1
|
Kosenko EA, Alilova GA, Tikhonova LA. Impaired Enzymatic Antioxidant Defense in Erythrocytes of Rats with Ammonia-Induced Encephalopathy: Role of NMDA Receptors. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1404-1415. [PMID: 37770406 DOI: 10.1134/s0006297923090195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 09/30/2023]
Abstract
Hepatic encephalopathy (HE), a neuropsychiatric disorder developing in patients with severe hepatic dysfunction, has been known for more than a century. However, pathogenetic mechanisms of cerebral dysfunction associated with liver disease are still poorly understood. There is a consensus that the primary cause of HE is accumulation of ammonia in the brain as a result of impaired liver detoxification capacity or the portosystemic shunt. Current evidence suggests that ammonia toxicity is mediated by hyperactivation of glutamate receptors, mainly N-methyl-D-aspartate receptors (NMDARs), and affects brain aerobic metabolism, which provides energy for multiple specific functions and neuronal viability. Recent reports on the presence of functional NMDARs in erythrocytes and the data on the deviations of blood parameters from their normal ranges indicate impaired hemodynamics and reduced oxygen-carrying capacity of erythrocytes in most patients with HE, thus suggesting a relationship between erythrocyte damage and cerebral dysfunction. In order to understand how hyperammonemia (HA)-induced disturbances in the energy metabolism in the brain (which needs a constant supply of large amounts of oxygen in the blood) lead to encephalopathy, it is necessary to reveal ammonia-induced impairments in the energy metabolism and antioxidant defense system of erythrocytes and to explore a potential role of ammonia in reduced brain oxygenation. To identify the said missing link, the activities of antioxidant enzymes and concentrations of reduced glutathione (GSH), oxidized glutathione (GSSG), and H2O2 were measured in the erythrocytes of rats with HA that were injected with the noncompetitive NMDAR antagonist MK-801. We found that in rats with HA, ammonia was accumulated in erythrocytes (cells lacking ammonia removal enzymes), which made them more susceptible to the prooxidant environment created during oxidative stress. This effect was completely or partially inhibited by MK-801. The data obtained might help to identify the risk factors in cognitive disorders and facilitate prediction of unfavorable outcomes of hypoperfusion in patients with a blood elevated ammonia concentration.
Collapse
Affiliation(s)
- Elena A Kosenko
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | - Gubidat A Alilova
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Lyudmila A Tikhonova
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| |
Collapse
|
2
|
Cellular Pathogenesis of Hepatic Encephalopathy: An Update. Biomolecules 2023; 13:biom13020396. [PMID: 36830765 PMCID: PMC9953810 DOI: 10.3390/biom13020396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/01/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Hepatic encephalopathy (HE) is a neuropsychiatric syndrome derived from metabolic disorders due to various liver failures. Clinically, HE is characterized by hyperammonemia, EEG abnormalities, and different degrees of disturbance in sensory, motor, and cognitive functions. The molecular mechanism of HE has not been fully elucidated, although it is generally accepted that HE occurs under the influence of miscellaneous factors, especially the synergistic effect of toxin accumulation and severe metabolism disturbance. This review summarizes the recently discovered cellular mechanisms involved in the pathogenesis of HE. Among the existing hypotheses, ammonia poisoning and the subsequent oxidative/nitrosative stress remain the mainstream theories, and reducing blood ammonia is thus the main strategy for the treatment of HE. Other pathological mechanisms mainly include manganese toxicity, autophagy inhibition, mitochondrial damage, inflammation, and senescence, proposing new avenues for future therapeutic interventions.
Collapse
|
3
|
Häussinger D, Dhiman RK, Felipo V, Görg B, Jalan R, Kircheis G, Merli M, Montagnese S, Romero-Gomez M, Schnitzler A, Taylor-Robinson SD, Vilstrup H. Hepatic encephalopathy. Nat Rev Dis Primers 2022; 8:43. [PMID: 35739133 DOI: 10.1038/s41572-022-00366-6] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/12/2022] [Indexed: 01/18/2023]
Abstract
Hepatic encephalopathy (HE) is a prognostically relevant neuropsychiatric syndrome that occurs in the course of acute or chronic liver disease. Besides ascites and variceal bleeding, it is the most serious complication of decompensated liver cirrhosis. Ammonia and inflammation are major triggers for the appearance of HE, which in patients with liver cirrhosis involves pathophysiologically low-grade cerebral oedema with oxidative/nitrosative stress, inflammation and disturbances of oscillatory networks in the brain. Severity classification and diagnostic approaches regarding mild forms of HE are still a matter of debate. Current medical treatment predominantly involves lactulose and rifaximin following rigorous treatment of so-called known HE precipitating factors. New treatments based on an improved pathophysiological understanding are emerging.
