1
|
Rola M, Zielonka J, Smulik-Izydorczyk R, Pięta J, Pierzchała K, Sikora A, Michalski R. Boronate-Based Bioactive Compounds Activated by Peroxynitrite and Hydrogen Peroxide. REDOX BIOCHEMISTRY AND CHEMISTRY 2024; 10:100040. [PMID: 39678628 PMCID: PMC11637410 DOI: 10.1016/j.rbc.2024.100040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Boronates react directly and stoichiometrically with peroxynitrite and hydrogen peroxide. For this reason, boronates have been widely used as peroxynitrite- and hydrogen peroxide-sensitive moieties in various donors of bioactive compounds. So far, numerous boronate-based prodrugs and theranostics have been developed, characterized, and used in biological research. Here, the kinetic aspects of their activation are discussed, and the potential benefits of modifying their original structure with a boronic or boronobenzyl moiety are described.
Collapse
Affiliation(s)
- Monika Rola
- Institute of Applied Radiation Chemistry, Department of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Renata Smulik-Izydorczyk
- Institute of Applied Radiation Chemistry, Department of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Jakub Pięta
- Institute of Applied Radiation Chemistry, Department of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Karolina Pierzchała
- Institute of Applied Radiation Chemistry, Department of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Adam Sikora
- Institute of Applied Radiation Chemistry, Department of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Radosław Michalski
- Institute of Applied Radiation Chemistry, Department of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| |
Collapse
|
2
|
Scarmelotto A, Delprat V, Michiels C, Lucas S, Heuskin AC. The oxygen puzzle in FLASH radiotherapy: A comprehensive review and experimental outlook. Clin Transl Radiat Oncol 2024; 49:100860. [PMID: 39381632 PMCID: PMC11458961 DOI: 10.1016/j.ctro.2024.100860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 10/10/2024] Open
Abstract
FLASH radiotherapy is attracting increasing interest because it maintains tumor control while inflicting less damage to normal tissues compared to conventional radiotherapy. This sparing effect, the so-called FLASH effect, is achieved when radiation is delivered at ultra-high dose rates (≥40 Gy/s). Although the FLASH effect has already been demonstrated in several preclinical models, a complete mechanistic description explaining why tumors and normal tissues respond differently is still missing. None of the current hypotheses fully explains the experimental evidence. A common point between many of these is the role of oxygen, which is described as a major factor, either through transient hypoxia in the form of dissolved molecules, or reactive oxygen species (ROS). Therefore, this review focuses on both forms of this molecule, retracing old and more recent theories, while proposing new mechanisms that could provide a complete description of the FLASH effect based on preclinical and experimental evidence. In addition, this manuscript describes a set of experiments designed to provide the FLASH community with new tools for exploring the post-irradiation fate of ROS and their potential biological implications.
Collapse
Affiliation(s)
- Andrea Scarmelotto
- Laboratory for Analysis by Nuclear Reaction (LARN), Namur Research Institute for Life Sciences (NARILIS), University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Victor Delprat
- Laboratory for Analysis by Nuclear Reaction (LARN), Namur Research Institute for Life Sciences (NARILIS), University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Carine Michiels
- Unité de Recherche en Biologie Cellulaire (URBC), Namur Research Institute For Life Sciences (NARILIS), University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Stéphane Lucas
- Laboratory for Analysis by Nuclear Reaction (LARN), Namur Research Institute for Life Sciences (NARILIS), University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
- Ion Beam Application (IBA), Chemin du Cyclotron, 6, B-1348 Louvain-La-Neuve, Belgium
| | - Anne-Catherine Heuskin
- Laboratory for Analysis by Nuclear Reaction (LARN), Namur Research Institute for Life Sciences (NARILIS), University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| |
Collapse
|
3
|
Siarkiewicz P, Luzak B, Michalski R, Artelska A, Szala M, Przygodzki T, Sikora A, Zielonka J, Grzelakowska A, Podsiadły R. Evaluation of a novel pyridinium cation-linked styryl-based boronate probe for the detection of selected inflammation-related oxidants. Free Radic Biol Med 2024; 212:255-270. [PMID: 38122872 DOI: 10.1016/j.freeradbiomed.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/02/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
Reactive oxygen and nitrogen species (RONS) are a range of chemical individuals produced by living cells that contribute to the proper functioning of organisms. Cells under oxidative and nitrative stress show excessive production of RONS (including hydrogen peroxide, H2O2, hypochlorous acid, HOCl, and peroxynitrite, ONOO-) which may result in a damage proteins, lipids, and genetic material. Thus, the development of probes for in vivo detection of such oxidants is an active area of research, focusing on molecular redox sensors, including boronate-caged fluorophores. Here, we report a boronate-based styryl probe with a cationic pyridinium moiety (BANEP+) for the fluorescent detection of selected biological oxidants in vitro and in vivo. We compare the chemical reactivity of the BANEP+ probe toward H2O2, HOCl, and ONOO- and examine the influence of the major intracellular non-enzymatic antioxidant molecule, glutathione (GSH). We demonstrate that, at the physiologically relevant GSH concentration, the BANEP+ probe is efficiently oxidized by peroxynitrite, forming its phenolic derivative HNEP+. GSH does not affect the fluorescence properties of the BANEP+ and HNEP+ dyes. Finally, we report the identification of a novel type of molecular marker, with the boronate moiety replaced by the iodine atom, formed from the probe in the presence of HOCl and iodide anion. We conclude that the reported chemical reactivity and structural features of the BANEP+ probe may be a basis for the development of new red fluorescent probes for in vitro and in vivo detection of ONOO-.
Collapse
Affiliation(s)
- Przemysław Siarkiewicz
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland.
| | - Bogusława Luzak
- Department of Haemostasis and Haemostatic Disorders, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| | - Radosław Michalski
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Angelika Artelska
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Marcin Szala
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland
| | - Tomasz Przygodzki
- Department of Haemostasis and Haemostatic Disorders, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| | - Adam Sikora
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Jacek Zielonka
- Department of Biophysics, Cancer Center Translational Metabolomics Shared Resource, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Aleksandra Grzelakowska
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland
| | - Radosław Podsiadły
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland.
| |
Collapse
|
4
|
Modrzejewska J, Grzelakowska A, Szala M, Michalski R, Zakłos-Szyda M, Podsiadły R. Pro-fluorescent probe with morpholine moiety and its reactivity towards selected biological oxidants. LUMINESCENCE 2024; 39:e4685. [PMID: 38332465 DOI: 10.1002/bio.4685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/04/2024] [Accepted: 01/13/2024] [Indexed: 02/10/2024]
Abstract
Biological oxidants participate in many processes in the human body. Their excessive production causes organelle damage, which may result in the accumulation of cytotoxic mediators and cell degradation and may manifest itself in various diseases. Peroxynitrite (ONOO- ), hypochlorous acid (HOCl), hydrogen peroxide (H2 O2 ), and peroxymonocarbonate (HOOCO2 - ) are important oxidants in biology, toxicology, and various pathologies. Derivatives of coumarin, containing an oxidant-sensitive boronate group, have been recently developed for the fluorescent detection of inflammatory oxidants. Here, we report the synthesis and characterization of 4-[2-(morpholin-4-yl)-2-oxoethyl]-2-oxo-2H-chromen-7-yl boronic acid (MpC-BA) as a fluorescent probe for the detection of oxidants, with better solubility in water, high stability and fast response time toward peroxynitrite and hypochlorous acid. The effectiveness of the MpC-BA probe for the detection of peroxynitrite was measured by adding bolus ONOO- or using the co-generating superoxide and nitrogen oxide system. MpC-BA is oxidized by ONOO- to 7-hydroxy-4-[2-(morpholin-4-yl)-2-oxoethyl]-2H-chromen-2-one (MpC-OH). However, peroxynitrite-specific product (MpC-H) is formed in the minor reaction pathway. MpC-OH is also yielded in the reaction of MpC-BA with HOCl, and the subsequent formation of a chlorinated MpC-OH gives a specific product for HOCl (MpC-OHCl). H2 O2 slowly oxidizes MpC-BA. However, the addition of NaHCO3 increased the MpC-OH formation rate. We conclude that MpC-BA is potentially an improved fluorescent probe detecting peroxynitrite and hypochlorite in biological settings. Complementation of the fluorescence measurements by HPLC-based identification of chlorinated and reduced coumarin(s) will help identify the oxidants detected.
