1
|
Achter JS, Vega ET, Sorrentino A, Kahnert K, Galsgaard KD, Hernandez-Varas P, Wierer M, Holst JJ, Wojtaszewski JFP, Mills RW, Kjøbsted R, Lundby A. In-depth phosphoproteomic profiling of the insulin signaling response in heart tissue and cardiomyocytes unveils canonical and specialized regulation. Cardiovasc Diabetol 2024; 23:258. [PMID: 39026321 PMCID: PMC11264841 DOI: 10.1186/s12933-024-02338-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/26/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Insulin signaling regulates cardiac substrate utilization and is implicated in physiological adaptations of the heart. Alterations in the signaling response within the heart are believed to contribute to pathological conditions such as type-2 diabetes and heart failure. While extensively investigated in several metabolic organs using phosphoproteomic strategies, the signaling response elicited in cardiac tissue in general, and specifically in the specialized cardiomyocytes, has not yet been investigated to the same extent. METHODS Insulin or vehicle was administered to male C57BL6/JRj mice via intravenous injection into the vena cava. Ventricular tissue was extracted and subjected to quantitative phosphoproteomics analysis to evaluate the insulin signaling response. To delineate the cardiomyocyte-specific response and investigate the role of Tbc1d4 in insulin signal transduction, cardiomyocytes from the hearts of cardiac and skeletal muscle-specific Tbc1d4 knockout mice, as well as from wildtype littermates, were studied. The phosphoproteomic studies involved isobaric peptide labeling with Tandem Mass Tags (TMT), enrichment for phosphorylated peptides, fractionation via micro-flow reversed-phase liquid chromatography, and high-resolution mass spectrometry measurements. RESULTS We quantified 10,399 phosphorylated peptides from ventricular tissue and 12,739 from isolated cardiomyocytes, localizing to 3,232 and 3,128 unique proteins, respectively. In cardiac tissue, we identified 84 insulin-regulated phosphorylation events, including sites on the Insulin Receptor (InsrY1351, Y1175, Y1179, Y1180) itself as well as the Insulin receptor substrate protein 1 (Irs1S522, S526). Predicted kinases with increased activity in response to insulin stimulation included Rps6kb1, Akt1 and Mtor. Tbc1d4 emerged as a major phosphorylation target in cardiomyocytes. Despite limited impact on the global phosphorylation landscape, Tbc1d4 deficiency in cardiomyocytes attenuated insulin-induced Glut4 translocation and induced protein remodeling. We observed 15 proteins significantly regulated upon knockout of Tbc1d4. While Glut4 exhibited decreased protein abundance consequent to Tbc1d4-deficiency, Txnip levels were notably increased. Stimulation of wildtype cardiomyocytes with insulin led to the regulation of 262 significant phosphorylation events, predicted to be regulated by kinases such as Akt1, Mtor, Akt2, and Insr. In cardiomyocytes, the canonical insulin signaling response is elicited in addition to regulation on specialized cardiomyocyte proteins, such as Kcnj11Y12 and DspS2597. Details of all phosphorylation sites are provided. CONCLUSION We present a first global outline of the insulin-induced phosphorylation signaling response in heart tissue and in isolated adult cardiomyocytes, detailing the specific residues with changed phosphorylation abundances. Our study marks an important step towards understanding the role of insulin signaling in cardiac diseases linked to insulin resistance.
Collapse
Affiliation(s)
- Jonathan Samuel Achter
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Estefania Torres Vega
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andrea Sorrentino
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Konstantin Kahnert
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Katrine Douglas Galsgaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pablo Hernandez-Varas
- Core Facility for Integrated Microscopy, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Wierer
- Proteomics Research Infrastructure, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Juul Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen Frank Pind Wojtaszewski
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Robert William Mills
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Kjøbsted
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Alicia Lundby
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
2
|
Lin Q, Kumar S, Kariyawasam U, Yang X, Yang W, Skinner JT, Gao WD, Johns RA. Human Resistin Induces Cardiac Dysfunction in Pulmonary Hypertension. J Am Heart Assoc 2023; 12:e027621. [PMID: 36927008 PMCID: PMC10111547 DOI: 10.1161/jaha.122.027621] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 03/18/2023]
Abstract
Background Cardiac failure is the primary cause of death in most patients with pulmonary arterial hypertension (PH). As pleiotropic cytokines, human resistin (Hresistin) and its rodent homolog, resistin-like molecule α, are mechanistically critical to pulmonary vascular remodeling in PH. However, it is still unclear whether activation of these resistin-like molecules can directly cause PH-associated cardiac dysfunction and remodeling. Methods and Results In this study, we detected Hresistin protein in right ventricular (RV) tissue of patients with PH and elevated resistin-like molecule expression in RV tissues of rodents with RV hypertrophy and failure. In a humanized mouse model, cardiac-specific Hresistin overexpression was sufficient to cause cardiac dysfunction and remodeling. Dilated hearts exhibited reduced force development and decreased intracellular Ca2+ transients. In the RV tissues overexpressing Hresistin, the impaired contractility was associated with the suppression of protein kinase A and AMP-activated protein kinase. Mechanistically, Hresistin activation triggered the inflammation mediated by signaling of the key damage-associated molecular pattern molecule high-mobility group box 1, and subsequently induced pro-proliferative Ki67 in RV tissues of the transgenic mice. Intriguingly, an anti-Hresistin human antibody that we generated protected the myocardium from hypertrophy and failure in the rodent PH models. Conclusions Our data indicate that Hresistin is expressed in heart tissues and plays a role in the development of RV dysfunction and maladaptive remodeling through its immunoregulatory activities. Targeting this signaling to modulate cardiac inflammation may offer a promising strategy to treat PH-associated RV hypertrophy and failure in humans.
Collapse
Affiliation(s)
- Qing Lin
- Department of Anesthesiology and Critical Care MedicineJohns Hopkins University School of MedicineBaltimoreMD
| | - Santosh Kumar
- Department of Anesthesiology and Critical Care MedicineJohns Hopkins University School of MedicineBaltimoreMD
| | - Udeshika Kariyawasam
- Department of Anesthesiology and Critical Care MedicineJohns Hopkins University School of MedicineBaltimoreMD
| | - Xiaomei Yang
- Department of Anesthesiology and Critical Care MedicineJohns Hopkins University School of MedicineBaltimoreMD
- Department of AnesthesiologyQilu Hospital, Cheeloo College of Medicine, Shandong UniversityJinanChina
| | - Wei Yang
- Department of Anesthesiology and Critical Care MedicineJohns Hopkins University School of MedicineBaltimoreMD
- Department of Cardiovascular MedicineXiangya Hospital, Central South UniversityChangshaChina
| | - John T. Skinner
- Department of Anesthesiology and Critical Care MedicineJohns Hopkins University School of MedicineBaltimoreMD
| | - Wei Dong Gao
- Department of Anesthesiology and Critical Care MedicineJohns Hopkins University School of MedicineBaltimoreMD
| | - Roger A. Johns
- Department of Anesthesiology and Critical Care MedicineJohns Hopkins University School of MedicineBaltimoreMD
| |
Collapse
|
3
|
Chhabra A, Jain N, Varshney R, Sharma M. H2S regulates redox signaling downstream of cardiac β-adrenergic receptors in a G6PD-dependent manner. Cell Signal 2023; 107:110664. [PMID: 37004833 DOI: 10.1016/j.cellsig.2023.110664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/04/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Stimulating β-adrenergic receptors (β-AR) culminates in pathological hypertrophy - a condition underlying multiple cardiovascular diseases (CVDs). The ensuing signal transduction network appears to involve mutually communicating phosphorylation-cascades and redox signaling modules, although the regulators of redox signaling processes remain largely unknown. We previously showed that H2S-induced Glucose-6-phosphate dehydrogenase (G6PD) activity is critical for suppressing cardiac hypertrophy in response to adrenergic stimulation. Here, we extended our findings and identified novel H2S-dependent pathways constraining β-AR-induced pathological hypertrophy. We demonstrated that H2S regulated early redox signal transduction processes - including suppression of cue-dependent production of reactive oxygen species (ROS) and oxidation of cysteine thiols (R-SOH) on critical signaling intermediates (including AKT1/2/3 & ERK1/2). Consistently, the maintenance of intracellular levels of H2S dampened the transcriptional signature associated with pathological hypertrophy upon β-AR-stimulation, as demonstrated by RNA-seq analysis. We further prove that H2S remodels cell metabolism by promoting G6PD activity to enforce changes in the redox state that favor physiological cardiomyocyte growth over pathological hypertrophy. Thus, our data suggest that G6PD is an effector of H2S-mediated suppression of pathological hypertrophy and that the accumulation of ROS in the G6PD-deficient background can drive maladaptive remodeling. Our study reveals an adaptive role for H2S relevant to basic and translational studies. Identifying adaptive signaling mediators of the β-AR-induced hypertrophy may reveal new therapeutic targets and routes for CVD therapy optimization.