Collapse
Affiliation(s)
- Dieter Häussinger
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | - Radha K Dhiman
- Department of Hepatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, (Uttar Pradesh), India
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro de Investigación Principe Felipe, Valencia, Spain
| | - Boris Görg
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Rajiv Jalan
- Liver Failure Group ILDH, Division of Medicine, UCL Medical School, Royal Free Campus, London, UK.,European Foundation for the Study of Chronic Liver Failure, Barcelona, Spain
| | - Gerald Kircheis
- Department of Gastroenterology, Diabetology and Hepatology, University Hospital Brandenburg an der Havel, Brandenburg Medical School, Brandenburg an der Havel, Germany
| | - Manuela Merli
- Department of Translational and Precision Medicine, Universita' degli Studi di Roma - Sapienza, Roma, Italy
| | | | - Manuel Romero-Gomez
- UCM Digestive Diseases, Virgen del Rocío University Hospital, Institute of Biomedicine of Seville (HUVR/CSIC/US), University of Seville, Seville, Spain
| | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Simon D Taylor-Robinson
- Department of Surgery and Cancer, St. Mary's Hospital Campus, Imperial College London, London, UK
| | - Hendrik Vilstrup
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
4
|
Is NMDA-Receptor-Mediated Oxidative Stress in Mitochondria of Peripheral Tissues the Essential Factor in the Pathogenesis of Hepatic Encephalopathy? J Clin Med 2022; 11:jcm11030827. [PMID: 35160278 PMCID: PMC8836479 DOI: 10.3390/jcm11030827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Hepatic encephalopathy (HE) is a neuropsychiatric syndrome of increased ammonia-mediated brain dysfunction caused by impaired hepatic detoxification or when the blood bypasses the liver. Ammonia-activated signal transduction pathways of hyperactivated NMDA receptors (NMDAR) are shown to trigger a cascade of pathological reactions in the brain, leading to oxidative stress. NMDARs outside the brain are widely distributed in peripheral tissues, including the liver, heart, pancreas, and erythrocytes. To determine the contribution of these receptors to ammonia-induced oxidative stress in peripheral tissues, it is relevant to investigate if there are any ammonia-related changes in antioxidant enzymes and free radical formation and whether blockade of NMDARs prevents these changes. Methods: Hyperammonemia was induced in rats by ammonium acetate injection. Oxidative stress was measured as changes in antioxidant enzyme activities and O2•− and H2O2 production by mitochondria isolated from the tissues and cells mentioned above. The effects of the NMDAR antagonist MK-801 on oxidative stress markers and on tissue ammonia levels were evaluated. Results: Increased ammonia levels in erythrocytes and mitochondria isolated from the liver, pancreas, and heart of hyperammonemic rats are shown to cause tissue-specific oxidative stress, which is prevented completely (or partially in erythrocyte) by MK-801. Conclusions: These results support the view that the pathogenesis of HE is multifactorial and that ammonia-induced multiorgan oxidative stress-mediated by activation of NMDAR is an integral part of the disease and, therefore, the toxic effects of ammonia in НЕ may be more global than initially expected.
Collapse
|
5
|
Häussinger D, Butz M, Schnitzler A, Görg B. Pathomechanisms in hepatic encephalopathy. Biol Chem 2021; 402:1087-1102. [PMID: 34049427 DOI: 10.1515/hsz-2021-0168] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/12/2021] [Indexed: 02/06/2023]
Abstract
Hepatic encephalopathy (HE) is a frequent neuropsychiatric complication in patients with acute or chronic liver failure. Symptoms of HE in particular include disturbances of sensory and motor functions and cognition. HE is triggered by heterogeneous factors such as ammonia being a main toxin, benzodiazepines, proinflammatory cytokines and hyponatremia. HE in patients with liver cirrhosis is triggered by a low-grade cerebral edema and cerebral oxidative/nitrosative stress which bring about a number of functionally relevant alterations including posttranslational protein modifications, oxidation of RNA, gene expression changes and senescence. These alterations are suggested to impair astrocyte/neuronal functions and communication. On the system level, a global slowing of oscillatory brain activity and networks can be observed paralleling behavioral perceptual and motor impairments. Moreover, these changes are related to increased cerebral ammonia, alterations in neurometabolite and neurotransmitter concentrations and cortical excitability in HE patients.
