1
|
Tanaka LY, Kumar S, Gutierre LF, Magnun C, Kajihara D, Kang DW, Laurindo FRM, Jo H. Disturbed flow regulates protein disulfide isomerase A1 expression via microRNA-204. Front Physiol 2024; 15:1327794. [PMID: 38638277 PMCID: PMC11024637 DOI: 10.3389/fphys.2024.1327794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/13/2024] [Indexed: 04/20/2024] Open
Abstract
Redox processes can modulate vascular pathophysiology. The endoplasmic reticulum redox chaperone protein disulfide isomerase A1 (PDIA1) is overexpressed during vascular proliferative diseases, regulating thrombus formation, endoplasmic reticulum stress adaptation, and structural remodeling. However, both protective and deleterious vascular effects have been reported for PDIA1, depending on the cell type and underlying vascular condition. Further understanding of this question is hampered by the poorly studied mechanisms underlying PDIA1 expression regulation. Here, we showed that PDIA1 mRNA and protein levels were upregulated (average 5-fold) in the intima and media/adventitia following partial carotid ligation (PCL). Our search identified that miR-204-5p and miR-211-5p (miR-204/211), two broadly conserved miRNAs, share PDIA1 as a potential target. MiR-204/211 was downregulated in vascular layers following PCL. In isolated endothelial cells, gain-of-function experiments of miR-204 with miR mimic decreased PDIA1 mRNA while having negligible effects on markers of endothelial activation/stress response. Similar effects were observed in vascular smooth muscle cells (VSMCs). Furthermore, PDIA1 downregulation by miR-204 decreased levels of the VSMC contractile differentiation markers. In addition, PDIA1 overexpression prevented VSMC dedifferentiation by miR-204. Collectively, we report a new mechanism for PDIA1 regulation through miR-204 and identify its relevance in a model of vascular disease playing a role in VSMC differentiation. This mechanism may be regulated in distinct stages of atherosclerosis and provide a potential therapeutic target.
Collapse
Affiliation(s)
- Leonardo Y. Tanaka
- Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
| | - Sandeep Kumar
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, United States
| | - Lucas F. Gutierre
- Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
| | - Celso Magnun
- Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
| | - Daniela Kajihara
- Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
| | - Dong-Won Kang
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, United States
| | - Francisco R. M. Laurindo
- Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|
2
|
He Z, Li S, Zhao F, Sun H, Hu J, Wang J, Liu X, Li M, Zhao Z, Luo Y. LncRNA and Protein Expression Profiles Reveal Heart Adaptation to High-Altitude Hypoxia in Tibetan Sheep. Int J Mol Sci 2023; 25:385. [PMID: 38203557 PMCID: PMC10779337 DOI: 10.3390/ijms25010385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/19/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
The Tibetan sheep has an intricate mechanism of adaptation to low oxygen levels, which is influenced by both genetic and environmental factors. The heart plays a crucial role in the adaptation of Tibetan sheep to hypoxia. In the present study, we utilized transcriptomic and proteomic technologies to comprehensively analyze and identify the long non-coding RNAs (lncRNAs), genes, proteins, pathways, and gene ontology (GO) terms associated with hypoxic adaptation in Tibetan sheep at three different altitudes (2500 m, 3500 m, and 4500 m). By integrating the differentially expressed (DE) lncRNA target genes, differentially expressed proteins (DEPs), and differentially expressed genes (DEGs), we were able to identify and characterize the mechanisms underlying hypoxic adaptation in Tibetan sheep. Through this integration, we identified 41 shared genes/proteins, and functional enrichment analyses revealed their close association with lipid metabolism, glycolysis/gluconeogenesis, and angiogenesis. Additionally, significant enrichment was observed in important pathways such as the PPAR signaling pathway, glycolysis/gluconeogenesis, the oxoacid metabolic process, and angiogenesis. Furthermore, the co-expression network of lncRNAs and mRNAs demonstrated that lncRNAs (MSTRG.4748.1, ENSOART00020025894, and ENSOART00020036371) may play a pivotal role in the adaptation of Tibetan sheep to the hypoxic conditions of the plateau. In conclusion, this study expands the existing database of lncRNAs and proteins in Tibetan sheep, and these findings may serve as a reference for the prevention of altitude sickness in humans.
Collapse
Affiliation(s)
| | - Shaobin Li
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Z.H.); (F.Z.); (H.S.); (J.H.); (J.W.); (X.L.); (M.L.); (Z.Z.)
| | | | | | | | | | | | | | | | - Yuzhu Luo
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Z.H.); (F.Z.); (H.S.); (J.H.); (J.W.); (X.L.); (M.L.); (Z.Z.)
| |
Collapse
|
3
|
Porto FG, Tanaka LY, de Bessa TC, Oliveira PVS, Souza JMFD, Kajihara D, Fernandes CG, Santos PN, Laurindo FRM. Evidence for a protective role of Protein Disulfide Isomerase-A1 against aortic dissection. Atherosclerosis 2023; 382:117283. [PMID: 37774430 DOI: 10.1016/j.atherosclerosis.2023.117283] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/25/2023] [Accepted: 09/06/2023] [Indexed: 10/01/2023]
Abstract
BACKGROUND AND AIMS Redox signaling is involved in the pathophysiology of aortic aneurysm/dissection. Protein Disulfide Isomerases and its prototype PDIA1 are thiol redox chaperones mainly from endoplasmic reticulum (ER), while PDIA1 cell surface pool redox-regulates thrombosis, cytoskeleton remodeling and integrin activation, which are mechanisms involved in aortic disease. Here we investigate the roles of PDIA1 in aortic dissection. METHODS Initially, we assessed the outcome of aortic aneurysm/dissection in transgenic PDIA1-overexpressing FVB mice using a model of 28-day exposure to lysyl oxidase inhibitor BAPN plus angiotensin-II infusion. In a second protocol, we assessed the effects of PDIA1 inhibitor isoquercetin (IQ) against aortic dissection in C57BL/6 mice exposed to BAPN for 28 days. RESULTS Transgenic PDIA1 overexpression associated with ca. 50% (p = 0.022) decrease (vs.wild-type) in mortality due to abdominal aortic rupture and protected against elastic fiber breaks in thoracic aorta. Conversely, exposure of mice to IQ increased thoracic aorta dissection-related mortality rates, from ca. 18%-50% within 28-days (p = 0.019); elastic fiber disruption and collagen deposition were also enhanced. The structurally-related compound diosmetin, which does not inhibit PDI, had negligible effects. In parallel, stretch-tension curves indicated that IQ amplified a ductile-type of biomechanical failure vs. control or BAPN-exposed mice aortas. IQ-induced effects seemed unassociated with nonspecific antioxidant effects or ER stress. In both models, echocardiographic analysis of surviving mice suggested that aortic rupture was dissociated from progressive dilatation. CONCLUSIONS Our data indicate a protective role of PDIA1 against aortic dissection/rupture and potentially uncovers a novel integrative mechanism coupling redox and biomechanical homeostasis in vascular remodeling.
Collapse
Affiliation(s)
- Fernando Garcez Porto
- Laboratorio de Biologia Vascular (LVascBio), LIM-64, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Leonardo Yuji Tanaka
- Laboratorio de Biologia Vascular (LVascBio), LIM-64, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Tiphany Coralie de Bessa
- Laboratorio de Biologia Vascular (LVascBio), LIM-64, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Percillia Victoria Santos Oliveira
- Laboratorio de Biologia Vascular (LVascBio), LIM-64, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Júlia Martins Felipe de Souza
- Laboratorio de Biologia Vascular (LVascBio), LIM-64, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Daniela Kajihara
- Laboratorio de Biologia Vascular (LVascBio), LIM-64, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Carolina Gonçalves Fernandes
- Laboratorio de Biologia Vascular (LVascBio), LIM-64, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Patricia Nolasco Santos
- Laboratorio de Biologia Vascular (LVascBio), LIM-64, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Francisco Rafael Martins Laurindo
- Laboratorio de Biologia Vascular (LVascBio), LIM-64, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| |
Collapse
|
4
|
Laboyrie SL, de Vries MR, Bijkerk R, Rotmans JI. Building a Scaffold for Arteriovenous Fistula Maturation: Unravelling the Role of the Extracellular Matrix. Int J Mol Sci 2023; 24:10825. [PMID: 37446003 DOI: 10.3390/ijms241310825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Vascular access is the lifeline for patients receiving haemodialysis as kidney replacement therapy. As a surgically created arteriovenous fistula (AVF) provides a high-flow conduit suitable for cannulation, it remains the vascular access of choice. In order to use an AVF successfully, the luminal diameter and the vessel wall of the venous outflow tract have to increase. This process is referred to as AVF maturation. AVF non-maturation is an important limitation of AVFs that contributes to their poor primary patency rates. To date, there is no clear overview of the overall role of the extracellular matrix (ECM) in AVF maturation. The ECM is essential for vascular functioning, as it provides structural and mechanical strength and communicates with vascular cells to regulate their differentiation and proliferation. Thus, the ECM is involved in multiple processes that regulate AVF maturation, and it is essential to study its anatomy and vascular response to AVF surgery to define therapeutic targets to improve AVF maturation. In this review, we discuss the composition of both the arterial and venous ECM and its incorporation in the three vessel layers: the tunica intima, media, and adventitia. Furthermore, we examine the effect of chronic kidney failure on the vasculature, the timing of ECM remodelling post-AVF surgery, and current ECM interventions to improve AVF maturation. Lastly, the suitability of ECM interventions as a therapeutic target for AVF maturation will be discussed.