Collapse
Affiliation(s)
- Aastha Chhabra
- Peptide & Proteomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi 110054, India
| | - Neha Jain
- Peptide & Proteomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi 110054, India
| | - Rajeev Varshney
- Peptide & Proteomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi 110054, India
| | - Manish Sharma
- Peptide & Proteomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi 110054, India.
| |
Collapse
|
4
|
Tadinada SM, Grzesik WJ, Kutschke W, Weiss RM, Abel ED. Acute effects of euglycemic-hyperinsulinemia on myocardial contractility in male mice. Physiol Rep 2022; 10:e15388. [PMID: 36073057 PMCID: PMC9453172 DOI: 10.14814/phy2.15388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 06/19/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023] Open
Abstract
Type 2 diabetes and obesity are associated with increased risk of cardiovascular disease, including heart failure. A hallmark of these dysmetabolic states is hyperinsulinemia and decreased cardiac reserve. However, the direct effects of hyperinsulinemia on myocardial function are incompletely understood. In this study, using invasive hemodynamics in mice, we studied the effects of short-term euglycemic hyperinsulinemia on basal myocardial function and subsequent responses of the myocardium to β-adrenergic stimulation. We found that cardiac function as measured by left ventricular (LV) invasive hemodynamics is not influenced by acute exposure to hyperinsulinemia, induced by an intravenous insulin injection with concurrent inotropic stimulation induced by β-adrenergic stimulation secondary to isoproterenol administration. When animals were exposed to 120-min of hyperinsulinemia by euglycemic-hyperinsulinemic clamps, there was a significant decrease in LV developed pressure, perhaps secondary to the systemic vasodilatory effects of insulin. Despite the baseline reduction, the contractile response to β-adrenergic stimulation remained intact in animals subject to euglycemic hyperinsulinemic clamps. β-adrenergic activation of phospholamban phosphorylation was not impaired by hyperinsulinemia. These results suggest that short-term hyperinsulinemia does not impair cardiac inotropic response to β-adrenergic stimulation in vivo.
Collapse
Affiliation(s)
- Satya Murthy Tadinada
- Department of Neuroscience and Pharmacology, Carver College of MedicineUniversity of IowaIowa CityIowaUSA
- Fraternal Order of Eagles Diabetes Research Center, Carver College of MedicineUniversity of IowaIowa CityIowaUSA
| | - Wojciech J. Grzesik
- Fraternal Order of Eagles Diabetes Research Center, Carver College of MedicineUniversity of IowaIowa CityIowaUSA
| | - William Kutschke
- Abboud Cardiovascular Research Center, Carver College of MedicineUniversity of IowaIowa CityIowaUSA
| | - Robert M. Weiss
- Abboud Cardiovascular Research Center, Carver College of MedicineUniversity of IowaIowa CityIowaUSA
- Division of Cardiology, Department of Internal Medicine, Carver College of MedicineUniversity of IowaIowa CityIowaUSA
| | - E. Dale Abel
- Department of Neuroscience and Pharmacology, Carver College of MedicineUniversity of IowaIowa CityIowaUSA
- Fraternal Order of Eagles Diabetes Research Center, Carver College of MedicineUniversity of IowaIowa CityIowaUSA
- Abboud Cardiovascular Research Center, Carver College of MedicineUniversity of IowaIowa CityIowaUSA
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Carver College of MedicineUniversity of IowaIowa CityIowaUSA
- Department of MedicineUniversity of California Los AngelesLos AngelesCaliforniaUSA
| |
Collapse
|
5
|
Tamagno WA, de Oliveira Sofiatti JR, Alves C, Sutorillo NT, Vanin AP, Bilibio D, Pompermaier A, Barcellos LJG. Synthetic estrogen bioaccumulates and changes the behavior and biochemical biomarkers in adult zebrafish. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 92:103857. [PMID: 35342012 DOI: 10.1016/j.etap.2022.103857] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/03/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Estrogen is considered to be an endocrine disrupter and is becoming increasingly more prevalent in the daily life of humans. In some cases, estrogen is not fully metabolized by organisms and may be excreted in either its original form or in organic complex forms, into water residue systems reaching concentrations of 0.05 ng.L-1 to 75 ng.L-1. However, estrogen 17α-ethinylestradiol (EE2), which is used in oral contraceptives, is very difficult to remove from water. Here, we evaluated whether the synthetic hormone, EE2, affects the nervous system and the behavior of adult zebrafish. We established a range of concentrations (0.05, 0.5, 5, 50, and 75 ng.L-1), in addition to the control, to evaluate the effect of this compound and its bioaccumulation in zebrafish tissues. Here we show that EE2 bioaccumulates in fish and can change its behavior with an increased time in the upper zone (novel tank test) and far from the shoal segment (social preference test), demonstrating a clear anxiolytic pattern. The anxiolytic effect of EE2 can be harmful as it can affect the stress response of the species. The results presented herein reinforce the idea that the presence of EE2 in environmental water can be dangerous for non-target animals.
Collapse
Affiliation(s)
- Wagner Antonio Tamagno
- Biochemistry and Molecular Biology Laboratory of the Federal Institute of Education, Science, and Technology of Rio Grande do Sul - Sertão Campus, City of Sertão, State of Rio Grande do Sul, Brazil; Graduate Program in Pharmacology, Universidade Federal de Santa Maria, Av. Roraima, 1000, Cidade Universitária, Camobi, Santa Maria, RS 97105-900, Brazil.
| | - Jessica Reis de Oliveira Sofiatti
- Graduate Program in Environmental Science and Technology, Federal University of Fronteira Sul (UFFS) - Erechim Campus, City of Erechim, State of Rio Grande do Sul, Brazil.
| | - Carla Alves
- Graduate Program in Bioexperimentation and Graduate Program in Environmental Science, Universidade de Passo Fundo, BR 285, São José, Passo Fundo, RS 99052-900, Brazil.
| | - Nathália Tafarel Sutorillo
- Biochemistry and Molecular Biology Laboratory of the Federal Institute of Education, Science, and Technology of Rio Grande do Sul - Sertão Campus, City of Sertão, State of Rio Grande do Sul, Brazil.
| | - Ana Paula Vanin
- Graduate Program in Environmental Science and Technology, Federal University of Fronteira Sul (UFFS) - Erechim Campus, City of Erechim, State of Rio Grande do Sul, Brazil.
| | - Denise Bilibio
- Biochemistry and Molecular Biology Laboratory of the Federal Institute of Education, Science, and Technology of Rio Grande do Sul - Sertão Campus, City of Sertão, State of Rio Grande do Sul, Brazil.
| | - Aline Pompermaier
- Graduate Program in Bioexperimentation and Graduate Program in Environmental Science, Universidade de Passo Fundo, BR 285, São José, Passo Fundo, RS 99052-900, Brazil.
| | - Leonardo José Gil Barcellos
- Graduate Program in Bioexperimentation and Graduate Program in Environmental Science, Universidade de Passo Fundo, BR 285, São José, Passo Fundo, RS 99052-900, Brazil; Graduate Program in Pharmacology, Universidade Federal de Santa Maria, Av. Roraima, 1000, Cidade Universitária, Camobi, Santa Maria, RS 97105-900, Brazil.
