted. A number of medications endowed with antioxidant properties, such as melatonin, erythropoietin, allopurinol, or N-acetylcysteine, have also shown potential neuroprotective effects in perinatal asphyxia; nevertheless, further evidence is needed before these antioxidant approaches could be implemented as standard care.
Collapse
Affiliation(s)
- Silvia Martini
- Neonatology and Neonatal Intensive Care Unit, St. Orsola-Malpighi Hospital, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy.
| | - Topun Austin
- Neonatal Intensive Care Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Arianna Aceti
- Neonatology and Neonatal Intensive Care Unit, St. Orsola-Malpighi Hospital, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Giacomo Faldella
- Neonatology and Neonatal Intensive Care Unit, St. Orsola-Malpighi Hospital, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Luigi Corvaglia
- Neonatology and Neonatal Intensive Care Unit, St. Orsola-Malpighi Hospital, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
10
|
Stefanovic V, Andersson S, Vento M. Oxidative stress - Related spontaneous preterm delivery challenges in causality determination, prevention and novel strategies in reduction of the sequelae. Free Radic Biol Med 2019; 142:52-60. [PMID: 31185254 DOI: 10.1016/j.freeradbiomed.2019.06.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 12/11/2022]
Abstract
Spontaneous preterm birth (PTB) is one of the major complications of pregnancy and the main cause of neonatal mortality and morbidity. Despite the efforts devoted to the understanding of this obstetrical syndrome and improved medical care, there has been a tendency for the PTB rate to increase in the last decades globally. The costs of the screening for spontaneous PTB, its management, and treatment of the sequelae represent a major burden to the health service economy of high-income countries. In this scenario, it has been widely acknowledged that oxidative stress (OS) plays an important role in the pathogenicity of human disease in wide range of areas of medicine. There is an emerging evidence that an imbalance between pro-and-antioxidants may be associated with spontaneous PTB. However, there are still many controversies on the mechanisms by which OS are involved in the pathogenesis of prematurity. Moreover, the crucial question whether the OS is the cause or consequence of the disease is yet to be answered. The purpose of this article is to briefly summarize the current knowledge and controversies on oxidative stress-related spontaneous PTB and to give a critical approach on future perspectives on this topic as a classical example of translational medicine. Placenta-mediated pregnancy adverse outcome associated with OS leading to iatrogenic PTB (e.g. pre-eclampsia, intrauterine growth restriction, gestational diabetes) will not be discussed.
Collapse
Affiliation(s)
- Vedran Stefanovic
- Department of Obstetrics and Gynecology, Fetomaternal Medical Center, Helsinki University and Helsinki University Hospital, Finland
| | - Sture Andersson
- Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Maximo Vento
- Division of Neonatology, University and Polytechnic Hospital La Fe, Valencia, Spain; Neonatal Research Group, Health Research Institute La Fe, Valencia, Spain.
| |
Collapse
|
11
|
Domínguez-Perles R, Gil-Izquierdo A, Ferreres F, Medina S. Update on oxidative stress and inflammation in pregnant women, unborn children (nasciturus), and newborns - Nutritional and dietary effects. Free Radic Biol Med 2019; 142:38-51. [PMID: 30902759 DOI: 10.1016/j.freeradbiomed.2019.03.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/05/2019] [Accepted: 03/11/2019] [Indexed: 12/29/2022]
Abstract
The scientific background of perinatal pathology, regarding both mother and offspring, from the lipidomic perspective, has highlighted the possibility of identifying new, promising clinical markers of oxidative stress and inflammation, closely related to the normal development of unborn and newborn children, together with their application. In this regard, in recent years, significant advances have been achieved, assisted by both newly developed analytical tools and basic knowledge on the biological implications of oxylipins. Hence, in the light of this recent progress, this review aims to provide an update on the relevance of human oxylipins during pregnancy and in the unborn and newborn child, covering two fundamental aspects. Firstly, the evidence from human clinical studies and dietary intervention trials will be used to shed light on the extent to which dietary supplementation can modulate the lipidomic markers of oxidative stress and inflammation in the perinatal state, emphasizing the role of the placenta and metabolic disturbances in the mother and fetus. The second part of this article comprises a review of existing data on specific pathophysiological aspects of human reproduction, in relation to lipidomic markers in pregnant women, unborn children, and newborn children. The information reviewed here evidences the current opportunity to correct reproductive disturbances, in the framework of lipidomics, by fine-tuning dietary interventions.