Collapse
Affiliation(s)
- Julia Modrzejewska
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, Lodz, Poland
| | - Aleksandra Grzelakowska
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, Lodz, Poland
| | - Marcin Szala
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, Lodz, Poland
| | - Radosław Michalski
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, Lodz, Poland
| | - Małgorzata Zakłos-Szyda
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, Lodz, Poland
| | - Radosław Podsiadły
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, Lodz, Poland
| |
Collapse
|
5
|
Chang CH, Fontaine DM, Gómez S, Branchini BR, Anderson JC. Synthesis and Bioluminescence of 'V'-Shaped Firefly Luciferin Analogues Based on A Novel Benzobisthiazole Core. Chemistry 2023; 29:e202302204. [PMID: 37743319 DOI: 10.1002/chem.202302204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 09/26/2023]
Abstract
The design of π-extended conjugation 'V'-shaped red shifted bioluminescent D-luciferin analogues based on a novel benzobisthiazole core is described. The divergent synthetic route allowed access to a range of amine donor substituents through an SN Ar reaction. In spectroscopic studies, the 'V'-shaped luciferins exhibited narrower optical band gaps, more red-shifted absorption and emission spectra than D-luciferin. Their bioluminescence characteristics were recorded against four different luciferases (PpyLuc, FlucRed, CBR2 and PLR3). With native luciferase PpyLuc, the 'V'-shaped luciferins demonstrated more red-shifted emissions than D-luciferin (λbl =561 nm) by 60 to 80 nm. In addition, the benzobisthiazole luciferins showed a wide range of bioluminescence spectra from the visible light region (λbl =500 nm) to the nIR window (>650 nm). The computational results validate the design concept which can be used as a guide for further novel D-luciferin analogues based upon other 'V'-shaped heterocyclic cores.
Collapse
Affiliation(s)
- Chia-Hao Chang
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | | | - Sandra Gómez
- Departamento de Quimica Fisica, University of Salamanca, Salamanca, 37008, Spain
| | - Bruce R Branchini
- Department of Chemistry, Connecticut College, New London, CT-06320, USA
| | - James C Anderson
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| |
Collapse
|
6
|
Wei X, Guo H, Yu J, Liu Y, Zhao Y, He X. Multi-target reconstruction based on subspace decision optimization for bioluminescence tomography. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 240:107711. [PMID: 37451228 DOI: 10.1016/j.cmpb.2023.107711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 06/24/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND AND OBJECTIVE Bioluminescence tomography (BLT) is a noninvasive optical imaging technique that provides qualitative and quantitative information on the spatial distribution of tumors in living animals. Researchers have proposed a list of algorithms and strategies for BLT reconstruction to improve its reconstruction quality. However, multi-target BLT reconstruction remains challenging in practical clinical applications due to the mutual interference of optical signals and difficulty in source separation. METHODS To solve this problem, this study proposes the subspace decision optimization (SDO) approach based on the traditional iterative permissible region strategy. The SDO approach transforms a single permissible region into multiple subspaces by clustering analysis. These subspaces are shrunk based on subspace shrinking optimization to achieve spatial continuity of the permissible regions. In addition, these subspaces are merged to construct a new permissible region and then the next iteration of reconstruction is carried out to ensure the stability of the results. Finally, all the iterative results are optimized based on the normal distribution model and the distribution properties of the targets to ensure the sparsity of each target and the non-biasing of the overall results. RESULTS Experimental results show that the SDO approach can automatically identify and separate different targets, ensuring the accuracy and quality of multi-target BLT reconstruction results. Meanwhile, SDO can combine various types of reconstruction algorithms and provide stable and high-quality reconstruction results independent of the algorithm parameters. CONCLUSIONS The SDO approach provides an integrated solution to the multi-target BLT reconstruction problem, realizing the whole process including target recognition, separation, reconstruction, and result enhancement, which can extend the application domain of BLT.
Collapse
Affiliation(s)
- Xiao Wei
- The School of Information Sciences and Technology, Northwest University, Xi'an 710069, China; Xi'an Key Laboratory of Radiomics and Intelligent Perception, Xi'an 710127, China
| | - Hongbo Guo
- The School of Information Sciences and Technology, Northwest University, Xi'an 710069, China; Xi'an Key Laboratory of Radiomics and Intelligent Perception, Xi'an 710127, China.
| | - Jingjing Yu
- The School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China
| | - Yanqiu Liu
- The School of Information Sciences and Technology, Northwest University, Xi'an 710069, China; Xi'an Key Laboratory of Radiomics and Intelligent Perception, Xi'an 710127, China
| | - Yingcheng Zhao
- The School of Information Sciences and Technology, Northwest University, Xi'an 710069, China; Xi'an Key Laboratory of Radiomics and Intelligent Perception, Xi'an 710127, China
| | - Xiaowei He
- The School of Information Sciences and Technology, Northwest University, Xi'an 710069, China; Xi'an Key Laboratory of Radiomics and Intelligent Perception, Xi'an 710127, China.
| |
Collapse
|
7
|
Pierzchała K, Pięta J, Pięta M, Rola M, Zielonka J, Sikora A, Marcinek A, Michalski R. Boronate-Based Oxidant-Responsive Derivatives of Acetaminophen as Proinhibitors of Myeloperoxidase. Chem Res Toxicol 2023; 36:1398-1408. [PMID: 37534491 PMCID: PMC10445283 DOI: 10.1021/acs.chemrestox.3c00140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Indexed: 08/04/2023]
Abstract
Myeloperoxidase (MPO) is an important component of the human innate immune system and the main source of a strong oxidizing and chlorinating species, hypochlorous acid (HOCl). Inadvertent, misplaced, or excessive generation of HOCl by MPO is associated with multiple human inflammatory diseases. Therefore, there is a considerable interest in the development of MPO inhibitors. Here, we report the synthesis and characterization of a boronobenzyl derivative of acetaminophen (AMBB), which can function as a proinhibitor of MPO and release acetaminophen, the inhibitor of chlorination cycle of MPO, in the presence of inflammatory oxidants, i.e., hydrogen peroxide, hypochlorous acid, or peroxynitrite. We demonstrate that the AMBB proinhibitor undergoes conversion to acetaminophen by all three oxidants, with the involvement of the primary phenolic product intermediate, with relatively long half-life at pH 7.4. The determined rate constants of the reaction of the AMBB proinhibitor with hydrogen peroxide, hypochlorous acid, or peroxynitrite are equal to 1.67, 1.6 × 104, and 1.0 × 106 M-1 s-1, respectively. AMBB showed lower MPO inhibitory activity (IC50 > 0.3 mM) than acetaminophen (IC50 = 0.14 mM) toward MPO-dependent HOCl generation. Finally, based on the determined reaction kinetics and the observed inhibitory effects of two plasma components, uric acid and albumin, on the extent of AMBB oxidation by ONOO- and HOCl, we conclude that ONOO- is the most likely potential activator of AMBB in human plasma.
Collapse
Affiliation(s)
- Karolina Pierzchała
- Institute
of Applied Radiation Chemistry, Department of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Jakub Pięta
- Institute
of Applied Radiation Chemistry, Department of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Marlena Pięta
- Institute
of Applied Radiation Chemistry, Department of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Monika Rola
- Institute
of Applied Radiation Chemistry, Department of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Jacek Zielonka
- Department
of Biophysics and Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, United States
| | - Adam Sikora
- Institute
of Applied Radiation Chemistry, Department of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Andrzej Marcinek
- Institute
of Applied Radiation Chemistry, Department of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Radosław Michalski
- Institute
of Applied Radiation Chemistry, Department of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| |
Collapse
|
8
|
Sunnerberg J, Thomas WS, Petusseau A, Reed MS, Jack Hoopes P, Pogue BW. Review of optical reporters of radiation effects in vivo: tools to quantify improvements in radiation delivery technique. JOURNAL OF BIOMEDICAL OPTICS 2023; 28:080901. [PMID: 37560327 PMCID: PMC10409499 DOI: 10.1117/1.jbo.28.8.080901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/14/2023] [Accepted: 07/21/2023] [Indexed: 08/11/2023]
Abstract
Significance Radiation damage studies are used to optimize radiotherapy treatment techniques. Although biological indicators of damage are the best assays of effect, they are highly variable due to biological heterogeneity. The free radical radiochemistry can be assayed with optical reporters, allowing for high precision titration of techniques. Aim We examine the optical reporters of radiochemistry to highlight those with the best potential for translational use in vivo, as surrogates for biological damage assays, to inform on mechanisms. Approach A survey of the radical chemistry effects from reactive oxygen species (ROS) and oxygen itself was completed to link to DNA or biological damage. Optical reporters of ROS include fluorescent, phosphorescent, and bioluminescent molecules that have a variety of activation pathways, and each was reviewed for its in vivo translation potential. Results There are molecular reporters of ROS having potential to report within living systems, including derivatives of luminol, 2'7'-dichlorofluorescein diacetate, Amplex Red, and fluorescein. None have unique specificity to singular ROS species. Macromolecular engineered reporters unique to specific ROS are emerging. The ability to directly measure oxygen via reporters, such as Oxyphor and protoporphyrin IX, is an opportunity to quantify the consumption of oxygen during ROS generation, and this translates from in vitro to in vivo use. Emerging techniques, such as ion particle beams, spatial fractionation, and ultra-high dose rate FLASH radiotherapy, provide the motivation for these studies. Conclusions In vivo optical reporters of radiochemistry are quantitatively useful for comparing radiotherapy techniques, although their use comes at the cost of the unknown connection to the mechanisms of radiobiological damage. Still their lower measurement uncertainty, compared with biological response assay, makes them an invaluable tool. Linkage to DNA damage and biological damage is needed, and measures such as oxygen consumption serve as useful surrogate measures that translate to in vivo use.