| |
Collapse
|
6
|
Zhang L, Jian X, Yu J, Yu J. Pterostilbene Interferes With Lipopolysaccharide-Induced Myocardial Injury Through Oxidative Stress and Inflammasome Pathways. Front Physiol 2022; 13:862187. [PMID: 35399278 PMCID: PMC8988132 DOI: 10.3389/fphys.2022.862187] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Myocardial contractile dysfunction caused by sepsis is a serious threat to human health, and its pathogenesis is not completely clear. It is generally believed that excessive inflammation and oxidative stress are the main causes of myocardial damage caused by sepsis. Pterostilbene (PTS) has a variety of biological activities, including anti-oxidant, anti-inflammatory, and anti-aging. Whether PTS protect myocardial function in rats with sepsis through anti-inflammatory and anti-oxidant effects has not been reported. In this study, we investigated the role of PTS in septic mice induced by lipopolysaccharide (LPS). Mice were injected intraperitoneally with LPS (20 mg/kg) to simulate sepsis. Use Echocardiography, Masson, DHE, H&E, IHC, IF and other experimental methods to explore the effects of PTS on LPS. The results showed that PTS was indicated to significantly increase the cardiac function of mice with sepsis. PTS treatment also reduced the mRNA expression of IL-1α, IL-6, MCP-1, and IL-1β and the protein expression of NLRP3 in vivo and in vitro, and inhibited the migration of inflammatory cells. PTS treatment also reduced the mRNA expression of collagen I, collagen III and α-SMA, and inhibited fibrosis. PTS treatment reduced the mRNA expression of NOX1, NOX2, and NOX4 and inhibited DHE levels in vivo and in vitro. In summary, our data indicated that PTS played a crucial role in LPS-induced myocardial injured and might be a key target for the prevention and treatment of sepsis-induced myocardial dysfunction.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiao Jian
- Department of Nutrition, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jiachuan Yu
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- *Correspondence: Jiachuan Yu,
| | - Jian Yu
- Department of Critical Care Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Jian Yu,
| |
Collapse
|
7
|
Sorrentino A, Bagwan N, Linscheid N, Poulsen PC, Kahnert K, Thomsen MB, Delmar M, Lundby A. Beta-blocker/ACE inhibitor therapy differentially impacts the steady state signaling landscape of failing and non-failing hearts. Sci Rep 2022; 12:4760. [PMID: 35306519 PMCID: PMC8934364 DOI: 10.1038/s41598-022-08534-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 03/09/2022] [Indexed: 11/25/2022] Open
Abstract
Heart failure is a multifactorial disease that affects an estimated 38 million people worldwide. Current pharmacotherapy of heart failure with reduced ejection fraction (HFrEF) includes combination therapy with angiotensin-converting enzyme inhibitors (ACEi) and β-adrenergic receptor blockers (β-AR blockers), a therapy also used as treatment for non-cardiac conditions. Our knowledge of the molecular changes accompanying treatment with ACEi and β-AR blockers is limited. Here, we applied proteomics and phosphoproteomics approaches to profile the global changes in protein abundance and phosphorylation state in cardiac left ventricles consequent to combination therapy of β-AR blocker and ACE inhibitor in HFrEF and control hearts. The phosphorylation changes induced by treatment were profoundly different for failing than for non-failing hearts. HFrEF was characterized by profound downregulation of mitochondrial proteins coupled with derangement of β-adrenergic and pyruvate dehydrogenase signaling. Upon treatment, phosphorylation changes consequent to HFrEF were reversed. In control hearts, treatment mainly led to downregulation of canonical PKA signaling. The observation of divergent signaling outcomes depending on disease state underscores the importance of evaluating drug effects within the context of the specific conditions present in the recipient heart.
Collapse
Affiliation(s)
- Andrea Sorrentino
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Navratan Bagwan
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Nora Linscheid
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Pi C Poulsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Konstantin Kahnert
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Morten B Thomsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Mario Delmar
- Leon H Charney Division of Cardiology, NYU School of Medicine, New York, NY, USA
| | - Alicia Lundby
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark.
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark.
| |
Collapse
|
8
|
Varma D, Almeida JFQ, DeSantiago J, Blatter LA, Banach K. Inositol 1,4,5-trisphosphate receptor - reactive oxygen signaling domain regulates excitation-contraction coupling in atrial myocytes. J Mol Cell Cardiol 2022; 163:147-155. [PMID: 34755642 PMCID: PMC8826595 DOI: 10.1016/j.yjmcc.2021.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 09/03/2021] [Accepted: 10/13/2021] [Indexed: 02/03/2023]
Abstract
The inositol 1,4,5-trisphosphate receptor (InsP3R) is up-regulated in patients with atrial fibrillation (AF) and InsP3-induced Ca2+ release (IICR) is linked to pro-arrhythmic spontaneous Ca2+ release events. Nevertheless, knowledge of the physiological relevance and regulation of InsP3Rs in atrial muscle is still limited. We hypothesize that InsP3R and NADPH oxidase 2 (NOX2) form a functional signaling domain where NOX2 derived reactive oxygen species (ROS) regulate InsP3R agonist affinity and thereby Ca2+ release. To quantitate the contribution of IICR to atrial excitation-contraction coupling (ECC) atrial myocytes (AMs) were isolated from wild type and NOX2 deficient (Nox2-/-) mice and changes in the cytoplasmic Ca2+ concentration ([Ca2+]i; fluo-4/AM, indo-1) or ROS (2',7'-dichlorofluorescein, DCF) were monitored by fluorescence microscopy. Superfusion of AMs with Angiotensin II (AngII: 1 μmol/L) significantly increased diastolic [Ca2+]i (F/F0, Ctrl: 1.00 ± 0.01, AngII: 1.20 ± 0.03; n = 7; p < 0.05), the field stimulation induced Ca2+ transient (CaT) amplitude (ΔF/F0, Ctrl: 2.00 ± 0.17, AngII: 2.39 ± 0.22, n = 7; p < 0.05), and let to the occurrence of spontaneous increases in [Ca2+]i. These changes in [Ca2+]i were suppressed by the InsP3R blocker 2-aminoethoxydiphenyl-borate (2-APB; 1 μmol/L). Concomitantly, AngII induced an increase in ROS production that was sensitive to the NOX2 specific inhibitor gp91ds-tat (1 μmol/L). In NOX2-/- AMs, AngII failed to increase diastolic [Ca2+]i, CaT amplitude, and the frequency of spontaneous Ca2+ increases. Furthermore, the enhancement of CaTs by exposure to membrane permeant InsP3 was abolished by NOX inhibition with apocynin (1 μM). AngII induced IICR in Nox2-/- AMs could be restored by addition of exogenous ROS (tert-butyl hydroperoxide, tBHP: 5 μmol/L). In saponin permeabilized AMs InsP3 (5 μmol/L) induced Ca2+ sparks that increased in frequency in the presence of ROS (InsP3: 9.65 ± 1.44 sparks*s-1*(100μm)-1; InsP3 + tBHP: 10.77 ± 1.5 sparks*s-1*(100μm)-1; n = 5; p < 0.05). The combined effect of InsP3 + tBHP was entirely suppressed by 2-APB and Xestospongine C (XeC). Changes in IICR due to InsP3R glutathionylation induced by diamide could be reversed by the reducing agent dithiothreitol (DTT: 1 mmol/L) and prevented by pretreatment with 2-APB, supporting that the ROS-dependent post-translational modification of the InsP3R plays a role in the regulation of ECC. Our data demonstrate that in AMs the InsP3R is under dual control of agonist induced InsP3 and ROS formation and suggest that InsP3 and NOX2-derived ROS co-regulate atrial IICR and ECC in a defined InsP3R/NOX2 signaling domain.
Collapse
Affiliation(s)
- Disha Varma
- Dept. of Internal Medicine/Cardiology, Rush University Medical Center, 1750 W. Harrison St, Chicago, IL 60612, USA.
| | - Jonathas F Q Almeida
- Dept. of Internal Medicine/Cardiology, Rush University Medical Center, 1750 W. Harrison St, Chicago, IL 60612, USA.
| | - Jaime DeSantiago
- Dept. of Physiology & Biophysics, Rush University Medical Center, 1750 W. Harrison St, Chicago, IL 60612, USA.
| | - Lothar A Blatter
- Dept. of Physiology & Biophysics, Rush University Medical Center, 1750 W. Harrison St, Chicago, IL 60612, USA.
| | - Kathrin Banach
- Dept. of Internal Medicine/Cardiology, Rush University Medical Center, 1750 W. Harrison St, Chicago, IL 60612, USA.