Collapse
Affiliation(s)
- R Domínguez-Perles
- Group on Safety, Quality, and Bioactivity of Plant Foods, Department of Food Science and Technology, (CEBAS-CSIC), University Campus of Espinardo, Edif. 25, 30100, Murcia, Spain
| | - A Gil-Izquierdo
- Group on Safety, Quality, and Bioactivity of Plant Foods, Department of Food Science and Technology, (CEBAS-CSIC), University Campus of Espinardo, Edif. 25, 30100, Murcia, Spain.
| | - F Ferreres
- Group on Safety, Quality, and Bioactivity of Plant Foods, Department of Food Science and Technology, (CEBAS-CSIC), University Campus of Espinardo, Edif. 25, 30100, Murcia, Spain
| | - S Medina
- Group on Safety, Quality, and Bioactivity of Plant Foods, Department of Food Science and Technology, (CEBAS-CSIC), University Campus of Espinardo, Edif. 25, 30100, Murcia, Spain
| |
Collapse
|
12
|
Rausell D, García-Blanco A, Correcher P, Vitoria I, Vento M, Cháfer-Pericás C. Newly validated biomarkers of brain damage may shed light into the role of oxidative stress in the pathophysiology of neurocognitive impairment in dietary restricted phenylketonuria patients. Pediatr Res 2019; 85:242-250. [PMID: 30333522 DOI: 10.1038/s41390-018-0202-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 09/14/2018] [Accepted: 10/04/2018] [Indexed: 01/07/2023]
Abstract
Despite a strict dietary control, patient with hyperphenylalaninemia or phenylketonuria may show cognitive and/or behavioral disorders. These comorbid deficits are of great concern to patients, families, and health organizations. However, biomarkers capable of detecting initial stages of neurological damage are not commonly employed. The pathogenesis of phenylketonuria is complex in nature. Increasingly, the role of oxidative stress has gained acceptance and biomarkers reflecting oxidative damage to the brain and easily accessible in peripheral biofluids have been validated using mass spectrometry techniques. In the present review, the role of oxidative stress in the pathogenesis of phenylketonuria and hyperphenylalaninemia has been updated. Moreover, we report on newly validated brain-specific lipid peroxidation biomarkers and inform on their relevance in the detection and monitoring of neurological damage in phenylketonuric patients. In preliminary studies, a correlation between lipid peroxidation biomarkers and neurological dysfunction in patients with PKU was reported. However, there is a need of adequately powered trials to confirm the validity of these biomarkers for early detection of brain damage, initiation of treatment, and reliably monitor evolving disease both in phenylketonuria and hyperphenylalaninemia.
Collapse
Affiliation(s)
- Dolores Rausell
- Division of Congenital Metabolopathies, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Ana García-Blanco
- Neonatal Research Group, Health Research Institute La Fe, Valencia, Spain
| | - Patricia Correcher
- Division of Congenital Metabolopathies, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Isidro Vitoria
- Division of Congenital Metabolopathies, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Máximo Vento
- Neonatal Research Group, Health Research Institute La Fe, Valencia, Spain
| | | |
Collapse
|
13
|
Millán I, Piñero-Ramos JD, Lara I, Parra-Llorca A, Torres-Cuevas I, Vento M. Oxidative Stress in the Newborn Period: Useful Biomarkers in the Clinical Setting. Antioxidants (Basel) 2018; 7:E193. [PMID: 30558164 PMCID: PMC6316621 DOI: 10.3390/antiox7120193] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/01/2018] [Accepted: 12/12/2018] [Indexed: 11/16/2022] Open
Abstract
Aerobic metabolism is highly efficient in providing energy for multicellular organisms. However, even under physiological conditions, an incomplete reduction of oxygen produces reactive oxygen species and, subsequently, oxidative stress. Some of these chemical species are highly reactive free radicals capable of causing functional and structural damage to cell components (protein, lipids, or nucleotides). Oxygen is the most used drug in ill-adapted patients during the newborn period. The use of oxygen may cause oxidative stress-related diseases that increase mortality and cause morbidity with adverse long-term outcomes. Conditions such as prematurity or birth asphyxia are frequently treated with oxygen supplementation. Both pathophysiological situations of hypoxia⁻reoxygenation in asphyxia and hyperoxia in premature infants cause a burst of reactive oxygen species and oxidative stress. Recently developed analytical assays using mass spectrometry have allowed us to determine highly specific biomarkers with minimal samples. The detection of these metabolites will help improve the diagnosis, evolution, and response to therapy in oxidative stress-related conditions during the newborn period.