Collapse
Affiliation(s)
- Dieter Häussinger
- Clinic for Gastroenterology, Hepatology, and Infectious Diseases, Heinrich Heine University, Moorenstr. 5, D-40225 Düsseldorf, Germany
| | - Markus Butz
- Department of Neurology/Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, Moorenstr. 5, D-40225 Düsseldorf, Germany
| | - Alfons Schnitzler
- Department of Neurology/Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, Moorenstr. 5, D-40225 Düsseldorf, Germany
| | - Boris Görg
- Clinic for Gastroenterology, Hepatology, and Infectious Diseases, Heinrich Heine University, Moorenstr. 5, D-40225 Düsseldorf, Germany
| |
Collapse
|
6
|
López-Cervantes M, Quintanar-Stephano A, Alcauter-Solórzano S, Hernández-Pando R, Aguilar-Roblero R, Gasca-Martínez D, Ortíz JJ, Vázquez-Martínez O, Ximénez-Camilli C, Díaz-Muñoz M. Cerebellar spongiform degeneration is accompanied by metabolic, cellular, and motor disruption in male rats with portacaval anastomosis. J Neurosci Res 2021; 99:2287-2304. [PMID: 34061383 DOI: 10.1002/jnr.24853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 04/14/2021] [Accepted: 04/22/2021] [Indexed: 12/12/2022]
Abstract
The episodes of cerebral dysfunction, known as encephalopathy, are usually coincident with liver failure. The primary metabolic marker of liver diseases is the increase in blood ammonium, which promotes neuronal damage. In the present project, we used an experimental model of hepatic encephalopathy in male rats by portacaval anastomosis (PCA) surgery. Sham rats had a false operation. After 13 weeks of surgery, the most distinctive finding was vacuolar/spongiform neurodegeneration exclusively in the molecular layer of the cerebellum. This cerebellar damage was further characterized by metabolic, histopathological, and behavioral approaches. The results were as follows: (a) Cellular alterations, namely loss of Purkinje cells, morphological changes, such as swelling of astrocytes and Bergmann glia, and activation of microglia; (b) Cytotoxic edema, shown by an increase in aquaporin-4 and N-acetylaspartate and a reduction in taurine and choline-derivate osmolytes; (c) Metabolic adjustments, noted by the elevation of circulating ammonium, enhanced presence of glutamine synthetase, and increase in glutamine and creatine/phosphocreatine; (d) Inflammasome activation, detected by the elevation of the marker NLRP3 and microglial activation; (e) Locomotor deficits in PCA rats as assessed by the Rotarod and open field tests. These results lead us to suggest that metabolic disturbances associated with PCA can generate the cerebellar damage that is similar to morphophysiological modifications observed in amyloidogenic disorders. In conclusion, we have characterized a distinctive cerebellar multi-disruption accompanied by high levels of ammonium and associated with spongiform neurodegeneration in a model of hepatic hypofunctioning.
Collapse
Affiliation(s)
- Mayra López-Cervantes
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus UNAM-Juriquilla, Querétaro, Mexico
| | - Andrés Quintanar-Stephano
- Departmento de Fisiología y Farmacología, Centro de Ciencia Básica, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Sarael Alcauter-Solórzano
- Laboratorio Nacional de Imagenología por Resonancia Magnética, Instituto de Neurobiología, Campus UNAM-Juriquilla, Querétaro, Mexico
| | - Rogelio Hernández-Pando
- Seccion de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Ciudad de México, Mexico
| | - Raúl Aguilar-Roblero
- División de Neurociencias, Instituto de Fisiología Celular, UNAM, Ciudad de México, Mexico
| | - Deisy Gasca-Martínez
- Unidad de Análisis Conductual, Instituto de Neurobiología, Campus UNAM-Juriquilla, Querétaro, Mexico
| | - Juan J Ortíz
- Laboratorio Nacional de Imagenología por Resonancia Magnética, Instituto de Neurobiología, Campus UNAM-Juriquilla, Querétaro, Mexico
| | - Olivia Vázquez-Martínez
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus UNAM-Juriquilla, Querétaro, Mexico
| | - Cecilia Ximénez-Camilli
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus UNAM-Juriquilla, Querétaro, Mexico
| | - Mauricio Díaz-Muñoz
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus UNAM-Juriquilla, Querétaro, Mexico
| |
Collapse
|
7
|
Yi R, Deng L, Mu J, Li C, Tan F, Zhao X. The Impact of Antarctic Ice Microalgae Polysaccharides on D-Galactose-Induced Oxidative Damage in Mice. Front Nutr 2021; 8:651088. [PMID: 33768108 PMCID: PMC7985059 DOI: 10.3389/fnut.2021.651088] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/16/2021] [Indexed: 11/13/2022] Open
Abstract
Antarctic ice microalgae (Chlamydomonas sp.) are a polysaccharide-rich natural marine resource. In this study, we evaluated the impact of Antarctic ice microalgae polysaccharides (AIMP) on D-galactose-induced oxidation in mice. We conducted biological and biochemical tests on tissue and serum samples from mice treated with AIMP. We found that AIMP administration was associated with improved thymus, brain, heart, liver, spleen, and kidney index values. We also found that AIMP treatment inhibited the reduced aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, superoxide dismutase, glutathione peroxidase, and glutathione levels as well as the increased serum, splenic, and hepatic nitric oxide and malondialdehyde levels arising from oxidation in these animals. Pathological examination revealed that AIMP also inhibited D-galactose-induced oxidative damage to the spleen, liver, and skin of these animals. AIMP was additionally found to promote the upregulation of neuronal nitric oxide synthase, endothelial nitric oxide synthase, cuprozinc-superoxide dismutase, manganese superoxide dismutase, catalase, heme oxygenase-1, nuclear factor erythroid 2-related factor 2, γ-glutamylcysteine synthetase, and NAD(P)H dehydrogenase [quinone] 1 as well as the downregulation of inducible nitric oxide synthase in these animals. High-performance liquid chromatography analysis revealed AIMP to be composed of five monosaccharides (mannitol, ribose, anhydrous glucose, xylose, and fucose). Together, these results suggest that AIMP can effectively inhibit oxidative damage more readily than vitamin C in mice with D-galactose-induced oxidative damage, which underscores the value of developing AIMP derivatives for food purposes.