Collapse
Affiliation(s)
- Suzanne L Laboyrie
- Department of Internal Medicine, Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands
| | - Margreet R de Vries
- Department of Surgery and the Heart and Vascular Center, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Vascular Surgery, Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands
| | - Roel Bijkerk
- Department of Internal Medicine, Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands
| | - Joris I Rotmans
- Department of Internal Medicine, Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
5
|
Xia Y, Zhang X, An P, Luo J, Luo Y. Mitochondrial Homeostasis in VSMCs as a Central Hub in Vascular Remodeling. Int J Mol Sci 2023; 24:ijms24043483. [PMID: 36834896 PMCID: PMC9961025 DOI: 10.3390/ijms24043483] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/30/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Vascular remodeling is a common pathological hallmark of many cardiovascular diseases. Vascular smooth muscle cells (VSMCs) are the predominant cell type lining the tunica media and play a crucial role in maintaining aortic morphology, integrity, contraction and elasticity. Their abnormal proliferation, migration, apoptosis and other activities are tightly associated with a spectrum of structural and functional alterations in blood vessels. Emerging evidence suggests that mitochondria, the energy center of VSMCs, participate in vascular remodeling through multiple mechanisms. For example, peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α)-mediated mitochondrial biogenesis prevents VSMCs from proliferation and senescence. The imbalance between mitochondrial fusion and fission controls the abnormal proliferation, migration and phenotypic transformation of VSMCs. Guanosine triphosphate-hydrolyzing enzymes, including mitofusin 1 (MFN1), mitofusin 2 (MFN2), optic atrophy protein 1 (OPA1) and dynamin-related protein 1 (DRP1), are crucial for mitochondrial fusion and fission. In addition, abnormal mitophagy accelerates the senescence and apoptosis of VSMCs. PINK/Parkin and NIX/BINP3 pathways alleviate vascular remodeling by awakening mitophagy in VSMCs. Mitochondrial DNA (mtDNA) damage destroys the respiratory chain of VSMCs, resulting in excessive ROS production and decreased ATP levels, which are related to the proliferation, migration and apoptosis of VSMCs. Thus, maintaining mitochondrial homeostasis in VSMCs is a possible way to relieve pathologic vascular remodeling. This review aims to provide an overview of the role of mitochondria homeostasis in VSMCs during vascular remodeling and potential mitochondria-targeted therapies.
Collapse
|
6
|
Loureiro ACC, Nocrato GF, Correia ALL, de Matos RS, Filho JCCN, Daher EDF, Pinto FHM, de Oliveira AC, Ceccatto VM, Fortunato RS, de Carvalho DP. Serum and Urinary Neutrophil Gelatinase-Associated Lipocalin Are Not Associated With Serum Redox Parameters in Amateur Athletes After an Ultramarathon. Front Physiol 2022; 13:811514. [PMID: 35370771 PMCID: PMC8970054 DOI: 10.3389/fphys.2022.811514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Objective To evaluate the relationship between oxidative stress and NGAL levels in blood and urine of amateur athletes after participating in a 100 km ultramarathon. Methodology The sample was composed of seven athletes, submitted to anthropometric assessment, cardiopulmonary exercise test, collection of urine and blood, measurement of body weight. The rate of perceived exertion (RPE), competition duration, heart rate (HR), energy expenditure and oxygen consumption (V'O2") were also measured during the event. The energy consumption during the race was verified at its end. The analyses were based on the means (M) and respective standard deviations (SD), with statistical significance set at 5% (p < 0.05). Paired t-test was used for comparison between the periods before and after the competition, and Pearson's correlation coefficient was used to measure the linear correlation between quantitative variables. Results Body mass index (BMI) of the sample was 25.75 kg/m2 ± 3.20, body fat percentage 18.54% ± 4.35% and V'O2"max 48.87% ± 4.78. Glucose, cortisol, and neutrophil gelatinase-associated lipocalin (NGAL) (p < 0.01) as well as glutathione peroxidase (GPx) active were higher after the race when compared to basal values. Moreover, lactate, creatinine, microalbuminuria, and glomerular filtration rate (GFR) (p < 0.001) were also higher after the race. After the competition, there was a significant correlation only between serum NGAL and creatinine, which was classified as strong and positive (r: 0.77; p < 0.05). There was a significant reduction (p < 0.05) of body weight after the event (72.40 kg ± 9.78) compared to before it (73.98 kg ± 10.25). In addition, we found an increase of RPE (p < 0.001) after the race. The competition lasted 820.60 min (±117.00), with a 127.85 bpm (±12.02) HR, a 2209.72 kcal ± 951.97 energy consumption, 7837.16 kcal ± 195.71 energy expenditure, and 28.78 ml/kg/min-1 (±4.66) relative V'O2"max. Conclusion The lack of correlation between oxidative stress biomarkers and serum and urine NGAL suggests that NGAL is more sensitive to inflammatory processes than to ROS levels.
Collapse
Affiliation(s)
| | | | | | - Robson Salviano de Matos
- Department of Clinical Medicine at the Federal University of Ceará, Ceará Federal University, Fortaleza, Brazil
| | | | | | | | | | | | - Rodrigo Soares Fortunato
- Carlos Chagas Filho Biophysics Institute, Rio de Janeiro Federal University, Rio de Janeiro, Brazil
| | - Denise Pires de Carvalho
- Carlos Chagas Filho Biophysics Institute, Rio de Janeiro Federal University, Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Wu N, Zheng F, Li N, Han Y, Xiong XQ, Wang JJ, Chen Q, Li YH, Zhu GQ, Zhou YB. RND3 attenuates oxidative stress and vascular remodeling in spontaneously hypertensive rat via inhibiting ROCK1 signaling. Redox Biol 2021; 48:102204. [PMID: 34883403 PMCID: PMC8661704 DOI: 10.1016/j.redox.2021.102204] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/24/2021] [Accepted: 12/04/2021] [Indexed: 12/11/2022] Open
Abstract
Superoxide and vascular smooth muscle cells (VSMCs) migration and proliferation play crucial roles in the vascular remodeling. Vascular remodeling contributes to the development and complications of hypertension. Rho family GTPase 3 (RND3 or RhoE), an atypical small Rho-GTPase, is known to be involved in cancer development and metastasis. However, the roles of RND3 in superoxide production and cardiovascular remodeling are unknown. Here, we uncovered the critical roles of RND3 in attenuating superoxide production, VSMCs migration and proliferation, and vascular remodeling in hypertension and its underline mechanisms. VSMCs were isolated and prepared from thoracic aorta of Male Wistar-Kyoto rat (WKY) and spontaneously hypertensive rat (SHR). RND3 mRNA and protein expressions in arteries and VSMCs were down-regulated in SHR. RND3 overexpression in VSMCs reduced NAD(P)H oxidase (NOX) activity, NOX1 and NOX2 expressions, mitochondria superoxide generation, and H2O2 production in SHR. Moreover, the RND3 overexpression inhibited VSMCs migration and proliferation in SHR, which were similar to the effects of NOX1 inhibitor ML171 plus NOX2 inhibitor GSK2795039. Rho-associated kinase 1 (ROCK1) and RhoA expressions and myosin phosphatase targeting protein 1 (MYPT1) phosphorylation in VSMCs were increased in SHR, which were prevented by RND3 overexpression. ROCK1 overexpression promoted NOX1 and NOX2 expressions, superoxide and H2O2 production, VSMCs migration and proliferation in both WKY and SHR, which were attenuated by RND3 overexpression. Adenoviral-mediated RND3 overexpression in SHR attenuated hypertension, vascular remodeling and oxidative stress. These results indicate that RND3 attenuates VSMCs migration and proliferation, hypertension and vascular remodeling in SHR via inhibiting ROCK1-NOX1/2 and mitochondria superoxide signaling.
Collapse
Affiliation(s)
- Nan Wu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Fen Zheng
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Na Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Ying Han
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Xiao-Qing Xiong
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Jue-Jin Wang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Qi Chen
- Department of Pathophysiology, Nanjing Medical University, Nanjing, 211166, China
| | - Yue-Hua Li
- Department of Pathophysiology, Nanjing Medical University, Nanjing, 211166, China
| | - Guo-Qing Zhu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, 211166, China; Department of Pathophysiology, Nanjing Medical University, Nanjing, 211166, China.
| | - Ye-Bo Zhou
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
8
|
Wang Y, Zhang X, Wen Y, Li S, Lu X, Xu R, Li C. Endoplasmic Reticulum-Mitochondria Contacts: A Potential Therapy Target for Cardiovascular Remodeling-Associated Diseases. Front Cell Dev Biol 2021; 9:774989. [PMID: 34858991 PMCID: PMC8631538 DOI: 10.3389/fcell.2021.774989] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular remodeling occurs in cardiomyocytes, collagen meshes, and vascular beds in the progress of cardiac insufficiency caused by a variety of cardiac diseases such as chronic ischemic heart disease, chronic overload heart disease, myocarditis, and myocardial infarction. The morphological changes that occur as a result of remodeling are the critical pathological basis for the occurrence and development of serious diseases and also determine morbidity and mortality. Therefore, the inhibition of remodeling is an important approach to prevent and treat heart failure and other related diseases. The endoplasmic reticulum (ER) and mitochondria are tightly linked by ER-mitochondria contacts (ERMCs). ERMCs play a vital role in different signaling pathways and provide a satisfactory structural platform for the ER and mitochondria to interact and maintain the normal function of cells, mainly by involving various cellular life processes such as lipid metabolism, calcium homeostasis, mitochondrial function, ER stress, and autophagy. Studies have shown that abnormal ERMCs may promote the occurrence and development of remodeling and participate in the formation of a variety of cardiovascular remodeling-associated diseases. This review focuses on the structure and function of the ERMCs, and the potential mechanism of ERMCs involved in cardiovascular remodeling, indicating that ERMCs may be a potential target for new therapeutic strategies against cardiovascular remodeling-induced diseases.