Collapse
Affiliation(s)
- Iván Millán
- Neonatal Research Group, Health Research Instituto La Fe, 46026 Valencia, Spain.
| | | | - Inmaculada Lara
- Neonatal Research Group, Health Research Instituto La Fe, 46026 Valencia, Spain.
| | - Anna Parra-Llorca
- Neonatal Research Group, Health Research Instituto La Fe, 46026 Valencia, Spain.
| | - Isabel Torres-Cuevas
- Neonatal Research Group, Health Research Instituto La Fe, 46026 Valencia, Spain.
| | - Máximo Vento
- Neonatal Research Group, Health Research Instituto La Fe, 46026 Valencia, Spain.
- Division of Neonatology, University and Polytechnic Hospital La Fe, 46026 Valencia, Spain.
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW The rapid progress in biomarker science is on the threshold of significantly changing clinical care for infants in the neonatal ICU. Infants with neonatal brain injuries will likely be the first group whose management is dramatically altered with point-of-care, rapidly available brain biomarker analysis. Providing an interim update on progress in this area is the purpose of this review. RECENT FINDINGS Highlighted findings from the past 18 months of publications on biomarkers in neonatal brain injury include; Specific nonbrain markers of cardiac health and global asphyxia continue to provide information on brain injury after hypoxic-ischemic encephalopathy (HIE). Prediction of injury in the piglet hypoxia-ischemia model is improved with the use of a combination score of plasma metabolites. In a neonatal piglet model of perinatal hypoxia-ischemia, a systemic proinflammatory surge of cytokines has been identified after rewarming from therapeutic hypothermia. New biomarkers identified recently include osteopontin, activin A, neutrophil gelatinase-associated lipocalin, secretoneurin, Tau and neurofilament light protein. Brain-based biomarkers differ in their ability to predict short-term in-hospital outcomes and long-term neurologic deficits. SUMMARY Neonatal brain biomarker research is currently in its very early development with major advances still to be made.
Collapse
|
15
|
Huun MU, Garberg HT, Escobar J, Chafer C, Vento M, Holme IM, Saugstad OD, Solberg R. DHA reduces oxidative stress following hypoxia-ischemia in newborn piglets: a study of lipid peroxidation products in urine and plasma. J Perinat Med 2018. [PMID: 28632497 DOI: 10.1515/jpm-2016-0334] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Lipid peroxidation mediated by reactive oxygen species is a major contributor to oxidative stress. Docosahexaenoic acid (DHA) has anti-oxidant and neuroprotective properties. Our objective was to assess how oxidative stress measured by lipid peroxidation was modified by DHA in a newborn piglet model of hypoxia-ischemia (HI). METHODS Fifty-five piglets were randomized to (i) hypoxia, (ii) DHA, (iii) hypothermia, (iv) hypothermia+DHA or (v) sham. All groups but sham were subjected to hypoxia by breathing 8% O2. DHA was administered 210 min after end of hypoxia and the piglets were euthanized 9.5 h after end of hypoxia. Urine and blood were harvested at these two time points and analyzed for F4-neuroprostanes, F2-isoprostanes, neurofuranes and isofuranes using UPLC-MS/MS. RESULTS F4-neuroprostanes in urine were significantly reduced (P=0.006) in groups receiving DHA. Hypoxia (median, IQR 1652 nM, 610-4557) vs. DHA (440 nM, 367-738, P=0.016) and hypothermia (median, IQR 1338 nM, 744-3085) vs. hypothermia+DHA (356 nM, 264-1180, P=0.006). The isoprostane compound 8-iso-PGF2α was significantly lower (P=0.011) in the DHA group compared to the hypoxia group. No significant differences were found between the groups in blood. CONCLUSION DHA significantly reduces oxidative stress by measures of lipid peroxidation following HI in both normothermic and hypothermic piglets.