Collapse
Affiliation(s)
- Ruokun Yi
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Lei Deng
- Department of Gastroenterology and Hepatology, Chongqing University Central Hospital (Chongqing Emergency Medical Center), Chongqing, China
| | - Jianfei Mu
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Chong Li
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Fang Tan
- Department of Public Health, Our Lady of Fatima University, Valenzuela, Philippines
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| |
Collapse
|
8
|
Yi R, Chen X, Li W, Mu J, Tan F, Zhao X. Preventive effect of insect tea primary leaf ( Malus sieboldii (Regal) Rehd.) extract on D-galactose-induced oxidative damage in mice. Food Sci Nutr 2020; 8:5160-5171. [PMID: 32994976 PMCID: PMC7500765 DOI: 10.1002/fsn3.1821] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 12/14/2022] Open
Abstract
Insect tea is consumed as a health beverage in China. The insect tea primary leaf (ITPL) is rich in bioactive substances, which are also used as traditional Chinese medicine. This study investigated the role of ITPL in reducing the oxidative response induced by D-galactose in mice. Mice were intraperitoneally injected with D-galactose to induce oxidative damage. The effect of ITPL was tested by pathological observation, serum detection with kits, quantitative polymerase chain reaction, and Western blot. The experimental results show that ITPL increased the thymus, brain, heart, liver, spleen, and kidney indices of oxidized mice. ITPL increased superoxide dismutase, glutathione peroxidase, and glutathione levels and reduced nitric oxide and malondialdehyde levels in the serum, liver, and spleen in oxidative damaged mice. The pathological observations show that ITPL reduced the oxidative damage of the liver and spleen in mice induced with D-galactose. Simultaneously, ITPL upregulated mRNA expression of neuronal nitric oxide synthase, endothelial nitric oxide synthase, cuprozinc-superoxide dismutase, manganese superoxide dismutase, catalase, heme oxygenase-1, nuclear factor-erythroid 2 related factor 2, γ-glutamylcysteine synthetase, and NAD(P)H dehydrogenase [quinone] 1, and downregulated the expression of inducible nitric oxide synthase in the liver and spleen of oxidized mice. ITPL had beneficial preventive effects on the oxidative damage caused by D-galactose in mice and was more effective as an antioxidant than vitamin C. The component analysis test by high-performance liquid chromatography indicated that ITPL contained the following seven compounds: neochlorogenic acid, cryptochlorogenic acid, rutin, kaempferin, isochlorogenic acid B, isochlorogenic acid A, and hesperidin. ITPL is a plant with excellent antioxidant activities derived from its bioactive substances.