| |
Collapse
|
9
|
Chen QM. Nrf2 for protection against oxidant generation and mitochondrial damage in cardiac injury. Free Radic Biol Med 2022; 179:133-143. [PMID: 34921930 DOI: 10.1016/j.freeradbiomed.2021.12.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/16/2021] [Accepted: 12/01/2021] [Indexed: 02/06/2023]
Abstract
Myocardial infarction is the most common form of acute coronary syndrome. Blockage of a coronary artery due to blood clotting leads to ischemia and subsequent cell death in the form of necrosis, apoptosis, necroptosis and ferroptosis. Revascularization by coronary artery bypass graft surgery or non-surgical percutaneous coronary intervention combined with pharmacotherapy is effective in relieving symptoms and decreasing mortality. However, reactive oxygen species (ROS) are generated from damaged mitochondria, NADPH oxidases, xanthine oxidase, and inflammation. Impairment of mitochondria is shown as decreased metabolic activity, increased ROS production, membrane permeability transition, and release of mitochondrial proteins into the cytoplasm. Oxidative stress activates Nrf2 transcription factor, which in turn mediates the expression of mitofusin 2 (Mfn 2) and proteasomal genes. Increased expression of Mfn2 and inhibition of mitochondrial fission due to decreased Drp1 protein by proteasomal degradation contribute to mitochondrial hyperfusion. Damaged mitochondria can be removed by mitophagy via Parkin or p62 mediated ubiquitination. Mitochondrial biogenesis compensates for the loss of mitochondria, but requires mitochondrial DNA replication and initiation of transcription or translation of mitochondrial genes. Experimental evidence supports a role of Nrf2 in mitophagy, via up-regulation of PINK1 or p62 gene expression; and in mitochondrial biogenesis, by influencing the expression of PGC-1α, NResF1, NResF2, TFAM and mitochondrial genes. Oxidative stress causes Nrf2 activation via Keap1 dissociation, de novo protein translation, and nuclear translocation related to inactivation of GSK3β. The mechanism of Keap 1 mediated Nrf2 activation has been hijacked for Nrf2 activation by small molecules derived from natural products, some of which have been shown capable of mitochondrial protection. Multiple lines of evidence support the importance of Nrf2 in protecting mitochondria and preserving or renewing energy metabolism following tissue injury.
Collapse
Affiliation(s)
- Qin M Chen
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Arizona, 1295 N. Martin Avenue, Tucson, AZ, 85721, United States.
| |
Collapse
|
10
|
Steinhorn B, Eroglu E, Michel T. Chemogenetic Approaches to Probe Redox Pathways: Implications for Cardiovascular Pharmacology and Toxicology. Annu Rev Pharmacol Toxicol 2022; 62:551-571. [PMID: 34530645 PMCID: PMC10507364 DOI: 10.1146/annurev-pharmtox-012221-082339] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chemogenetics refers to experimental systems that dynamically regulate the activity of a recombinant protein by providing or withholding the protein's specific biochemical stimulus. Chemogenetic tools permit precise dynamic control of specific signaling molecules to delineate the roles of those molecules in physiology and disease. Yeast d-amino acid oxidase (DAAO) enables chemogenetic manipulation of intracellular redox balance by generating hydrogen peroxide only in the presence of d-amino acids. Advances in biosensors have allowed the precise quantitation of these signaling molecules. The combination of chemogenetic approaches with biosensor methodologies has opened up new lines of investigation, allowing the analysis of intracellular redox pathways that modulate physiological and pathological cell responses. We anticipate that newly developed transgenic chemogenetic models will permit dynamic modulation of cellularredox balance in diverse cells and tissues and will facilitate the identification and validation of novel therapeutic targets involved in both physiological redox pathways and pathological oxidative stress.
Collapse
Affiliation(s)
- Benjamin Steinhorn
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Emrah Eroglu
- Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
- Department of Molecular Biology and Biochemistry, Medical University of Graz, 8036 Graz, Austria
| | - Thomas Michel
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA;
| |
Collapse
|
11
|
Insulin signaling alters antioxidant capacity in the diabetic heart. Redox Biol 2021; 47:102140. [PMID: 34560411 PMCID: PMC8473541 DOI: 10.1016/j.redox.2021.102140] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 12/22/2022] Open
Abstract
Diabetic cardiomyopathy is associated with an increase in oxidative stress. However, antioxidant therapy has shown a limited capacity to mitigate disease pathology. The molecular mechanisms responsible for the modulation of reactive oxygen species (ROS) production and clearance must be better defined. The objective of this study was to determine how insulin affects superoxide radical (O2•–) levels. O2•– production was evaluated in adult cardiomyocytes isolated from control and Akita (type 1 diabetic) mice by spin-trapping electron paramagnetic resonance spectroscopy. We found that the basal rates of O2•– production were comparable in control and Akita cardiomyocytes. However, culturing cardiomyocytes without insulin resulted in a significant increase in O2•– production only in the Akita group. In contrast, O2•– production was unaffected by high glucose and/or fatty acid supplementation. The increase in O2•– was due in part to a decrease in superoxide dismutase (SOD) activity. The PI3K inhibitor, LY294002, decreased Akita SOD activity when insulin was present, indicating that the modulation of antioxidant activity is through insulin signaling. The effect of insulin on mitochondrial O2•– production was evaluated in Akita mice that underwent a 1-week treatment of insulin. Mitochondria isolated from insulin-treated Akita mice produced less O2•– than vehicle-treated diabetic mice. Quantitative proteomics was performed on whole heart homogenates to determine how insulin affects antioxidant protein expression. Of 29 antioxidant enzymes quantified, thioredoxin 1 was the only one that was significantly enhanced by insulin treatment. In vitro analysis of thioredoxin 1 revealed a previously undescribed capacity of the enzyme to directly scavenge O2•–. These findings demonstrate that insulin has a role in mitigating cardiac oxidative stress in diabetes via regulation of endogenous antioxidant activity. Insulin decreases ROS production in T1D Akita cardiomyocytes. Insulin signaling downstream of PI3K is required for this effect. Insulin increases the antioxidant capacity in the Akita heart. Trx1 is upregulated by insulin in the Akita heart in vivo.
Collapse
|
12
|
Abstract
Insulin receptors are highly expressed in the heart and vasculature. Insulin signaling regulates cardiac growth, survival, substrate uptake, utilization, and mitochondrial metabolism. Insulin signaling modulates the cardiac responses to physiological and pathological stressors. Altered insulin signaling in the heart may contribute to the pathophysiology of ventricular remodeling and heart failure progression. Myocardial insulin signaling adapts rapidly to changes in the systemic metabolic milieu. What may initially represent an adaptation to protect the heart from carbotoxicity may contribute to amplifying the risk of heart failure in obesity and diabetes. This review article presents the multiple roles of insulin signaling in cardiac physiology and pathology and discusses the potential therapeutic consequences of modulating myocardial insulin signaling.
Collapse
Affiliation(s)
- E Dale Abel
- Division of Endocrinology, Metabolism and Diabetes and Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
13
|
Redox regulation of the insulin signalling pathway. Redox Biol 2021; 42:101964. [PMID: 33893069 PMCID: PMC8113030 DOI: 10.1016/j.redox.2021.101964] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/19/2021] [Accepted: 03/29/2021] [Indexed: 12/11/2022] Open
Abstract
The peptide hormone insulin is a key regulator of energy metabolism, proliferation and survival. Binding of insulin to its receptor activates the PI3K/AKT signalling pathway, which mediates fundamental cellular responses. Oxidants, in particular H2O2, have been recognised as insulin-mimetics. Treatment of cells with insulin leads to increased intracellular H2O2 levels affecting the activity of downstream signalling components, thereby amplifying insulin-mediated signal transduction. Specific molecular targets of insulin-stimulated H2O2 include phosphatases and kinases, whose activity can be altered via redox modifications of critical cysteine residues. Over the past decades, several of these redox-sensitive cysteines have been identified and their impact on insulin signalling evaluated. The aim of this review is to summarise the current knowledge on the redox regulation of the insulin signalling pathway.