Collapse
Affiliation(s)
- Marianne Ullestad Huun
- Department of Pediatric Research, Institute of Surgical Research, Oslo University Hospital, Rikshospitalet, Oslo, Norway, Tel.: +47-23-07-27-90
| | - Håvard T Garberg
- Department of Pediatric Research, Institute of Surgical Research, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Javier Escobar
- Department of Pediatric Research, Institute of Surgical Research, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Consuelo Chafer
- Neonatal Research Unit, Health Research Institute Hospital La Fé, Valencia, Spain
| | - Maximo Vento
- Neonatal Research Unit, Health Research Institute Hospital La Fé, Valencia, Spain
| | - Ingar M Holme
- Department of Sports Medicine, Norwegian School of Sports Sciences, Oslo, Norway
| | - Ola Didrik Saugstad
- Department of Pediatric Research, Institute of Surgical Research, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Rønnaug Solberg
- Department of Pediatric Research, Institute of Surgical Research, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| |
Collapse
|
16
|
Shores DR, Everett AD. Children as Biomarker Orphans: Progress in the Field of Pediatric Biomarkers. J Pediatr 2018; 193:14-20.e31. [PMID: 29031860 PMCID: PMC5794519 DOI: 10.1016/j.jpeds.2017.08.077] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/04/2017] [Accepted: 08/30/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Darla R Shores
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD.
| | - Allen D Everett
- Division of Cardiology, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD
| |
Collapse
|
17
|
Novel free-radical mediated lipid peroxidation biomarkers in newborn plasma. Anal Chim Acta 2017; 996:88-97. [DOI: 10.1016/j.aca.2017.09.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/15/2017] [Accepted: 09/21/2017] [Indexed: 12/14/2022]
|
18
|
Galano JM, Lee YY, Oger C, Vigor C, Vercauteren J, Durand T, Giera M, Lee JCY. Isoprostanes, neuroprostanes and phytoprostanes: An overview of 25years of research in chemistry and biology. Prog Lipid Res 2017; 68:83-108. [PMID: 28923590 DOI: 10.1016/j.plipres.2017.09.004] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 09/14/2017] [Accepted: 09/14/2017] [Indexed: 02/07/2023]
Abstract
Since the beginning of the 1990's diverse types of metabolites originating from polyunsaturated fatty acids, formed under autooxidative conditions were discovered. Known as prostaglandin isomers (or isoprostanoids) originating from arachidonic acid, neuroprostanes from docosahexaenoic acid, and phytoprostanes from α-linolenic acid proved to be prevalent in biology. The syntheses of these compounds by organic chemists and the development of sophisticated mass spectrometry methods has boosted our understanding of the isoprostanoid biology. In recent years, it has become accepted that these molecules not only serve as markers of oxidative damage but also exhibit a wide range of bioactivities. In addition, isoprostanoids have emerged as indicators of oxidative stress in humans and their environment. This review explores in detail the isoprostanoid chemistry and biology that has been achieved in the past three decades.
Collapse
Affiliation(s)
- Jean-Marie Galano
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, France
| | - Yiu Yiu Lee
- School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Camille Oger
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, France
| | - Claire Vigor
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, France
| | - Joseph Vercauteren
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, France
| | - Martin Giera
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Albinusdreef 2, 2300RC Leiden, The Netherlands
| | - Jetty Chung-Yung Lee
- School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
19
|
Lehtonen L, Gimeno A, Parra-Llorca A, Vento M. Early neonatal death: A challenge worldwide. Semin Fetal Neonatal Med 2017; 22:153-160. [PMID: 28238633 DOI: 10.1016/j.siny.2017.02.006] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Early neonatal death (ENND), defined as the death of a newborn between zero and seven days after birth, represents 73% of all postnatal deaths worldwide. Despite a 50% reduction in childhood mortality, reduction of ENND has significantly lagged behind other Millennium Developmental Goal achievements and is a growing contributor to overall mortality in children aged <5 years. The etiology of ENND is closely related to the level of a country's industrialization. Hence, prematurity and congenital anomalies are the leading causes in high-income countries. Furthermore, sudden unexpected early neonatal deaths (SUEND) and collapse have only recently been identified as relevant and often preventable causes of death. Concomitantly, perinatal-related events such as asphyxia and infections are extremely relevant in Africa, South East Asia, and Latin America and, together with prematurity, are the principal contributors to ENND. In high-income countries, according to current research evidence, survival may be improved by applying antenatal and perinatal therapies and immediate newborn resuscitation, as well as by centralizing at-risk deliveries to centers with appropriate expertise available around the clock. In addition, resources should be allocated to the close surveillance of newborn infants, especially during the first hours of life. Many of the conditions leading to ENND in low-income countries are preventable with relatively easy and cost-effective interventions such as contraception, vaccination of pregnant women, hygienic delivery at a hospital, training health care workers in resuscitation practices, simplified algorithms that allow for early detection of perinatal infections, and early initiation of breastfeeding and skin-to-skin care. The future is promising. As initiatives undertaken in previous decades have led to substantial reduction in childhood mortality, it is expected that new initiatives targeting the perinatal/neonatal periods are bound to reduce ENND and provide these babies with a better future.