Collapse
Affiliation(s)
- Jacob Sunnerberg
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
| | - William S. Thomas
- University of Wisconsin–Madison, Department of Medical Physics, Madison, Wisconsin, United States
| | - Arthur Petusseau
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
| | - Matthew S. Reed
- Dartmouth College, Geisel School of Medicine, Hanover, New Hampshire, United States
| | - P. Jack Hoopes
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
- Dartmouth College, Geisel School of Medicine, Hanover, New Hampshire, United States
| | - Brian W. Pogue
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
- University of Wisconsin–Madison, Department of Medical Physics, Madison, Wisconsin, United States
| |
Collapse
|
9
|
Cheng G, Karoui H, Hardy M, Kalyanaraman B. Polyphenolic Boronates Inhibit Tumor Cell Proliferation: Potential Mitigators of Oxidants in the Tumor Microenvironment. Cancers (Basel) 2023; 15:cancers15041089. [PMID: 36831432 PMCID: PMC9953882 DOI: 10.3390/cancers15041089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
Boronate-based compounds have been used in brain cancer therapy, either as prodrugs or in combination with other modalities. Boronates containing pro-luminescent and fluorescent probes have been used in mouse models of cancer. In this study, we synthesized and developed polyphenolic boronates and mitochondria-targeted polyphenolic phytochemicals (e.g., magnolol [MGN] and honokiol [HNK]) and tested their antiproliferative effects in brain cancer cells. Results show that mitochondria-targeted (Mito) polyphenolic boronates (Mito-MGN-B and Mito-HNK-B) were slightly more potent than Mito-MGN and Mito-HNK in inhibiting proliferation of the U87MG cell line. Similar proliferation results also were observed in other cancer cell lines, such as MiaPaCa-2, A549 and UACC-62. Independent in vitro experiments indicated that reactive nitrogen species (e.g., peroxynitrite) and reactive oxygen species (e.g., hydrogen peroxide) stoichiometrically react with polyphenolic boronates and Mito-polphenolic boronates, forming polyphenols and Mito-polyphenols as major products. Previous reports suggest that both Mito-MGN and Mito-HNK activate cytotoxic T cells and inhibit immunosuppressive immune cells. We propose that Mito-polyphenolic boronate-based prodrugs may be used to inhibit tumor proliferation and mitigate oxidant formation in the tumor microenvironment, thereby generating Mito-polyphenols in situ, as well as showing activity in the tumor microenvironment.
Collapse
Affiliation(s)
- Gang Cheng
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Hakim Karoui
- Aix Marseille Univ, CNRS, ICR, 13009 Marseille, France
| | - Micael Hardy
- Aix Marseille Univ, CNRS, ICR, 13009 Marseille, France
| | - Balaraman Kalyanaraman
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Correspondence:
| |
Collapse
|
10
|
Li Q, Chen Z, Su L, Wu Y, Du W, Song J. Constructing turn-on bioluminescent probes for real-time imaging of reactive oxygen species during cisplatin chemotherapy. Biosens Bioelectron 2022; 216:114632. [PMID: 35988429 DOI: 10.1016/j.bios.2022.114632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 11/18/2022]
Abstract
Real-time imaging of reactive oxygen species (ROS) during cisplatin chemotherapy of cancer is imperative to fully reveal their functions in the biological response to cisplatin. Currently, using a bioluminescent probe for real-time imaging of a specific ROS in vivo during cisplatin chemotherapy has not been achieved. Herein, three bioluminescent probes, F Probe, N Probe and P Probe were synthesized for real-time imaging of the primary ROS, O2•-. They all consisted of a bioluminescent emitter D-luciferin (D-LH2) and an O2•--recognition group, and their bioluminescent signal could be turned on in response to O2•-. In vitro results indicated that P Probe was the most suitable one among the three probes for detection of O2•-, with high sensitivity, excellent selectivity and stability. P Probe was then successfully applied for real-time imaging of O2•- in both cancer cells and tumors during cisplatin chemotherapy. The imaging results demonstrated that O2•- amount in cancer cells increased with the increasing dose of cisplatin, and that cisplatin-induced upregulation of O2•- level in cancer cells was upstream of the cancer-killing pathway of cisplatin. We envision that P Probe may serve as an elucidative tool to further explore the role of O2•- in cisplatin chemotherapy.
Collapse
Affiliation(s)
- Qian Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, PR China
| | - Zhongxiang Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, PR China
| | - Lichao Su
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, PR China
| | - Ying Wu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, PR China
| | - Wei Du
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, PR China.
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, PR China.
| |
Collapse
|
11
|
Wang Z, Gong J, Wang P, Xiong J, Zhang F, Mao Z. An activatable fluorescent probe enables in vivo evaluation of peroxynitrite levels in rheumatoid arthritis. Talanta 2022; 252:123811. [DOI: 10.1016/j.talanta.2022.123811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 10/15/2022]
|
12
|
Michalski R, Smulik-Izydorczyk R, Pięta J, Rola M, Artelska A, Pierzchała K, Zielonka J, Kalyanaraman B, Sikora AB. The Chemistry of HNO: Mechanisms and Reaction Kinetics. Front Chem 2022; 10:930657. [PMID: 35864868 PMCID: PMC9294461 DOI: 10.3389/fchem.2022.930657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/06/2022] [Indexed: 11/23/2022] Open
Abstract
Azanone (HNO, also known as nitroxyl) is the protonated form of the product of one-electron reduction of nitric oxide (•NO), and an elusive electrophilic reactive nitrogen species of increasing pharmacological significance. Over the past 20 years, the interest in the biological chemistry of HNO has increased significantly due to the numerous beneficial pharmacological effects of its donors. Increased availability of various HNO donors was accompanied by great progress in the understanding of HNO chemistry and chemical biology. This review is focused on the chemistry of HNO, with emphasis on reaction kinetics and mechanisms in aqueous solutions.
Collapse
Affiliation(s)
- Radosław Michalski
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | | | - Jakub Pięta
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Monika Rola
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Angelika Artelska
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Karolina Pierzchała
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, United States
| | | | - Adam Bartłomiej Sikora
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
- *Correspondence: Adam Bartłomiej Sikora,
| |
Collapse
|
13
|
Pierzchała K, Pięta M, Rola M, Świerczyńska M, Artelska A, Dębowska K, Podsiadły R, Pięta J, Zielonka J, Sikora A, Marcinek A, Michalski R. Fluorescent probes for monitoring myeloperoxidase-derived hypochlorous acid: a comparative study. Sci Rep 2022; 12:9314. [PMID: 35660769 PMCID: PMC9166712 DOI: 10.1038/s41598-022-13317-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/18/2022] [Indexed: 11/17/2022] Open
Abstract
MPO-derived oxidants including HOCl contribute to tissue damage and the initiation and propagation of inflammatory diseases. The search for small molecule inhibitors of myeloperoxidase, as molecular tools and potential drugs, requires the application of high throughput screening assays based on monitoring the activity of myeloperoxidase. In this study, we have compared three classes of fluorescent probes for monitoring myeloperoxidase-derived hypochlorous acid, including boronate-, aminophenyl- and thiol-based fluorogenic probes and we show that all three classes of probes are suitable for this purpose. However, probes based on the coumarin fluorophore turned out to be not reliable indicators of the inhibitors’ potency. We have also determined the rate constants of the reaction between HOCl and the probes and they are equal to 1.8 × 104 M−1s−1 for coumarin boronic acid (CBA), 1.1 × 104 M−1s−1 for fluorescein based boronic acid (FLBA), 3.1 × 104 M−1s−1 for 7-(p-aminophenyl)-coumarin (APC), 1.6 × 104 M−1s−1 for 3’-(p-aminophenyl)-fluorescein (APF), and 1 × 107 M−1s−1 for 4-thiomorpholino-7-nitrobenz-2-oxa-1,3-diazole (NBD-TM). The high reaction rate constant of NBD-TM with HOCl makes this probe the most reliable tool to monitor HOCl formation in the presence of compounds showing HOCl-scavenging activity.