Collapse
Affiliation(s)
- Ruokun Yi
- Chongqing Collaborative Innovation Center for Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Research Center of Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Laboratory for Research and Development of Functional FoodChongqing University of EducationChongqingChina
| | - Xi Chen
- Intensive Care UnitThe First People's Hospital of Chongqing Liang Jiang New AreaChongqingChina
| | - Wenfeng Li
- School of Life Science and BiotechnologyYangtze Normal UniversityChongqingChina
| | - Jianfei Mu
- Chongqing Collaborative Innovation Center for Functional FoodChongqing University of EducationChongqingChina
- Intensive Care UnitThe First People's Hospital of Chongqing Liang Jiang New AreaChongqingChina
| | - Fang Tan
- Department of Public HealthOur Lady of Fatima UniversityValenzuelaPhilippines
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Research Center of Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Laboratory for Research and Development of Functional FoodChongqing University of EducationChongqingChina
| |
Collapse
|
9
|
Zhu K, Zeng X, Tan F, Li W, Li C, Song Y, Zhao X. Effect of insect tea on D-galactose-induced oxidation in mice and its mechanisms. Food Sci Nutr 2019; 7:4105-4115. [PMID: 31890190 PMCID: PMC6924339 DOI: 10.1002/fsn3.1278] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/05/2019] [Accepted: 10/08/2019] [Indexed: 12/12/2022] Open
Abstract
Insect tea is a traditional Chinese drink that contains abundant bioactive substances. In this study, the preventive effect of Insect tea on D-galactose-induced oxidation in mice was studied. The serum, liver, and spleen of mice were measured by biochemical and molecular biological methods, which showed that Insect tea could increase the biochemical indexes of the thymus, brain, heart, liver, spleen, and kidney in mice with induced oxidative damage. Insect tea can increase the levels of SOD (superoxide dismutase), GSH-Px (glutathione peroxidase), and GSH (glutathione) and decrease the levels of MDA (malondialdehyde) in the serum, liver, and spleen of mice with oxidative damage. Pathological observation also confirmed that Insect tea could inhibit oxidative damage of the liver and spleen tissue caused by D-galactose in mice. Further molecular biological experiments also showed that Insect tea could upregulate the mRNA and protein expression of Cu/Zn-SOD (cuprozinc-superoxide dismutase), Mn-SOD (manganese superoxide dismutase), CAT (catalase), HO-1 (heme oxygenase-1), Nrf2 (nuclear factor-erythroid 2 related factor 2), γ-GCS (γ-glutamylcysteine synthetase), and NQO1 (NAD(P)H dehydrogenase [quinone] 1) in the liver and spleen of oxidized mice. Insect tea has a good preventive effect on D-galactose-induced oxidation in mice, and the effect is better than vitamin C, an antioxidant. Insect tea is rich in isochlorogenic acid A, quercetin, rutin, hesperidin, neochlorogenic acid, and cryptochlorogenic acid. The combination of these bioactive substances has good antioxidant effects. Thus, Insect tea is a functional food with a good antioxidant effect that has value for future development and utilization.
Collapse
Affiliation(s)
- Kai Zhu
- Chongqing Collaborative Innovation Center for Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Research Center of Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Laboratory for Research and Development of Functional FoodChongqing University of EducationChongqingChina
| | - Xiaofei Zeng
- Department of Cardiothoracic SurgeryThe First Affiliated Hospital of Chengdu Medical CollegeChengduChina
| | - Fang Tan
- Department of Public HealthOur Lady of Fatima UniversityValenzuelaPhilippines
| | - Wenfeng Li
- School of Life Science and BiotechnologyYangtze Normal UniversityChongqingChina
| | - Chong Li
- Chongqing Collaborative Innovation Center for Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Research Center of Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Laboratory for Research and Development of Functional FoodChongqing University of EducationChongqingChina
| | - Yaru Song
- Chongqing Collaborative Innovation Center for Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Research Center of Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Laboratory for Research and Development of Functional FoodChongqing University of EducationChongqingChina
| | - Xin Zhao
- Chongqing Engineering Research Center of Functional FoodChongqing University of EducationChongqingChina
| |
Collapse
|
10
|
Guo H, Kuang Z, Zhang J, Zhao X, Pu P, Yan J. The preventive effect of Apocynum venetum polyphenols on D-galactose-induced oxidative stress in mice. Exp Ther Med 2019; 19:557-568. [PMID: 31897099 PMCID: PMC6923744 DOI: 10.3892/etm.2019.8261] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 11/05/2019] [Indexed: 12/26/2022] Open
Abstract
Apocynum venetum is a traditional medicine that is rich in polyphenols. Apocynum venetum polyphenol extract (AVP) contains the active substances neochlorogenic acid, chlorogenic acid, rutin, isoquercitrin, astragaloside and rosmarinic acid. In the present study, the preventive effect of AVP against D-galactose-induced oxidative stress was studied in a mouse model. The sera, skin, livers and spleens of mice were examined using hematoxylin and eosin staining, reverse transcription-quantitative PCR and western blot analysis. The biochemical results showed that AVP improved the thymus, brain, heart, liver, spleen and kidney indices in a mouse model of oxidative stress. AVP was also able to reverse the reduction in levels of superoxide dismutase (SOD), glutathione peroxidase and glutathione, and increased the levels of nitric oxide and malondialdehyde identified in the serum, liver, spleen and brain of mice exposed to oxidative stress. Pathological observations confirmed that AVP could inhibit oxidative damage to the skin, liver and spleen of mice caused by D-galactose. Further molecular biological experiments also demonstrated that AVP increased the expression of neuronal nitric oxide synthase, endothelial nitric oxide synthase, Cu/Zn-SOD, Mn-SOD, catalase, heme oxygenase-1, nuclear factor-erythroid 2-related factor 2, γ-glutamylcysteine synthetase and NAD(P)H quinone dehydrogenase 1 and reduced the expression of inducible nitric oxide synthase in the liver and spleen of treated mice compared to controls. Notably, the preventive effect of AVP against D-galactose-induced oxidative damage in mice was better than that of the confirmed antioxidant vitamin C. In conclusion, AVP exhibited an antioxidant effect and the AVP-rich Apocynum venetum may be considered a plant resource with potential antioxidative benefits.