Collapse
Affiliation(s)
- Yu Wang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.,Emergency Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinrong Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ya Wen
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Sixuan Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaohui Lu
- Emergency Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ran Xu
- Jinan Tianqiao People's Hospital, Jinan, China
| | - Chao Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
9
|
Okasato R, Kano K, Kise R, Inoue A, Fukuhara S, Aoki J. An ATX-LPA 6-Gα 13-ROCK axis shapes and maintains caudal vein plexus in zebrafish. iScience 2021; 24:103254. [PMID: 34755093 PMCID: PMC8564058 DOI: 10.1016/j.isci.2021.103254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 09/06/2021] [Accepted: 10/08/2021] [Indexed: 12/31/2022] Open
Abstract
Lysophosphatidic acid (LPA) is a potential regulator of vascular formation derived from blood. In this study, we utilized zebrafish as a model organism to monitor the blood vessel formation in detail. Zebrafish mutant of ATX, an LPA-producing enzyme, had a defect in the caudal vein plexus (CVP). Pharmacological inhibition of ATX resulted in a fusion of the delicate vessels in the CVP to form large sac-like vessels. Mutant embryos of LPA6 receptor and downstream Gα13 showed the same phenotype. Administration of OMPT, a stable LPA-analog, induced rapid CVP constriction, which was attenuated significantly in the LPA6 mutant. We also found that blood flow-induced CVP formation was dependent on ATX. The present study demonstrated that the ATX-LPA6 axis acts cooperatively with blood flow and contributes to the formation and maintenance of the CVP by generating contractive force in endothelial cells. Blocking an ATX-LPA6-Gα13-ROCK axis causes malformation of the caudal vein plexus The axis also contributes to maintaining the fine structure of the caudal vein plexus Activation of LPA6 induces vasoconstriction Caudal vein plexus formation evoked by blood flow is dependent on an ATX-LPA6 axis
Collapse
Affiliation(s)
- Ryohei Okasato
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.,AMED-LEAP, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Kuniyuki Kano
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.,AMED-LEAP, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Ryoji Kise
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.,AMED-LEAP, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Shigetomo Fukuhara
- Department of Molecular Pathophysiology, Institute of Advanced Medical Sciences, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan
| | - Junken Aoki
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.,AMED-LEAP, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| |
Collapse
|
10
|
Hutchings G, Kruszyna Ł, Nawrocki MJ, Strauss E, Bryl R, Spaczyńska J, Perek B, Jemielity M, Mozdziak P, Kempisty B, Nowicki M, Krasiński Z. Molecular Mechanisms Associated with ROS-Dependent Angiogenesis in Lower Extremity Artery Disease. Antioxidants (Basel) 2021; 10:735. [PMID: 34066926 PMCID: PMC8148529 DOI: 10.3390/antiox10050735] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/01/2021] [Accepted: 05/04/2021] [Indexed: 02/06/2023] Open
Abstract
Currently, atherosclerosis, which affects the vascular bed of all vital organs and tissues, is considered as a leading cause of death. Most commonly, atherosclerosis involves coronary and peripheral arteries, which results in acute (e.g., myocardial infarction, lower extremities ischemia) or chronic (persistent ischemia leading to severe heart failure) consequences. All of them have a marked unfavorable impact on the quality of life and are associated with increased mortality and morbidity in human populations. Lower extremity artery disease (LEAD, also defined as peripheral artery disease, PAD) refers to atherosclerotic occlusive disease of the lower extremities, where partial or complete obstruction of peripheral arteries is observed. Decreased perfusion can result in ischemic pain, non-healing wounds, and ischemic ulcers, and significantly reduce the quality of life. However, the progressive atherosclerotic changes cause stimulation of tissue response processes, like vessel wall remodeling and neovascularization. These mechanisms of adapting the vascular network to pathological conditions seem to play a key role in reducing the impact of the changes limiting the flow of blood. Neovascularization as a response to ischemia induces sprouting and expansion of the endothelium to repair and grow the vessels of the circulatory system. Neovascularization consists of three different biological processes: vasculogenesis, angiogenesis, and arteriogenesis. Both molecular and environmental factors that may affect the process of development and growth of blood vessels were analyzed. Particular attention was paid to the changes taking place during LEAD. It is important to consider the molecular mechanisms underpinning vessel growth. These mechanisms will also be examined in the context of diseases commonly affecting blood vessel function, or those treatable in part by manipulation of angiogenesis. Furthermore, it may be possible to induce the process of blood vessel development and growth to treat peripheral vascular disease and wound healing. Reactive oxygen species (ROS) play an important role in regulation of essential cellular signaling pathways such as cell differentiation, proliferation, migration and apoptosis. With regard to the repair processes taking place during diseases such as LEAD, prospective therapeutic methods have been described that could significantly improve the treatment of vessel diseases in the future. Summarizing, regenerative medicine holds the potential to transform the therapeutic methods in heart and vessel diseases treatment.
Collapse
Affiliation(s)
- Greg Hutchings
- The School of Medicine, Medical Sciences and Nutrition, Aberdeen University, Aberdeen AB25 2ZD, UK;
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.J.N.); (R.B.); (J.S.)
| | - Łukasz Kruszyna
- Department of Vascular and Endovascular Surgery, Angiology and Phlebology, Poznan University of Medical Sciences, 60-848 Poznan, Poland; (Ł.K.); (E.S.); (Z.K.)
| | - Mariusz J. Nawrocki
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.J.N.); (R.B.); (J.S.)
| | - Ewa Strauss
- Department of Vascular and Endovascular Surgery, Angiology and Phlebology, Poznan University of Medical Sciences, 60-848 Poznan, Poland; (Ł.K.); (E.S.); (Z.K.)
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland
| | - Rut Bryl
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.J.N.); (R.B.); (J.S.)
| | - Julia Spaczyńska
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.J.N.); (R.B.); (J.S.)
| | - Bartłomiej Perek
- Department of Cardiac Surgery and Transplantology, Poznan University of Medical Sciences, 61-848 Poznan, Poland; (B.P.); (M.J.)
| | - Marek Jemielity
- Department of Cardiac Surgery and Transplantology, Poznan University of Medical Sciences, 61-848 Poznan, Poland; (B.P.); (M.J.)
| | - Paul Mozdziak
- Physiology Graduate Program, North Carolina State University, Raleigh, NC 27695, USA;
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA;
| | - Bartosz Kempisty
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.J.N.); (R.B.); (J.S.)
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA;
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| | - Michał Nowicki
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA;
| | - Zbigniew Krasiński
- Department of Vascular and Endovascular Surgery, Angiology and Phlebology, Poznan University of Medical Sciences, 60-848 Poznan, Poland; (Ł.K.); (E.S.); (Z.K.)
| |
Collapse
|
11
|
Gu W, Wu J, Pei Y, Ji J, Wu H, Wu J. Evaluation of Common Carotid Stiffness via Echo Tracking in Hypertensive Patients Complicated by Acute Aortic Dissection. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2021; 40:929-936. [PMID: 32888345 PMCID: PMC8246864 DOI: 10.1002/jum.15466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 05/08/2023]
Abstract
OBJECTIVES To evaluate the common carotid stiffness via echo tracking in patients with hypertension and acute aortic dissection (AD) and to investigate the independent predictors for the occurrence of AD in hypertensive (HP) patients. METHODS Fifty HP patients complicated by acute AD (AD group), 50 HP patients without AD (HP group), and 50 age-matched healthy volunteers (control group) were enrolled to assess the common carotid stiffness index (β), single-point pulsed wave velocity (PWVβ), and arterial compliance (AC) via echo tracking. RESULTS The intima-media thickness, diameter, β and PWVβ of the common carotid artery (CCA) in the AD group were significantly higher than those in the HP and control groups, whereas AC in the AD group was significantly lower (P < .05). In a multivariate logistic regression analysis, the systolic blood pressure (SBP; odds ratio [OR], 2.316; 95% confidence interval [CI], 2.033-2.563; P < .001), β (OR, 2.140; 95% CI, 1.931-2.367; P < .001), PWVβ (OR, 1.212; 95% CI, 1.004-1.397; P = .023), and AC (OR, 0.565; 95% CI, 0.339-0.654; P < .001) were significantly related to the occurrence of AD in HP patients. The area under the curve values for the AC, SBP, β, and PWVβ were 0.822, 0.806, 0.778, and 0.741, respectively, and the area under the curve was up to 0.943 when these parameters were combined. CONCLUSIONS The compliance of the CCA decreased, and the stiffness of the CCA increased significantly in HP patients complicated by AD. The AC, β, and PWVβ of the CCA, together with the SBP, were independent predictors of the occurrence of AD in HP patients.
Collapse
Affiliation(s)
- Wenhui Gu
- Department of UltrasoundSecond Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Juan Wu
- Department of UltrasoundSecond Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Yongkai Pei
- Department of UltrasoundSecond Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Jiamei Ji
- Department of UltrasoundSecond Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Haibo Wu
- Department of Cardiovascular SurgerySecond Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Jun Wu
- Department of UltrasoundSecond Affiliated Hospital of Dalian Medical UniversityDalianChina
| |
Collapse
|
12
|
Huang S, You S, Qian J, Dai C, Shen S, Wang J, Huang W, Liang G, Wu G. Myeloid differentiation 2 deficiency attenuates AngII-induced arterial vascular oxidative stress, inflammation, and remodeling. Aging (Albany NY) 2021; 13:4409-4427. [PMID: 33495414 PMCID: PMC7906178 DOI: 10.18632/aging.202402] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 11/15/2020] [Indexed: 11/25/2022]
Abstract
Vascular remodeling is a pertinent target for cardiovascular therapy. Vascular smooth muscle cell (VSMC) dysfunction plays a key role in vascular remodeling. Myeloid differentiation 2 (MD2), a cofactor of toll-like receptor 4 (TLR4), is involved in atherosclerotic progress and cardiac remodeling via activation of chronic inflammation. In this study, we explored the role of MD2 in vascular remodeling using an Ang II-induced mouse model and cultured human aortic VSMCs. MD2 deficiency suppressed Ang II-induced vascular fibrosis and phenotypic switching of VSMCs without affecting blood pressure in mice. Mechanistically, MD2 deficiency prevented Ang II-induced expression of inflammatory cytokines and oxidative stress in mice and cultured VSMCs. Furthermore, MD2 deficiency reversed Ang II-activated MAPK signaling and Ang II-downregulated SIRT1 expression. Taken together, MD2 plays a significant role in Ang II-induced vascular oxidative stress, inflammation, and remodeling, indicating that MD2 is a potential therapeutic target for the treatment of vascular remodeling-related cardiovascular diseases.