Collapse
Affiliation(s)
- Liisa Lehtonen
- Division of Neonatology, Turku University Hospital, Turku, Finland; University of Turku, Turku, Finland
| | - Ana Gimeno
- Division of Neonatology, University and Polytechnic Hospital La Fe, Valencia, Spain
| | | | - Máximo Vento
- Division of Neonatology, University and Polytechnic Hospital La Fe, Valencia, Spain; Health Research Institute La Fe, Valencia, Spain.
| |
Collapse
|
20
|
Torres-Cuevas I, Parra-Llorca A, Sánchez-Illana A, Nuñez-Ramiro A, Kuligowski J, Cháfer-Pericás C, Cernada M, Escobar J, Vento M. Oxygen and oxidative stress in the perinatal period. Redox Biol 2017; 12:674-681. [PMID: 28395175 PMCID: PMC5388914 DOI: 10.1016/j.redox.2017.03.011] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 02/12/2017] [Accepted: 03/09/2017] [Indexed: 02/08/2023] Open
Abstract
Fetal life evolves in a hypoxic environment. Changes in the oxygen content in utero caused by conditions such as pre-eclampsia or type I diabetes or by oxygen supplementation to the mother lead to increased free radical production and correlate with perinatal outcomes. In the fetal-to-neonatal transition asphyxia is characterized by intermittent periods of hypoxia ischemia that may evolve to hypoxic ischemic encephalopathy associated with neurocognitive, motor, and neurosensorial impairment. Free radicals generated upon reoxygenation may notably increase brain damage. Hence, clinical trials have shown that the use of 100% oxygen given with positive pressure in the airways of the newborn infant during resuscitation causes more oxidative stress than using air, and increases mortality. Preterm infants are endowed with an immature lung and antioxidant system. Clinical stabilization of preterm infants after birth frequently requires positive pressure ventilation with a gas admixture that contains oxygen to achieve a normal heart rate and arterial oxygen saturation. In randomized controlled trials the use high oxygen concentrations (90% to 100%) has caused more oxidative stress and clinical complications that the use of lower oxygen concentrations (30-60%). A correlation between the amount of oxygen received during resuscitation and the level of biomarkers of oxidative stress and clinical outcomes was established. Thus, based on clinical outcomes and analytical results of oxidative stress biomarkers relevant changes were introduced in the resuscitation policies. However, it should be underscored that analysis of oxidative stress biomarkers in biofluids has only been used in experimental and clinical research but not in clinical routine. The complexity of the technical procedures, lack of automation, and cost of these determinations have hindered the routine use of biomarkers in the clinical setting. Overcoming these technical and economical difficulties constitutes a challenge for the immediate future since accurate evaluation of oxidative stress would contribute to improve the quality of care of our neonatal patients.
Collapse
Affiliation(s)
- Isabel Torres-Cuevas
- Grupo de Investigación en Perinatología, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Anna Parra-Llorca
- Grupo de Investigación en Perinatología, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Angel Sánchez-Illana
- Grupo de Investigación en Perinatología, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Antonio Nuñez-Ramiro
- Grupo de Investigación en Perinatología, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; Servicio de Neonatología, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Julia Kuligowski
- Grupo de Investigación en Perinatología, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Consuelo Cháfer-Pericás
- Grupo de Investigación en Perinatología, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - María Cernada
- Grupo de Investigación en Perinatología, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; Servicio de Neonatología, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Justo Escobar
- Scientific Department, Sabartech SL, Biopolo Instituto Investigación Sanitaria La Fe, Valencia, Spain
| | - Máximo Vento
- Grupo de Investigación en Perinatología, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; Servicio de Neonatología, Hospital Universitario y Politécnico La Fe, Valencia, Spain.
| |
Collapse
|