Collapse
Affiliation(s)
- Huan Guo
- The First Department of Orthopaedic Surgery, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400021, P.R. China
| | - Zhiping Kuang
- The First Department of Orthopaedic Surgery, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400021, P.R. China
| | - Jing Zhang
- Environment and Quality Inspection College, Chongqing Chemical Industry Vocational College, Chongqing 401228, P.R. China
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, P.R. China
| | - Ping Pu
- The First Department of Orthopaedic Surgery, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400021, P.R. China
| | - Junfeng Yan
- Department of Internal Medicine-Neurology, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400021, P.R. China
| |
Collapse
|
11
|
Zhao X, Yi R, Zhou X, Mu J, Long X, Pan Y, Song JL, Park KY. Preventive effect of Lactobacillus plantarum KSFY02 isolated from naturally fermented yogurt from Xinjiang, China, on d-galactose–induced oxidative aging in mice. J Dairy Sci 2019; 102:5899-5912. [DOI: 10.3168/jds.2018-16033] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 01/10/2019] [Indexed: 12/11/2022]
|
12
|
Preventive Effect of Small-Leaved Kuding Tea ( Ligustrum robustum (Roxb.) Bl.) Polyphenols on D-Galactose-Induced Oxidative Stress and Aging in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:3152324. [PMID: 31239856 PMCID: PMC6556317 DOI: 10.1155/2019/3152324] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/01/2019] [Accepted: 05/09/2019] [Indexed: 02/06/2023]
Abstract
Small-leaved Kuding tea is a traditional Chinese tea that is rich in polyphenols. In the current study, we investigated the preventive effect of small-leaved Kuding tea (SLKDT) on D-galactose-induced oxidative aging in mice. Changes in serum, skin, liver, and spleen of experimental animals were determined using biochemical and molecular biology techniques. Biochemical analysis demonstrated that polyphenol extract of SLKDT (PSLKDT) improved the indices of the thymus, brain, heart, liver, spleen, and kidney function in model mice. PSLKDT prevented a decrease in the levels of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and glutathione (GSH) as well as an increase in nitric oxide (NO) and malondialdehyde (MDA) levels in serum, liver, and spleen. Pathological assessment also showed that PSLKDT reduced oxidative damage induced by D-galactose in skin, liver, and spleen. We further found that PSLKDT upregulated neuronal nitric oxide synthase (nNOS), endothelial nitric oxide synthase (eNOS), Cu/Zn-SOD, Mn-SOD, catalase (CAT), heme oxygenase-1 (HO-1), nuclear factor (nuclear factor-erythroid 2 related factor 2 (Nrf2), γ-glutamylcysteine synthetase (γ-GCS), and NAD(P)H dehydrogenase [quinone] 1 (NQO1) mRNA expression and downregulated inducible nitric oxide synthase (iNOS) mRNA expression. Protein levels of SOD1 (Cu/Zn-SOD), SOD2 (Mn-SOD), CAT, GSH1 (γ-glutamate-cysteine ligase), and GSH2 (glutathione synthetase) in the liver and spleen were also increased by PSLKDT treatment. Collectively, these results indicate that PSLKDT is effective in preventing D-galactose-induced oxidative aging in mice, and its efficacy is significantly higher than antioxidant vitamin C. Because PSLKDT is a potent antioxidant and antiaging polyphenol, Kuding tea rich in PSLKDT should be considered an ideal drink with antioxidative and antiaging effects.
Collapse
|
13
|
Wu Shan Shen Cha ( Malus asiatica Nakai. Leaves)-Derived Flavonoids Alleviate Alcohol-Induced Gastric Injury in Mice via an Anti-Oxidative Mechanism. Biomolecules 2019; 9:biom9050169. [PMID: 31058806 PMCID: PMC6571911 DOI: 10.3390/biom9050169] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/03/2019] [Accepted: 04/10/2019] [Indexed: 12/22/2022] Open
Abstract
Wu Shan Shen Cha is the leaf of Malus asiatica Nakai., a special type of tea that is consumed in the same way as green tea. To study the effect of Wu Shan Shen Cha-derived flavonoids (WSSCF) on lesions in the stomach, a 15% hydrochloric acid–95% ethanol (volume ratio 4:6) solution was used to induce gastric injury in mice. The degree of gastric injury was assessed using tissue specimens, and the effects of WSSCF on the serum levels of antioxidant enzymes were investigated. The results showed that WSSCF could alleviate the damage of the gastric mucosa and gastric wall caused by the hydrochloric acid–ethanol solution, decrease the tissue and serum levels of malondialdehyde (MDA) in mice with gastric injury, and increase the serum levels of superoxide dismutase (SOD) and glutathione (GSH). The results of quantitative polymerase chain reaction (qPCR) showed that WSSCF could increase the mRNA expression of Mn-SOD, Cu/Zn-SOD, catalase (CAT), endothelial nitric oxide synthase (eNOS), and neuronal nitric oxide synthase (nNOS) in tissue specimens from mice with gastric injury and decrease the expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS). At the same time, the results of the high concentration of WSSCF (WSSCFH) group were closer to those of the drug (ranitidine) treatment group. Wu Shan Shen Cha-derived flavonoids had a good antioxidant effect, so as to play a preventive role in alcoholic gastric injury.