Collapse
Affiliation(s)
- Karolina Pierzchała
- Department of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Marlena Pięta
- Department of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Monika Rola
- Department of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Małgorzata Świerczyńska
- Department of Chemistry, Institute of Polymer and Dye Technology, Lodz University of Technology, Stefanowskiego 12/16, 90-924, Lodz, Poland
| | - Angelika Artelska
- Department of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Karolina Dębowska
- Department of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Radosław Podsiadły
- Department of Chemistry, Institute of Polymer and Dye Technology, Lodz University of Technology, Stefanowskiego 12/16, 90-924, Lodz, Poland
| | - Jakub Pięta
- Department of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Jacek Zielonka
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| | - Adam Sikora
- Department of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Andrzej Marcinek
- Department of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Radosław Michalski
- Department of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland.
| |
Collapse
|
14
|
Grzelakowska A, Modrzejewska J, Kolińska J, Szala M, Zielonka M, Dębowska K, Zakłos-Szyda M, Sikora A, Zielonka J, Podsiadły R. Water-soluble cationic boronate probe based on coumarin imidazolium scaffold: Synthesis, characterization, and application to cellular peroxynitrite detection. Free Radic Biol Med 2022; 179:34-46. [PMID: 34923103 DOI: 10.1016/j.freeradbiomed.2021.12.260] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/07/2021] [Accepted: 12/14/2021] [Indexed: 02/08/2023]
Abstract
Peroxynitrite (ONOO-) has been implicated in numerous pathologies associated with an inflammatory component, but its selective and sensitive detection in biological settings remains a challenge. Here, the development of a new water-soluble and cationic boronate probe based on a coumarin-imidazolium scaffold (CI-Bz-BA) for the fluorescent detection of ONOO- in cells is reported. The chemical reactivity of the CI-Bz-BA probe toward selected oxidants known to react with the boronate moiety was characterized, and the suitability of the probe for the direct detection of ONOO- in cell-free and cellular system is reported. Oxidation of the probe results in the formation of the primary hydroxybenzyl product (CI-Bz-OH), followed by the spontaneous elimination of the quinone methide moiety to produce the secondary phenol (CI-OH), which is accompanied by a red shift in the fluorescence emission band from 405 nm to 481 nm. CI-Bz-BA reacts with ONOO- stoichiometrically with a rate constant of ∼1 × 106 M-1s-1 to form, in addition to the major phenolic product CI-OH, the minor nitrated product CI-Bz-NO2, which is not formed by other oxidants tested or via myeloperoxidase-catalyzed oxidation/nitration. Both CI-OH and CI-Bz-NO2 products were also formed in the presence of cogenerated fluxes of nitric oxide and superoxide radical anion produced during decomposition of a SIN-1 donor. Using RAW 264.7 cells, we demonstrate the ability of the probe to report endogenously produced ONOO-via fluorescence measurements, including plate reader real time monitoring and two-photon fluorescence imaging. Liquid chromatography/mass spectrometry analyses of cell extracts and media confirmed the formation of both CI-OH and CI-Bz-NO2 in macrophages activated to produce ONOO-. We propose the use of a combination of real-time monitoring of probe oxidation using fluorimetry and fluorescence microscopy with liquid chromatography/mass spectrometry-based product identification for rigorous detection and quantitative analyses of ONOO- in biological systems.
Collapse
Affiliation(s)
- Aleksandra Grzelakowska
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537, Lodz, Poland.
| | - Julia Modrzejewska
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537, Lodz, Poland.
| | - Jolanta Kolińska
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537, Lodz, Poland.
| | - Marcin Szala
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537, Lodz, Poland.
| | - Monika Zielonka
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, United States.
| | - Karolina Dębowska
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924, Lodz, Poland.
| | - Małgorzata Zakłos-Szyda
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537, Lodz, Poland.
| | - Adam Sikora
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924, Lodz, Poland.
| | - Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, United States.
| | - Radosław Podsiadły
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537, Lodz, Poland.
| |
Collapse
|
15
|
Abstract
Significance: Reactive sulfur and nitrogen species such as hydrogen sulfide (H2S) and nitric oxide (NO•) are ubiquitous cellular signaling molecules that play central roles in physiology and pathophysiology. A deeper understanding of these signaling pathways will offer new opportunities for therapeutic treatments and disease management. Recent Advances: Chemiluminescence methods have been fundamental in detecting and measuring biological reactive sulfur and nitrogen species, and new approaches are emerging for imaging these analytes in living intact specimens. Ozone-based and luminol-based chemiluminescence methods have been optimized for quantitative analysis of hydrogen sulfide and nitric oxide in biological samples and tissue homogenates, and caged luciferin and 1,2-dioxetanes are emerging as a versatile approach for monitoring and imaging reactive sulfur and nitrogen species in living cells and animal models. Critical Issues: This review article will cover the major chemiluminescence approaches for detecting, measuring, and imaging reactive sulfur and nitrogen species in biological systems, including a brief history of the development of the most established approaches and highlights of the opportunities provided by emerging approaches. Future Directions: Emerging chemiluminescence approaches offer new opportunities for monitoring and imaging reactive sulfur and nitrogen species in living cells, animals, and human clinical samples. Widespread adoption and translation of these approaches, however, requires an emphasis on rigorous quantitative methods, reproducibility, and effective technology transfer. Antioxid. Redox Signal. 36, 337-353.
Collapse
Affiliation(s)
- Bo Li
- Department of Chemistry, Southern Methodist University, Dallas, Texas USA
| | - Yujin Lisa Kim
- Department of Chemistry, Southern Methodist University, Dallas, Texas USA
| | - Alexander Ryan Lippert
- Department of Chemistry, Southern Methodist University, Dallas, Texas USA.,Center for Drug Discovery, Design, and Delivery (CD), Southern Methodist University, Dallas, Texas USA
| |
Collapse
|
16
|
A benzocoumarin-based fluorescent probe for highly specific ultra-sensitive fast detecting endogenous/exogenous hypochlorous acid and its applications. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Smulik-Izydorczyk R, Dębowska K, Rostkowski M, Adamus J, Michalski R, Sikora A. Kinetics of Azanone (HNO) Reactions with Thiols: Effect of pH. Cell Biochem Biophys 2021; 79:845-856. [PMID: 33950351 PMCID: PMC8558164 DOI: 10.1007/s12013-021-00986-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2021] [Indexed: 11/04/2022]
Abstract
HNO (nitroxyl, IUPAC name azanone) is an electrophilic reactive nitrogen species of growing pharmacological and biological significance. Here, we present data on the pH-dependent kinetics of azanone reactions with the low molecular thiols glutathione and N-acetylcysteine, as well as with important serum proteins: bovine serum albumin and human serum albumin. The competition kinetics method used is based on two parallel HNO reactions: with RSH/RS- or with O2. The results provide evidence that the reaction of azanone with the anionic form of thiols (RS-) is favored over reactions with the protonated form (RSH). The data are supported with quantum mechanical calculations. A comprehensive discussion of the HNO reaction with thiolates is provided.
