1
|
Ma Y, Singhal G, Chan SS, Wang C, Yu H, Yin B, Pang J, Malvar G, Nasser I, Mather ML, Maratos-Flier E. FGF21 protects against ischaemia reperfusion injury in normal and fatty livers. Liver Int 2024; 44:1668-1679. [PMID: 38554044 DOI: 10.1111/liv.15911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 03/02/2024] [Accepted: 03/11/2024] [Indexed: 04/01/2024]
Abstract
BACKGROUND Liver ischaemia/reperfusion (I/R) injury, which is an inevitable clinical problem of liver resection, liver transplantation and haemorrhagic shock. Fibroblast growth factor 21 (FGF21) was intimately coupled with multiple metabolic processes and proved to protect against apoptosis and inflammatory response in hepatocytes during hepatic I/R injury. However, the regulatory mechanisms of FGF21 in hepatic I/R injury remains unknown. Therefore, we hypothesize that FGF21 protects hepatic tissues from I/R injury. METHODS Blood samples were available from haemangiomas patients undergoing hepatectomy and murine liver I/R model and used to further evaluate the serum levels of FGF21 both in humans and mice. We further explored the regulatory mechanisms of FGF21 in murine liver I/R model by using FGF21-knockout mice (FGF21-KO mice) and FGF21-overexpression transgenic mice (FGF21-OE mice) fed a high-fat or ketogenic diet. RESULTS Our results show that the circulating levels of FGF21 were robustly decreased after liver I/R in both humans and mice. Silencing FGF21 expression with FGF21-KO mice aggravates liver injury at 6 h after 75 min of partial liver ischaemia, while FGF21-OE mice display alleviated hepatic I/R injury and inflammatory response. Compared with chow diet mice, exogenous FGF21 decreases the levels of aminotransferase, histological changes, apoptosis and inflammatory response in hepatic I/R injury treatment mice with a high-fat diet. Meanwhile, ketogenic diet mice are not sensitive to hepatic I/R injury. CONCLUSIONS The circulating contents of FGF21 are decreased during liver warm I/R injury and exogenous FGF21 exerts hepatoprotective effects on hepatic I/R injury. Thus, FGF21 regulates hepatic I/R injury and may be a key therapeutic target.
Collapse
Affiliation(s)
- Yong Ma
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Garima Singhal
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Suzanne S Chan
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Chaoqun Wang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Hongjun Yu
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Bing Yin
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jing Pang
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Grace Malvar
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Imad Nasser
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Marie L Mather
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Eleftheria Maratos-Flier
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Jiang Y, Huang Z, Li X, Zhou L, Zhu X, Chen F, Shi Y. Inhibition of SK2 and ER stress ameliorated inflammation and apoptosis in liver ischemia-reperfusion injury. Liver Transpl 2023; 29:1050-1062. [PMID: 37439666 DOI: 10.1097/lvt.0000000000000210] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 05/14/2023] [Indexed: 07/14/2023]
Abstract
Ischemia-reperfusion injury (IRI) remains a major cause of mortality and morbidity after liver surgery. Endoplasmic reticulum (ER) stress is a critical mechanism of inflammatory injury during hepatic IRI. In this study, we investigated the effect of sphingosine kinases 2 (SK2) on ER stress and hepatic IRI. We established hepatic IRI mice and hepatocellular hypoxia/reoxygenation in vitro model. We observed the SK2 and ER stress protein IRE1α expression. Then, we used an SK2 inhibitor and knocked down IRE1α/SK2, to observe the effect of SK2 during IRI. Our results showed that the expression of ER stress and SK2 was significantly elevated during hepatic IRI. Inhibition of SK2 ameliorated liver inflammation and reduced cell apoptosis in hepatic IRI mice. Consistently, we found that the inhibition of IRE1α also downregulated SK2 expression and reduced mitochondrial membrane permeability. Furthermore, the knockdown of SK2 could also reduce cell damage and reduce the expression of inflammatory factors but did not influence ER stress-related signaling pathway. Taken together, our results suggested that ER stress and SK2 played important and regulatory roles in hepatic IRI. Inhibition of ER stress and SK2 could significantly improve liver function after hepatic IRI.
Collapse
Affiliation(s)
- Yiya Jiang
- Abdominal Transplantation Center, General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of General Practice, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhaoshuai Huang
- Abdominal Transplantation Center, General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xianpeng Li
- Abdominal Transplantation Center, General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liuzhi Zhou
- Department of Hepato-biliary & Pancreas Surgery, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiuping Zhu
- Department of Pharmacy, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Feng Chen
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanjun Shi
- Abdominal Transplantation Center, General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Gebert M, Sławski J, Kalinowski L, Collawn JF, Bartoszewski R. The Unfolded Protein Response: A Double-Edged Sword for Brain Health. Antioxidants (Basel) 2023; 12:1648. [PMID: 37627643 PMCID: PMC10451475 DOI: 10.3390/antiox12081648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 08/27/2023] Open
Abstract
Efficient brain function requires as much as 20% of the total oxygen intake to support normal neuronal cell function. This level of oxygen usage, however, leads to the generation of free radicals, and thus can lead to oxidative stress and potentially to age-related cognitive decay and even neurodegenerative diseases. The regulation of this system requires a complex monitoring network to maintain proper oxygen homeostasis. Furthermore, the high content of mitochondria in the brain has elevated glucose demands, and thus requires a normal redox balance. Maintaining this is mediated by adaptive stress response pathways that permit cells to survive oxidative stress and to minimize cellular damage. These stress pathways rely on the proper function of the endoplasmic reticulum (ER) and the activation of the unfolded protein response (UPR), a cellular pathway responsible for normal ER function and cell survival. Interestingly, the UPR has two opposing signaling pathways, one that promotes cell survival and one that induces apoptosis. In this narrative review, we discuss the opposing roles of the UPR signaling pathways and how a better understanding of these stress pathways could potentially allow for the development of effective strategies to prevent age-related cognitive decay as well as treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Magdalena Gebert
- Department of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 80-134 Gdansk, Poland
| | - Jakub Sławski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14a Street, 50-383 Wroclaw, Poland
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 80-134 Gdansk, Poland
- BioTechMed Centre, Department of Mechanics of Materials and Structures, Gdansk University of Technology, 11/12 Narutowicza Street, 80-233 Gdansk, Poland
| | - James F. Collawn
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Rafal Bartoszewski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14a Street, 50-383 Wroclaw, Poland
| |
Collapse
|
4
|
Casillas-Ramírez A, Micó-Carnero M, Sánchez-González A, Maroto-Serrat C, Trostchansky A, Peralta C. NO-IL-6/10-IL-1β axis: a new pathway in steatotic and non-steatotic liver grafts from brain-dead donor rats. Front Immunol 2023; 14:1178909. [PMID: 37593740 PMCID: PMC10427871 DOI: 10.3389/fimmu.2023.1178909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/11/2023] [Indexed: 08/19/2023] Open
Abstract
Introduction Brain death (BD) and steatosis are both risk factors for organ dysfunction or failure in liver transplantation (LT). Material and methods Here, we examine the role of interleukin 6 (IL- 6) and IL-10 in LT of both non-steatotic and steatotic liver recovered from donors after brain death (DBDs), as well as the molecular signaling pathways underlying the effects of such cytokines. Results BD reduced IL-6 levels only in nonsteatotic grafts, and diminished IL-10 levels only in steatotic ones. In both graft types, BD increased IL-1β, which was associated with hepatic inflammation and damage. IL-6 administration reduced IL-1β only in non-steatotic grafts and protected them against damage and inflammation. Concordantly, IL-1β inhibition via treatment with an IL-1 receptor antagonist caused the same benefits in non-steatotic grafts. Treatment with IL-10 decreased IL-1β only in steatotic grafts and reduced injury and inflammation specifically in this graft type. Blockading the IL-1β effects also reduced damage and inflammation in steatotic grafts. Also, blockade of IL-1β action diminished hepatic cAMP in both types of livers, and this was associated with a reduction in liver injury and inflammation, then pointing to IL-1β regulating cAMP generation under LT and BD conditions. Additionally, the involvement of nitric oxide (NO) in the effects of interleukins was evaluated. Pharmacological inhibition of NO in LT from DBDs prompted even more evident reductions of IL-6 or IL-10 in non-steatotic and steatotic grafts, respectively. This exacerbated the already high levels of IL-1β seen in LT from DBDs, causing worse damage and inflammation in both graft types. The administration of NO donors to non-steatotic grafts potentiated the beneficial effects of endogenous NO, since it increased IL-6 levels, and reduced IL-1β, inflammation, and damage. However, treatment with NO donors in steatotic grafts did not modify IL-10 or IL-1β levels, but induced more injurious effects tan the induction of BD alone, characterized by increased nitrotyrosine, lipid peroxidation, inflammation, and hepatic damage. Conclusion Our study thus highlights the specificity of new signaling pathways in LT from DBDs: NO-IL-6-IL-1β in non-steatotic livers and NO-IL-10-IL-1β in steatotic ones. This opens up new therapeutic targets that could be useful in clinical LT.
Collapse
Affiliation(s)
- Araní Casillas-Ramírez
- Department of Teaching and Research Sub-Direction, Hospital Regional de Alta Especialidad de Ciudad Victoria “Bicentenario 2010”, Ciudad Victoria, Mexico
- Facultad de Medicina e Ingeniería en Sistemas Computacionales de Matamoros, Universidad Autónoma de Tamaulipas, Matamoros, Mexico
| | - Marc Micó-Carnero
- Department of Liver, Digestive System and Metabolism, Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Alfredo Sánchez-González
- Department of Teaching and Research Sub-Direction, Hospital Regional de Alta Especialidad de Ciudad Victoria “Bicentenario 2010”, Ciudad Victoria, Mexico
| | - Cristina Maroto-Serrat
- Department of Liver, Digestive System and Metabolism, Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Andrés Trostchansky
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Carmen Peralta
- Department of Liver, Digestive System and Metabolism, Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| |
Collapse
|
5
|
Shang LC, Wang M, Liu Y, Zhu X, Wang S. MSCs Ameliorate Hepatic IR Injury by Modulating Phenotypic Transformation of Kupffer Cells Through Drp-1 Dependent Mitochondrial Dynamics. Stem Cell Rev Rep 2023:10.1007/s12015-023-10566-6. [PMID: 37243829 DOI: 10.1007/s12015-023-10566-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2023] [Indexed: 05/29/2023]
Abstract
BACKGROUND Hepatic ischemia and reperfusion (IR) injury, characterized by reactive oxygen species (ROS) production and immune disorders, leads to exogenous antigen-independent local inflammation and hepatocellular death. Mesenchymal stem cells (MSCs) have been shown to be immunomodulatory, antioxidative and contribute to liver regeneration in fulminant hepatic failure. We aimed to investigate the underlying mechanisms by which MSCs protect against liver IR injury in a mouse model. METHODS MSCs suspension was injected 30 min prior to hepatic warm IR. Primary kupffer cells (KCs) were isolated. Hepatic injury, inflammatory responses, innate immunity, KCs phenotypic polarization and mitochondrial dynamics were evaluated with or without KCs Drp-1 overexpression RESULTS: MSCs markedly ameliorated liver injury and attenuated inflammatory responses and innate immunity after liver IR injury. MSCs significantly restrained M1 phenotypic polarization but boosted M2 polarization of KCs extracted from ischemic liver, as demonstrated by lowered transcript levels of iNOS and IL-1β but raised transcript levels of Mrc-1 and Arg-1 combined with p-STAT6 up-regulation and p-STAT1 down-regulation. Moreover, MSCs inhibited KCs mitochondrial fission, as evidenced by decreased Drp1 and Dnm2 levels. We overexpressed Drp-1 in KCs which promote mitochondrial fission during IR injury. the regulation of MSCs towards KCs M1/M2 polarization was abrogated by Drp-1 overexpression after IR injury. Ultimately, in vivo Drp-1 overexpression in KCs hampered the therapeutic effects of MSCs against hepatic IR injury CONCLUSIONS: We revealed that MSCs facilitated M1-M2 phenotypic polarization through inhibiting Drp-1 dependent mitochondrial fission and further attenuated liver IR injury. These results add a new insight into regulating mechanisms of mitochondrial dynamics during hepatic IR injury and may offer novel opportunities for developing therapeutic targets to combat hepatic IR injury.