Collapse
Affiliation(s)
- Shushi Huang
- Department of Cardiology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shengban You
- Department of Cardiology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jinfu Qian
- Department of Cardiology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chengyi Dai
- Department of Cardiology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Siyuan Shen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jun Wang
- Department of Cardiology, Affiliated Dingli Institute and Wenzhou Central Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weijian Huang
- Department of Cardiology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Guang Liang
- Department of Cardiology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Department of Cardiology, Affiliated Dingli Institute and Wenzhou Central Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Gaojun Wu
- Department of Cardiology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
13
|
Fernandes DC, Wosniak J, Gonçalves RC, Tanaka LY, Fernandes CG, Zanatta DB, de Mattos ABM, Strauss BE, Laurindo FRM. PDIA1 acts as master organizer of NOX1/NOX4 balance and phenotype response in vascular smooth muscle. Free Radic Biol Med 2021; 162:603-614. [PMID: 33227407 DOI: 10.1016/j.freeradbiomed.2020.11.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/29/2020] [Accepted: 11/17/2020] [Indexed: 02/05/2023]
Abstract
Changes in vascular smooth muscle cell (VSMC) phenotype underlie disease pathophysiology and are strongly regulated by NOX NADPH oxidases, with NOX1 favoring synthetic proliferative phenotype and NOX4 supporting differentiation. Growth factor-triggered NOX1 expression/activity strictly depends on the chaperone oxidoreductase protein disulfide isomerase-A1 (PDIA1). Intracellular PDIA1 is required for VSMC migration and cytoskeleton organization, while extracellular PDIA1 fine-tunes cytoskeletal mechanoadaptation and vascular remodeling. We hypothesized that PDIA1 orchestrates NOX1/NOX4 balance and VSMC phenotype. Using an inducible PDIA1 overexpression model in VSMC, we showed that early PDIA1 overexpression (for 24-48 h) increased NOX1 expression, hydrogen peroxide steady-state levels and spontaneous VSMC migration distances. Sustained PDIA1 overexpression for 72 h and 96 h supported high NOX1 levels while also increasing NOX4 expression and, remarkably, switched VSMC phenotype to differentiation. Differentiation was preceded by increased nuclear myocardin and serum response factor-response element activation, with no change in cell viability. Both NOX1 and hydrogen peroxide were necessary for later PDIA1-induced VSMC differentiation. In primary VSMC, PDIA1 knockdown decreased nuclear myocardin and increased the proliferating cell nuclear antigen expression. Newly-developed PDIA1-overexpressing mice (TgPDIA1) exhibited normal general and cardiovascular baseline phenotypes. However, in TgPDIA1 carotids, NOX1 was decreased while NOX4 and calponin expressions were enhanced, indicating overdifferentiation vs. normal carotids. Moreover, in a rabbit overdistension injury model during late vascular repair, PDIA1 silencing impaired VSMC redifferentiation and NOX1/NOX4 balance. Our results suggest a model in which PDIA1 acts as an upstream organizer of NOX1/NOX4 balance and related VSMC phenotype, accounting for baseline differentiation setpoint.
Collapse
Affiliation(s)
- Denise C Fernandes
- Vascular Biology Laboratory, Heart Institute (InCor), University of Sao Paulo School of Medicine, Sao Paulo, Brazil.
| | - João Wosniak
- Vascular Biology Laboratory, Heart Institute (InCor), University of Sao Paulo School of Medicine, Sao Paulo, Brazil
| | - Renata C Gonçalves
- Vascular Biology Laboratory, Heart Institute (InCor), University of Sao Paulo School of Medicine, Sao Paulo, Brazil
| | - Leonardo Y Tanaka
- Vascular Biology Laboratory, Heart Institute (InCor), University of Sao Paulo School of Medicine, Sao Paulo, Brazil
| | - Carolina G Fernandes
- Vascular Biology Laboratory, Heart Institute (InCor), University of Sao Paulo School of Medicine, Sao Paulo, Brazil
| | - Daniela B Zanatta
- Viral Vector Laboratory, Center for Translational Research in Oncology/LIM24, Cancer Institute of Sao Paulo, School of Medicine, Sao Paulo, Brazil
| | - Ana Barbosa M de Mattos
- Laboratory of Genetic and Molecular Cardiology, Heart Institute (InCor), University of Sao Paulo School of Medicine, Sao Paulo, Brazil
| | - Bryan E Strauss
- Viral Vector Laboratory, Center for Translational Research in Oncology/LIM24, Cancer Institute of Sao Paulo, School of Medicine, Sao Paulo, Brazil
| | - Francisco R M Laurindo
- Vascular Biology Laboratory, Heart Institute (InCor), University of Sao Paulo School of Medicine, Sao Paulo, Brazil.
| |
Collapse
|
14
|
Cai H, Wang X. Effect of sulfur dioxide on vascular biology. Histol Histopathol 2020; 36:505-514. [PMID: 33319344 DOI: 10.14670/hh-18-290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Gasotransmitters, such as nitric oxide, carbon monoxide and hydrogen sulfide, can be generated endogenously. These gasotransmitters play important roles in vascular biology, including vasorelaxation and inhibition of vascular smooth muscle cell (VSMC) proliferation. In recent years, sulfur dioxide (SO₂) has been considered as a fourth gasotransmitter. SO₂ is present in air pollution. Moreover, SO₂ toxicity, including oxidative stress and DNA damage, has been extensively reported in previous studies. Recent studies have shown that SO₂ can be endogenously generated in various organs and vascular tissues, where it regulates vascular tone, vascular smooth cell proliferation and collagen synthesis. SO₂ can decrease blood pressure in rats, inhibit smooth muscle cell proliferation and collagen accumulation and promote collagen degradation, and improve vascular remodelling. SO₂ can decrease cardiovascular atherosclerotic plaques by enhancing the antioxidant effect and upregulating nitric oxide/nitric oxide synthase and hydrogen sulfide/cystathionine-γ-lyase pathways. SO₂ can also ameliorate vascular calcification via the transforming growth factor - β1/Smad pathway. The effect of SO₂ on vascular regulation has attracted great interest. SO₂ may be a novel mediator in vascular biology.
Collapse
Affiliation(s)
- Huijun Cai
- Department of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, PR China
| | - Xinbao Wang
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, PR China.
| |
Collapse
|
15
|
Stojak M, Milczarek M, Kurpinska A, Suraj-Prazmowska J, Kaczara P, Wojnar-Lason K, Banach J, Stachowicz-Suhs M, Rossowska J, Kalviņš I, Wietrzyk J, Chlopicki S. Protein Disulphide Isomerase A1 Is Involved in the Regulation of Breast Cancer Cell Adhesion and Transmigration via Lung Microvascular Endothelial Cells. Cancers (Basel) 2020; 12:cancers12102850. [PMID: 33023153 PMCID: PMC7601413 DOI: 10.3390/cancers12102850] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 12/16/2022] Open
Abstract
Cancer cell cross-talk with the host endothelium plays a crucial role in metastasis, but the underlying mechanisms are still not fully understood. We studied the involvement of protein disulphide isomerase A1 (PDIA1) in human breast cancer cell (MCF-7 and MDA-MB-231) adhesion and transendothelial migration. For comparison, the role of PDIA1 in proliferation, migration, cell cycle and apoptosis was also assessed. Pharmacological inhibitor, bepristat 2a and PDIA1 silencing were used to inhibit PDIA1. Inhibition of PDIA1 by bepristat 2a markedly decreased the adhesion of breast cancer cells to collagen type I, fibronectin and human lung microvascular endothelial cells. Transendothelial migration of breast cancer cells across the endothelial monolayer was also inhibited by bepristat 2a, an effect not associated with changes in ICAM-1 expression or changes in cellular bioenergetics. The silencing of PDIA1 produced less pronounced anti-adhesive effects. However, inhibiting extracellular free thiols by non-penetrating blocker p-chloromercuribenzene sulphonate substantially inhibited adhesion. Using a proteomic approach, we identified that β1 and α2 integrins were the most abundant among all integrins in breast cancer cells as well as in lung microvascular endothelial cells, suggesting that integrins could represent a target for PDIA1. In conclusion, extracellular PDIA1 plays a major role in regulating the adhesion of cancer cells and their transendothelial migration, in addition to regulating cell cycle and caspase 3/7 activation by intracellular PDIA1. PDIA1-dependent regulation of cancer-endothelial cell interactions involves disulphide exchange and most likely integrin activation but is not mediated by the regulation of ICAM-1 expression or changes in cellular bioenergetics in breast cancer or endothelial cells.
Collapse
Affiliation(s)
- Marta Stojak
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 30-348 Krakow, Poland; (M.S.); (A.K.); (J.S.-P.); (P.K.); (K.W.-L.)
| | - Magdalena Milczarek
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.M.); (J.B.); (M.S.-S.); (J.R.)
| | - Anna Kurpinska
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 30-348 Krakow, Poland; (M.S.); (A.K.); (J.S.-P.); (P.K.); (K.W.-L.)
| | - Joanna Suraj-Prazmowska
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 30-348 Krakow, Poland; (M.S.); (A.K.); (J.S.-P.); (P.K.); (K.W.-L.)
| | - Patrycja Kaczara
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 30-348 Krakow, Poland; (M.S.); (A.K.); (J.S.-P.); (P.K.); (K.W.-L.)
| | - Kamila Wojnar-Lason
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 30-348 Krakow, Poland; (M.S.); (A.K.); (J.S.-P.); (P.K.); (K.W.-L.)
- Department of Pharmacology, Jagiellonian University Medical College, 31-531 Krakow, Poland
| | - Joanna Banach
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.M.); (J.B.); (M.S.-S.); (J.R.)
| | - Martyna Stachowicz-Suhs
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.M.); (J.B.); (M.S.-S.); (J.R.)
| | - Joanna Rossowska
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.M.); (J.B.); (M.S.-S.); (J.R.)
| | - Ivars Kalviņš
- Laboratory of Carbofunctional Compounds, Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia;
| | - Joanna Wietrzyk
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.M.); (J.B.); (M.S.-S.); (J.R.)
- Correspondence: (J.W.); (S.C.)
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 30-348 Krakow, Poland; (M.S.); (A.K.); (J.S.-P.); (P.K.); (K.W.-L.)
- Department of Pharmacology, Jagiellonian University Medical College, 31-531 Krakow, Poland
- Correspondence: (J.W.); (S.C.)
| |
Collapse
|
16
|
Presa JL, Saravia F, Bagi Z, Filosa JA. Vasculo-Neuronal Coupling and Neurovascular Coupling at the Neurovascular Unit: Impact of Hypertension. Front Physiol 2020; 11:584135. [PMID: 33101063 PMCID: PMC7546852 DOI: 10.3389/fphys.2020.584135] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/04/2020] [Indexed: 12/18/2022] Open
Abstract
Components of the neurovascular unit (NVU) establish dynamic crosstalk that regulates cerebral blood flow and maintain brain homeostasis. Here, we describe accumulating evidence for cellular elements of the NVU contributing to critical physiological processes such as cerebral autoregulation, neurovascular coupling, and vasculo-neuronal coupling. We discuss how alterations in the cellular mechanisms governing NVU homeostasis can lead to pathological changes in which vascular endothelial and smooth muscle cell, pericyte and astrocyte function may play a key role. Because hypertension is a modifiable risk factor for stroke and accelerated cognitive decline in aging, we focus on hypertension-associated changes on cerebral arteriole function and structure, and the molecular mechanisms through which these may contribute to cognitive decline. We gather recent emerging evidence concerning cognitive loss in hypertension and the link with vascular dementia and Alzheimer’s disease. Collectively, we summarize how vascular dysfunction, chronic hypoperfusion, oxidative stress, and inflammatory processes can uncouple communication at the NVU impairing cerebral perfusion and contributing to neurodegeneration.