Collapse
|
14
|
Naryzhnaya NV, Koshelskaya OA, Kologrivova IV, Kharitonova OA, Evtushenko VV, Boshchenko AA. Hypertrophy and Insulin Resistance of Epicardial Adipose Tissue Adipocytes: Association with the Coronary Artery Disease Severity. Biomedicines 2021; 9:64. [PMID: 33440802 PMCID: PMC7827040 DOI: 10.3390/biomedicines9010064] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 12/18/2022] Open
Abstract
Changes in the structural and functional characteristics of the epicardial adipose tissue (EAT) are recognized as one of the factors in the development of cardiometabolic diseases. However, the generally accepted quantitative assessment of the accumulation of EAT does not reflect the size of adipocyte and presence of adipocyte hypertrophy in this fat depot. Overall contribution of adipocyte hypertrophy to the development and progression of coronary atherosclerosis remains unexplored. Objective: To compare the morphological characteristics of EAT adipocyte and its sensitivity to insulin with the CAD severity, as well as to identify potential factors involved in the realization of this relationship. The present study involved 24 patients (m/f 16/8) aged 53-72 years with stable CAD, who underwent coronary artery bypass graft surgery. Adipocytes were isolated enzymatically from EAT explants obtained during the operation. The severity of CAD was assessed by calculating the Gensini score according to selective coronary angiography. Insulin resistance of EAT adipocytes was evaluated by reactivity to insulin. In patients with an average size of EAT adipocytes equal to or exceeding the median (87 μm) the percentage of hypertrophic adipocytes was twice as high as in patients in whom the average size of adipocytes was less than 87 μm. This group of patients was also characterized by the higher rate of the Gensini score, lower adiponectin levels, and more severe violation of carbohydrate metabolism. We have revealed direct nonparametric correlation between the size of EAT adipocytes and the Gensini score (rs = 0.56, p = 0.00047). The number of hypertrophic EAT adipocytes showed a direct nonparametric correlation with the Gensini score (rs = 0.6, p = 0.002). Inverse nonparametric correlations were found between the serum adiponectin level and size (rs = -0.60, p = 0.001), hypertrophy of adipocytes (rs = -0.67, p = 0.00), and Gensini score (rs = -0.81, p = 0.00007). An inverse nonparametric correlation was found between the Gensini score and sensitivity of EAT adipocytes to insulin, estimated by the intracellular redox response (rs = -0.90, p = 0.037) and decrease in lipolysis rate upon insulin addition (rs = -0.40, p = 0.05). The intracellular redox response of adipocytes to insulin was directly correlated with fasting insulin and inversely with postprandial insulin. Our data indicate that the size and degree of hypertrophy of the epicardial adipocytes are related to the CAD severity. According to our results, insulin resistance of adipocytes may be considered as one of the factors mediating this relationship.
Collapse
Affiliation(s)
- Natalia V. Naryzhnaya
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Science, 634050 Tomsk, Russia; (O.A.K.); (I.V.K.); (O.A.K.); (V.V.E.); (A.A.B.)
| | | | | | | | | | | |
Collapse
|
15
|
Erdogan BR, Michel MC, Arioglu-Inan E. Expression and Signaling of β-Adrenoceptor Subtypes in the Diabetic Heart. Cells 2020; 9:cells9122548. [PMID: 33256212 PMCID: PMC7759850 DOI: 10.3390/cells9122548] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 12/18/2022] Open
Abstract
Diabetes is a chronic, endocrine disorder that effects millions of people worldwide. Cardiovascular complications are the major cause of diabetes-related morbidity and mortality. Cardiac β1- and β2-adrenoceptor (AR) stimulation mediates positive inotropy and chronotropy, whereas β3-AR mediates negative inotropic effect. Changes in β-AR responsiveness are thought to be an important factor that contributes to the diabetic cardiac dysfunction. Diabetes related changes in β-AR expression, signaling, and β-AR mediated cardiac function have been studied by several investigators for many years. In the present review, we have screened PubMed database to obtain relevant articles on this topic. Our search has ended up with wide range of different findings about the effect of diabetes on β-AR mediated changes both in molecular and functional level. Considering these inconsistent findings, the effect of diabetes on cardiac β-AR still remains to be clarified.
Collapse
Affiliation(s)
- Betul R. Erdogan
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, 06560 Ankara, Turkey;
- Department of Pharmacology, Faculty of Pharmacy, Izmir Katip Celebi University, 35620 Izmir, Turkey
| | - Martin C. Michel
- Department of Pharmacology, Johannes Gutenberg University, 55131 Mainz, Germany;
| | - Ebru Arioglu-Inan
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, 06560 Ankara, Turkey;
- Correspondence:
| |
Collapse
|
16
|
Oxymatrine Ameliorates Memory Impairment in Diabetic Rats by Regulating Oxidative Stress and Apoptosis: Involvement of NOX2/NOX4. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3912173. [PMID: 33273999 PMCID: PMC7683156 DOI: 10.1155/2020/3912173] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 08/11/2020] [Accepted: 10/28/2020] [Indexed: 01/09/2023]
Abstract
Oxymatrine (OMT) is the major quinolizidine alkaloid extracted from the root of Sophora flavescens Ait and has been shown to exhibit a diverse range of pharmacological properties. The aim of the present study was to investigate the role of OMT in diabetic brain injury in vivo and in vitro. Diabetic rats were induced by intraperitoneal injection of a single dose of 65 mg/kg streptozotocin (STZ) and fed a high-fat and high-cholesterol diet. Memory function was assessed using a Morris water maze test. A SH-SY5Y cell injury model was induced by incubation with glucose (30 mM/l) to simulate damage in vitro. The serum fasting blood glucose, insulin, serum S100B, malondialdehyde (MDA), and superoxide dismutase (SOD) levels were analyzed using commercial kits. Morphological changes were observed using Nissl staining and electron microscopy. Cell apoptosis was assessed using Hoechst staining and TUNEL staining. NADPH oxidase (NOX) and caspase-3 activities were determined. The effects of NOX2 and NOX4 knockdown were assessed using small interfering RNA. The expression levels of NOX1, NOX2, and NOX4 were detected using reverse transcription-quantitative PCR and western blotting, and the levels of caspase-3 were detected using western blotting. The diabetic rats exhibited significantly increased plasma glucose, insulin, reactive oxygen species (ROS), S-100B, and MDA levels and decreased SOD levels. Memory function was determined by assessing the percentage of time spent in the target quadrant, the number of times the platform was crossed, escape latency, and mean path length and was found to be significantly reduced in the diabetic rats. Hyperglycemia resulted in notable brain injury, including histological changes and apoptosis in the cortex and hippocampus. The expression levels of NOX2 and NOX4 were significantly upregulated at the protein and mRNA levels, and NOX1 expression was not altered in the diabetic rats. NOX and caspase-3 activities were increased, and caspase-3 expression was upregulated in the brain tissue of diabetic rats. OMT treatment dose-dependently reversed behavioral, biochemical, and molecular changes in the diabetic rats. In vitro, high glucose resulted in increases in reactive oxygen species (ROS), MDA levels, apoptosis, and the expressions of NOX2, NOX4, and caspase-3. siRNA-mediated knockdown of NOX2 and NOX4 decreased NOX2 and NOX4 expression levels, respectively, and reduced ROS levels and apoptosis. The results of the present study suggest that OMT alleviates diabetes-associated cognitive decline, oxidative stress, and apoptosis via NOX2 and NOX4 inhibition.
Collapse
|
17
|
Simmen FA, Alhallak I, Simmen RCM. Malic enzyme 1 (ME1) in the biology of cancer: it is not just intermediary metabolism. J Mol Endocrinol 2020; 65:R77-R90. [PMID: 33064660 PMCID: PMC7577320 DOI: 10.1530/jme-20-0176] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/11/2020] [Indexed: 12/25/2022]
Abstract
Malic enzyme 1 (ME1) is a cytosolic protein that catalyzes the conversion of malate to pyruvate while concomitantly generating NADPH from NADP. Early studies identified ME1 as a mediator of intermediary metabolism primarily through its participatory roles in lipid and cholesterol biosynthesis. ME1 was one of the first identified insulin-regulated genes in liver and adipose and is a transcriptional target of thyroxine. Multiple studies have since documented that ME1 is pro-oncogenic in numerous epithelial cancers. In tumor cells, the reduction of ME1 gene expression or the inhibition of its activity resulted in decreases in proliferation, epithelial-to-mesenchymal transition and in vitro migration, and conversely, in promotion of oxidative stress, apoptosis and/or cellular senescence. Here, we integrate recent findings to highlight ME1's role in oncogenesis, provide a rationale for its nexus with metabolic syndrome and diabetes, and raise the prospects of targeting the cytosolic NADPH network to improve therapeutic approaches against multiple cancers.
Collapse
Affiliation(s)
- Frank A Simmen
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Iad Alhallak
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Rosalia C M Simmen
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
18
|
Sweeny EA, Schlanger S, Stuehr DJ. Dynamic regulation of NADPH oxidase 5 by intracellular heme levels and cellular chaperones. Redox Biol 2020; 36:101656. [PMID: 32738790 PMCID: PMC7394750 DOI: 10.1016/j.redox.2020.101656] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/13/2020] [Accepted: 07/21/2020] [Indexed: 12/15/2022] Open
Abstract
NADPH oxidase 5 (NOX5) is a transmembrane signaling enzyme that produces superoxide in response to elevated cytosolic calcium. In addition to its association with numerous human diseases, NOX5 has recently been discovered to play crucial roles in the immune response and cardiovascular system. Details of NOX5 maturation, and specifically its response to changes in intracellular heme levels have remained unclear. Here we establish an experimental system in mammalian cells that allows us to probe the influence of heme availability on ROS production by NOX5. We identified a mode of dynamic regulatory control over NOX5 activity through modulation of its heme saturation and oligomeric state by intracellular heme levels and Hsp90 binding. This regulatory mechanism allows for fine-tuning and reversible modulation of NOX5 activity in response to stimuli.