Collapse
Affiliation(s)
| | - Karolina Dębowska
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Michał Rostkowski
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Jan Adamus
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Radosław Michalski
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Adam Sikora
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland.
| |
Collapse
|
18
|
Modrzejewska J, Szala M, Grzelakowska A, Zakłos-Szyda M, Zielonka J, Podsiadły R. Novel Boronate Probe Based on 3-Benzothiazol-2-yl-7-hydroxy-chromen-2-one for the Detection of Peroxynitrite and Hypochlorite. Molecules 2021; 26:5940. [PMID: 34641484 PMCID: PMC8512868 DOI: 10.3390/molecules26195940] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 11/22/2022] Open
Abstract
Derivatives of coumarin, containing oxidant-sensitive boronate group, were recently developed for fluorescent detection of inflammatory oxidants. Here, we report the synthesis and the characterization of 3-(2-benzothiazolyl)-7-coumarin boronic acid pinacol ester (BC-BE) as a fluorescent probe for the detection of peroxynitrite (ONOO-), with high stability and a fast response time. The BC-BE probe hydrolyzes in phosphate buffer to 3-(2-benzothiazolyl)-7-coumarin boronic acid (BC-BA) which is stable in the solution even after a prolonged incubation time (24 h). BC-BA is slowly oxidized by H2O2 to form the phenolic product, 3-benzothiazol-2-yl-7-hydroxy-chromen-2-one (BC-OH). On the other hand, the BC-BA probe reacts rapidly with ONOO-. The ability of the BC-BA probe to detect ONOO- was measured using both authentic ONOO- and the system co-generating steady-state fluxes of O2•- and •NO. BC-BA is oxidized by ONOO- to BC-OH. However, in this reaction 3-benzothiazol-2-yl-chromen-2-one (BC-H) is formed in the minor pathway, as a peroxynitrite-specific product. BC-OH is also formed in the reaction of BC-BA with HOCl, and subsequent reaction of BC-OH with HOCl leads to the formation of a chlorinated phenolic product, which could be used as a specific product for HOCl. We conclude that BC-BA shows potential as an improved fluorescent probe for the detection of peroxynitrite and hypochlorite in biological settings. Complementation of the fluorescence measurements by HPLC-based identification of oxidant-specific products will help to identify the oxidants detected.
Collapse
Affiliation(s)
- Julia Modrzejewska
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 12/16, 90-924 Lodz, Poland; (J.M.); (M.S.); (A.G.)
| | - Marcin Szala
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 12/16, 90-924 Lodz, Poland; (J.M.); (M.S.); (A.G.)
| | - Aleksandra Grzelakowska
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 12/16, 90-924 Lodz, Poland; (J.M.); (M.S.); (A.G.)
| | - Małgorzata Zakłos-Szyda
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Lodz, Poland;
| | - Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Radosław Podsiadły
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 12/16, 90-924 Lodz, Poland; (J.M.); (M.S.); (A.G.)
| |
Collapse
|
19
|
Grzelakowska A, Zielonka M, Dębowska K, Modrzejewska J, Szala M, Sikora A, Zielonka J, Podsiadły R. Two-photon fluorescent probe for cellular peroxynitrite: Fluorescence detection, imaging, and identification of peroxynitrite-specific products. Free Radic Biol Med 2021; 169:24-35. [PMID: 33862158 DOI: 10.1016/j.freeradbiomed.2021.04.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/18/2021] [Accepted: 04/08/2021] [Indexed: 12/22/2022]
Abstract
A new naphthalene-based boronate probe, NAB-BE, for the fluorescence-based detection of inflammatory oxidants, including peroxynitrite, hypochlorous acid, and hydrogen peroxide, is reported. The chemical reactivity and fluorescence properties of the probe and the products are described. The major, phenolic oxidation product, NAB-OH, is formed in case of all three oxidants tested. This product shows green fluorescence, with a maximum at 512 nm, and can be excited either at 340 nm or in the near infrared region (745 nm) for two-photon fluorescence imaging. Peroxynitrite is the fastest of the oxidants tested and, in addition to the phenolic product, leads to the formation of a nitrated product, NAB-NO2, which can serve as a fingerprint for peroxynitrite. The probe was applied to detect peroxynitrite in activated macrophages using fluorimetry and two-photon fluorescence microscopy, and both NAB-OH and NAB-NO2 products were detected in cell extracts by liquid chromatography-mass spectrometry. The combined use of fluorometric high-throughput analyses, fluorescence imaging, and liquid chromatography-mass spectrometry-based product identification and quantitation is proposed for most comprehensive and rigorous characterization of oxidants in biological systems.
Collapse
Affiliation(s)
- Aleksandra Grzelakowska
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 12/16, 90-924, Lodz, Poland.
| | - Monika Zielonka
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, United States.
| | - Karolina Dębowska
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland.
| | - Julia Modrzejewska
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 12/16, 90-924, Lodz, Poland.
| | - Marcin Szala
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 12/16, 90-924, Lodz, Poland.
| | - Adam Sikora
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland.
| | - Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, United States.
| | - Radosław Podsiadły
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 12/16, 90-924, Lodz, Poland.
| |
Collapse
|
20
|
Alsawaftah N, Farooq A, Dhou S, Majdalawieh AF. Bioluminescence Imaging Applications in Cancer: A Comprehensive Review. IEEE Rev Biomed Eng 2021; 14:307-326. [PMID: 32746363 DOI: 10.1109/rbme.2020.2995124] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Bioluminescence imaging (BLI), an optical preclinical imaging modality, is an invaluable imaging modality due to its low-cost, high throughput, fast acquisition times, and functional imaging capabilities. BLI is being extensively used in the field of cancer imaging, especially with the recent developments in genetic-engineering, stem cell, and gene therapy treatments. The purpose of this paper is to provide a comprehensive review of the principles, developments, and current status of BLI in cancer research. This paper covers the fundamental BLI concepts including BLI reporters and enzyme-substrate systems, data acquisition, and image characteristics. It reviews the studies discussing the use of BLI in cancer research such as imaging tumor-characteristic phenomena including tumorigenesis, metastasis, cancer metabolism, apoptosis, hypoxia, and angiogenesis, and response to cancer therapy treatments including chemotherapy, radiotherapy, immunotherapy, gene therapy, and stem cell therapy. The key advantages and disadvantages of BLI compared to other common imaging modalities are also discussed.
Collapse
|
21
|
Espinoza EM, Røise JJ, Li IC, Das R, Murthy N. Advances in Imaging Reactive Oxygen Species. J Nucl Med 2021; 62:457-461. [PMID: 33384322 DOI: 10.2967/jnumed.120.245415] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/08/2020] [Indexed: 11/16/2022] Open
Abstract
Reactive oxygen species (ROS) play a pivotal role in many cellular processes and can be either beneficial or harmful. The design of ROS-sensitive fluorophores has allowed for imaging of specific activity and has helped elucidate mechanisms of action for ROS. Understanding the oxidative role of ROS in the many roles it plays allows us to understand the human body. This review provides a concise overview of modern advances in the field of ROS imaging. Indeed, much has been learned about the role of ROS throughout the years; however, it has recently been shown that using nanoparticles, rather than individual small organic fluorophores, for ROS imaging can further our understanding of ROS.
Collapse
Affiliation(s)
- Eli M Espinoza
- Department of Bioengineering, University of California, Berkeley, California
| | - Joachim Justad Røise
- Department of Bioengineering, University of California, Berkeley, California.,Department of Chemistry, University of California, Berkeley, California; and
| | - I-Che Li
- Department of Bioengineering, University of California, Berkeley, California
| | - Riddha Das
- Department of Bioengineering, University of California, Berkeley, California
| | - Niren Murthy
- Department of Bioengineering, University of California, Berkeley, California .,Innovative Genomics Institute, Berkeley, California
| |
Collapse
|
22
|
Zhan Z, Dai Y, Li Q, Lv Y. Small molecule-based bioluminescence and chemiluminescence probes for sensing and imaging of reactive species. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116129] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
Sikora A, Zielonka J, Dębowska K, Michalski R, Smulik-Izydorczyk R, Pięta J, Podsiadły R, Artelska A, Pierzchała K, Kalyanaraman B. Boronate-Based Probes for Biological Oxidants: A Novel Class of Molecular Tools for Redox Biology. Front Chem 2020; 8:580899. [PMID: 33102447 PMCID: PMC7545953 DOI: 10.3389/fchem.2020.580899] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 08/12/2020] [Indexed: 01/21/2023] Open
Abstract
Boronate-based molecular probes are emerging as one of the most effective tools for detection and quantitation of peroxynitrite and hydroperoxides. This review discusses the chemical reactivity of boronate compounds in the context of their use for detection of biological oxidants, and presents examples of the practical use of those probes in selected chemical, enzymatic, and biological systems. The particular reactivity of boronates toward nucleophilic oxidants makes them a distinct class of probes for redox biology studies. We focus on the recent progress in the design and application of boronate-based probes in redox studies and perspectives for further developments.