Collapse
Affiliation(s)
- Long-Cheng Shang
- Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210008, Jiangsu Province, China
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Man Wang
- Department of Hematology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yang Liu
- Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210008, Jiangsu Province, China
| | - Xinhua Zhu
- Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210008, Jiangsu Province, China.
| | - Shuai Wang
- Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210008, Jiangsu Province, China.
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China.
| |
Collapse
|
6
|
Xu GX, Wei S, Yu C, Zhao SQ, Yang WJ, Feng YH, Pan C, Yang KX, Ma Y. Activation of Kupffer cells in NAFLD and NASH: mechanisms and therapeutic interventions. Front Cell Dev Biol 2023; 11:1199519. [PMID: 37261074 PMCID: PMC10228659 DOI: 10.3389/fcell.2023.1199519] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/05/2023] [Indexed: 06/02/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are emerging as the leading causes of liver disease worldwide. These conditions can lead to cirrhosis, liver cancer, liver failure, and other related ailments. At present, liver transplantation remains the sole treatment option for end-stage NASH, leading to a rapidly growing socioeconomic burden. Kupffer cells (KCs) are a dominant population of macrophages that reside in the liver, playing a crucial role in innate immunity. Their primary function includes phagocytosing exogenous substances, presenting antigens, and triggering immune responses. Moreover, they interact with other liver cells during the pathogenesis of NAFLD, and this crosstalk may either delay or exacerbate disease progression. Stimulation by endogenous signals triggers the activation of KCs, resulting in the expression of various inflammatory factors and chemokines, such as NLRP3, TNF-α, IL-1B, and IL-6, and contributing to the inflammatory cascade. In the past 5 years, significant advances have been made in understanding the biological properties and immune functions of KCs in NAFLD, including their interactions with tissue molecules, underlying molecular mechanisms, signaling pathways, and relevant therapeutic interventions. Having a comprehensive understanding of these mechanisms and characteristics can have enormous potential in guiding future strategies for the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yong Ma
- *Correspondence: Kun-Xing Yang, ; Yong Ma,
| |
Collapse
|
7
|
Chen Q, Guo J, Qiu T, Zhou J. Mechanism of ASK1 involvement in liver diseases and related potential therapeutic targets: A critical pathway molecule worth investigating. J Gastroenterol Hepatol 2023; 38:378-385. [PMID: 36533997 DOI: 10.1111/jgh.16087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/25/2022] [Accepted: 12/10/2022] [Indexed: 12/30/2022]
Abstract
Since the discovery of apoptosis signal-regulated kinase 1 (ASK1), the signal transduction mechanism and pathophysiological process involved in its regulation have been continuously revealed. Many previous studies have identified that ASK1 is involved and plays a critical role in the development of diseases affecting the nervous, cardiac, renal, and other systems. As a mitogen-activated protein kinase (MAPK) kinase kinase, ASK1 mediates apoptosis, necrosis, inflammation, and other pathological processes by activating its downstream c-Jun N-terminal kinase (JNK)/p38 MAPK. Owing to the important role of ASK1, an increasing number of studies in recent years have focused on its status in liver-related diseases. In this paper, we review the mechanisms and targets of ASK1 in liver-related diseases to emphasize its important role in the development of liver disease.
Collapse
Affiliation(s)
- Qi Chen
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei Province, China
| | - Jiayu Guo
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei Province, China
| | - Tao Qiu
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei Province, China
| | - Jiangqiao Zhou
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
8
|
Huang CY, Chen HW, Lo CW, Wang YR, Li CC, Liu KL, Lii CK. Luteolin ameliorates palmitate-induced lipotoxicity in hepatocytes by mediating endoplasmic reticulum stress and autophagy. Food Chem Toxicol 2022; 171:113554. [PMID: 36509263 DOI: 10.1016/j.fct.2022.113554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/21/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
Abnormal accumulation of lipids in liver leads to uncontrolled endoplasmic reticulum (ER) stress and autophagy. Luteolin is known to have antioxidant, anti-inflammatory, and anti-cancer properties, but whether it protects against lipotoxicity in liver remains unclear. In this study, we challenged AML12 liver cells and mouse primary hepatocytes with palmitic acid (PA) with or without luteolin pretreatment. In the presence of PA, reactive oxygen species (ROS) production was increased at 3 h, followed by enhancement of expression of p-PERK, ATF4, p-eIF2α, CHOP, and TXNIP (ER stress markers) and p-p62 and LC3II/LC3I ratio (autophagy markers), in both primary hepatocytes and AML12 cells. When PA treatment was extended up to 24 h, apoptosis was induced as evidenced by an increase in caspase-3 activation. RFP-GFP-LC3B transfection further revealed that the fusion of autophagosomes with lysosomes was damaged by PA. With luteolin treatment, the expression of antioxidant enzymes, i.e., heme oxygenase-1 and glutathione peroxidase, was upregulated, and PA-induced ROS production, ER stress, and cell death were dose-dependently ameliorated. Luteolin could also reverse the damage caused to autophagic flux. These results indicate that luteolin protects hepatocytes against PA assault by enhancing antioxidant defense, which can attenuate ER stress and autophagy as well as promote autophagic flux.
Collapse
Affiliation(s)
- Chun-Yin Huang
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Haw-Wen Chen
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Chia-Wen Lo
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Yu-Ru Wang
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Chien-Chun Li
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan; Department of Nutrition, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Kai-Li Liu
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan; Department of Nutrition, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chong-Kuei Lii
- Department of Nutrition, China Medical University, Taichung, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan.
| |
Collapse
|
9
|
Orphan Nuclear Receptor Nur77 Mediates the Lethal Endoplasmic Reticulum Stress and Therapeutic Efficacy of Cryptomeridiol in Hepatocellular Carcinoma. Cells 2022; 11:cells11233870. [PMID: 36497127 PMCID: PMC9737475 DOI: 10.3390/cells11233870] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Hepatocellular carcinoma (HCC) commonly possesses chronical elevation of IRE1α-ASK1 signaling. Orphan nuclear receptor Nur77, a promising therapeutic target in various cancer types, is frequently silenced in HCC. In this study, we show that cryptomeridiol (Bkh126), a naturally occurring sesquiterpenoid derivative isolated from traditional Chinese medicine Magnolia officinalis, has therapeutic efficacy in HCC by aggravating the pre-activated UPR and activating the silenced Nur77. Mechanistically, Nur77 is induced to sense IRE1α-ASK1-JNK signaling and translocate to the mitochondria, which leads to the loss of mitochondrial membrane potential (Δψm). The Bkh126-induced aggravation of ER stress and mitochondrial dysfunction result in increased cytotoxic product of reactive oxygen species (ROS). The in vivo anti-HCC activity of Bkh126 is superior to that of sorafenib, currently used to treat advanced HCC. Our study shows that Bkh126 induces Nur77 to connect ER stress to mitochondria-mediated cell killing. The identification of Nur77 as a molecular target of Bhk126 provides a basis for improving the leads for the further development of anti-HCC drugs.
Collapse
|
10
|
Bartoszewska S, Collawn JF, Bartoszewski R. The Role of the Hypoxia-Related Unfolded Protein Response (UPR) in the Tumor Microenvironment. Cancers (Basel) 2022; 14:4870. [PMID: 36230792 PMCID: PMC9562011 DOI: 10.3390/cancers14194870] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/29/2022] [Accepted: 10/03/2022] [Indexed: 11/19/2022] Open
Abstract
Despite our understanding of the unfolded protein response (UPR) pathways, the crosstalk between the UPR and the complex signaling networks that different cancers utilize for cell survival remains to be, in most cases, a difficult research barrier. A major problem is the constant variability of different cancer types and the different stages of cancer as well as the complexity of the tumor microenvironments (TME). This complexity often leads to apparently contradictory results. Furthermore, the majority of the studies that have been conducted have utilized two-dimensional in vitro cultures of cancer cells that were exposed to continuous hypoxia, and this approach may not mimic the dynamic and cyclic conditions that are found in solid tumors. Here, we discuss the role of intermittent hypoxia, one of inducers of the UPR in the cellular component of TME, and the way in which intermittent hypoxia induces high levels of reactive oxygen species, the activation of the UPR, and the way in which cancer cells modulate the UPR to aid in their survival. Although the past decade has resulted in defining the complex, novel non-coding RNA-based regulatory networks that modulate the means by which hypoxia influences the UPR, we are now just to beginning to understand some of the connections between hypoxia, the UPR, and the TME.