Collapse
Affiliation(s)
- Jessica L Presa
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina
| | - Flavia Saravia
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina
| | - Zsolt Bagi
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Jessica A Filosa
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
17
|
Tanaka LY, Oliveira PVS, Laurindo FRM. Peri/Epicellular Thiol Oxidoreductases as Mediators of Extracellular Redox Signaling. Antioxid Redox Signal 2020; 33:280-307. [PMID: 31910038 DOI: 10.1089/ars.2019.8012] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Significance: Supracellular redox networks regulating cell-extracellular matrix (ECM) and organ system architecture merge with structural and functional (catalytic or allosteric) properties of disulfide bonds. This review addresses emerging evidence that exported thiol oxidoreductases (TORs), such as thioredoxin, protein disulfide isomerases (PDIs), quiescin sulfhydryl oxidases (QSOX)1, and peroxiredoxins, composing a peri/epicellular (pec)TOR pool, mediate relevant signaling. pecTOR functions depend mainly on kinetic and spatial regulation of thiol-disulfide exchange reactions governed by redox potentials, which are modulated by exported intracellular low-molecular-weight thiols, together conferring signal specificity. Recent Advances: pecTOR redox-modulates several targets including integrins, ECM proteins, surface molecules, and plasma components, although clear-cut documentation of direct effects is lacking in many cases. TOR catalytic pathways, displaying common patterns, culminate in substrate thiol reduction, oxidation, or isomerization. Peroxiredoxins act as redox/peroxide sensors, contrary to PDIs, which are likely substrate-targeted redox modulators. Emerging evidence suggests important pecTOR roles in patho(physio)logical processes, including blood coagulation, vascular remodeling, mechanosensing, endothelial function, immune responses, and inflammation. Critical Issues: Effects of pecPDIs supporting thrombosis/platelet activation have been well documented and reached the clinical arena. Roles of pecPDIA1 in vascular remodeling/mechanosensing are also emerging. Extracellular thioredoxin and pecPDIs redox-regulate immunoinflammation. Routes of TOR externalization remain elusive and appear to involve Golgi-independent routes. pecTORs are particularly accessible drug targets. Future Directions: Further understanding mechanisms of thiol redox reactions and developing assays for assessing pecTOR redox activities remain important research avenues. Also, addressing pecTORs as disease markers and achieving more efficient/specific drugs for pecTOR modulation are major perspectives for diagnostic/therapeutic improvements.
Collapse
Affiliation(s)
- Leonardo Y Tanaka
- Vascular Biology Laboratory, LIM-64 (Translational Cardiovascular Biology), Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Percillia V S Oliveira
- Vascular Biology Laboratory, LIM-64 (Translational Cardiovascular Biology), Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Francisco R M Laurindo
- Vascular Biology Laboratory, LIM-64 (Translational Cardiovascular Biology), Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
18
|
Carmo LS, Burdmann EA, Fessel MR, Almeida YE, Pescatore LA, Farias-Silva E, Gamarra LF, Lopes GH, Aloia TPA, Liberman M. Expansive Vascular Remodeling and Increased Vascular Calcification Response to Cholecalciferol in a Murine Model of Obesity and Insulin Resistance. Arterioscler Thromb Vasc Biol 2019; 39:200-211. [PMID: 30580565 DOI: 10.1161/atvbaha.118.311880] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Objective- We hypothesized that ob/ob mice develop expansive vascular remodeling associated with calcification. Approach and Results- We quantified and investigated mechanisms of vascular remodeling and vascular calcification in ob/ob mice after vitamin D3(VD) stimulation or PBS (control), compared with C57BL/6 mice. Both ob/ob (OBVD [VD-treated ob/ob mice]) and C57BL/6 (C57VD [VD-treated C57BL/6 mice]) received 8×103 IU/day of intraperitoneal VD for 14 days. Control ob/ob (OBCT [PBS-treated ob/ob mice]) and C57BL/6 (C57CT [PBS-treated C57BL/6 mice]) received intraperitoneal PBS for 14 days. Hypervitaminosis D increased the external and internal elastic length in aortae from OBVD, resulting in increased total vascular area and lumen vascular area, respectively, which characterizes expansive vascular remodeling. OBVD decreased the aortic wall thickness, resulting in hypotrophic vascular remodeling. We demonstrated increased collagen deposition, elastolysis, and calcification in aortae from OBVD. Our results showed a positive correlation between expansive vascular remodeling and vascular calcification in OBVD. We demonstrated increased serum calcium levels, augmented Bmp (bone morphogenetic protein)-2 and osteochondrogenic proteins expression in OBVD aortae. Furthermore, aortae from OBVD increased oxidative stress, coincidently with augmented in situ MMP (matrix metalloproteinase) activity and exhibited no VDR (VD receptor) inhibition after VD. Conclusions- Our data provide evidence that obese and insulin-resistant mice (ob/ob) developed expansive hypotrophic vascular remodeling correlated directly with increased vascular calcification after chronic VD stimulation. Positive hypotrophic vascular remodeling and vascular calcification in this mouse model is possibly mediated by the convergence of absence VDR downregulation after VD stimulation, increased reactive oxygen species generation, and MMP activation.
Collapse
Affiliation(s)
- Luciana S Carmo
- From the Department of IIEP-Research and Teaching Institute (L.S.C., M.R.F., Y.E.A., L.A.P., E.F.-S., L.F.G., G.H.L., T.P.A.A., M.L.), Hospital Israelita Albert Einstein, São Paulo, Brazil.,the Division of Nephrology, LIM 12, University of São Paulo Medical School, Brazil (L.S.C., E.A.B.)
| | - Emmanuel A Burdmann
- the Division of Nephrology, LIM 12, University of São Paulo Medical School, Brazil (L.S.C., E.A.B.)
| | - Melissa R Fessel
- From the Department of IIEP-Research and Teaching Institute (L.S.C., M.R.F., Y.E.A., L.A.P., E.F.-S., L.F.G., G.H.L., T.P.A.A., M.L.), Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Youri E Almeida
- From the Department of IIEP-Research and Teaching Institute (L.S.C., M.R.F., Y.E.A., L.A.P., E.F.-S., L.F.G., G.H.L., T.P.A.A., M.L.), Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Luciana A Pescatore
- From the Department of IIEP-Research and Teaching Institute (L.S.C., M.R.F., Y.E.A., L.A.P., E.F.-S., L.F.G., G.H.L., T.P.A.A., M.L.), Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Elisangela Farias-Silva
- From the Department of IIEP-Research and Teaching Institute (L.S.C., M.R.F., Y.E.A., L.A.P., E.F.-S., L.F.G., G.H.L., T.P.A.A., M.L.), Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Lionel F Gamarra
- From the Department of IIEP-Research and Teaching Institute (L.S.C., M.R.F., Y.E.A., L.A.P., E.F.-S., L.F.G., G.H.L., T.P.A.A., M.L.), Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Gabriel H Lopes
- From the Department of IIEP-Research and Teaching Institute (L.S.C., M.R.F., Y.E.A., L.A.P., E.F.-S., L.F.G., G.H.L., T.P.A.A., M.L.), Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Thiago P A Aloia
- From the Department of IIEP-Research and Teaching Institute (L.S.C., M.R.F., Y.E.A., L.A.P., E.F.-S., L.F.G., G.H.L., T.P.A.A., M.L.), Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Marcel Liberman
- From the Department of IIEP-Research and Teaching Institute (L.S.C., M.R.F., Y.E.A., L.A.P., E.F.-S., L.F.G., G.H.L., T.P.A.A., M.L.), Hospital Israelita Albert Einstein, São Paulo, Brazil.,Department of Critical Care Medicine and Cardiology (M.L.), Hospital Israelita Albert Einstein, São Paulo, Brazil
| |
Collapse
|
19
|
Wang Y, Li X, Huang X, Ma S, Xing Y, Geng X, He X. Sauchinone inhibits angiotensin II-induced proliferation and migration of vascular smooth muscle cells. Clin Exp Pharmacol Physiol 2019; 47:220-226. [PMID: 31587339 DOI: 10.1111/1440-1681.13187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 09/11/2019] [Accepted: 10/03/2019] [Indexed: 12/01/2022]
Abstract
Hypertension is a common type of cardiovascular disease that remains a major cause of death in the world. Vascular remodelling is an important complication of hypertension, and vascular smooth muscle cells (VSMCs) play a major role in vascular remodelling. Sauchinone is one of the active lignins which has been found to possess vascular protective effects. However, the functional role of sauchinone in hypertension has not been investigated. The aim of this study was to evaluate the role of sauchinone in the angiotensin II (Ang II)-induced vascular remodelling model in VSMCs. The results showed that treatment of sauchinone inhibited Ang II-induced VSMCs proliferation and migration in VSMCs. Sauchinone treatment suppressed the reactive oxygen species (ROS) production and NADPH oxidase (NOX) activity in Ang II-induced VSMCs. The inhibitory effects of Ang II on expressions of VSMCs phenotype markers including α-smooth muscle actin (α-SMA), calponin, osteopontin were mitigated by sauchinone treatment. Furthermore, sauchinone inhibited Ang II-induced over-activation of TGF-β1/Smad3 signalling pathway in VSMCs. Taken together, this study identified sauchinone as a potential agent for preventing vascular remodelling in hypertension.