Collapse
Affiliation(s)
- Adam Sikora
- Faculty of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Jacek Zielonka
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Karolina Dębowska
- Faculty of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Radosław Michalski
- Faculty of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Renata Smulik-Izydorczyk
- Faculty of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Jakub Pięta
- Faculty of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Radosław Podsiadły
- Faculty of Chemistry, Institute of Polymer and Dye Technology, Lodz University of Technology, Lodz, Poland
| | - Angelika Artelska
- Faculty of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Karolina Pierzchała
- Faculty of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Balaraman Kalyanaraman
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
24
|
Hiller NDJ, do Amaral e Silva NA, Tavares TA, Faria RX, Eberlin MN, de Luna Martins D. Arylboronic Acids and their Myriad of Applications Beyond Organic Synthesis. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000396] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Noemi de Jesus Hiller
- Instituto de Química; Laboratório de Catálise e Síntese (Lab CSI); Laboratório 413; Universidade Federal Fluminense; Outeiro de São João Batista s/n; Campus do Valonguinho, Centro Niterói RJ 24020-141 Brasil
| | - Nayane Abreu do Amaral e Silva
- Instituto de Química; Laboratório de Catálise e Síntese (Lab CSI); Laboratório 413; Universidade Federal Fluminense; Outeiro de São João Batista s/n; Campus do Valonguinho, Centro Niterói RJ 24020-141 Brasil
| | - Thais Apolinário Tavares
- Instituto de Química; Laboratório de Catálise e Síntese (Lab CSI); Laboratório 413; Universidade Federal Fluminense; Outeiro de São João Batista s/n; Campus do Valonguinho, Centro Niterói RJ 24020-141 Brasil
| | - Robson Xavier Faria
- Laboratório de Toxoplasmose e outras Protozooses; Instituto Oswaldo Cruz, Fiocruz; Av. Brasil, 4365 Manguinhos Rio de Janeiro RJ 21040-360 Brasil
| | - Marcos Nogueira Eberlin
- Mackenzie Presbyterian University; School of Engineering; Rua da Consolação, 930 SP 01302-907 São Paulo Brasil
| | - Daniela de Luna Martins
- Instituto de Química; Laboratório de Catálise e Síntese (Lab CSI); Laboratório 413; Universidade Federal Fluminense; Outeiro de São João Batista s/n; Campus do Valonguinho, Centro Niterói RJ 24020-141 Brasil
| |
Collapse
|
25
|
Rios N, Radi R, Kalyanaraman B, Zielonka J. Tracking isotopically labeled oxidants using boronate-based redox probes. J Biol Chem 2020; 295:6665-6676. [PMID: 32217693 DOI: 10.1074/jbc.ra120.013402] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/26/2020] [Indexed: 01/01/2023] Open
Abstract
Reactive oxygen and nitrogen species have been implicated in many biological processes and diseases, including immune responses, cardiovascular dysfunction, neurodegeneration, and cancer. These chemical species are short-lived in biological settings, and detecting them in these conditions and diseases requires the use of molecular probes that form stable, easily detectable, products. The chemical mechanisms and limitations of many of the currently used probes are not well-understood, hampering their effective applications. Boronates have emerged as a class of probes for the detection of nucleophilic two-electron oxidants. Here, we report the results of an oxygen-18-labeling MS study to identify the origin of oxygen atoms in the oxidation products of phenylboronate targeted to mitochondria. We demonstrate that boronate oxidation by hydrogen peroxide, peroxymonocarbonate, hypochlorite, or peroxynitrite involves the incorporation of oxygen atoms from these oxidants. We therefore conclude that boronates can be used as probes to track isotopically labeled oxidants. This suggests that the detection of specific products formed from these redox probes could enable precise identification of oxidants formed in biological systems. We discuss the implications of these results for understanding the mechanism of conversion of the boronate-based redox probes to oxidant-specific products.
Collapse
Affiliation(s)
- Natalia Rios
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, 11800 Montevideo, Uruguay.,Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Rafael Radi
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, 11800 Montevideo, Uruguay.,Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | | | - Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| |
Collapse
|
26
|
Cheng G, Pan J, Podsiadly R, Zielonka J, Garces AM, Dias Duarte Machado LG, Bennett B, McAllister D, Dwinell MB, You M, Kalyanaraman B. Increased formation of reactive oxygen species during tumor growth: Ex vivo low-temperature EPR and in vivo bioluminescence analyses. Free Radic Biol Med 2020; 147:167-174. [PMID: 31874251 PMCID: PMC6948008 DOI: 10.1016/j.freeradbiomed.2019.12.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 12/18/2019] [Indexed: 12/16/2022]
Abstract
Previous studies have shown that reactive oxygen species (ROS) such as superoxide or hydrogen peroxide generated at low levels can exert a tumor-promoting role via a redox-signaling mechanism. Reports also suggest that both tumorigenesis and tumor growth are associated with enhanced ROS formation. However, whether ROS levels or ROS-derived oxidative marker levels increase during tumor growth remains unknown. In this study, in vivo bioluminescence imaging with a boronate-based pro-luciferin probe was used to assess ROS formation. Additionally, probe-free cryogenic electron paramagnetic resonance was used to quantify a characteristic aconitase [3Fe4S]+ center that arises in the tumor tissue of mouse xenografts from the reaction of the native [4Fe4S]2+ cluster with superoxide. Results indicated that tumor growth is accompanied by increased ROS formation, and revealed differences in oxidant formation in the inner and outer sections of tumor tissue, respectively, demonstrating redox heterogeneity. Studies using luciferin and pro-luciferin probes enabled the assessment of tumor size, ROS formation, and bioenergetic status (e.g., ATP) in luciferase-transfected mice tumor xenografts. Probe-free ex vivo low-temperature electron paramagnetic resonance can also be translated to clinical studies.
Collapse
Affiliation(s)
- Gang Cheng
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States; Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Jing Pan
- Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Radoslaw Podsiadly
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 12/16, 90-924, Lodz, Poland
| | - Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States; Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States; Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Alexander M Garces
- Department of Physics, Marquette University, 1420 West Clybourn Street, Milwaukee, WI 53233, United States
| | | | - Brian Bennett
- Department of Physics, Marquette University, 1420 West Clybourn Street, Milwaukee, WI 53233, United States
| | - Donna McAllister
- Department of Microbiology & Immunology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Michael B Dwinell
- Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States; Department of Microbiology & Immunology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States; Department of Surgery, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Ming You
- Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States; Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States; Center for Disease Prevention Research, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Balaraman Kalyanaraman
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States; Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States; Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States; Center for Disease Prevention Research, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States.
| |
Collapse
|
27
|
Smulik-Izydorczyk R, Rostkowski M, Gerbich A, Jarmoc D, Adamus J, Leszczyńska A, Michalski R, Marcinek A, Kramkowski K, Sikora A. Decomposition of Piloty's acid derivatives – Toward the understanding of factors controlling HNO release. Arch Biochem Biophys 2019; 661:132-144. [DOI: 10.1016/j.abb.2018.11.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/11/2018] [Accepted: 11/14/2018] [Indexed: 01/21/2023]
|
28
|
Prolo C, Rios N, Piacenza L, Álvarez MN, Radi R. Fluorescence and chemiluminescence approaches for peroxynitrite detection. Free Radic Biol Med 2018; 128:59-68. [PMID: 29454880 DOI: 10.1016/j.freeradbiomed.2018.02.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/07/2018] [Accepted: 02/12/2018] [Indexed: 12/23/2022]
Abstract
In the last two decades, there has been a significant advance in understanding the biochemistry of peroxynitrite, an endogenously-produced oxidant and nucleophile. Its relevance as a mediator in several pathologic states and the aging process together with its transient character and low steady-state concentration, motivated the development of a variety of techniques for its unambiguous detection and estimation. Among these, fluorescence and chemiluminescence approaches have represented important tools with enhanced sensitivity but usual limited specificity. In this review, we analyze selected examples of molecular probes that permit the detection of peroxynitrite by fluorescence and chemiluminescence, disclosing their mechanism of reaction with either peroxynitrite or peroxynitrite-derived radicals. Indeed, probes have been divided into 1) redox probes that yield products by a free radical mechanism, and 2) electrophilic probes that evolve to products secondary to the nucleophilic attack by peroxynitrite. Overall, boronate-based compounds are emerging as preferred probes for the sensitive and specific detection and quantitation. Moreover, novel strategies involving genetically-modified fluorescent proteins with the incorporation of unnatural amino acids have been recently described as peroxynitrite sensors. This review analyzes the most commonly used fluorescence and chemiluminescence approaches for peroxynitrite detection and provides some guidelines for appropriate experimental design and data interpretation, including how to estimate peroxynitrite formation rates in cells.