Collapse
Affiliation(s)
- Sylwia Bartoszewska
- Department of Inorganic Chemistry, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - James F. Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Rafal Bartoszewski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14a Street, 50-383 Wroclaw, Poland
| |
Collapse
|
11
|
Chen S, Yu Q, Song Y, Cui Z, Li M, Mei C, Cui H, Cao S, Zhu C. Inhibition of macrophage migration inhibitory factor (MIF) suppresses apoptosis signal-regulating kinase 1 to protect against liver ischemia/reperfusion injury. Front Pharmacol 2022; 13:951906. [PMID: 36160453 PMCID: PMC9493190 DOI: 10.3389/fphar.2022.951906] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Hepatic ischemia–reperfusion (I/R) injury is a major complication leading to surgical failures in liver resection, transplantation, and hemorrhagic shock. The role of cytokine macrophage migration inhibitory factor (MIF) in hepatic I/R injury is unclear. Methods: We examined changes of MIF expression in mice after hepatic I/R surgery and hepatocytes challenged with hypoxia–reoxygenation (H/R) insult. Subsequently, MIF global knock-out mice and mice with adeno-associated-virus (AAV)-delivered MIF overexpression were subjected to hepatic I/R injury. Hepatic histology, the inflammatory response, apoptosis and oxidative stress were monitored to assess liver damage. The molecular mechanisms of MIF function were explored in vivo and in vitro. Results: MIF was significantly upregulated in the serum whereas decreased in liver tissues of mice after hepatic I/R injury. MIF knock-out effectively attenuated I/R -induced liver inflammation, apoptosis and oxidative stress in vivo and in vitro, whereas MIF overexpression significantly aggravated liver injury. Via RNA-seq analysis, we found a significant decreased trend of MAPK pathway in MIF knock-out mice subjected hepatic I/R surgery. Using the apoptosis signal-regulating kinase 1 (ASK1) inhibitor NQDI-1 we determined that, mechanistically, the protective effect of MIF deficiency on hepatic I/R injury was dependent on the suppressing of the ASK1-JNK/P38 signaling pathway. Moreover, we found MIF inhibitor ISO-1 alleviate hepatic I/R injury in mice. Conclusion: Our results confirm that MIF deficiency suppresses the ASK1-JNK/P38 pathway and protects the liver from I/R -induced injury. Our findings suggest MIF as a novel biomarker and therapeutic target for the diagnosis and treatment of hepatic I/R injury.
Collapse
Affiliation(s)
- Sanyang Chen
- Department of Emergency Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Medical Key Laboratory of Emergency and Trauma Research, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, Henan, China
| | - Qiwen Yu
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, Henan, China
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yaodong Song
- Department of Emergency Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Medical Key Laboratory of Emergency and Trauma Research, Zhengzhou, China
| | - Zongchao Cui
- Department of Emergency Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Medical Key Laboratory of Emergency and Trauma Research, Zhengzhou, China
| | - Mengke Li
- Department of Emergency Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Medical Key Laboratory of Emergency and Trauma Research, Zhengzhou, China
| | - Chaopeng Mei
- Department of Emergency Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Medical Key Laboratory of Emergency and Trauma Research, Zhengzhou, China
| | - Huning Cui
- Department of Emergency Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Medical Key Laboratory of Emergency and Trauma Research, Zhengzhou, China
| | - Shengli Cao
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, Henan, China
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- *Correspondence: Shengli Cao, ; Changju Zhu,
| | - Changju Zhu
- Department of Emergency Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Medical Key Laboratory of Emergency and Trauma Research, Zhengzhou, China
- *Correspondence: Shengli Cao, ; Changju Zhu,
| |
Collapse
|
12
|
Flessa C, Kyrou I, Nasiri‐Ansari N, Kaltsas G, Kassi E, Randeva HS. Endoplasmic reticulum stress in nonalcoholic (metabolic associated) fatty liver disease (NAFLD/MAFLD). J Cell Biochem 2022; 123:1585-1606. [DOI: 10.1002/jcb.30247] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/09/2022] [Accepted: 03/28/2022] [Indexed: 02/06/2023]
Affiliation(s)
- Christina‐Maria Flessa
- Department of Biological Chemistry, Medical School National and Kapodistrian University of Athens Athens Greece
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM) University Hospitals Coventry and Warwickshire NHS Trust Coventry UK
| | - Ioannis Kyrou
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM) University Hospitals Coventry and Warwickshire NHS Trust Coventry UK
- Division of Translational and Experimental Medicine, Metabolic and Vascular Health, Warwick Medical School University of Warwick Coventry UK
- Centre for Sport, Exercise and Life Sciences, Research Institute for Health & Wellbeing Coventry University Coventry UK
- Aston Medical School, College of Health and Life Sciences Aston University Birmingham UK
- Department of Food Science & Human Nutrition Agricultural University of Athens Athens Greece
| | - Narjes Nasiri‐Ansari
- Department of Biological Chemistry, Medical School National and Kapodistrian University of Athens Athens Greece
| | - Gregory Kaltsas
- Endocrine Unit, 1st Department of Propaedeutic and Internal Medicine, Laiko Hospital National and Kapodistrian University of Athens Athens Greece
| | - Eva Kassi
- Department of Biological Chemistry, Medical School National and Kapodistrian University of Athens Athens Greece
- Endocrine Unit, 1st Department of Propaedeutic and Internal Medicine, Laiko Hospital National and Kapodistrian University of Athens Athens Greece
| | - Harpal S. Randeva
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM) University Hospitals Coventry and Warwickshire NHS Trust Coventry UK
- Division of Translational and Experimental Medicine, Metabolic and Vascular Health, Warwick Medical School University of Warwick Coventry UK
| |
Collapse
|
13
|
Cimifugin Ameliorates Lipotoxicity-Induced Hepatocyte Damage and Steatosis through TLR4/p38 MAPK- and SIRT1-Involved Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4557532. [PMID: 35355867 PMCID: PMC8958062 DOI: 10.1155/2022/4557532] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/24/2022] [Accepted: 03/03/2022] [Indexed: 12/21/2022]
Abstract
Objective. Hepatic metabolic disorder induced by lipotoxicity plays a detrimental role in metabolic fatty liver disease pathogenesis. Cimifugin (Cim), a coumarin derivative extracted from the root of Saposhnikovia divaricata, possesses multiple biological properties against inflammation, allergy, and oxidative stress. However, limited study has addressed the hepatoprotective role of Cim. Here, we investigate the protective effect of Cim against lipotoxicity-induced cytotoxicity and steatosis in hepatocytes and clarify its potential mechanisms. Methods. AML-12, a nontransformed mouse hepatocyte cell line, was employed in this study. The cells were incubated with palmitate or oleate to imitate hepatotoxicity or steatosis model, respectively. Results. Cim significantly reversed palmitate-induced hepatocellular injury in a dose-dependent manner, accompanied by improvements in oxidative stress and mitochondrial damage. Cim pretreatment reversed palmitate-stimulated TLR4/p38 MAPK activation and SIRT1 reduction without affecting JNK, ERK1/2, and AMPK pathways. The hepatoprotective effects of Cim were abolished either through activating TLR4/p38 by their pharmacological agonists or genetical silencing SIRT1 via special siRNA, indicating a mechanistic involvement. Moreover, Cim treatment improved oleate-induced hepatocellular lipid accumulation, which could be blocked by either TLR4 stimulation or SIRT1 knockdown. We observed that SIRT1 was a potential target of TLR4 in palmitate-treated hepatocytes, since TLR4 agonist LPS aggravated, whereas TLR4 antagonist CLI-095 alleviated palmitate-decreased SIRT1 expression. SIRT1 knockdown did not affect palmitate-induced TLR4. In addition, TLR4 activation by LPS significantly abolished Cim-protected SIRT1 reduction induced by palmitate. These results collaboratively indicated that TLR4-regulated SIRT1 pathways was mechanistically involved in the protective effects of Cim against lipotoxicity. Conclusion. In brief, we demonstrate the protective effects of Cim against lipotoxicity-induced cell death and steatosis in hepatocytes. TLR4-regulated p38 MAPK and SIRT1 pathways are involved in Cim-protected hepatic lipotoxicity. Cim is a potential candidate for improving hepatic metabolic disorders mediated by lipotoxicity.
Collapse
|
14
|
Shen J, Zhan Y, He Q, Deng Q, Li K, Wen S, Huang W. Remifentanil Promotes PDIA3 Expression by Activating p38MAPK to Inhibit Intestinal Ischemia/Reperfusion-Induced Oxidative and Endoplasmic Reticulum Stress. Front Cell Dev Biol 2022; 10:818513. [PMID: 35155431 PMCID: PMC8826554 DOI: 10.3389/fcell.2022.818513] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/06/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Remifentanil protects against intestinal ischemia/reperfusion (I/R) injury; however, its exact mechanism remains to be elucidated. The objective of this study was to investigate the underlying molecular mechanism of remifentanil in intestinal I/R injury in mice.Methods: We evaluated the intestine-protective effect of remifentanil in adult male mice with 45 min superior mesenteric artery occlusion followed by 4 h reperfusion by determining the following: intestinal Chiu’s scores, diamine oxidase, and intestinal fatty acid binding protein in serum; the apoptotic index, lipid peroxidation product malondialdehyde (MDA), and superoxide dismutase (SOD) activity in the intestinal mucosa; and the intestinal mRNA and protein expressions of Bip, CHOP, caspase-12, and cleaved caspase-3, reflecting endoplasmic reticulum (ER) stress. Furthermore, conditional knockout mice, in which the protein disulfide isomerase A3 (PDIA3) gene was deleted from the intestinal epithelium, and SB203580 (a selective p38MAPK inhibitor) were used to determine the role of PDIA3 and p38MAPK in I/R progression and intestinal protection by remifentanil.Results: Our data showed that intestinal I/R induced obvious oxidative stress and endoplasmic reticulum stress–related cell apoptosis, as evidenced by an increase in the intestinal mucosal malondialdehyde, a decrease in the intestinal mucosal SOD, and an increase in the apoptotic index and the mRNA and protein expression of Bip, CHOP, caspase-12, and cleaved caspase-3. Remifentanil significantly improved these changes. Moreover, the deletion of intestinal epithelium PDIA3 blocked the protective effects of remifentanil. SB203580 also abolished the intestinal protection of remifentanil and downregulated the mRNA and protein expression of PDIA3.Conclusion: Remifentanil appears to act via p38MAPK to protect the small intestine from intestinal I/R injury by its PDIA3-mediated antioxidant and anti-ER stress properties.
Collapse
Affiliation(s)
| | | | | | | | | | - Shihong Wen
- *Correspondence: Shihong Wen, ; Wenqi Huang,
| | - Wenqi Huang
- *Correspondence: Shihong Wen, ; Wenqi Huang,
| |
Collapse
|
15
|
Alchera E, Chandrashekar BR, Clemente N, Borroni E, Boldorini R, Carini R. Ischemia/Reperfusion Injury of Fatty Liver Is Protected by A2AR and Exacerbated by A1R Stimulation through Opposite Effects on ASK1 Activation. Cells 2021; 10:3171. [PMID: 34831394 PMCID: PMC8618984 DOI: 10.3390/cells10113171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 12/11/2022] Open
Abstract
Hepatic ischemia/reperfusion injury (IRI) is aggravated by steatosis and is a main risk factor in fatty liver transplantation. Adenosine receptors (ARs) are emerging as therapeutic targets in liver diseases. By using cellular and in vivo systems of hepatic steatosis and IRI, here we evaluated the effects of pharmacological A2AR and A1R activation. The A2AR agonist CGS21680 protected the primary steatotic murine hepatocyte from IR damage and the activation of ASK1 and JNK. Such an effect was attributed to a phosphatidylinositol-3-kinase (PI3K)/Akt-dependent inhibition of ASK1. By contrast, the A1R agonist CCPA enhanced IR damage, intracellular steatosis and oxidative species (OS) production, thereby further increasing the lipid/OS-dependent ASK1-JNK stimulation. The CGS2680 and CCPA effects were nullified by a genetic ASK1 downregulation in steatotic hepatoma C1C7 cells. In steatotic mice livers, CGS21680 protected against hepatic IRI and ASK1/JNK activation whereas CCPA aggravated hepatic steatosis and IRI, and enhanced ASK1 and JNK stimulation. These results evidence a novel mechanism of CGS21680-mediated hepatoprotection, i.e., the PI3K/AKT-dependent inhibition of ASK1, and they show that CGS21680 and CCPA reduces and enhances the IRI of fatty liver, respectively, by preventing or increasing the activation of the cytotoxic ASK1/JNK axis. They also indicate the selective employment of A2AR agonists as an effective therapeutic strategy to prevent IRI in human fatty liver surgery.