Collapse
Affiliation(s)
- Ying Wang
- Department of Intensive Care Medicine, Xi'an No.4 Hospital, Shaanxi, China
| | - Xiaoming Li
- Department of Intensive Care Medicine, Xi'an No.4 Hospital, Shaanxi, China
| | - Xuying Huang
- Department of Emergency, Xi'an No.4 Hospital, Shaanxi, China
| | - Sirui Ma
- Department of Intensive Care Medicine, Xi'an No.4 Hospital, Shaanxi, China
| | - Yue Xing
- Department of Ultrasound, Xi'an No.4 Hospital, Shaanxi, China
| | - Xiaoying Geng
- Department of Intensive Care Medicine, Xi'an No.4 Hospital, Shaanxi, China
| | - Xu He
- Department of Cardiology, Yulin No.2 Hospital, Shaanxi, China
| |
Collapse
|
20
|
Touyz RM, Alves-Lopes R, Rios FJ, Camargo LL, Anagnostopoulou A, Arner A, Montezano AC. Vascular smooth muscle contraction in hypertension. Cardiovasc Res 2019; 114:529-539. [PMID: 29394331 PMCID: PMC5852517 DOI: 10.1093/cvr/cvy023] [Citation(s) in RCA: 391] [Impact Index Per Article: 65.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 01/30/2018] [Indexed: 12/19/2022] Open
Abstract
Hypertension is a major risk factor for many common chronic diseases, such as heart failure, myocardial infarction, stroke, vascular dementia, and chronic kidney disease. Pathophysiological mechanisms contributing to the development of hypertension include increased vascular resistance, determined in large part by reduced vascular diameter due to increased vascular contraction and arterial remodelling. These processes are regulated by complex-interacting systems such as the renin-angiotensin-aldosterone system, sympathetic nervous system, immune activation, and oxidative stress, which influence vascular smooth muscle function. Vascular smooth muscle cells are highly plastic and in pathological conditions undergo phenotypic changes from a contractile to a proliferative state. Vascular smooth muscle contraction is triggered by an increase in intracellular free calcium concentration ([Ca2+]i), promoting actin–myosin cross-bridge formation. Growing evidence indicates that contraction is also regulated by calcium-independent mechanisms involving RhoA-Rho kinase, protein Kinase C and mitogen-activated protein kinase signalling, reactive oxygen species, and reorganization of the actin cytoskeleton. Activation of immune/inflammatory pathways and non-coding RNAs are also emerging as important regulators of vascular function. Vascular smooth muscle cell [Ca2+]i not only determines the contractile state but also influences activity of many calcium-dependent transcription factors and proteins thereby impacting the cellular phenotype and function. Perturbations in vascular smooth muscle cell signalling and altered function influence vascular reactivity and tone, important determinants of vascular resistance and blood pressure. Here, we discuss mechanisms regulating vascular reactivity and contraction in physiological and pathophysiological conditions and highlight some new advances in the field, focusing specifically on hypertension.
Collapse
Affiliation(s)
- Rhian M Touyz
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Rheure Alves-Lopes
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Francisco J Rios
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Livia L Camargo
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Aikaterini Anagnostopoulou
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Anders Arner
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Augusto C Montezano
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| |
Collapse
|
21
|
Ho CC, Tsai MH, Chen YC, Kuo CC, Lin P. Persistent elevation of blood pressure by ambient coarse particulate matter after recovery from pulmonary inflammation in mice. ENVIRONMENTAL TOXICOLOGY 2019; 34:814-824. [PMID: 30919559 DOI: 10.1002/tox.22749] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 06/09/2023]
Abstract
Exposure to ambient particulate matter (PM) is associated with hypertension and cardiovascular diseases. Recently, we reported that exposure to fine and coarse PM caused pulmonary inflammation and pulmonary small arterial remodeling in mice, and osteopontin (OPN) level was elevated following PM exposure. However, in the present study, cotreatment with 5-methoxytryptophan for 4 weeks partially reduced coarse PM-induced pulmonary inflammation without reducing pulmonary OPN secretion or recovery from pulmonary arterial remodeling in mice. Persistent vascular dysfunction may lead to vascular remodeling. Therefore, we further compared the relationship between coarse PM-induced inflammation and vascular dysfunction by exposing mice to PM before and after cessation of PM exposure. Oropharyngeal aspiration of PM for 8 weeks induced pulmonary inflammation and pulmonary small artery remodeling in mice, as well as increased serum C-reactive protein and OPN concentrations and systolic blood pressure (SBP). After the cessation of PM exposure for another 8 weeks, lung inflammation had recovered and vascular remodeling had partially recovered. Elevation of OPN, metalloproteinases (MMPs), and cytokines in bronchioalveolar lavage were significantly reduced. However, PM-induced systemic responses did not recover after the cessation of PM exposure. Notably, not only serum OPN and SBP remained significantly elevated; also, serum endothelin-1, MMP-9, and keratinocyte-derived chemokine concentrations were significantly increased after cessation of PM exposure for another 8 weeks. These data suggested that systemic inflammation and systemic vascular dysfunction might be important in PM-induced elevation of SBP. Furthermore, SBP elevation was persistent after cessation of PM exposure for 8 weeks.
Collapse
Affiliation(s)
- Chia-Chi Ho
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, 350 Taiwan
| | - Ming-Hsien Tsai
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, 350 Taiwan
| | - Yu-Cheng Chen
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, 350 Taiwan
- Department of Occupational Safety and Health, China Medical University, Taichung, 404 Taiwan
| | - Cheng-Chin Kuo
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, 350 Taiwan
| | - Pinpin Lin
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, 350 Taiwan
| |
Collapse
|
22
|
Sabbineni H, Verma A, Artham S, Anderson D, Amaka O, Liu F, Narayanan SP, Somanath PR. Pharmacological inhibition of β-catenin prevents EndMT in vitro and vascular remodeling in vivo resulting from endothelial Akt1 suppression. Biochem Pharmacol 2019; 164:205-215. [PMID: 30991049 DOI: 10.1016/j.bcp.2019.04.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/12/2019] [Indexed: 12/31/2022]
Abstract
Endothelial to mesenchymal transition (EndMT), where endothelial cells acquire mesenchymal characteristics has been implicated in several cardiopulmonary, vascular and fibrotic diseases. The most commonly studied molecular mechanisms involved in EndMT include TGFβ, Notch, interleukin, and interferon-γ signaling. As of today, the contributions of Akt1, an important mediator of TGFβ signaling and a key regulator of endothelial barrier function to EndMT remains unclear. By using the ShRNA based gene silencing approach and endothelial-specific inducible Akt1 knockdown (ECKOAkt1) mice, we studied the role of Akt1 in EndMT in vitro and pathological vascular remodeling in vivo. Stable, Akt1 silenced (ShAkt1) human microvascular endothelial cells (HMECs) indicated increased expression of mesenchymal markers such as N-cadherin and α-SMA, phosphorylation of Smad2/3, cellular stress via activation of p38 MAP Kinase and the loss of endothelial nitric oxide synthase (eNOS) accompanied by a change in the morphology of HMECs in vitro and co-localization of endothelial and mesenchymal markers promoting EndMT in vivo. EndMT as a result of Akt1 loss was associated with increased expression of TGFβ2, a potent inducer of EndMT and mesenchymal transcription factors Snail1, and FoxC2. We observed that hypoxia-induced lung vascular remodeling is exacerbated in ECKOAkt1 mice, which was reversed by pharmacological inhibition of β-catenin. Thus, we provide novel insights into the role of Akt1-mediated β-catenin signaling in EndMT and pathological vascular remodeling, and present β-catenin as a potential target for therapy for various cardiopulmonary diseases involving vascular remodeling.
Collapse
Affiliation(s)
- Harika Sabbineni
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, United States
| | - Arti Verma
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, United States
| | - Sandeep Artham
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, United States
| | - Daniel Anderson
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, United States
| | - Oge Amaka
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, United States
| | - Fang Liu
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, United States
| | - Subhadra P Narayanan
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, United States
| | - Payaningal R Somanath
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, United States; Department of Medicine, Vascular Biology Center and Cancer Center, Augusta University, Augusta, GA 30912, United States.
| |
Collapse
|
23
|
De Bessa TC, Pagano A, Moretti AIS, Oliveira PVS, Mendonça SA, Kovacic H, Laurindo FRM. Subverted regulation of Nox1 NADPH oxidase-dependent oxidant generation by protein disulfide isomerase A1 in colon carcinoma cells with overactivated KRas. Cell Death Dis 2019; 10:143. [PMID: 30760703 PMCID: PMC6374413 DOI: 10.1038/s41419-019-1402-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 12/24/2018] [Accepted: 01/28/2019] [Indexed: 12/11/2022]
Abstract
Protein disulfide isomerases including PDIA1 are implicated in cancer progression, but underlying mechanisms are unclear. PDIA1 is known to support vascular Nox1 NADPH oxidase expression/activation. Since deregulated reactive oxygen species (ROS) production underlies tumor growth, we proposed that PDIA1 is an upstream regulator of tumor-associated ROS. We focused on colorectal cancer (CRC) with distinct KRas activation levels. Analysis of RNAseq databanks and direct validation indicated enhanced PDIA1 expression in CRC with constitutive high (HCT116) vs. moderate (HKE3) and basal (Caco2) Ras activity. PDIA1 supported Nox1-dependent superoxide production in CRC; however, we first reported a dual effect correlated with Ras-level activity: in Caco2 and HKE3 cells, loss-of-function experiments indicate that PDIA1 sustains Nox1-dependent superoxide production, while in HCT116 cells PDIA1 restricted superoxide production, a behavior associated with increased Rac1 expression/activity. Transfection of Rac1G12V active mutant into HKE3 cells induced PDIA1 to become restrictive of Nox1-dependent superoxide, while in HCT116 cells treated with Rac1 inhibitor, PDIA1 became supportive of superoxide. PDIA1 silencing promoted diminished cell proliferation and migration in HKE3, not detectable in HCT116 cells. Screening of cell signaling routes affected by PDIA1 silencing highlighted GSK3β and Stat3. Also, E-cadherin expression after PDIA1 silencing was decreased in HCT116, consistent with PDIA1 support of epithelial-mesenchymal transition. Thus, Ras overactivation switches the pattern of PDIA1-dependent Rac1/Nox1 regulation, so that Ras-induced PDIA1 bypass can directly activate Rac1. PDIA1 may be a crucial regulator of redox-dependent adaptive processes related to cancer progression.