Collapse
Affiliation(s)
- Elizabeth A Sweeny
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44195, USA.
| | - Simon Schlanger
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Dennis J Stuehr
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44195, USA.
| |
Collapse
|
19
|
Sorrentino A, Michel T. Redox à la carte: Novel chemogenetic models of heart failure. Br J Pharmacol 2020; 177:3162-3167. [PMID: 32368791 DOI: 10.1111/bph.15093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/12/2020] [Accepted: 03/15/2020] [Indexed: 12/20/2022] Open
Abstract
Many current animal models of heart failure are hampered by intrinsic methodological complexities, while other models yield only a subtle cardiac phenotype even after prolonged in vivo treatments. A new 'chemogenetic' animal model of heart failure reproduces a critical characteristic shared by many disease states that lead to heart failure in humans: an increase in redox stress in the heart. This 'chemogenetic' approach exploits a recombinant yeast enzyme that can be dynamically and specifically activated in vivo to generate the ROS hydrogen peroxide (H2 O2 ) in cardiac myocytes. Redox stress can be rapidly, selectively and reversibly manipulated by chemogenetic generation of ROS in cardiac myocytes, yielding a new model of dilated cardiomyopathy. Treatment of animals with the angiotensin receptor antagonist valsartan promotes recovery of ventricular function and resolution of adverse cardiac remodelling. This mini-review discusses in vivo chemogenetic approaches to manipulate and analyse oxidative stress in the heart.
Collapse
Affiliation(s)
- Andrea Sorrentino
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Thomas Michel
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
20
|
Liu X, Zhong L, Li P, Zhao P. MicroRNA-100 Enhances Autophagy and Suppresses Migration and Invasion of Renal Cell Carcinoma Cells via Disruption of NOX4-Dependent mTOR Pathway. Clin Transl Sci 2020; 15:567-575. [PMID: 32356935 PMCID: PMC8841407 DOI: 10.1111/cts.12798] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/04/2020] [Indexed: 12/24/2022] Open
Abstract
Renal cell carcinoma (RCC) is the most common kidney malignancy and has a poor prognosis owing to its resistance to chemotherapy. Recently, microRNAs (miRNAs or miRs) have been shown to have a role in cancer metastasis and potential as prognostic biomarkers in cancer. In the present study, we aim to explore the potential role of miR‐100 in RCC by targeting nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4) through the mammalian target of rapamycin (mTOR) pathway. Initially, microarray‐based gene expression profiling of RCC was used to identify differentially expressed genes. Next, the expression of miR‐100 and NOX4 was examined in RCC tissues and cell lines. Then, the interaction between miR‐100 and NOX4 was identified using bioinformatics analysis and dual‐luciferase reporter assay. Gain‐of‐function or loss‐of‐function approaches were adopted to manipulate miR‐100 and NOX4 in order to explore the functional roles in RCC. The results revealed the presence of an upregulated NOX4 and a downregulated miR‐100 in both RCC tissues and cell lines. NOX4 was verified as a target of miR‐100 in cells. In addition, overexpression of miR‐100 or NOX4 silencing could increase autophagy while decreasing the expression of mTOR pathway‐related genes and migration and invasion. Conjointly, upregulated miR‐100 can potentially increase the autophagy and inhibit the invasion and migration of RCC cells by targeting NOX4 and inactivating the mTOR pathway, which contributes to an extensive understanding of RCC and may provide novel therapeutic options for this disease.
Collapse
Affiliation(s)
- Xiumin Liu
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, China
| | - Lili Zhong
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Ping Li
- Department of Developmental Pediatrics, The Second Hospital of Jilin University, Changchun, China
| | - Peng Zhao
- Department of Anesthesiology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
21
|
Vilchis-Landeros M, Guinzberg R, Riveros-Rosas H, Villalobos-Molina R, Piña E. Aquaporin 8 is involved in H 2 O 2 -mediated differential regulation of metabolic signaling by α 1 - and β-adrenoceptors in hepatocytes. FEBS Lett 2020; 594:1564-1576. [PMID: 32115689 DOI: 10.1002/1873-3468.13763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 01/16/2020] [Accepted: 02/12/2020] [Indexed: 12/20/2022]
Abstract
Reactive oxygen species participate in regulating intracellular signaling pathways. Herein, we investigated the reported opposite effects of hydrogen peroxide (H2 O2 ) on metabolic signaling mediated by activated α1 - and β-adrenoceptors (ARs) in hepatocytes. In isolated rat hepatocytes, stimulation of α1 -AR increases H2 O2 production via NADPH oxidase 2 (NOX2) activation. We find that the H2 O2 thus produced is essential for α1 -AR-mediated activation of the classical hepatic glycogenolytic, gluconeogenic, and ureagenic responses. However, H2 O2 inhibits β-AR-mediated activation of these metabolic responses. We show that H2 O2 mediates its effects on α1 -AR and β-AR by permeating cells through aquaporin 8 (AQP8) channels and promoting Ca2+ mobilization. Thus, our findings reveal a novel NOX2-H2 O2 -AQP8-Ca2+ signaling cascade acting downstream of α1 -AR in hepatocytes, which, by negatively regulating β-AR signaling, establishes negative crosstalk between the two pathways.
Collapse
Affiliation(s)
- Magdalena Vilchis-Landeros
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Raquel Guinzberg
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Héctor Riveros-Rosas
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Rafael Villalobos-Molina
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México.,Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, México
| | - Enrique Piña
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
22
|
Cherkas A, Holota S, Mdzinarashvili T, Gabbianelli R, Zarkovic N. Glucose as a Major Antioxidant: When, What for and Why It Fails? Antioxidants (Basel) 2020; 9:antiox9020140. [PMID: 32033390 PMCID: PMC7070274 DOI: 10.3390/antiox9020140] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/01/2020] [Accepted: 02/03/2020] [Indexed: 02/07/2023] Open
Abstract
A human organism depends on stable glucose blood levels in order to maintain its metabolic needs. Glucose is considered to be the most important energy source, and glycolysis is postulated as a backbone pathway. However, when the glucose supply is limited, ketone bodies and amino acids can be used to produce enough ATP. In contrast, for the functioning of the pentose phosphate pathway (PPP) glucose is essential and cannot be substituted by other metabolites. The PPP generates and maintains the levels of nicotinamide adenine dinucleotide phosphate (NADPH) needed for the reduction in oxidized glutathione and protein thiols, the synthesis of lipids and DNA as well as for xenobiotic detoxification, regulatory redox signaling and counteracting infections. The flux of glucose into a PPP—particularly under extreme oxidative and toxic challenges—is critical for survival, whereas the glycolytic pathway is primarily activated when glucose is abundant, and there is lack of NADP+ that is required for the activation of glucose-6 phosphate dehydrogenase. An important role of glycogen stores in resistance to oxidative challenges is discussed. Current evidences explain the disruptive metabolic effects and detrimental health consequences of chronic nutritional carbohydrate overload, and provide new insights into the positive metabolic effects of intermittent fasting, caloric restriction, exercise, and ketogenic diet through modulation of redox homeostasis.