Collapse
Affiliation(s)
| | | | | | | | | | - Rita Carini
- Department of Health Science, University of Piemonte Orientale, 28100 Novara, Italy; (E.A.); (B.R.C.); (N.C.); (E.B.); (R.B.)
| |
Collapse
|
16
|
DUSP12 acts as a novel endogenous protective signal against hepatic ischemia-reperfusion damage by inhibiting ASK1 pathway. Clin Sci (Lond) 2021; 135:161-166. [PMID: 33416082 PMCID: PMC7796299 DOI: 10.1042/cs20201091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/17/2020] [Accepted: 01/04/2021] [Indexed: 11/17/2022]
Abstract
Ischemia–reperfusion injury (IRI) consequent to major liver surgery is a still unmet clinical problem. The activation of endogenous systems of hepatoprotection can prevent the damaging effects of ischemia–reperfusion (IR) as shown by the phenomenon known as ‘ischemic preconditioning’. The identification of endogenous signal mediators of hepatoprotection is of main interest since they could be targeted in future therapeutic interventions. Qiu et al. recently reported in Clin. Sci. (Lond.) (2020) 134(17), 2279–2294, the discovery of a novel protective molecule against hepatic IR damage: dual-specificity phosphatase 12 (DUSP12). IR significantly decreased DUSP12 expression in liver whereas DUSP12 overexpression in hepatocytes protected IRI and DUSP12 deletion in DUSP12 KO mice exacerbated IRI. The protective effects of DUSP12 depended on apoptosis signal-regulating kinase 1 (ASK1) and acted through the inhibition of the ASK1-dependent kinases c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK). These results enlighten DUSP12 as a novel intermediate negative regulator of the pro-inflammatory and pro-apoptotic ASK1/JNK-p38 MAPK pathway activated during hepatic IR and identify DUSP12 as potential therapeutic target for IRI.
Collapse
|
17
|
He B, Yang F, Ning Y, Li Y. Sevoflurane alleviates hepatic ischaemia/reperfusion injury by up-regulating miR-96 and down-regulating FOXO4. J Cell Mol Med 2021; 25:5899-5911. [PMID: 34061461 PMCID: PMC8256341 DOI: 10.1111/jcmm.16063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/27/2020] [Accepted: 10/05/2020] [Indexed: 01/06/2023] Open
Abstract
Hepatic ischaemia/reperfusion (I/R) injury represents an event characterized by anoxic cell death and an inflammatory response, that can limit the treatment efficacy of liver surgery. Ischaemic preconditioning agents such as sevoflurane (Sevo) have been highlighted to play protective roles in hepatic I/R injury. The current study aimed to investigate the molecular mechanism underlying the effects associated with Sevo in hepatic I/R injury. Initially, mouse hepatic I/R injury models were established via occlusion of the hepatic portal vein and subsequent reperfusion. The expression of forkhead box protein O4 (FOXO4) was detected using reverse transcription quantitative polymerase chain reaction and Western blot analysis from clinical liver tissue samples obtained from patients who had previously undergone liver transplantation, mouse I/R models and oxygen-deprived hepatocytes. The morphology of the liver tissues was analysed using haematoxylin-eosin (HE) staining, with apoptosis detected via TUNEL staining. Immunohistochemistry methods were employed to identify the FOXO4-positive cells. Mice with knocked out FOXO4 (FOXO4-KO mice) were subjected to I/R. In this study, we found FOXO4 was highly expressed following hepatic I/R injury. After treatment with Sevo, I/R modelled mice exhibited an alleviated degree of liver injury, fewer apoptotic cells and FOXO4-positive cells. FOXO4 was a target gene of miR-96. Knockdown of FOXO4 could alleviate hepatic I/R injury and decrease cell apoptosis. Taken together, the key observations of our study suggest that Sevo alleviates hepatic I/R injury by means of promoting the expression of miR-96 while inhibiting FOXO4 expression. This study highlights the molecular mechanism mediated by Sevo in hepatic I/R injury.
Collapse
Affiliation(s)
- Binghua He
- Jinan UniversityGuangzhouChina
- Department of Anesthesiologythe Central Hospital of ShaoyangShaoyangChina
| | - Fan Yang
- Department of Anesthesiologythe Central Hospital of ShaoyangShaoyangChina
| | - Yingxia Ning
- Department of Gynecology and ObstetricsThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Yalan Li
- Department of Anesthesiologythe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| |
Collapse
|
18
|
Aboulhoda BE, El-Din SS, Khalifa MM, Arsanyos SF, Motawie AG, Sedeek MS, Abdelfattah GH, Abdelgalil WA. Histological, immunohistochemical, and molecular investigation on the hepatotoxic effect of potassium dichromate and the ameliorating role of Persea americana mill pulp extract. Microsc Res Tech 2021; 84:2434-2450. [PMID: 33908126 DOI: 10.1002/jemt.23798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 04/03/2021] [Accepted: 04/10/2021] [Indexed: 11/10/2022]
Abstract
The current study has been designed to assess the role of Persea americana (P. americana) pulp extract on potassium dichromate-induced hepatotoxicity in rats. P. americana pulp extract administration improved the hepatic vascular congestion, blood extravasation, inflammatory cellular infiltration, Kupffer cell hyperplasia, and nuclear changes. It also significantly ameliorated hepatic interstitial and peri-portal fibrosis and caused retrieval of the PAS-positive reaction in the liver parenchyma and around the central vein with restoration of the glycogen granules. P. americana also significantly attenuated the immunohistochemical expression of NF-kβ p65 and its downstream inflammatory cytokines IL6 and TNFα in the liver parenchyma. The antioxidant effect of P. americana was evidenced by significant modulation of the three major components of the thioredoxin (Trx) antioxidant system, the Trx, the thioredoxin reductase (TrxR), and the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase along with significant increase in the level of superoxide dismutase and glutathione, and decrease in the lipid peroxidation product malondialdehyde. P. americana pulp extract also caused significant elevation of hepatic protein phosphatase 5 with subsequent down-regulation of Apoptosis signal-regulating kinase1 (ASK1) and its downstream signaling targets MAPK kinase 4 (MKK4), p38 mitogen-activated protein kinases (p38-MAPKs), the c-JUN N-terminal kinase (JNK), and the extracellular signal-regulated kinase 1/2 (ERK 1/2). Also, In conclusion, P. americana pulp extract has anti-oxidative and anti-inflammatory effects against potassium dichromate-induced hepatotoxicity.
Collapse
Affiliation(s)
- Basma Emad Aboulhoda
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Shimaa Saad El-Din
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed Mansour Khalifa
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt.,Department of Medical Physiology, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Sherif Fahmy Arsanyos
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ahmed Galal Motawie
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | - Gaber Hassan Abdelfattah
- Department of Anatomy and Embryology, Faculty of Medicine, Benisuef University, Bani Sweif, Egypt
| | | |
Collapse
|
19
|
Luo YH, Huang ZT, Zong KZ, Cao ZR, Peng DD, Zhou BY, Shen A, Yan P, Wu ZJ. miR-194 ameliorates hepatic ischemia/reperfusion injury via targeting PHLDA1 in a TRAF6-dependent manner. Int Immunopharmacol 2021; 96:107604. [PMID: 33839577 DOI: 10.1016/j.intimp.2021.107604] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/09/2021] [Accepted: 03/18/2021] [Indexed: 02/07/2023]
Abstract
Hepatic ischemia/reperfusion injury (IRI) is an inevitable pathological process in liver resection, shock and transplantation. However, the internal mechanism of hepatic IRI, including inflammatory transduction of multiple signaling pathways, is not fully understood. In the present study, we identified pleckstrin homology-like domain family member 1 (PHLDA1), suppressed by microRNA (miR)-194, as a critical intersection of dual inflammatory signals in hepatic IRI. PHLDA1 was upregulated in hepatic IRI with a concomitant downregulation of miR-194. Overexpression of miR-194 diminished PHLDA1 and inhibitors of the nuclear factor kappa-B kinase (IKK) pathway, thus leading to remission of hepatic pathological injury, apoptosis and release of cytokines. Further enrichment of PHLDA1 reversed the function of miR-194 both in vivo and in vitro. For an in-depth query, we verified PHLDA1 as a direct target of miR-194. Notably, inflammatory signal transduction of PHLDA1 was induced by activating TNF receptor-associated factor 6 (TRAF6), sequentially initiating IKK and mitogen-activated protein kinase (MAPK), both of which aggravate stress and inflammation in hepatic IRI. In conclusion, the miR-194/PHLDA1 axis was a key upstream regulator of IKK and MAPK in hepatic IRI. Targeting PHLDA1 might be a potential strategy for hepatic IRI therapy.
Collapse
Affiliation(s)
- Yun-Hai Luo
- The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Zuo-Tian Huang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ke-Zhen Zong
- The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Zhen-Rui Cao
- The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Da-Di Peng
- The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Bao-Yong Zhou
- The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ai Shen
- Hepatobiliary Pancreatic Tumor Center, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Ping Yan
- The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Zhong-Jun Wu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
20
|
Signaling Nodes Associated with Endoplasmic Reticulum Stress during NAFLD Progression. Biomolecules 2021; 11:biom11020242. [PMID: 33567666 PMCID: PMC7915814 DOI: 10.3390/biom11020242] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/29/2021] [Accepted: 02/04/2021] [Indexed: 12/19/2022] Open
Abstract
Excess and sustained endoplasmic reticulum (ER) stress, paired with a failure of initial adaptive responses, acts as a critical trigger of nonalcoholic fatty liver disease (NAFLD) progression. Unfortunately, there is no drug currently approved for treatment, and the molecular basis of pathogenesis by ER stress remains poorly understood. Classical ER stress pathway molecules have distinct but inter-connected functions and complicated effects at each phase of the disease. Identification of the specific molecular signal mediators of the ER stress-mediated pathogenesis is, therefore, a crucial step in the development of new treatments. These signaling nodes may be specific to the cell type and/or the phase of disease progression. In this review, we highlight the recent advancements in knowledge concerning signaling nodes associated with ER stress and NAFLD progression in various types of liver cells.