Collapse
Affiliation(s)
- Tiphany Coralie De Bessa
- LIM 64, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
- Aix Marseille Univ, CNRS, UMR 7051, INP, Inst Neurophysiopathol, Faculté de Pharmacie, 27, Boulevard Jean Moulin - 13385 Marseille CEDEX 5-France, Marseille, France
| | - Alessandra Pagano
- Aix Marseille Univ, CNRS, UMR 7051, INP, Inst Neurophysiopathol, Faculté de Pharmacie, 27, Boulevard Jean Moulin - 13385 Marseille CEDEX 5-France, Marseille, France
| | - Ana Iochabel Soares Moretti
- LIM 64, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Percillia Victoria Santos Oliveira
- LIM 64, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Samir Andrade Mendonça
- Centro de Investigação Translacional em Oncologia do Instituto do Câncer do Estado de São Paulo (Icesp), Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Herve Kovacic
- Aix Marseille Univ, CNRS, UMR 7051, INP, Inst Neurophysiopathol, Faculté de Pharmacie, 27, Boulevard Jean Moulin - 13385 Marseille CEDEX 5-France, Marseille, France.
| | - Francisco Rafael Martins Laurindo
- LIM 64, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| |
Collapse
|
24
|
Mechanisms of Intravascular Linear Ablation Induced Restenosis in Rabbit Abdominal Aorta. BIOMED RESEARCH INTERNATIONAL 2019; 2018:7459276. [PMID: 30671470 PMCID: PMC6323460 DOI: 10.1155/2018/7459276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 09/29/2018] [Accepted: 10/18/2018] [Indexed: 11/17/2022]
Abstract
Objectives Percutaneous coronary intervention (PCI) is the mainstay treatment for coronary artery disease but complications such as in-stent restenosis and thrombosis remain problematic. Radiofrequency balloon angioplasty (RBA) can improve lumen dimension, fusing intimal tears, and artery dissection but is associated with higher restenosis rate. Methods After establishing an atherosclerosis model based on endothelial abrasion and high cholesterol diet, forty-five rabbits were randomly divided into three groups: RBA (n=20), percutaneous transluminal angioplasty (PTA) (n=20), and control groups (n=5). The RBA and PTA groups were subdivided according to harvested time posttreatment, respectively (1 hour, 7 days, 14 days, and 28 days). Aorta segments were then isolated for hematoxylin and eosin staining, Masson trichrome staining, immunohistochemistry, and Western blot for TLR-4, NF-κB, MCP-1, and VCAM-1expression. Results At 28 days, intimal area was significantly lower in the RBA group compared to the PTA and control groups, whilst luminal and medial area were comparable in the RBA and PTA group but higher and lower than the control group, respectively. Expression of TLR-4, NF-κB, MCP-1, and VCAM-1 showed no significant difference between RBA and PTA groups. Conclusions RBA can depress the intimal hyperplasia and promote dilatation of the artery to greater extents than PTA at 28 days. However, this did not involve TLR-4 signaling pathway, which likely plays a negligible role in mediating restenosis. Reduction of intimal hyperplasia may be due to injury of ablation to the tunica media and inhibition of VSMC proliferation and migration.
Collapse
|
25
|
Tanaka LY, Araujo TLS, Rodriguez AI, Ferraz MS, Pelegati VB, Morais MCC, Santos AMD, Cesar CL, Ramos AF, Alencar AM, Laurindo FRM. Peri/epicellular protein disulfide isomerase-A1 acts as an upstream organizer of cytoskeletal mechanoadaptation in vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 2018; 316:H566-H579. [PMID: 30499716 DOI: 10.1152/ajpheart.00379.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although redox processes closely interplay with mechanoresponses to control vascular remodeling, redox pathways coupling mechanostimulation to cellular cytoskeletal organization remain unclear. The peri/epicellular pool of protein disulfide isomerase-A1 (pecPDIA1) supports postinjury vessel remodeling. Using distinct models, we investigated whether pecPDIA1 could work as a redox-dependent organizer of cytoskeletal mechanoresponses. In vascular smooth muscle cells (VSMCs), pecPDIA1 immunoneutralization impaired stress fiber assembly in response to equibiaxial stretch and, under uniaxial stretch, significantly perturbed cell repositioning perpendicularly to stretch orientation. During cyclic stretch, pecPDIA1 supported thiol oxidation of the known mechanosensor β1-integrin and promoted polarized compartmentalization of sulfenylated proteins. Using traction force microscopy, we showed that pecPDIA1 organizes intracellular force distribution. The net contractile moment ratio of platelet-derived growth factor-exposed to basal VSMCs decreased from 0.90 ± 0.09 (IgG-exposed controls) to 0.70 ± 0.08 after pecPDI neutralization ( P < 0.05), together with an enhanced coefficient of variation for distribution of force modules, suggesting increased noise. Moreover, in a single cell model, pecPDIA1 neutralization impaired migration persistence without affecting total distance or velocity, whereas siRNA-mediated total PDIA1 silencing disabled all such variables of VSMC migration. Neither expression nor total activity of the master mechanotransmitter/regulator RhoA was affected by pecPDIA1 neutralization. However, cyclic stretch-induced focal distribution of membrane-bound RhoA was disrupted by pecPDI inhibition, which promoted a nonpolarized pattern of RhoA/caveolin-3 cluster colocalization. Accordingly, FRET biosensors showed that pecPDIA1 supports localized RhoA activity at cell protrusions versus perinuclear regions. Thus, pecPDI acts as a thiol redox-dependent organizer and noise reducer mechanism of cytoskeletal repositioning, oxidant generation, and localized RhoA activation during a variety of VSMC mechanoresponses. NEW & NOTEWORTHY Effects of a peri/epicellular pool of protein disulfide isomerase-A1 (pecPDIA1) during mechanoregulation in vascular smooth muscle cells (VSMCs) were highlighted using approaches such as equibiaxial and uniaxial stretch, random single cell migration, and traction force microscopy. pecPDIA1 regulates organization of the cytoskeleton and minimizes the noise of cell alignment, migration directionality, and persistence. pecPDIA1 mechanisms involve redox control of β1-integrin and localized RhoA activation. pecPDIA1 acts as a novel organizer of mechanoadaptation responses in VSMCs.
Collapse
Affiliation(s)
- Leonardo Y Tanaka
- Vascular Biology Laboratory, Heart Institute, University of São Paulo School of Medicine , São Paulo , Brazil
| | - Thaís L S Araujo
- Vascular Biology Laboratory, Heart Institute, University of São Paulo School of Medicine , São Paulo , Brazil
| | - Andres I Rodriguez
- Vascular Biology Laboratory, Heart Institute, University of São Paulo School of Medicine , São Paulo , Brazil.,Group of Research and Innovation in Vascular Health, Department of Basic Sciences, Faculty of Sciences, University of Bío-Bío , Chillán , Chile
| | - Mariana S Ferraz
- Institute of Physics, University of São Paulo , São Paulo , Brazil
| | - Vitor B Pelegati
- "Gleb Wataghin" Institute of Physics, University of Campinas , Campinas , Brazil
| | - Mauro C C Morais
- Escola de Artes, Ciências e Humanidades e Núcleo de Estudos Interdisciplinares em Sistemas Complexos, Departamento de Radiologia e Oncologia e Centro de Pesquisa Translacional em Oncologia - Instituto do Cancer do Estado São Paulo, Faculdade de Medicina, Universidade de São Paulo , São Paulo , Brazil
| | - Aline M Dos Santos
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas , Campinas , Brazil
| | - Carlos L Cesar
- "Gleb Wataghin" Institute of Physics, University of Campinas , Campinas , Brazil
| | - Alexandre F Ramos
- Escola de Artes, Ciências e Humanidades e Núcleo de Estudos Interdisciplinares em Sistemas Complexos, Departamento de Radiologia e Oncologia e Centro de Pesquisa Translacional em Oncologia - Instituto do Cancer do Estado São Paulo, Faculdade de Medicina, Universidade de São Paulo , São Paulo , Brazil
| | | | - Francisco R M Laurindo
- Vascular Biology Laboratory, Heart Institute, University of São Paulo School of Medicine , São Paulo , Brazil
| |
Collapse
|
26
|
Pan H, Zhang M. Serum of coronary atherosclerotic heart disease patients induces oxidative stress injury on endothelial cells. Pteridines 2018. [DOI: 10.1515/pteridines-2018-0009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Endothelial cell (EC) dysfunction has a fundamental role in the development of atherosclerosis, which leads to myocardial infarction and stroke. The aim of this study is to investigate the effect of serum from patients with coronary atherosclerotic heart disease (CAD) on endothelial cells and investigate the possible mechanism underlying these effects. Serum from 35 patients with CAD and 35 healthy volunteers was collected. Human umbilical vein endothelial cell (HUVEC) proliferation and apoptosis were assessed by a CCK‑8 assay and a flow cytometry assay, respectively. The synthesis of nitric oxide (NO) and reactive oxygen species (ROS) was measured using the nitrate reduction method and DCFH2-DA staining, respectively. The proliferation of HUVECs was inhibited by treatment with serum from CAD patients (P<0.05). Suppression of HUVEC proliferation by CAD serum occurred in a concentration-dependent manner. The synthesis of NO was also reduced in the CAD serum-treated group. Furthermore, the serum from CAD patients increased both apoptosis and intracellular ROS production in HUVECs. Moreover, treatment with tempol antagonized CAD serum-meditated HUVEC injuries. Taken together, these results suggest that HUVEC injury via CAD serum treatment is mediated by ROS production. Tempol may partly reverse this effect by abolishing HUVEC apoptosis.
Collapse
Affiliation(s)
- Huichao Pan
- Division Of Cardiology, Tongren Hospital, Shanghai Jiao Tong University School Of Medicine, Shanghai , China
| | - Min Zhang
- Division of Cardiology, TongRen Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| |
Collapse
|
27
|
Implications of plasma thiol redox in disease. Clin Sci (Lond) 2018; 132:1257-1280. [DOI: 10.1042/cs20180157] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/09/2018] [Accepted: 05/22/2018] [Indexed: 12/21/2022]
Abstract
Thiol groups are crucially involved in signaling/homeostasis through oxidation, reduction, and disulphide exchange. The overall thiol pool is the resultant of several individual pools of small compounds (e.g. cysteine), peptides (e.g. glutathione), and thiol proteins (e.g. thioredoxin (Trx)), which are not in equilibrium and present specific oxidized/reduced ratios. This review addresses mechanisms and implications of circulating plasma thiol/disulphide redox pools, which are involved in several physiologic processes and explored as disease biomarkers. Thiol pools are regulated by mechanisms linked to their intrinsic reactivity against oxidants, concentration of antioxidants, thiol-disulphide exchange rates, and their dynamic release/removal from plasma. Major thiol couples determining plasma redox potential (Eh) are reduced cysteine (CyS)/cystine (the disulphide form of cysteine) (CySS), followed by GSH/disulphide-oxidized glutathione (GSSG). Hydrogen peroxide and hypohalous acids are the main plasma oxidants, while water-soluble and lipid-soluble small molecules are the main antioxidants. The thiol proteome and thiol-oxidoreductases are emerging investigative areas given their specific disease-related responses (e.g. protein disulphide isomerases (PDIs) in thrombosis). Plasma cysteine and glutathione redox couples exhibit pro-oxidant changes directly correlated with ageing/age-related diseases. We further discuss changes in thiol-disulphide redox state in specific groups of diseases: cardiovascular, cancer, and neurodegenerative. These results indicate association with the disease states, although not yet clear-cut to yield specific biomarkers. We also highlight mechanisms whereby thiol pools affect atherosclerosis pathophysiology. Overall, it is unlikely that a single measurement provides global assessment of plasma oxidative stress. Rather, assessment of individual thiol pools and thiol-proteins specific to any given condition has more solid and logical perspective to yield novel relevant information on disease risk and prognosis.