Collapse
Affiliation(s)
- Andriy Cherkas
- Department of Internal Medicine # 1, Lviv National Medical University, 79010 Lviv, Ukraine
- Correspondence:
| | - Serhii Holota
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Lviv National Medical University, 79010 Lviv, Ukraine;
- Department of Organic Chemistry and Pharmacy, Lesya Ukrainka Eastern European National University, 43025 Lutsk, Ukraine
| | - Tamaz Mdzinarashvili
- Institute of Medical and Applied Biophysics, I. Javakhishvili Tbilisi State University, 0128 Tbilisi, Georgia;
| | - Rosita Gabbianelli
- Unit of Molecular Biology, School of Pharmacy, University of Camerino, 62032 Camerino, Italy;
| | - Neven Zarkovic
- Laboratory for Oxidative Stress (LabOS), Institute “Rudjer Boskovic”, HR-10000 Zagreb, Croatia;
| |
Collapse
|
23
|
Live cell imaging of signaling and metabolic activities. Pharmacol Ther 2019; 202:98-119. [DOI: 10.1016/j.pharmthera.2019.06.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/31/2019] [Indexed: 12/15/2022]
|
24
|
Trautsch I, Heta E, Soong PL, Levent E, Nikolaev VO, Bogeski I, Katschinski DM, Mayr M, Zimmermann WH. Optogenetic Monitoring of the Glutathione Redox State in Engineered Human Myocardium. Front Physiol 2019; 10:272. [PMID: 31024328 PMCID: PMC6460052 DOI: 10.3389/fphys.2019.00272] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/28/2019] [Indexed: 01/07/2023] Open
Abstract
Redox signaling affects all aspects of cardiac function and homeostasis. With the development of genetically encoded fluorescent redox sensors, novel tools for the optogenetic investigation of redox signaling have emerged. Here, we sought to develop a human heart muscle model for in-tissue imaging of redox alterations. For this, we made use of (1) the genetically-encoded Grx1-roGFP2 sensor, which reports changes in cellular glutathione redox status (GSH/GSSG), (2) human embryonic stem cells (HES2), and (3) the engineered heart muscle (EHM) technology. We first generated HES2 lines expressing Grx1-roGFP2 in cytosol or mitochondria compartments by TALEN-guided genomic integration. Grx1-roGFP2 sensor localization and function was verified by fluorescence imaging. Grx1-roGFP2 HES2 were then subjected to directed differentiation to obtain high purity cardiomyocyte populations. Despite being able to report glutathione redox potential from cytosol and mitochondria, we observed dysfunctional sarcomerogenesis in Grx1-roGFP2 expressing cardiomyocytes. Conversely, lentiviral transduction of Grx1-roGFP2 in already differentiated HES2-cardiomyocytes and human foreskin fibroblast was possible, without compromising cell function as determined in EHM from defined Grx1-roGFP2-expressing cardiomyocyte and fibroblast populations. Finally, cell-type specific GSH/GSSG imaging was demonstrated in EHM. Collectively, our observations suggests a crucial role for redox signaling in cardiomyocyte differentiation and provide a solution as to how this apparent limitation can be overcome to enable cell-type specific GSH/GSSG imaging in a human heart muscle context.
Collapse
Affiliation(s)
- Irina Trautsch
- Institute of Pharmacology & Toxicology, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Eriona Heta
- Institute of Pharmacology & Toxicology, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Poh Loong Soong
- Institute of Pharmacology & Toxicology, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Elif Levent
- Institute of Pharmacology & Toxicology, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Viacheslav O Nikolaev
- Institute for Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Ivan Bogeski
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany.,Institute for Cardiovascular Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Dörthe M Katschinski
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany.,Institute for Cardiovascular Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Manuel Mayr
- King's British Heart Foundation Centre, King's College London, London, United Kingdom
| | - Wolfram-Hubertus Zimmermann
- Institute of Pharmacology & Toxicology, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| |
Collapse
|
25
|
Bai Y, Gong X, Dou C, Cao Z, Dong S. Redox control of chondrocyte differentiation and chondrogenesis. Free Radic Biol Med 2019; 132:83-89. [PMID: 30394290 DOI: 10.1016/j.freeradbiomed.2018.10.443] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 10/14/2018] [Accepted: 10/26/2018] [Indexed: 11/24/2022]
Abstract
Chondrogenesis involves the recruitment and migration of mesenchymal cells, mesenchymal condensation, and chondrocyte differentiation and hypertrophy. Multiple factors precisely regulate chondrogenesis. Recent studies have demonstrated that the redox status of chondrocytes plays an essential role in the regulation of chondrocyte differentiation and chondrogenesis. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are important factors that change the intracellular redox status. Physiological levels of ROS/RNS act as intracellular signals in chondrocytes, and oxidative stress impairs the metabolism of chondrocytes. Under physiological conditions, the balance between ROS/RNS production and elimination ensures that redox-sensitive signalling proteins function correctly. The redox homeostasis of chondrocytes ensures that they respond appropriately to endogenous and exogenous stimuli. This review focuses on the redox regulation of key signalling pathways and transcription factors that control chondrogenesis and chondrocyte differentiation. Additionally, the mechanism by which ROS/RNS regulate signalling proteins and transcription factors in chondrocytes is also reviewed.
Collapse
Affiliation(s)
- Yun Bai
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Gaotanyan Street No.30, Chongqing 400038, China
| | - Xiaoshan Gong
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Gaotanyan Street No.30, Chongqing 400038, China
| | - Ce Dou
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Gaotanyan Street No.30, Chongqing 400038, China
| | - Zhen Cao
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Gaotanyan Street No.30, Chongqing 400038, China
| | - Shiwu Dong
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Gaotanyan Street No.30, Chongqing 400038, China; State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
26
|
Steinhorn B, Sorrentino A, Badole S, Bogdanova Y, Belousov V, Michel T. Chemogenetic generation of hydrogen peroxide in the heart induces severe cardiac dysfunction. Nat Commun 2018; 9:4044. [PMID: 30279532 PMCID: PMC6168530 DOI: 10.1038/s41467-018-06533-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 09/12/2018] [Indexed: 12/16/2022] Open
Abstract
Oxidative stress plays an important role in the pathogenesis of many disease states. In the heart, reactive oxygen species are linked with cardiac ischemia/reperfusion injury, hypertrophy, and heart failure. While this correlation between ROS and cardiac pathology has been observed in multiple models of heart failure, the independent role of hydrogen peroxide (H2O2) in vitro and in vivo is unclear, owing to a lack of tools for precise manipulation of intracellular redox state. Here we apply a chemogenetic system based on a yeast D-amino acid oxidase to show that chronic generation of H2O2 in the heart induces a dilated cardiomyopathy with significant systolic dysfunction. We anticipate that chemogenetic approaches will enable future studies of in vivo H2O2 signaling not only in the heart, but also in the many other organ systems where the relationship between redox events and physiology remains unclear. Excessive production of reactive oxygen species (ROS) is associated with cardiac dysfunction, but the causal role of ROS remains poorly understood. Here the authors use an in vivo chemogenetic approach to develop a heart failure model in which generation of hydrogen peroxide in the heart leads to systolic heart failure without fibrotic remodeling.
Collapse
Affiliation(s)
- Benjamin Steinhorn
- Department of Medicine, Division of Cardiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Andrea Sorrentino
- Department of Medicine, Division of Cardiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Sachin Badole
- Department of Medicine, Division of Cardiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Yulia Bogdanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, GSP-7, Ulitsa Miklukho-Maklaya, 16/10, Moscow, Russia, 117997
| | - Vsevolod Belousov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, GSP-7, Ulitsa Miklukho-Maklaya, 16/10, Moscow, Russia, 117997.,Pirogov Russian National Research Medical University, Moscow, Russia, 117997.,Institute for Cardiovascular Physiology, Georg August University Göttingen, D-37075, Göttingen, Germany
| | - Thomas Michel
- Department of Medicine, Division of Cardiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA.
| |
Collapse
|
27
|
Cherkas A, Zarkovic N. 4-Hydroxynonenal in Redox Homeostasis of Gastrointestinal Mucosa: Implications for the Stomach in Health and Diseases. Antioxidants (Basel) 2018; 7:E118. [PMID: 30177630 PMCID: PMC6162398 DOI: 10.3390/antiox7090118] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/22/2018] [Accepted: 08/30/2018] [Indexed: 12/11/2022] Open
Abstract
Maintenance of integrity and function of the gastric mucosa (GM) requires a high regeneration rate of epithelial cells during the whole life span. The health of the gastric epithelium highly depends on redox homeostasis, antioxidant defense, and activity of detoxifying systems within the cells, as well as robustness of blood supply. Bioactive products of lipid peroxidation, in particular, second messengers of free radicals, the bellwether of which is 4-hydroxynonenal (HNE), are important mediators in physiological adaptive reactions and signaling, but they are also thought to be implicated in the pathogenesis of numerous gastric diseases. Molecular mechanisms and consequences of increased production of HNE, and its protein adducts, in response to stressors during acute and chronic gastric injury, are well studied. However, several important issues related to the role of HNE in gastric carcinogenesis, tumor growth and progression, the condition of GM after eradication of Helicobacter pylori, or the relevance of antioxidants for HNE-related redox homeostasis in GM, still need more studies and new comprehensive approaches. In this regard, preclinical studies and clinical intervention trials are required, which should also include the use of state-of-the-art analytical techniques, such as HNE determination by immunohistochemistry and enzyme-linked immunosorbent assay (ELISA), as well as modern mass-spectroscopy methods.