Collapse
|
21
|
Estaras M, Marchena AM, Fernandez-Bermejo M, Mateos JM, Vara D, Roncero V, Salido GM, Gonzalez A. The melatonin receptor antagonist luzindole induces the activation of cellular stress responses and decreases viability of rat pancreatic stellate cells. J Appl Toxicol 2020; 40:1554-1565. [PMID: 32567733 DOI: 10.1002/jat.4018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/12/2020] [Accepted: 05/15/2020] [Indexed: 12/22/2022]
Abstract
In this study, we have examined the effects of luzindole, a melatonin receptor-antagonist, on cultured pancreatic stellate cells. Intracellular free-Ca2+ concentration, production of reactive oxygen species (ROS), activation of mitogen-activated protein kinases (MAPK), endoplasmic reticulum stress and cell viability were analyzed. Stimulation of cells with the luzindole (1, 5, 10 and 50 μm) evoked a slow and progressive increase in intracellular free Ca2+ ([Ca2+ ]i ) towards a plateau. The effect of the compound on Ca2+ mobilization depended on the concentration used. Incubation of cells with the sarcoendoplasmic reticulum Ca2+ -ATPase inhibitor thapsigargin (1 μm), in the absence of Ca2+ in the extracellular medium, induced a transient increase in [Ca2+ ]i . In the presence of thapsigargin, the addition of luzindole to the cells failed to induce further mobilization of Ca2+ . Luzindole induced a concentration-dependent increase in ROS generation, both in the cytosol and in the mitochondria. This effect was smaller in the absence of extracellular Ca2+ . In the presence of luzindole the phosphorylation of p44/42 and p38 MAPKs was increased, whereas no changes in the phosphorylation of JNK could be noted. Moreover, the detection of the endoplasmic reticulum stress-sensor BiP was increased in the presence of luzindole. Finally, viability was decreased in cells treated with luzindole. Because cellular membrane receptors for melatonin have not been detected in pancreatic stellate cells, we conclude that luzindole could exert direct effects that are not mediated through its action on melatonin membrane receptors.
Collapse
Affiliation(s)
- Matias Estaras
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| | - Ana M Marchena
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| | | | - Jose M Mateos
- Department of Gastroenterology, San Pedro de Alcantara Hospital, Caceres, Spain
| | - Daniel Vara
- Department of Gastroenterology, San Pedro de Alcantara Hospital, Caceres, Spain
| | - Vicente Roncero
- Unit of Histology and Pathological Anatomy, Veterinary Faculty, University of Extremadura, Caceres, Spain
| | - Gines M Salido
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| | - Antonio Gonzalez
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| |
Collapse
|
22
|
Wang J, Zhang H, Du A, Li Y. DJ-1 alleviates anoxia and hypoglycemia injury in cardiac microvascular via AKT and GSH. Mol Cell Probes 2020; 53:101600. [PMID: 32445781 DOI: 10.1016/j.mcp.2020.101600] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 10/24/2022]
Abstract
Cardiac microvascular damage, which is often caused by anoxia and hypoglycemia, is associated with the development of cardiac injury. DJ-1 encodes a peptidase C56 protein family related protein, is has been linked to oxidative stress in various cells such as neurons, COPD epithelial cells, and macrophages. However, the effect of DJ-1 towards oxidative stress caused by anoxia and hypoglycemia of cardiac microvascular endothelial cells (CMEC) remains unclear. In this study, we investigated the role and underlying molecular mechanism of DJ-1 in CMEC with anoxia/hypoglycemic (A/H) injury. We found that the mRNA and the protein expression of DJ-1 in CMEC with A/H injury were significantly downregulated. DJ-1 overexpression by pcDNA.3.1-DJ-1 transfection elevated cell viability while it inhibited LDH leakage, cell apoptosis, caspase-3 activity, ROS level, and MDA contents, while knockdown of DJ-1 has the opposite results. In addition, tube formation was increased in DJ-1 overexpression, while it was decreased in DJ-1 knockdown CMEC with A/H injury. In addition, our results indicated that DJ-1 can regulate glutathione (GSH) levels by modulating AKT activity in CMEC with A/H injury. The downregulation of AKT and GSH may remove the protective role of DJ-1 against A/H injury in CMEC. Taken together, this study showed that DJ-1 upregulation protected CMEC against A/H injury via the AKT/GSH signaling pathway.
Collapse
Affiliation(s)
- Jia Wang
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Liaoning, 110001, China; Department of Nursing, The First Affiliated Hospital of China Medical University, Liaoning, 110001, China
| | - Haishan Zhang
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Liaoning, 110001, China
| | - Aolin Du
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Liaoning, 110001, China
| | - Yang Li
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Liaoning, 110001, China.
| |
Collapse
|
23
|
Yuan T, Yang Z, Xian S, Chen Y, Wang L, Chen W, Long W, Che Y. Dexmedetomidine-mediated regulation of miR-17-3p in H9C2 cells after hypoxia/reoxygenation injury. Exp Ther Med 2020; 20:917-925. [PMID: 32742334 PMCID: PMC7388268 DOI: 10.3892/etm.2020.8775] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 10/30/2019] [Indexed: 01/08/2023] Open
Abstract
Patients with heart disease often suffer from ischemia, which can be treated by reperfusion. However, this treatment can lead to the development of ischemia/reperfusion (I/R) injury, an inflammatory condition that can cause further heart damage. Dexmedetomidine (Dex), an α2-adrenoceptor agonist, and the microRNA (miR)-17-3p, have both been suggested to alleviate I/R injury and cardiac tissue inflammation. The aim of the present study was to investigate whether Dex and miR-17-3p could act together to prevent I/R injury. H9C2 cells, a myoblast cell line used as a model of rat cardiomyocytes, were cultured in a hypoxic environment for 3 h, and then reoxygenated for 3 h. This hypoxia/reoxygenation (H/R) was used to model I/R. Cell Counting kit-8 was used to determine cell viability and an annexin V-FITC/propidium iodide apoptosis kit used to analyze cell apoptosis. A dual luciferase reporter assay was used to determine the interaction between miR-17-3p and toll-like receptor 4 (TLR4). Western blotting and reverse transcription-quantitative PCR were used to determine protein levels and mRNA expression of TLR4 and galectin-3. A concentration of 0.1-10 µmol/l Dex attenuated H/R injury, which was accompanied by increased miR-17-3p levels. Additionally, the inhibition of miR-17-3p exacerbated H/R injury and reduced the effect of Dex on H/R injury. H/R led to an increased galectin-3 level compared with that in control cells, and Dex or miR-17-3p inhibitor did not markedly affect the level of galectin-3, indicating that Dex alleviated the effects of I/R injury through other pathways. Inhibition of miR-17-3p in Dex-induced H9C2 cells during H/R increased the expression of inflammatory mediators including tumor necrosis factor-α, interleukin (IL)-6, IL-1β and phosphorylated NFκB subunit p65, while Dex reduced the H/R-induced expression of these inflammatory mediators. Inhibition of TLR4 also attenuated H/R injury. In summary, the findings of the present study indicated that Dex reduced H/R injury in H9C2 cell via the modulation of inflammatory signaling pathways, and these inflammatory factors could be regulated by miR-17-3p.
Collapse
Affiliation(s)
- Tianhui Yuan
- Department of Drug Clinical Trials, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China.,Clinical Research Unit, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China.,Phase I Program, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Zhongqi Yang
- Department of Drug Clinical Trials, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China.,Clinical Research Unit, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China.,Phase I Program, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Shaoxiang Xian
- Department of Chinese Internal Medicine, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Yang Chen
- School of Pharmaceuticals, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Lingjun Wang
- Lingnan Medical Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Weitao Chen
- Intensive Care Unit, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Wenjie Long
- College of First Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Yuanyuan Che
- Department of Cardiology, Zaozhuang Municipal Hospital, Zaozhuang, Shandong 277102, P.R. China
| |
Collapse
|
24
|
CXCL16 silencing alleviates hepatic ischemia reperfusion injury during liver transplantation by inhibiting p38 phosphorylation. Pathol Res Pract 2020; 216:152913. [DOI: 10.1016/j.prp.2020.152913] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/17/2020] [Accepted: 03/01/2020] [Indexed: 02/08/2023]
|
25
|
Ghazali R, Mehta KJ, Bligh SWA, Tewfik I, Clemens D, Patel VB. High omega arachidonic acid/docosahexaenoic acid ratio induces mitochondrial dysfunction and altered lipid metabolism in human hepatoma cells. World J Hepatol 2020; 12:84-98. [PMID: 32231762 PMCID: PMC7097500 DOI: 10.4254/wjh.v12.i3.84] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 12/24/2019] [Accepted: 01/15/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is a common cause of liver disease worldwide and is a growing epidemic. A high ratio of omega-6 fatty acids to omega-3 fatty acids in the diet has been implicated in the development of NAFLD. However, the inflicted cellular pathology remains unknown. A high ratio may promote lipogenic pathways and contribute to reactive oxygen species (ROS)-mediated damage, perhaps leading to mitochondrial dysfunction. Therefore, these parameters were investigated to understand their contribution to NAFLD development.
AIM To examine the effect of increasing ratios of omega-6:3 fatty acids on mitochondrial function and lipid metabolism mediators.
METHODS HepG2-derived VL-17A cells were treated with normal (1:1, 4:1) and high (15:1, 25:1) ratios of omega-6: omega-3 fatty acids [arachidonic acid (AA): docosahexaenoic acid (DHA)] at various time points. Mitochondrial activity and function were examined via MTT assay and Seahorse XF24 analyzer, respectively. Triglyceride accumulation was determined by using EnzyChrom™ and levels of ROS were measured by fluorescence intensity. Protein expression of the mediators of lipogenic, lipolytic and endocannabinoid pathways was assessed by Western blotting.
RESULTS High AA:DHA ratio decreased mitochondrial activity (P < 0.01; up to 80%) and promoted intracellular triglyceride accumulation (P < 0.05; 40%-70%). Mechanistically, it altered the mediators of lipid metabolism; increased the expression of stearoyl-CoA desaturase (P < 0.05; 22%-35%), decreased the expression of peroxisome proliferator-activated receptor-alpha (P < 0.05; 30%-40%) and increased the expression of cannabinoid receptor 1 (P < 0.05; 31%). Furthermore, the high ratio increased ROS production (P < 0.01; 74%-115%) and reduced mitochondrial respiratory functions such as basal and maximal respiration, ATP production, spare respiratory capacity and proton leak (P < 0.01; 35%-68%).