Collapse
|
14
|
Wang R, Yang Z, Zhang J, Mu J, Zhou X, Zhao X. Liver Injury Induced by Carbon Tetrachloride in Mice Is Prevented by the Antioxidant Capacity of Anji White Tea Polyphenols. Antioxidants (Basel) 2019; 8:antiox8030064. [PMID: 30875793 PMCID: PMC6466528 DOI: 10.3390/antiox8030064] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/05/2019] [Accepted: 03/12/2019] [Indexed: 12/17/2022] Open
Abstract
Anji white tea is a unique variety of green tea that is rich in polyphenols. In this study, the effect of Anji white tea polyphenols (AJWTP) on the prevention of carbon tetrachloride (CCl₄)-induced liver injury through its antioxidant properties was studied. Biochemical and molecular biology methods were used to analyze the serum and liver tissue of mice. The antioxidant capacity and liver injury preventive effect of AJWTP were determined, and the mechanism was elaborated. The results showed that AJWTP decreased the serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), triglyceride (TG), and total cholesterol (TC) in mice with liver injury, it increased the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in the serum and liver tissue of mice with liver injury, and it also decreased the amount of malondialdehyde (MDA). Further quantitative polymerase chain reaction (qPCR) results showed that AJWTP upregulated the mRNA expression of Cu/Zn-SOD, Mn-SOD, catalase (CAT), and nuclear factor of kappa light polypeptide gene enhancer in B-cell inhibitor alpha (IκB-α) and downregulated the expression of nuclear factor κ-light-chain-enhancer of activated B-cells (NF-κB), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), interleukin-1 beta (IL-1β), and tumor necrosis factor alpha (TNF-α) in the liver tissue of mice with liver injury. Therefore, AJWTP produces sufficient antioxidant action to prevent liver injury, and the effect increases with the increase in AJWTP concentration. The effect of 200 mg/kg AJWTP was similar to that of the same concentration of the drug (silymarin) used for the treatment of liver injury. This indicates excellent potential for the development and utilization of AJWTP because it is an active substance with excellent antioxidant effects and can prevent liver injury.
Collapse
Affiliation(s)
- Ranran Wang
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, China.
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing 400067, China.
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing 400067, China.
- College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China.
| | - Zhiqing Yang
- College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China.
| | - Jing Zhang
- Environment and Quality Inspection College, Chongqing Chemical Industry Vocational College, Chongqing 401228, China.
| | - Jianfei Mu
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, China.
- College of Food Science, Southwest University, Chongqing 400715, China.
| | - Xianrong Zhou
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, China.
- College of Food Science, Southwest University, Chongqing 400715, China.
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, China.
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing 400067, China.
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing 400067, China.