Collapse
Affiliation(s)
- Carolina Prolo
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Natalia Rios
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Lucia Piacenza
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - María Noel Álvarez
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Rafael Radi
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
29
|
Zielonka J, Kalyanaraman B. Small-molecule luminescent probes for the detection of cellular oxidizing and nitrating species. Free Radic Biol Med 2018; 128:3-22. [PMID: 29567392 PMCID: PMC6146080 DOI: 10.1016/j.freeradbiomed.2018.03.032] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/09/2018] [Accepted: 03/16/2018] [Indexed: 01/24/2023]
Abstract
Reactive oxygen species (ROS) have been implicated in both pathogenic cellular damage events and physiological cellular redox signaling and regulation. To unravel the biological role of ROS, it is very important to be able to detect and identify the species involved. In this review, we introduce the reader to the methods of detection of ROS using luminescent (fluorescent, chemiluminescent, and bioluminescent) probes and discuss typical limitations of those probes. We review the most widely used probes, state-of-the-art assays, and the new, promising approaches for rigorous detection and identification of superoxide radical anion, hydrogen peroxide, and peroxynitrite. The combination of real-time monitoring of the dynamics of ROS in cells and the identification of the specific products formed from the probes will reveal the role of specific types of ROS in cellular function and dysfunction. Understanding the molecular mechanisms involving ROS may help with the development of new therapeutics for several diseases involving dysregulated cellular redox status.
Collapse
Affiliation(s)
- Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States; Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States; Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States.
| | - Balaraman Kalyanaraman
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States; Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States; Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| |
Collapse
|
30
|
Abstract
SIGNIFICANCE Hydrogen peroxide (H2O2) is a powerful effector of redox signaling. It is able to oxidize cysteine residues, metal ion centers, and lipids. Understanding H2O2-mediated signaling requires, to some extent, measurement of H2O2 level. Recent Advances: Chemically and genetically encoded fluorescent probes for the detection of H2O2 are currently the most sensitive and popular. Novel probes are constantly being developed, with the latest progress particular with boronates and genetically encoded probes. CRITICAL ISSUES All currently available probes display limitations in terms of sensitivity, local and temporal resolution, and specificity in the detection of low H2O2 concentrations. In this review, we discuss the power of fluorescent probes and the systems in which they have been successfully employed. Moreover, we recommend approaches for overcoming probe limitations and for the avoidance of artifacts. FUTURE DIRECTIONS Constant improvements will lead to the generation of probes that are not only more sensitive but also specifically tailored to individual cellular compartments. Antioxid. Redox Signal. 29, 585-602.
Collapse
Affiliation(s)
- Flávia Rezende
- Institute for Cardiovascular Physiology, Goethe-University , Frankfurt am Main, Germany
| | - Ralf P Brandes
- Institute for Cardiovascular Physiology, Goethe-University , Frankfurt am Main, Germany
| | - Katrin Schröder
- Institute for Cardiovascular Physiology, Goethe-University , Frankfurt am Main, Germany
| |
Collapse
|
31
|
Ma Q, Shao H, Feng Y, Zhang L, Li P, Hu X, Ma Z, Lou H, Zeng X, Luo G. A new bioluminescent imaging technology for studying oxidative stress in the testis and its impacts on fertility. Free Radic Biol Med 2018; 124:51-60. [PMID: 29803806 DOI: 10.1016/j.freeradbiomed.2018.05.080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 05/05/2018] [Accepted: 05/22/2018] [Indexed: 12/11/2022]
Abstract
PURPOSE Excessive oxidative stress (OS) leads to cellular dysfunctions and cell death and constitutes a major cause of male infertility. However, the etiologies of increased reactive oxygen species (ROS) in male infertility is not fully understood. One major limitation is the lack of an in vivo imaging system that can be used to effectively study the impact of excessive ROS in the testis. Recently, we discovered that the hepatocellular carcinoma reporter (HCR) mice previously generated in our laboratory also expressed luciferase in the spermatids of the testis. The goal of the current study is to use the HCR mice to detect OS in the testis and to investigate the potential use of this new system in studying OS-induced male infertility. EXPERIMENTAL DESIGN Bioluminescence imaging (BLI) was performed in HCR mice that were treated with peroxy caged luciferin-1 (PCL-1), an OS reporter, to establish a new mouse model for in vivo monitoring of the OS status inside the male reproductive tract. Subsequently, the effect of acetaminophen (APAP) overdose on the OS inside the testis and male fertility were determined. Lastly, APAP was co-administered with glutathione, an antioxidant reagent, to test if the HCR mice can serve as a model for the effective and rapid assessment of the potency of individual agents in modifying the OS inside the mouse testis. RESULTS The OS level in the testis in the HCR mice was readily detected by BLI. The use of this new model led to the discovery that APAP caused a sudden rise of OS in the testis and was a potent toxicant for the male reproductive system. Moreover, administration of glutathione was effective in preventing the APAP-induced elevation of OS and in ameliorating all of the OS-induced anomalies in the testis. CONCLUSIONS The HCR mice represent an excellent model for monitoring OS change in the mouse testis by real time BLI. APAP is a potent male reproductive toxicant and APAP-treated mice represent a valid model for OS-induced male infertility. This model can be used to study OS-induced damage in male reproductive tract and in assessing the effects of therapeutic agents on the relative levels of OS and male fertility.
Collapse
Affiliation(s)
- Qixiang Ma
- School of Life Sciences, Centre for Translational Oncology, Beijing University of Chinese Medicine, Chaoyang, 100029 Beijing, China
| | - Haozhen Shao
- School of Life Sciences, Centre for Translational Oncology, Beijing University of Chinese Medicine, Chaoyang, 100029 Beijing, China
| | - Yanyan Feng
- School of Life Sciences, Centre for Translational Oncology, Beijing University of Chinese Medicine, Chaoyang, 100029 Beijing, China
| | - Linpeng Zhang
- Shandong Stroke Association, Affiliated Hospitals of Weifang Medical College, Shandong, China
| | - Pengshou Li
- School of Life Sciences, Centre for Translational Oncology, Beijing University of Chinese Medicine, Chaoyang, 100029 Beijing, China
| | - Xiaowei Hu
- School of Life Sciences, Centre for Translational Oncology, Beijing University of Chinese Medicine, Chaoyang, 100029 Beijing, China
| | - Zhitao Ma
- School of Life Sciences, Centre for Translational Oncology, Beijing University of Chinese Medicine, Chaoyang, 100029 Beijing, China
| | - Hua Lou
- Department of Genetics and Genome Sciences, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Xianwei Zeng
- Shandong Stroke Association, Affiliated Hospitals of Weifang Medical College, Shandong, China.
| | - Guangbin Luo
- School of Life Sciences, Centre for Translational Oncology, Beijing University of Chinese Medicine, Chaoyang, 100029 Beijing, China; Department of Genetics and Genome Sciences, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
32
|
Hardy M, Zielonka J, Karoui H, Sikora A, Michalski R, Podsiadły R, Lopez M, Vasquez-Vivar J, Kalyanaraman B, Ouari O. Detection and Characterization of Reactive Oxygen and Nitrogen Species in Biological Systems by Monitoring Species-Specific Products. Antioxid Redox Signal 2018; 28:1416-1432. [PMID: 29037049 PMCID: PMC5910052 DOI: 10.1089/ars.2017.7398] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 10/15/2017] [Indexed: 12/31/2022]
Abstract
SIGNIFICANCE Since the discovery of the superoxide dismutase enzyme, the generation and fate of short-lived oxidizing, nitrosating, nitrating, and halogenating species in biological systems has been of great interest. Despite the significance of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in numerous diseases and intracellular signaling, the rigorous detection of ROS and RNS has remained a challenge. Recent Advances: Chemical characterization of the reactions of selected ROS and RNS with electron paramagnetic resonance (EPR) spin traps and fluorescent probes led to the establishment of species-specific products, which can be used for specific detection of several forms of ROS and RNS in cell-free systems and in cultured cells in vitro and in animals in vivo. Profiling oxidation products from the ROS and RNS probes provides a rigorous method for detection of those species in biological systems. CRITICAL ISSUES Formation and detection of species-specific products from the probes enables accurate characterization of the oxidative environment in cells. Measurement of the total signal (fluorescence, chemiluminescence, etc.) intensity does not allow for identification of the ROS/RNS formed. It is critical to identify the products formed by using chromatographic or other rigorous techniques. Product analyses should be accompanied by monitoring of the intracellular probe level, another factor controlling the yield of the product(s) formed. FUTURE DIRECTIONS More work is required to characterize the chemical reactivity of the ROS/RNS probes, and to develop new probes/detection approaches enabling real-time, selective monitoring of the specific products formed from the probes. Antioxid. Redox Signal. 28, 1416-1432.