CONCLUSION High AA:DHA ratio induced triglyceride accumulation, increased oxidative stress and disrupted mitochondrial functions. Stimulation of lipogenic and steroidal transcription factors may partly mediate these effects and contribute to NAFLD development.
Collapse
Affiliation(s)
- Reem Ghazali
- School of Life Sciences, University of Westminster, London W1W 6UW, United Kingdom
- Clinical Biochemistry Department, Faculty of medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Kosha J Mehta
- Centre for Education, Faculty of Life Sciences and Medicine, King's College London SE1 1UL, United Kingdom
| | - SW Annie Bligh
- School of Life Sciences, University of Westminster, London W1W 6UW, United Kingdom
- Caritas Institute of Higher Education, Hong Kong 999077, China
| | - Ihab Tewfik
- School of Life Sciences, University of Westminster, London W1W 6UW, United Kingdom
| | - Dahn Clemens
- Nebraska and Western Iowa Veterans Administration Medical Center and Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Vinood B Patel
- School of Life Sciences, University of Westminster, London W1W 6UW, United Kingdom
| |
Collapse
|
26
|
Bartoszewska S, Collawn JF. Unfolded protein response (UPR) integrated signaling networks determine cell fate during hypoxia. Cell Mol Biol Lett 2020; 25:18. [PMID: 32190062 PMCID: PMC7071609 DOI: 10.1186/s11658-020-00212-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/26/2020] [Indexed: 02/06/2023] Open
Abstract
During hypoxic conditions, cells undergo critical adaptive responses that include the up-regulation of hypoxia-inducible proteins (HIFs) and the induction of the unfolded protein response (UPR). While their induced signaling pathways have many distinct targets, there are some important connections as well. Despite the extensive studies on both of these signaling pathways, the exact mechanisms involved that determine survival versus apoptosis remain largely unexplained and therefore beyond therapeutic control. Here we discuss the complex relationship between the HIF and UPR signaling pathways and the importance of understanding how these pathways differ between normal and cancer cell models.
Collapse
Affiliation(s)
- Sylwia Bartoszewska
- Department of Inorganic Chemistry, Medical University of Gdansk, Gdansk, Poland
| | - James F. Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, USA
| |
Collapse
|
27
|
Wang Y, Wen H, Fu J, Cai L, Li PL, Zhao CL, Dong ZF, Ma JP, Wang X, Tian H, Zhang Y, Liu Y, Cai J, She ZG, Huang Z, Li W, Li H. Hepatocyte TNF Receptor-Associated Factor 6 Aggravates Hepatic Inflammation and Fibrosis by Promoting Lysine 6-Linked Polyubiquitination of Apoptosis Signal-Regulating Kinase 1. Hepatology 2020; 71:93-111. [PMID: 31222801 DOI: 10.1002/hep.30822] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 06/14/2019] [Indexed: 12/24/2022]
Abstract
Activation of apoptosis signal-regulating kinase 1 (ASK1) is a key driving force of the progression of nonalcoholic steatohepatitis (NASH) and represents an attractive therapeutic target for NASH treatment. However, the molecular and cellular mechanisms underlying ASK1 activation in the pathogenesis of NASH remain incompletely understood. In this study, our data unequivocally indicated that hyperactivated ASK1 in hepatocytes is a potent inducer of hepatic stellate cell (HSC) activation by promoting the production of hepatocyte-derived factors. Our previous serial studies have shown that the ubiquitination system plays a key role in regulating ASK1 activity during NASH progression. Here, we further demonstrated that tumor necrosis factor receptor-associated factor 6 (TRAF6) promotes lysine 6 (Lys6)-linked polyubiquitination and subsequent activation of ASK1 to trigger the release of robust proinflammatory and profibrotic factors in hepatocytes, which, in turn, drive HSC activation and hepatic fibrosis. Consistent with the in vitro findings, diet-induced liver inflammation and fibrosis were substantially attenuated in Traf6+/- mice, whereas hepatic TRAF6 overexpression exacerbated these abnormalities. Mechanistically, Lys6-linked ubiquitination of ASK1 by TRAF6 facilitates the dissociation of thioredoxin from ASK1 and N-terminal dimerization of ASK1, resulting in the boosted activation of ASK1-c-Jun N-terminal kinase 1/2 (JNK1/2)-mitogen-activated protein kinase 14(p38) signaling cascade in hepatocytes. Conclusion: These results suggest that Lys6-linked polyubiquitination of ASK1 by TRAF6 represents a mechanism underlying ASK1 activation in hepatocytes and a key driving force of proinflammatory and profibrogenic responses in NASH. Thus, inhibiting Lys6-linked polyubiquitination of ASK1 may serve as a potential therapeutic target for NASH treatment.
Collapse
Affiliation(s)
- Yutao Wang
- College of Life Sciences, Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.,Institute of Model Animal of Wuhan University, Wuhan, China
| | - Huan Wen
- College of Life Sciences, Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.,Institute of Model Animal of Wuhan University, Wuhan, China
| | - Jiajun Fu
- Institute of Model Animal of Wuhan University, Wuhan, China.,Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lin Cai
- Institute of Model Animal of Wuhan University, Wuhan, China.,Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Peng-Long Li
- College of Life Sciences, Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.,Institute of Model Animal of Wuhan University, Wuhan, China
| | - Chang-Ling Zhao
- College of Life Sciences, Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.,Institute of Model Animal of Wuhan University, Wuhan, China
| | - Zhu-Feng Dong
- College of Life Sciences, Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.,Institute of Model Animal of Wuhan University, Wuhan, China
| | - Jun-Peng Ma
- College of Life Sciences, Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.,Institute of Model Animal of Wuhan University, Wuhan, China
| | - Xi Wang
- College of Life Sciences, Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.,Institute of Model Animal of Wuhan University, Wuhan, China
| | - Han Tian
- College of Life Sciences, Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.,Institute of Model Animal of Wuhan University, Wuhan, China
| | - Yan Zhang
- College of Life Sciences, Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.,Institute of Model Animal of Wuhan University, Wuhan, China
| | - Ye Liu
- College of Life Sciences, Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.,Institute of Model Animal of Wuhan University, Wuhan, China
| | - Jingjing Cai
- Institute of Model Animal of Wuhan University, Wuhan, China.,Department of Cardiology, the Third Xiangya Hospital of Central South University, Changsha, China
| | - Zhi-Gang She
- College of Life Sciences, Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.,Institute of Model Animal of Wuhan University, Wuhan, China
| | - Zan Huang
- College of Life Sciences, Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.,Institute of Model Animal of Wuhan University, Wuhan, China
| | - Wenhua Li
- College of Life Sciences, Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Hongliang Li
- College of Life Sciences, Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.,Institute of Model Animal of Wuhan University, Wuhan, China.,Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
28
|
Gao Y, Yan Y, Fang Q, Zhang N, Kumar G, Zhang J, Song LJ, Yu J, Zhao L, Zhang HT, Ma CG. The Rho kinase inhibitor fasudil attenuates Aβ 1-42-induced apoptosis via the ASK1/JNK signal pathway in primary cultures of hippocampal neurons. Metab Brain Dis 2019; 34:1787-1801. [PMID: 31482248 DOI: 10.1007/s11011-019-00487-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 08/27/2019] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD), a chronic, progressive, neurodegenerative disorder, is the most common type of dementia. Beta amyloid (Aβ) peptide aggregation and phosphorylated tau protein accumulation are considered as one of the causes for AD. Our previous studies have demonstrated the neuroprotective effect of the Rho kinase inhibitor fasudil, but the mechanism remains elucidated. In the present study, we examined the effects of fasudil on Aβ1-42 aggregation and apoptosis and identified the intracellular signaling pathways involved in these actions in primary cultures of mouse hippocampal neurons. The results showed that fasudil increased neurite outgrowth (52.84%), decreased Aβ burden (46.65%), Tau phosphorylation (96.84%), and ROCK-II expression. In addition, fasudil reversed Aβ1-42-induced decreased expression of Bcl-2 and increases in caspase-3, cleaved-PARP, phospho-JNK(Thr183/Tyr185), and phospho-ASK1(Ser966). Further, fasudil decreased mitochondrial membrane potential and intracellular calcium overload in the neurons treated with Aβ1-42. These results suggest that inhibition of Rho kinase by fasudil reverses Aβ1-42-induced neuronal apoptosis via the ASK1/JNK signal pathway, calcium ions, and mitochondrial membrane potential. Fasudil could be a drug of choice for treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Ye Gao
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, China
| | - Yuqing Yan
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, China.
| | - Qingli Fang
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, China
| | - Nianping Zhang
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, China
| | - Gajendra Kumar
- Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Hong Kong
- Bio-Signal technologies (HK) Limited, 9th Floor, Amtel Building,148 Des Voeux Road Central, Central, Hong Kong
| | - Jihong Zhang
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, China
| | - Li-Juan Song
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Jiezhong Yu
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, China
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Linhu Zhao
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, China
| | - Han-Ting Zhang
- Departments of Neuroscience and Behavioral Medicine & Psychiatry, the Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, WV, 26506, USA.
| | - Cun-Gen Ma
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, China.
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, China.
| |
Collapse
|
29
|
Yan ZZ, Huang YP, Wang X, Wang HP, Ren F, Tian RF, Cheng X, Cai J, Zhang Y, Zhu XY, She ZG, Zhang XJ, Huang Z, Li H. Integrated Omics Reveals Tollip as an Regulator and Therapeutic Target for Hepatic Ischemia-Reperfusion Injury in Mice. Hepatology 2019; 70:1750-1769. [PMID: 31077413 DOI: 10.1002/hep.30705] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 05/04/2019] [Indexed: 12/24/2022]
Abstract
Hepatic ischemia-reperfusion (IR) injury is the leading cause of liver dysfunction and failure after liver resection or transplantation and lacks effective therapeutic strategies. Here, we applied a systematic proteomic analysis to identify the prominent contributors to IR-induced liver damage and promising therapeutic targets for this condition. Based on an unbiased proteomic analysis, we found that toll-interacting protein (Tollip) expression was closely correlated with the hepatic IR process. RNA sequencing analysis and phenotypic examination showed a dramatically alleviated hepatic IR injury by Tollip deficiency both in vivo and in hepatocytes. Mechanistically, Tollip interacts with apoptosis signal-regulating kinase 1 (ASK1) and facilitates the recruitment of tumor necrosis factor receptor-associated factor 6 (TRAF6) to ASK1, leading to enhanced ASK1 N-terminal dimerization and the subsequent activation of downstream mitogen-activated protein kinase (MAPK) signaling. Furthermore, the Tollip methionine and phenylalanine motif and TRAF6 ubiquitinating activity are required for Tollip-regulated ASK1-MAPK axis activation. Conclusion: Tollip is a regulator of hepatic IR injury by facilitating ASK1 N-terminal dimerization and the resultant c-Jun N-terminal kinase/p38 signaling activation. Inhibiting Tollip or its interaction with ASK1 might be promising therapeutic strategies for hepatic IR injury.