Collapse
Affiliation(s)
- Andriy Cherkas
- Department of Internal Medicine #1, Danylo Halystkyi Lviv National Medical University, 79010 Lviv, Ukraine.
| | - Neven Zarkovic
- Laboratory for Oxidative Stress (LabOS), Institute "Rudjer Boskovic", HR-10000 Zagreb, Croatia.
| |
Collapse
|
28
|
Hernández H, Parra A, Tobar N, Molina J, Kallens V, Hidalgo M, Varela D, Martínez J, Porras O. Insights into the HyPer biosensor as molecular tool for monitoring cellular antioxidant capacity. Redox Biol 2018. [PMID: 29524842 PMCID: PMC5952670 DOI: 10.1016/j.redox.2018.02.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aerobic metabolism brings inexorably the production of reactive oxygen species (ROS), which are counterbalanced by intrinsic antioxidant defenses avoiding deleterious intracellular effects. Redox balance is the resultant of metabolic functioning under environmental inputs (i.e. diet, pollution) and the activity of intrinsic antioxidant machinery. Monitoring of intracellular hydrogen peroxide has been successfully achieved by redox biosensor advent; however, to track the intrinsic disulfide bond reduction capacity represents a fundamental piece to understand better how redox homeostasis is maintained in living cells. In the present work, we compared the informative value of steady-state measurements and the kinetics of HyPer, a H2O2-sensitive fluorescent biosensor, targeted at the cytosol, mitochondrion and endoplasmic reticulum. From this set of data, biosensor signal recovery from an oxidized state raised as a suitable parameter to discriminate reducing capacity of a close environment. Biosensor recovery was pH-independent, condition demonstrated by experiments on pH-clamped cells, and sensitive to pharmacological perturbations of enzymatic disulfide reduction. Also, ten human cell lines were characterized according their H2O2-pulse responses, including their capacity to reduce disulfide bonds evaluated in terms of their migratory capacity. Finally, cellular migration experiments were conducted to study whether migratory efficiency was associated with the disulfide reduction activity. The migration efficiency of each cell type correlates with the rate of signal recovery measured from the oxidized biosensor. In addition, HyPer-expressing cells treated with N-acetyl-cysteine had accelerated recovery rates and major migratory capacities, both reversible effects upon treatment removal. Our data demonstrate that the HyPer signal recovery offers a novel methodological tool to track the cellular impact of redox active biomolecules.
Collapse
Affiliation(s)
- Helen Hernández
- Laboratorio de Biología Celular, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Chile
| | - Alejandra Parra
- Laboratorio de Biología Celular, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Chile
| | - Nicolas Tobar
- Laboratorio de Biología Celular, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Chile
| | - Jessica Molina
- Laboratorio de Biología Celular, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Chile
| | - Violeta Kallens
- Laboratorio de Biología Celular, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Chile
| | - Miltha Hidalgo
- Laboratorio de Biología Celular, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Chile
| | - Diego Varela
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Chile; Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Universidad de Chile, Chile
| | - Jorge Martínez
- Laboratorio de Biología Celular, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Chile
| | - Omar Porras
- Laboratorio de Biología Celular, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Chile; Centro de Investigación en Alimentos para el Bienestar en el Ciclo Vital (ABCvital), Universidad de Chile, Chile.
| |
Collapse
|
29
|
NOX4-driven ROS formation regulates proliferation and apoptosis of gastric cancer cells through the GLI1 pathway. Cell Signal 2018; 46:52-63. [PMID: 29496628 DOI: 10.1016/j.cellsig.2018.02.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 02/13/2018] [Accepted: 02/15/2018] [Indexed: 12/21/2022]
Abstract
NADPH Oxidase 4 (NOX4), a member of the NOX family, has emerged as a significant source of reactive oxygen species, playing an important role in tumor cell proliferation, apoptosis, and other physiological processes. However, the potential function of NOX4 in gastric cancer (GC) cell proliferation is yet unknown. The aim of this study was to illustrate whether NOX4 plays a role in regulating gastric cancer cell growth. First, the clinical information from 90 patients was utilized to explore the clinical value of NOX4 as a predictive tool for tumor size and prognosis. Results showed that NOX4 expression was correlated with tumor size and prognosis. In vitro assays confirmed that knockdown of NOX4 expression blocked cell proliferation and the expression of Cyclin D1, BAX, and so on. Interestingly, NOX4 promoted cell proliferation via activation of the GLI1 pathway. GLI1, a well-known transcription factor in the Hedgehog signaling pathway, was overexpressed to test whether NOX4 activates downstream signaling via GLI1. Overexpression of GLI1 reversed the inhibition of proliferation induced by NOX4 knockdown. In addition, overexpression of NOX4 increased GLI1 expression, and depletion of GLI1 expression decreased the effects induced by NOX4 overexpression. Further, ROS generated by NOX4 was required for GLI1 expression, as shown by use of the ROS inhibitor, diphenylene iodonium (DPI). In summary, the findings indicate that NOX4 plays an important role in gastric cancer cell growth and apoptosis through the generation of ROS and subsequent activation of GLI1 signaling. Hence, the targeting of NOX4 may be an attractive therapeutic strategy for blocking gastric cancer cell proliferation.
Collapse
|
30
|
Cherkas A, Zarkovic K, Cipak Gasparovic A, Jaganjac M, Milkovic L, Abrahamovych O, Yatskevych O, Waeg G, Yelisyeyeva O, Zarkovic N. Amaranth oil reduces accumulation of 4-hydroxynonenal-histidine adducts in gastric mucosa and improves heart rate variability in duodenal peptic ulcer patients undergoing Helicobacter pylori eradication. Free Radic Res 2018; 52:135-149. [PMID: 29251014 DOI: 10.1080/10715762.2017.1418981] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Helicobacter pylori-induced oxidative stress in gastric mucosa (GM) is a milieu for the development of chronic gastritis, duodenal peptic ulcer (DPU), gastric cancer, and a number of extragastric diseases. Because our previous study revealed the accumulation of the protein adducts of lipid peroxidation product 4-hydroxynonenal (HNE) in GM, which persists after eradication of H. pylori, the aim of the study was to test whether Amaranth oil supplementation in addition to standard anti-Helicobacter treatment could prevent such accumulation of HNE in GM in H. pylori-positive DPU patients. Seventy-five patients were randomly split into two groups: group 1 - standard treatment (n = 39) and group 2 - standard treatment with additional supplementation of 1 ml of concentrated oil from amaranth seeds (Amaranthus cruenthus L., n = 36). Clinical analysis, including endoscopy with biopsies from antrum and corpus of the stomach were performed before and after the treatment, as was heart rate variability (HRV) recorded, as parameter of systemic, extragastric pathophysiological alterations in DPU patients. Improvement of clinical, endoscopic and histologic manifestations, and successful ulcer healing were observed in both the groups. Moreover, supplementation of amaranth oil in addition to standard anti-H. pylori treatment significantly reduced accumulation of HNE-histidine adducts in GM and increased HRV in DPU patients (p < .05). Therefore, standard treatments of DPU require additional therapeutic approaches, in accordance with integrative medicine principles, aiming to reduce persistence of oxidative stress, as was successfully done in our study by the use of amaranth oil.
Collapse
Affiliation(s)
- Andriy Cherkas
- a Department of Internal Medicine #1, Danylo Halytskyi Lviv National Medical University , Lviv , Ukraine
| | - Kamelija Zarkovic
- b Division of Pathology, Clinical Hospital Centre "Zagreb", University of Zagreb School of Medicine , Zagreb , Croatia
| | - Ana Cipak Gasparovic
- c Laboratory for Oxidative Stress (LabOS) , Institute "Rudjer Boskovic" , Zagreb , Croatia
| | | | - Lidija Milkovic
- c Laboratory for Oxidative Stress (LabOS) , Institute "Rudjer Boskovic" , Zagreb , Croatia
| | - Orest Abrahamovych
- a Department of Internal Medicine #1, Danylo Halytskyi Lviv National Medical University , Lviv , Ukraine
| | - Ostap Yatskevych
- a Department of Internal Medicine #1, Danylo Halytskyi Lviv National Medical University , Lviv , Ukraine
| | - Georg Waeg
- e Institute of Molecular Bioscience, Karl Franzens University of Graz , Graz , Austria
| | - Olha Yelisyeyeva
- f Department of Histology, Cytology and Embryology, Danylo Halytskyi Lviv National Medical University , Lviv , Ukraine
| | - Neven Zarkovic
- c Laboratory for Oxidative Stress (LabOS) , Institute "Rudjer Boskovic" , Zagreb , Croatia
| |
Collapse
|