Collapse
Affiliation(s)
- Micael Hardy
- Aix Marseille Univ, CNRS, ICR, Marseille, France
| | - Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin
- Free Radical Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Hakim Karoui
- Aix Marseille Univ, CNRS, ICR, Marseille, France
| | - Adam Sikora
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Radosław Michalski
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Radosław Podsiadły
- Faculty of Chemistry, Institute of Polymer and Dye Technology, Lodz University of Technology, Lodz, Poland
| | - Marcos Lopez
- Translational Biomedical Research Group, Biotechnology Laboratories, Cardiovascular Foundation of Colombia, Santander, Colombia
- Graduate Program of Biomedical Sciences, Faculty of Health, Universidad del Valle, Cali, Colombia
| | - Jeannette Vasquez-Vivar
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin
- Free Radical Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Balaraman Kalyanaraman
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin
- Free Radical Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | |
Collapse
|
33
|
Cheng G, Zielonka M, Dranka B, Kumar SN, Myers CR, Bennett B, Garces AM, Dias Duarte Machado LG, Thiebaut D, Ouari O, Hardy M, Zielonka J, Kalyanaraman B. Detection of mitochondria-generated reactive oxygen species in cells using multiple probes and methods: Potentials, pitfalls, and the future. J Biol Chem 2018; 293:10363-10380. [PMID: 29739855 DOI: 10.1074/jbc.ra118.003044] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/04/2018] [Indexed: 12/14/2022] Open
Abstract
Reactive oxygen and nitrogen species (ROS/RNS) such as superoxide (O2̇̄), hydrogen peroxide, lipid hydroperoxides, peroxynitrite, and hypochlorous and hypobromous acids play a key role in many pathophysiological processes. Recent studies have focused on mitochondrial ROS as redox signaling species responsible for promoting cell division, modulating and regulating kinases and phosphatases, and activating transcription factors. Many ROS also stimulate cell death and senescence. The extent to which these processes occur is attributed to ROS levels (low or high) in cells. However, the exact nature of ROS remains unknown. Investigators have used redox-active probes that, upon oxidation by ROS, yield products exhibiting fluorescence, chemiluminescence, or bioluminescence. Mitochondria-targeted probes can be used to detect ROS generated in mitochondria. However, because most of these redox-active probes (untargeted and mitochondria-targeted) are oxidized by several ROS species, attributing redox probe oxidation to specific ROS species is difficult. It is conceivable that redox-active probes are oxidized in common one-electron oxidation pathways, resulting in a radical intermediate that either reacts with another oxidant (including oxygen to produce O2̇̄) and forms a stable fluorescent product or reacts with O2̇̄ to form a fluorescent marker product. Here, we propose the use of multiple probes and complementary techniques (HPLC, LC-MS, redox blotting, and EPR) and the measurement of intracellular probe uptake and specific marker products to identify specific ROS generated in cells. The low-temperature EPR technique developed to investigate cellular/mitochondrial oxidants can easily be extended to animal and human tissues.
Collapse
Affiliation(s)
- Gang Cheng
- From the Department of Biophysics.,Free Radical Research Center
| | - Monika Zielonka
- From the Department of Biophysics.,Free Radical Research Center
| | - Brian Dranka
- the Cell Analysis Division, Agilent Technologies, Santa Clara, California 95051
| | | | - Charles R Myers
- Pharmacology and Toxicology, and.,Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Brian Bennett
- the Department of Physics, Marquette University, Milwaukee, Wisconsin 53233, and
| | - Alexander M Garces
- the Department of Physics, Marquette University, Milwaukee, Wisconsin 53233, and
| | | | - David Thiebaut
- the Aix Marseille Univ, CNRS, ICR, UMR 7273, Marseille 13013, France
| | - Olivier Ouari
- the Aix Marseille Univ, CNRS, ICR, UMR 7273, Marseille 13013, France
| | - Micael Hardy
- the Aix Marseille Univ, CNRS, ICR, UMR 7273, Marseille 13013, France
| | - Jacek Zielonka
- From the Department of Biophysics.,Free Radical Research Center.,Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Balaraman Kalyanaraman
- From the Department of Biophysics, .,Free Radical Research Center.,Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| |
Collapse
|
34
|
Pak YL, Park SJ, Wu D, Cheon B, Kim HM, Bouffard J, Yoon J. N-Heterocyclic Carbene Boranes as Reactive Oxygen Species-Responsive Materials: Application to the Two-Photon Imaging of Hypochlorous Acid in Living Cells and Tissues. Angew Chem Int Ed Engl 2018; 57:1567-1571. [DOI: 10.1002/anie.201711188] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/08/2017] [Indexed: 01/08/2023]
Affiliation(s)
- Yen Leng Pak
- Department of Chemistry and Nano Science (BK 21 Plus); Ewha Womans University; Seoul 03760 Korea
| | - Sang Jun Park
- Department of Chemistry and Energy Systems Research; Ajou University; Suwon 443-749 Korea
| | - Di Wu
- Department of Chemistry and Nano Science (BK 21 Plus); Ewha Womans University; Seoul 03760 Korea
| | - BoHyun Cheon
- Department of Chemistry and Nano Science (BK 21 Plus); Ewha Womans University; Seoul 03760 Korea
| | - Hwan Myung Kim
- Department of Chemistry and Energy Systems Research; Ajou University; Suwon 443-749 Korea
| | - Jean Bouffard
- Department of Chemistry and Nano Science (BK 21 Plus); Ewha Womans University; Seoul 03760 Korea
| | - Juyoung Yoon
- Department of Chemistry and Nano Science (BK 21 Plus); Ewha Womans University; Seoul 03760 Korea
| |
Collapse
|
35
|
Pak YL, Park SJ, Wu D, Cheon B, Kim HM, Bouffard J, Yoon J. N-Heterocyclic Carbene Boranes as Reactive Oxygen Species-Responsive Materials: Application to the Two-Photon Imaging of Hypochlorous Acid in Living Cells and Tissues. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201711188] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yen Leng Pak
- Department of Chemistry and Nano Science (BK 21 Plus); Ewha Womans University; Seoul 03760 Korea
| | - Sang Jun Park
- Department of Chemistry and Energy Systems Research; Ajou University; Suwon 443-749 Korea
| | - Di Wu
- Department of Chemistry and Nano Science (BK 21 Plus); Ewha Womans University; Seoul 03760 Korea
| | - BoHyun Cheon
- Department of Chemistry and Nano Science (BK 21 Plus); Ewha Womans University; Seoul 03760 Korea
| | - Hwan Myung Kim
- Department of Chemistry and Energy Systems Research; Ajou University; Suwon 443-749 Korea
| | - Jean Bouffard
- Department of Chemistry and Nano Science (BK 21 Plus); Ewha Womans University; Seoul 03760 Korea
| | - Juyoung Yoon
- Department of Chemistry and Nano Science (BK 21 Plus); Ewha Womans University; Seoul 03760 Korea
| |
Collapse
|
36
|
Zielonka J, Hardy M, Michalski R, Sikora A, Zielonka M, Cheng G, Ouari O, Podsiadły R, Kalyanaraman B. Recent Developments in the Probes and Assays for Measurement of the Activity of NADPH Oxidases. Cell Biochem Biophys 2017; 75:335-349. [PMID: 28660426 PMCID: PMC5693611 DOI: 10.1007/s12013-017-0813-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 06/15/2017] [Indexed: 01/18/2023]
Abstract
NADPH oxidases are a family of enzymes capable of transferring electrons from NADPH to molecular oxygen. A major function of NADPH oxidases is the activation of molecular oxygen into reactive oxygen species. Increased activity of NADPH oxidases has been implicated in various pathologies, including cardiovascular disease, neurological dysfunction, and cancer. Thus, NADPH oxidases have been identified as a viable target for the development of novel therapeutics exhibiting inhibitory effects on NADPH oxidases. Here, we describe the development of new assays for measuring the activity of NADPH oxidases enabling the high-throughput screening for NADPH oxidase inhibitors.
Collapse
Affiliation(s)
- Jacek Zielonka
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| | - Micael Hardy
- Aix Marseille Univ, CNRS, ICR, 13013, Marseille, France
| | - Radosław Michalski
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Adam Sikora
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Monika Zielonka
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Gang Cheng
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Olivier Ouari
- Aix Marseille Univ, CNRS, ICR, 13013, Marseille, France
| | - Radosław Podsiadły
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 12/16, 90-924, Lodz, Poland
| | - Balaraman Kalyanaraman
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| |
Collapse
|