| |
Collapse
|
15
|
Lactobacillus plantarum CQPC11 Isolated from Sichuan Pickled Cabbages Antagonizes d-galactose-Induced Oxidation and Aging in Mice. Molecules 2018; 23:molecules23113026. [PMID: 30463304 PMCID: PMC6278364 DOI: 10.3390/molecules23113026] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 11/16/2018] [Accepted: 11/19/2018] [Indexed: 12/17/2022] Open
Abstract
Chinese pickled cabbage is a traditional fermented food that contains abundant microbes produced during the process of fermentation. In this work, an in vivo animal study was conducted to investigate the effects of a newly isolated lactic acid bacterium (Lactobacillus plantarum CQPC11, LP-CQPC11) on d-galactose-induced oxidation and aging in mice. Analysis of the serum and tissue samples of these mice using molecular biology approaches showed that LP-CQPC11 suppressed the decrease in thymus, brain, heart, liver, spleen, and kidney indices caused by oxidation and aging. Furthermore, LP-CQPC11 increased the levels of SOD (superoxide dismutase), GSH-Px (glutathione peroxidase), and GSH (glutathione), whereas it reduced the levels of NO (nitric oxide) and MDA (malondialdehyde) in the serum, liver, and spleen of oxidation and aging mouse models. Pathological observation indicated that LP-CQPC11 alleviated the damage caused by oxidation and aging on the liver and spleen of mice. qPCR analysis indicated that LP-CQPC11 effectively upregulated the expression of nNOS (neuronal nitric oxide synthase), eNOS (endothelial nitric oxide synthase), Cu/Zn-SOD (cuprozinc-superoxide dismutase), Mn-SOD (manganese superoxide dismutase), CAT (catalase), HO-1 (heme oxygenase-1), Nrf2 (nuclear factor-erythroid 2 related factor 2), γ-GCS (γ-glutamylcysteine synthetase), and NQO1 (NAD(P)H dehydrogenase [quinone] 1), but downregulated the expression of iNOS (inducible nitric oxide synthase) in the mouse liver and spleen. Western blot analysis showed that LP-CQPC11 effectively upregulated SOD1 (Cu/Zn-SOD), SOD2 (Mn-SOD), CAT, GSH1 (c-glutamylcysteine synthetase), and GSH2 (glutathione synthetase) protein expression in mouse liver and spleen tissues. These findings suggest that LP-CQPC11 can effectively prevent d-galactose-induced oxidation and aging in mice, and the effect is even better than that of the commonly used Lactobacillus delbruechii subsp. bulgaricus (LDSB) and vitamin C in the industry. Thus, LP-CQPC11 may be potentially employed as a probiotic strain.
Collapse
|
16
|
Zhao X, Song JL, Yi R, Li G, Sun P, Park KY, Suo H. Comparison of Antioxidative Effects of Insect Tea and Its Raw Tea (Kuding Tea) Polyphenols in Kunming Mice. Molecules 2018; 23:E204. [PMID: 29351230 PMCID: PMC6017035 DOI: 10.3390/molecules23010204] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/16/2018] [Accepted: 01/16/2018] [Indexed: 12/17/2022] Open
Abstract
Kudingcha is a traditional Chinese tea, and insect tea is a special drink produced by the metabolism of insect larvae using the raw Kuding tea. Insect tea polyphenols (ITP) and its raw tea (Kuding tea) polyphenols (KTP) are high-purity polyphenols extracted by centrifuge precipitation. The present study was designed to compare the antioxidative effects of insect tea polyphenols (ITP) and its raw tea (Kuding tea) polyphenols (KTP) on d-galactose-induced oxidation in Kunming (KM) mice. KM mice were treated with ITP (200 mg/kg) and KTP (200 mg/kg) by gavage, and vitamin C (VC, 200 mg/kg) was also used as a positive control by gavage. After determination in serum, liver and spleen, ITP-treated mice showed higher superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and glutathione (GSH) activities and lower nitric oxide (NO), malonaldehyde (MDA) activities than VC-treated mice, KTP-treated mice and untreated oxidation mice (control group). By H&E section observation, the mice induced by d-galactose-induced oxidation showed more changes than normal mice, and oxidative damage appeared in liver and spleen tissues; ITP, VC and KTP improved oxidative damage of liver and spleen tissues, and the effects of ITP were better than VC and KTP. Using quantitative polymerase chain reaction (qPCR) and western blot experiments, it was observed that ITP could increase the mRNA and protein expression of neuronal nitric oxide synthase (nNOS), endothelial nitric oxide synthase (eNOS), manganese superoxide dismutase (Mn-SOD), cupro/zinc superoxide dismutase (Cu/Zn-SOD), catalase (CAT), heme oxygenase-1 (HO-1), nuclear factor erythroid 2 related factor 2 (Nrf2), gamma glutamylcysteine synthetase (γ-GCS), and NAD(P)H:quinone oxidoreductase 1 (NQO1) and reduce inducible nitric oxide synthase (iNOS) expression in liver and spleen tissues compared to the control group. These effects were stronger than for VC and KTP. Both ITP and KTP had good antioxidative effects, and after the transformation of insects, the effects of ITP were better than that of KTP and even better than VC. Thus, ITP can be used as an antioxidant and anti-ageing functional food.
Collapse
Affiliation(s)
- Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, China.
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing 400067, China.
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing 400067, China.
- College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China.
| | - Jia-Le Song
- Department of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin 541004, Guangxi, China.
| | - Ruokun Yi
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, China.
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing 400067, China.
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing 400067, China.
- College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China.
| | - Guijie Li
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, China.
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing 400067, China.
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing 400067, China.
- College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China.
| | - Peng Sun
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, China.
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing 400067, China.
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing 400067, China.
- College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China.
| | - Kun-Young Park
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, China.
- Department of Food Science and Biotechnology, Cha University, Seongnam 13488, Gyeongghi-do, Korea.
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing 400715, China.
| |
Collapse
|