Collapse
|
28
|
Hernández-Aguilera A, Nielsen SH, Bonache C, Fernández-Arroyo S, Martín-Paredero V, Fibla M, Karsdal MA, Genovese F, Menendez JA, Camps J, Joven J. Assessment of extracellular matrix-related biomarkers in patients with lower extremity artery disease. J Vasc Surg 2018; 68:1135-1142.e6. [PMID: 29615349 DOI: 10.1016/j.jvs.2017.12.071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 12/21/2017] [Indexed: 11/19/2022]
Abstract
BACKGROUND The prevalence of lower extremity artery disease (LEAD) is high (20%-25%) in the population older than 65 years, but patients are seldom identified until the disease is advanced. Circulating markers of disease activity might provide patients with a key opportunity for timely treatment. We tested the hypothesis that measuring blood-specific fragments generated during degradation of the extracellular matrix (ECM) could provide further insight into the pathophysiologic mechanism of arterial remodeling. METHODS The protein profile of diseased arteries from patients undergoing infrainguinal limb revascularization was assessed by a liquid chromatography and tandem mass spectrometry, nontargeted proteomic approach. The information retrieved was the basis for measurement of neoepitope fragments of ECM proteins in the blood of 195 consecutive patients with LEAD by specific enzyme-linked immunosorbent assays. RESULTS Histologic and proteomic analyses confirmed the structural disorganization of affected arteries. Fourteen of 81 proteins were identified as differentially expressed in diseased arteries with respect to healthy tissues. Most of them were related to ECM components, and the difference in expression was used in multivariate analyses to establish that severe arterial lesions in LEAD patients have a specific proteome. Analysis of neoepitope fragments in blood revealed that fragments of versican and collagen type IV, alone or in combination, segregated patients with mild to moderate symptoms (intermittent claudication, Fontaine I-II) from those with severe LEAD (critical limb ischemia, Fontaine III-IV). CONCLUSIONS We propose noninvasive candidate biomarkers with the ability to be clinically useful across the LEAD spectrum.
Collapse
Affiliation(s)
- Anna Hernández-Aguilera
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Signe Holm Nielsen
- Fibrosis Biology and Biomarkers, Nordic Bioscience, Herlev, Denmark; Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Cristina Bonache
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Salvador Fernández-Arroyo
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | | | - Montserrat Fibla
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain; Department of Pathology, Hospital Universitari Joan XXIII, Tarragona, Spain
| | - Morten A Karsdal
- Fibrosis Biology and Biomarkers, Nordic Bioscience, Herlev, Denmark
| | | | - Javier A Menendez
- Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Jordi Camps
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Jorge Joven
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain.
| |
Collapse
|
29
|
Aras-López R, Almeida L, Andreu-Fernández V, Tovar J, Martínez L. Anti-oxidants correct disturbance of redox enzymes in the hearts of rat fetuses with congenital diaphragmatic hernia. Pediatr Surg Int 2018; 34:307-313. [PMID: 29079903 DOI: 10.1007/s00383-017-4201-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/12/2017] [Indexed: 01/20/2023]
Abstract
AIM To evaluate if the redox system is unbalanced in the hearts of nitrofen-induced congenital diaphragmatic hernia (CDH) animals and to study the possible preventive effects of two anti-oxidant treatments, apocynin and epigallocatechin-3-gallate (EGCG). METHODS Adult rats were divided into four groups. Group 1: rats received only vehicle on day E9.5. Group 2: rats received 100 mg nitrofen on day E9.5. Group 3: 1 month before mating rats received apocynin 1.5 mM and, when pregnant, 100 mg nitrofen on day E9.5. Group 4: same than group 3 but with EGCG 30 mg/kg. All fetuses were recovered at term and the hearts were processed. Nox activity and mRNA levels of Nox1, Nox2, Nox4, SOD1, SOD2, SOD3, catalase, and GPX1 were analyzed. Nox, SOD, and Catalase activity and H2O2 production were also evaluated. RESULTS Nox activity, H2O2 production and Nox1, Nox2, and Nox4 mRNA levels were increased in the hearts of fetuses with CDH. There were no changes in SOD1 levels, whereas those of SOD2, SOD3, catalase, and GPX1 mRNA were decreased. Apocynin and EGCG treatments attenuated the increment of Nox and SOD activities and H2O2 production was only decreased by apocynin. CONCLUSION These findings suggest a possible preventive effect on the abnormal redox metabolism of anti-oxidant treatments in the hearts from rat fetuses with CDH. If the same occurs in humans, it could represent a potential tool in future prenatal treatment.
Collapse
Affiliation(s)
- Rosa Aras-López
- Congenital Malformations Lab, Institute of Medicine and Molecular Genetic (INGEMM), Institute for Health Research of La Paz Universitary Hospital (IdiPAZ), Madrid, Spain.
| | - L Almeida
- BCNatal, Barcelona Center for Maternal-Fetal Medicine and Neonatology, Hospital Clinic and Hospital San Joan de Deu, IdiBaps, University of Barcelona, Barcelona, Spain
| | - V Andreu-Fernández
- Fundació Clínic per la Recerca Biomèdica, BCNatal, GRIE, ICGON, Barcelona Center for Maternal-Fetal Medicine and Neonatology, Servicio de Neonatologia, Hospital Clinic-Maternitat, Barcelona, Spain
| | - J Tovar
- Department of Pediatric Surgery, Hospital Universitario La Paz, Madrid, Spain
| | - L Martínez
- Congenital Malformations Lab, Institute of Medicine and Molecular Genetic (INGEMM), Institute for Health Research of La Paz Universitary Hospital (IdiPAZ), Madrid, Spain.,Department of Pediatric Surgery, Hospital Universitario La Paz, Madrid, Spain
| |
Collapse
|
30
|
Peixoto ÁS, Geyer RR, Iqbal A, Truzzi DR, Soares Moretti AI, Laurindo FRM, Augusto O. Peroxynitrite preferentially oxidizes the dithiol redox motifs of protein-disulfide isomerase. J Biol Chem 2018; 293:1450-1465. [PMID: 29191937 PMCID: PMC5787819 DOI: 10.1074/jbc.m117.807016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 11/29/2017] [Indexed: 12/22/2022] Open
Abstract
Protein-disulfide isomerase (PDI) is a ubiquitous dithiol-disulfide oxidoreductase that performs an array of cellular functions, such as cellular signaling and responses to cell-damaging events. PDI can become dysfunctional by post-translational modifications, including those promoted by biological oxidants, and its dysfunction has been associated with several diseases in which oxidative stress plays a role. Because the kinetics and products of the reaction of these oxidants with PDI remain incompletely characterized, we investigated the reaction of PDI with the biological oxidant peroxynitrite. First, by determining the rate constant of the oxidation of PDI's redox-active Cys residues (Cys53 and Cys397) by hydrogen peroxide (k = 17.3 ± 1.3 m-1 s-1 at pH 7.4 and 25 °C), we established that the measured decay of the intrinsic PDI fluorescence is appropriate for kinetic studies. The reaction of these PDI residues with peroxynitrite was considerably faster (k = (6.9 ± 0.2) × 104 m-1 s-1), and both Cys residues were kinetically indistinguishable. Limited proteolysis, kinetic simulations, and MS analyses confirmed that peroxynitrite preferentially oxidizes the redox-active Cys residues of PDI to the corresponding sulfenic acids, which reacted with the resolving thiols at the active sites to produce disulfides (i.e. Cys53-Cys56 and Cys397-Cys400). A fraction of peroxynitrite, however, decayed to radicals that hydroxylated and nitrated other active-site residues (Trp52, Trp396, and Tyr393). Excess peroxynitrite promoted further PDI oxidation, nitration, inactivation, and covalent oligomerization. We conclude that these PDI modifications may contribute to the pathogenic mechanism of several diseases associated with dysfunctional PDI.
Collapse
Affiliation(s)
- Álbert Souza Peixoto
- From the Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, CEP 05508-000, Brazil and
| | - R Ryan Geyer
- From the Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, CEP 05508-000, Brazil and
| | - Asif Iqbal
- From the Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, CEP 05508-000, Brazil and
| | - Daniela R Truzzi
- From the Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, CEP 05508-000, Brazil and
| | - Ana I Soares Moretti
- Vascular Biology Laboratory, Heart Institute (InCor), School of Medicine, University of São Paulo, São Paulo, CEP 05403-000, Brazil
| | - Francisco R M Laurindo
- Vascular Biology Laboratory, Heart Institute (InCor), School of Medicine, University of São Paulo, São Paulo, CEP 05403-000, Brazil
| | - Ohara Augusto
- From the Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, CEP 05508-000, Brazil and
| |
Collapse
|
31
|
Long Noncoding RNA uc001pwg.1 Is Downregulated in Neointima in Arteriovenous Fistulas and Mediates the Function of Endothelial Cells Derived from Pluripotent Stem Cells. Stem Cells Int 2017; 2017:4252974. [PMID: 29387090 PMCID: PMC5745761 DOI: 10.1155/2017/4252974] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 09/19/2017] [Accepted: 10/02/2017] [Indexed: 11/17/2022] Open
Abstract
Recent studies indicate important roles for long noncoding RNAs (lncRNAs) as essential regulators of gene expression. However, the specific roles of lncRNAs in stenotic lesions of arteriovenous fistula (AVF) failure are still largely unknown. We first analyzed the expression profiles of lncRNAs in human stenosed and nonstenotic uremic veins using RNA-sequencing methodology. A total of 19 lncRNAs were found to be differentially expressed in stenotic lesions. Among these, uc001pwg.1 was one of the most significantly downregulated lncRNAs and enriched in both control vein segments and human umbilical vein endothelial cells (HUVECs). Further studies revealed that uc001pwg.1 overexpression could increase nitric oxide synthase (eNOS) phosphorylation and nitric oxide (NO) production in endothelial cells (ECs) derived from human-induced pluripotent stem cells (HiPSCs). Mechanistically, uc001pwg.1 improves endothelial function via mediating MCAM expression. This study represents the first effort of identifying a novel candidate lncRNA for modulating the function of iPSC-ECs, which may facilitate the improvement of stem cell-based therapies for AVF failure.
Collapse
|
32
|
Lamas S, Michel T. Introduction to Special Issue "Redox regulation of cardiovascular signaling in health and disease". Free Radic Biol Med 2017; 109:1-3. [PMID: 28450147 DOI: 10.1016/j.freeradbiomed.2017.04.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Santiago Lamas
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| | - Thomas Michel
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|