Collapse
Affiliation(s)
- Zhen-Zhen Yan
- College of Life Sciences, Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yong-Ping Huang
- College of Life Sciences, Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Xin Wang
- College of Life Sciences, Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Hai-Ping Wang
- College of Life Sciences, Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.,Institute of Model Animal of Wuhan University, Wuhan, China.,Basic Medical School, Wuhan University, Wuhan, China
| | - Fei Ren
- College of Life Sciences, Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Rui-Feng Tian
- College of Life Sciences, Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.,Institute of Model Animal of Wuhan University, Wuhan, China
| | - Xu Cheng
- College of Life Sciences, Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.,Institute of Model Animal of Wuhan University, Wuhan, China.,Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jie Cai
- College of Life Sciences, Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.,Institute of Model Animal of Wuhan University, Wuhan, China
| | - Yan Zhang
- College of Life Sciences, Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.,Institute of Model Animal of Wuhan University, Wuhan, China
| | - Xue-Yong Zhu
- College of Life Sciences, Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.,Institute of Model Animal of Wuhan University, Wuhan, China
| | - Zhi-Gang She
- College of Life Sciences, Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.,Institute of Model Animal of Wuhan University, Wuhan, China
| | - Xiao-Jing Zhang
- College of Life Sciences, Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.,Institute of Model Animal of Wuhan University, Wuhan, China
| | - Zan Huang
- College of Life Sciences, Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Hongliang Li
- College of Life Sciences, Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.,Institute of Model Animal of Wuhan University, Wuhan, China.,Basic Medical School, Wuhan University, Wuhan, China.,Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
30
|
Chi X, Jiang Y, Chen Y, Yang F, Cai Q, Pan F, Lv L, Zhang X. Suppression of microRNA‑27a protects against liver ischemia/reperfusion injury by targeting PPARγ and inhibiting endoplasmic reticulum stress. Mol Med Rep 2019; 20:4003-4012. [PMID: 31485635 DOI: 10.3892/mmr.2019.10645] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 06/13/2019] [Indexed: 11/06/2022] Open
Abstract
Liver ischemia‑reperfusion (I/R) injury is an important clinical issue related to liver transplantation. Recent studies suggest that microRNAs are implicated in various biological and pathological processes, including liver I/R injury. This study aimed to investigate the role and potential mechanism of miR‑27a during liver I/R injury. A liver I/R model was induced via 60 min of ischemia and reperfusion for 6 h in rats. Cells were transfected with miR‑27a mimics or the miR‑27a inhibitor to examine the effect of miR‑27a on liver I/R. Apoptotic cells were detected by flow cytometry and TUNEL staining. The expression of miR‑27a was measured by real‑time PCR. The expression of peroxisome proliferator‑activated receptor γ (PPARγ); gastrin‑releasing peptide 78 (GRP78) and C/EBP homologous protein (CHOP) were detected by western blot analysis. The results showed that miR‑27a was significantly upregulated during I/R injury in vivo and in vitro. In addition, miR‑27a inhibitors attenuated hypoxia/reoxygenation (H/R)‑induced oxidative stress, endoplasmic reticulum stress (ERS) and apoptosis in AML12 cells. By contrast, miR‑27a mimics promoted hypoxia/reoxygenation‑induced ERS, and apoptosis. Furthermore, PPARγ was identified as a target gene of miR‑27a using bioinformatic analysis and a dual‑luciferase reporter assay. Knockdown of PPARγ significantly abrogated the inhibitory effect of miR‑27a inhibitors on the ERS pathway. Moreover, the miR‑27a antagomir attenuated liver I/R injury in rats, a finding manifested by reduced ALT/AST, hepatocyte apoptosis, oxidative stress and inhibition of the ERS pathway. Taken together, these findings demonstrate that suppression of miR‑27a protects against liver I/R injury by targeting PPARγ and by inhibiting the ERS pathway.
Collapse
Affiliation(s)
- Xiaobin Chi
- Department of Hepatobiliary Surgery, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Yi Jiang
- Department of Hepatobiliary Surgery, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Yongbiao Chen
- Department of Hepatobiliary Surgery, 900 Hospital of The Joint Logistics Team, Fuzhou, Fujian 350025, P.R. China
| | - Fang Yang
- Department of Hepatobiliary Surgery, 900 Hospital of The Joint Logistics Team, Fuzhou, Fujian 350025, P.R. China
| | - Qiucheng Cai
- Department of Hepatobiliary Surgery, 900 Hospital of The Joint Logistics Team, Fuzhou, Fujian 350025, P.R. China
| | - Fan Pan
- Department of Hepatobiliary Surgery, 900 Hospital of The Joint Logistics Team, Fuzhou, Fujian 350025, P.R. China
| | - Lizhi Lv
- Department of Hepatobiliary Surgery, 900 Hospital of The Joint Logistics Team, Fuzhou, Fujian 350025, P.R. China
| | - Xiaojin Zhang
- Department of Hepatobiliary Surgery, 900 Hospital of The Joint Logistics Team, Fuzhou, Fujian 350025, P.R. China
| |
Collapse
|
31
|
Protein tyrosine phosphatase 1b deficiency protects against hepatic fibrosis by modulating nadph oxidases. Redox Biol 2019; 26:101263. [PMID: 31299613 PMCID: PMC6624458 DOI: 10.1016/j.redox.2019.101263] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/30/2019] [Accepted: 06/26/2019] [Indexed: 02/08/2023] Open
Abstract
Inflammation is typically associated with the development of fibrosis, cirrhosis and hepatocellular carcinoma. The key role of protein tyrosine phosphatase 1B (PTP1B) in inflammatory responses has focused this study in understanding its implication in liver fibrosis. Here we show that hepatic PTP1B mRNA expression increased after bile duct ligation (BDL), while BDL-induced liver fibrosis was markedly reduced in mice lacking Ptpn1 (PTP1B−/−) as assessed by decreased collagen deposition and α-smooth muscle actin (α-SMA) expression. PTP1B−/− mice also showed a significant increase in mRNA levels of key markers of monocytes recruitment (Cd68, Adgre1 and Ccl2) compared to their wild-type (PTP1B+/+) littermates at early stages of injury after BDL. Interestingly, the lack of PTP1B strongly increased the NADPH oxidase (NOX) subunits Nox1/Nox4 ratio and downregulated Cybb expression after BDL, revealing a pro-survival pattern of NADPH oxidase induction in response to liver injury. Chimeric mice generated by transplantation of PTP1B−/− bone marrow (BM) into irradiated PTP1B+/+ mice revealed similar hepatic expression profile of NOX subunits than PTP1B−/− mice while these animals did not show differences in infiltration of myeloid cells at 7 days post-BDL, suggesting that PTP1B deletion in other liver cells is necessary for boosting the early inflammatory response to the BDL. PTP1B−/− BM transplantation into PTP1B+/+ mice also led to a blockade of TGF-β and α-SMA induction after BDL. In vitro experiments demonstrated that deficiency of PTP1B in hepatocytes protects against bile acid-induced apoptosis and abrogates hepatic stellate cells (HSC) activation, an effect ameliorated by NOX1 inhibition. In conclusion, our results have revealed that the lack of PTP1B switches NOX expression pattern in response to liver injury after BDL and reduces HSC activation and liver fibrosis. PTP1B deficiency in mice ameliorates liver damage induced by cholestasis. The increased NOX1/NOX4 ratio in livers from PTP1B-/- mice was associated with protection against BDL-induced fibrosis. The lack of PTP1B exacerbates macrophage recruitment upon BDL which is dispensable for ameliorating cholestatic liver damage. Resistance of PTP1B-/- hepatocytes against bile acid-induced apoptosis protects from HSC activation in a NOX1-dependent manner.
Collapse
|
32
|
Jiménez-Castro MB, Cornide-Petronio ME, Gracia-Sancho J, Casillas-Ramírez A, Peralta C. Mitogen Activated Protein Kinases in Steatotic and Non-Steatotic Livers Submitted to Ischemia-Reperfusion. Int J Mol Sci 2019; 20:ijms20071785. [PMID: 30974915 PMCID: PMC6479363 DOI: 10.3390/ijms20071785] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/03/2019] [Accepted: 04/09/2019] [Indexed: 12/12/2022] Open
Abstract
We analyzed the participation of mitogen-activated protein kinases (MAPKs), namely p38, JNK and ERK 1/2 in steatotic and non-steatotic livers undergoing ischemia-reperfusion (I-R), an unresolved problem in clinical practice. Hepatic steatosis is a major risk factor in liver surgery because these types of liver tolerate poorly to I-R injury. Also, a further increase in the prevalence of steatosis in liver surgery is to be expected. The possible therapies based on MAPK regulation aimed at reducing hepatic I-R injury will be discussed. Moreover, we reviewed the relevance of MAPK in ischemic preconditioning (PC) and evaluated whether MAPK regulators could mimic its benefits. Clinical studies indicated that this surgical strategy could be appropriate for liver surgery in both steatotic and non-steatotic livers undergoing I-R. The data presented herein suggest that further investigations are required to elucidate more extensively the mechanisms by which these kinases work in hepatic I-R. Also, further researchers based in the development of drugs that regulate MAPKs selectively are required before such approaches can be translated into clinical liver surgery.
Collapse
Affiliation(s)
| | | | - Jordi Gracia-Sancho
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Laboratory IDIBAPS, 08036 Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08036 Barcelona, Spain.
| | - Araní Casillas-Ramírez
- Hospital Regional de Alta Especialidad de Ciudad Vitoria, Ciudad Victoria 87087, Mexico.
- Facultad de Medicina e ingeniería en Sistemas Computacionales de Matamoros, Universidad Autónoma de Tamaulipas, Matamoros 87300, México.
| | - Carmen Peralta
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona 08036, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08036 Barcelona, Spain.
| |
Collapse
|
33
|
Wei J, Wu X, Luo P, Yue K, Yu Y, Pu J, Zhang L, Dai S, Han D, Fei Z. Homer1a Attenuates Endoplasmic Reticulum Stress-Induced Mitochondrial Stress After Ischemic Reperfusion Injury by Inhibiting the PERK Pathway. Front Cell Neurosci 2019; 13:101. [PMID: 30930751 PMCID: PMC6428733 DOI: 10.3389/fncel.2019.00101] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 02/27/2019] [Indexed: 12/17/2022] Open
Abstract
Homer1a is the short form of a scaffold protein that plays a protective role in many forms of stress. However, the role of Homer1a in cerebral ischemia/reperfusion (I/R) injury and its potential mechanism is still unknown. In this study, we found that Homer1a was upregulated by oxygen and glucose deprivation (OGD) and that overexpression of Homer1a alleviated OGD-induced lactate dehydrogenase (LDH) release and cell death in cultured cortical neurons. After OGD treatment, the overexpression of Homer1a preserved mitochondrial function, as evidenced by less cytochrome c release, less reactive oxygen species (ROS) production, less ATP and mitochondrial membrane potential (MMP) loss, less caspase-9 activation, and inhibition of endoplasmic reticulum (ER) stress confirmed by the decreased expression of phosphate-PKR-like ER Kinase (p-PERK)/PERK and phosphate- inositol-requiring enzyme 1 (p-IRE1)/IRE1 and immunofluorescence (IF) staining. In addition, mitochondrial protection of Homer1a was blocked by the ER stress activator Tunicamycin (TM) with a re-escalated ROS level, increasing ATP and MMP loss. Furthermore, Homer1a overexpression-induced mitochondrial stress attenuation was significantly reversed by activating the PERK pathway with TM and p-IRE1 inhibitor 3,5-dibromosalicylaldehyde (DBSA), as evidenced by increased cytochrome c release, increased ATP loss and a higher ROS level. However, activating the IRE1 pathway with TM and p-PERK inhibitor GSK2656157 showed little change in cytochrome c release and exhibited a moderate upgrade of ATP loss and ROS production in neurons. In summary, these findings demonstrated that Homer1a protects against OGD-induced injury by preserving mitochondrial function through inhibiting the PERK pathway. Our finding may reveal a promising target of protecting neurons from cerebral I/R injury.
Collapse
Affiliation(s)
- Jialiang Wei
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Department of Health Services, Fourth Military Medical University, Xi'an, China
| | - Xiuquan Wu
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Peng Luo
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Kangyi Yue
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yang Yu
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jingnan Pu
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Lei Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shuhui Dai
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Donghui Han
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhou Fei
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
34
|
Yang F, Liu Y, Ren H, Zhou G, Yuan X, Shi X. ER-stress regulates macrophage polarization through pancreatic EIF-2alpha kinase. Cell Immunol 2018; 336:40-47. [PMID: 30594305 DOI: 10.1016/j.cellimm.2018.12.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 12/04/2018] [Accepted: 12/20/2018] [Indexed: 02/08/2023]
Abstract
During the process of NAFLD progression, ER-stress is activated in macrophages and induces the pro-inflammatory polarization of macrophage. As one of the three ER membrane resident proteins, pancreatic eIF-2alpha kinase (PERK) plays an important role in ER stress, but its participation in macrophage polarization is largely unknown. In this study, we found that the PA mediated ER-stress activation could induce M1-type polarization in macrophages, and this phenotype polarization could be inhibited by ER-stress inhibitor 4-PBA as well as GSK2656157, an inhibitor of PERK. Moreover, the knockdown of PERK altered the STAT1 and STAT6 pathways in macrophages, which then led to the M1-to-M2 phenotypic shift. In summary, we found that PERK could regulate the phenotypic polarization of macrophages. This finding may provide new insight into the suppression of pathological progression of fatty liver or liver ischemia reperfusion injury induced by M1-type macrophages.
Collapse
Affiliation(s)
- Faji Yang
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321, Zhongshan Road, 210008 Nanjing, Jiangsu Province, China
| | - Yang Liu
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321, Zhongshan Road, 210008 Nanjing, Jiangsu Province, China
| | - Haozhen Ren
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321, Zhongshan Road, 210008 Nanjing, Jiangsu Province, China
| | - Guang Zhou
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321, Zhongshan Road, 210008 Nanjing, Jiangsu Province, China
| | - Xianwen Yuan
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321, Zhongshan Road, 210008 Nanjing, Jiangsu Province, China
| | - Xiaolei Shi
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321, Zhongshan Road, 210008 Nanjing, Jiangsu Province, China.
| |
Collapse
|
35
|
Hundertmark J, Krenkel O, Tacke F. Adapted Immune Responses of Myeloid-Derived Cells in Fatty Liver Disease. Front Immunol 2018; 9:2418. [PMID: 30405618 PMCID: PMC6200865 DOI: 10.3389/fimmu.2018.02418] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/01/2018] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is considered to be one of the most frequent chronic liver diseases worldwide and is associated with an increased risk of developing liver cirrhosis and hepatocellular carcinoma. Hepatic macrophages, mainly comprising monocyte derived macrophages and tissue resident Kupffer cells, are characterized by a high diversity and plasticity and act as key regulators during NAFLD progression, in conjunction with other infiltrating myeloid cells like neutrophils or dendritic cells. The activation and polarization of myeloid immune cells is influenced by dietary components, inflammatory signals like danger-associated molecular patterns (DAMPs) or cytokines as well as gut-derived inflammatory factors such as pathogen-associated molecular patterns (PAMPs). The functionality of myeloid leukocytes in the liver is directly linked to their inflammatory polarization, which is shaped by local and systemic inflammatory mediators such as cytokines, chemokines, PAMPs, and DAMPs. These environmental signals provoke intracellular adaptations in myeloid cells, including inflammasome and transcription factor activation, inflammatory signaling pathways, or switches in cellular metabolism. Dietary changes and obesity also promote a dysbalance in intestinal microbiota, which can facilitate intestinal permeability and bacterial translocation. The aim of this review is to highlight recent findings on the activating pathways of innate immune cells during the progression of NAFLD, dissecting local hepatic and systemic signals, dietary and metabolic factors as well as pathways of the gut-liver axis. Understanding the mechanism by which plasticity of myeloid-derived leukocytes is related to metabolic changes and NAFLD progression may provide options for new therapeutic approaches.
Collapse
Affiliation(s)
- Jana Hundertmark
- Department of Medicine III, University Hospital Aachen, Aachen, Germany
| | - Oliver Krenkel
- Department of Medicine III, University Hospital Aachen, Aachen, Germany
| | - Frank Tacke
- Department of Medicine III, University Hospital Aachen, Aachen, Germany
| |
Collapse
|
36
|
Xu X, Wang M, Li JZ, Wei SD, Wu H, Lai X, Cao D, Ou ZB, Gong J. Tauroursodeoxycholic acid alleviates hepatic ischemia reperfusion injury by suppressing the function of Kupffer cells in mice. Biomed Pharmacother 2018; 106:1271-1281. [DOI: 10.1016/j.biopha.2018.06.046] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 06/09/2018] [Accepted: 06/12/2018] [Indexed: 12/19/2022] Open
|
37
|
Yang F, Wang S, Liu Y, Zhou Y, Shang L, Feng M, Yuan X, Zhu W, Shi X. IRE1α aggravates ischemia reperfusion injury of fatty liver by regulating phenotypic transformation of kupffer cells. Free Radic Biol Med 2018; 124:395-407. [PMID: 29969718 DOI: 10.1016/j.freeradbiomed.2018.06.043] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/29/2018] [Accepted: 06/30/2018] [Indexed: 12/18/2022]
Abstract
Fatty liver is one of the widely accepted marginal donor for liver transplantation, but is also more sensitive to ischemia and reperfusion injury (IRI) and produces more reactive oxygen species (ROS). Moreover, so far, no effective method has been developed to alleviate it. Endoplasmic reticulum stress (ER-stress) of hepatocyte is associated with the occurrence of fatty liver disease, but ER-stress of kupffer cells (KCs) in fatty liver is not clear at all. This study evaluates whether ER-stress of KCs is activated in fatty liver and accelerate IRI of fatty livers. ER-stress of KCs was activated in fatty liver, especially the IRE1α signal pathway. KCs with activated ER-stress secreted more proinflammatory cytokine to induce its M1-phenotypic shift in fatty liver, resulting in more severe IRI. Also, activated ER-stress of BMDMs in vitro by tunicamycin can induce its pro-inflammatory shift and can be reduced by 4-PBA, an ER-stress inhibitor. Knockdown of IRE1α could regulate the STAT1 and STAT6 pathway of macrophage to inhibit the M1-type polarization and promote M2-phenotypic shift. Furthermore, transfusion of IRE1α-knockdown KCs significantly reduced the liver IRI as well as the ROS of HFD feeding mice. Altogether, these data demonstrated that IRE1α of KCs may be a potential target to reduce the fatty liver associated IRI in liver transplantation.
Collapse
Affiliation(s)
- Faji Yang
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321, Zhongshan Road, 210008 Nanjing, Jiangsu Province, China
| | - Shuai Wang
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321, Zhongshan Road, 210008 Nanjing, Jiangsu Province, China
| | - Yang Liu
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321, Zhongshan Road, 210008 Nanjing, Jiangsu Province, China
| | - Yuan Zhou
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321, Zhongshan Road, 210008 Nanjing, Jiangsu Province, China
| | - Longcheng Shang
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321, Zhongshan Road, 210008 Nanjing, Jiangsu Province, China
| | - Min Feng
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321, Zhongshan Road, 210008 Nanjing, Jiangsu Province, China
| | - Xianwen Yuan
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321, Zhongshan Road, 210008 Nanjing, Jiangsu Province, China
| | - Wei Zhu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321, Zhongshan Road, 210008 Nanjing, Jiangsu Province, China.
| | - Xiaolei Shi
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321, Zhongshan Road, 210008 Nanjing, Jiangsu Province, China.
| |
Collapse
|
38
|
Endoplasmic Reticulum Stress in Metabolic Disorders. Cells 2018; 7:cells7060063. [PMID: 29921793 PMCID: PMC6025008 DOI: 10.3390/cells7060063] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/12/2018] [Accepted: 06/14/2018] [Indexed: 02/06/2023] Open
Abstract
Metabolic disorders have become among the most serious threats to human health, leading to severe chronic diseases such as obesity, type 2 diabetes, and non-alcoholic fatty liver disease, as well as cardiovascular diseases. Interestingly, despite the fact that each of these diseases has different physiological and clinical symptoms, they appear to share certain pathological traits such as intracellular stress and inflammation induced by metabolic disturbance stemmed from over nutrition frequently aggravated by a modern, sedentary life style. These modern ways of living inundate cells and organs with saturating levels of sugar and fat, leading to glycotoxicity and lipotoxicity that induce intracellular stress signaling ranging from oxidative to ER stress response to cope with the metabolic insults (Mukherjee, et al., 2015). In this review, we discuss the roles played by cellular stress and its responses in shaping metabolic disorders. We have summarized here current mechanistic insights explaining the pathogenesis of these disorders. These are followed by a discussion of the latest therapies targeting the stress response pathways.
Collapse
|
39
|
Yao Y, Chen R, Ying C, Zhang G, Rui T, Tao A. Interleukin-33 attenuates doxorubicin-induced cardiomyocyte apoptosis through suppression of ASK1/JNK signaling pathway. Biochem Biophys Res Commun 2017; 493:1288-1295. [DOI: 10.1016/j.bbrc.2017.09.153] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 09/27/2017] [Indexed: 12/13/2022]
|