1
|
Croft J, Grajeda B, Gao L, Abou-Fadel J, Badr A, Sheng V, Zhang J. Whole-Genome Omics Elucidates the Role of CCM1 and Progesterone in Cerebral Cavernous Malformations within CmPn Networks. Diagnostics (Basel) 2024; 14:1895. [PMID: 39272679 PMCID: PMC11394482 DOI: 10.3390/diagnostics14171895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/21/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
Cerebral cavernous malformations (CCMs) are abnormal expansions of brain capillaries that increase the risk of hemorrhagic strokes, with CCM1 mutations responsible for about 50% of familial cases. The disorder can cause irreversible brain damage by compromising the blood-brain barrier (BBB), leading to fatal brain hemorrhages. Studies show that progesterone and its derivatives significantly impact BBB integrity. The three CCM proteins (CCM1, CCM2, and CCM3) form the CCM signaling complex (CSC), linking classic and non-classic progesterone signaling within the CmPn network, which is crucial for maintaining BBB integrity. This study aimed to explore the relationship between CCM1 and key pathways of the CmPn signaling network using three mouse embryonic fibroblast lines (MEFs) with distinct CCM1 expressions. Omics and systems biology analysis investigated CCM1-mediated signaling within the CmPn network. Our findings reveal that CCM1 is essential for regulating cellular processes within progesterone-mediated CmPn/CmP signaling, playing a crucial role in maintaining microvessel integrity. This regulation occurs partly through gene transcription control. The critical role of CCM1 in these processes suggests it could be a promising therapeutic target for CCMs.
Collapse
Affiliation(s)
- Jacob Croft
- Departs of Molecular & Translational Medicine (MTM), Texas Tech University Health Science Center El Paso (TTUHSCEP), El Paso, TX 79905, USA
| | - Brian Grajeda
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79902, USA
| | - Liyuan Gao
- Department of Computer Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Johnathan Abou-Fadel
- Departs of Molecular & Translational Medicine (MTM), Texas Tech University Health Science Center El Paso (TTUHSCEP), El Paso, TX 79905, USA
| | - Ahmed Badr
- Department of Anesthesiology, Ochsner LSU Health, Shreveport, LA 71130, USA
| | - Victor Sheng
- Department of Computer Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Jun Zhang
- Departs of Molecular & Translational Medicine (MTM), Texas Tech University Health Science Center El Paso (TTUHSCEP), El Paso, TX 79905, USA
| |
Collapse
|
2
|
Ashok K, Martinez T, Sesen J, Nasim S, Lang SS, Heuer G, Tucker A, Lopez-Ramirez MA, Smith ER, Ghalali A. Lectin-type oxidized LDL receptor-1 as a potential therapeutic target for cerebral cavernous malformations treatment. Front Neurosci 2024; 18:1442110. [PMID: 39234183 PMCID: PMC11371587 DOI: 10.3389/fnins.2024.1442110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024] Open
Abstract
Introduction Cerebral cavernous malformations (CCMs) are pathologic lesions comprised of clusters of thin-walled capillaries characterized by abnormal proliferation, angiogenesis, and bleeding secondary to somatic or germline mutations in endothelial cells. CCMs can cause headaches, seizures and/or neurological defects. There is a clinical need to develop better tools to detect CCMs and follow their progression in conjunction with the current use of neuroimaging techniques. Here we present data supporting the utility of LOX-1 (lectin-type oxidized LDL receptor 1), a 50 kDa transmembrane protein implicated in endothelial cell dysfunction and ischemia, as a putative biomarker for CCM. Methods CCM urine samples (n = 23) were collected from pediatric CCM patients. Matched healthy controls (n = 24) were collected from pediatric patients with either Chiari I malformation or fatty filum terminale, and otherwise normal findings. All samples were collected with patient/family consent and institutional review board approval.Samples were analyzed with Olink Proteomic Proximity Extension Assay (PEA). Differences in expression for 2,925 unique proteins were quantified between healthy control urine samples and CCM urine samples. The results were normalized, validated, and analyzed for demographic bias. In addition to urine samples, CCM tissue from patients was harvested and used to create primary cell lines for in vitro analysis of LOX-1 expression, in addition to immunofluorescence of lesional tissue excised at surgery. Results ANOVA analysis of the CCM urine samples showed a statistically significant increase in LOX-1 compared to the control samples, with CCM patients exhibiting a > 5-fold increase in urinary expression. Corroborating these elevated levels of circulating marker, analysis of source tissue from surgically resected CCMs revealed that LOX-1 is increased in both CCM patient cavernoma primary cell lines and operative specimens. Conclusion LOX-1 is involved with pathways implicated in CCM pathogenesis and our data here reveals that LOX-1 expression is significantly elevated in CCM patients as compared to matched healthy control individuals, including both source tissue from surgically excised CCMs and in analysis of samples collected from outside of the central nervous system, particularly urine. This proof-of-principle data suggests that LOX-1 may have potential utility as a target for CCM treatment and supports further investigation related to its potential mechanistic impact on CCM pathogenesis.
Collapse
Affiliation(s)
- Karthik Ashok
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, United States
- Department of Surgery, Harvard Medical School, Boston, MA, United States
| | - Tyra Martinez
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, United States
- Department of Surgery, Harvard Medical School, Boston, MA, United States
| | - Julie Sesen
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, United States
- Department of Surgery, Harvard Medical School, Boston, MA, United States
| | - Sana Nasim
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, United States
| | - Shih-Shan Lang
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Gregory Heuer
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Alexander Tucker
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | | | - Edward R Smith
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, United States
- Department of Surgery, Harvard Medical School, Boston, MA, United States
- Department of Neurosurgery, Boston Children's Hospital, Boston, MA, United States
| | - Aram Ghalali
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, United States
- Department of Surgery, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
3
|
Croft J, Sandoval DF, Cistola D, Zhang J. Plasma water T 2 detects age-stratified differences in cardiometabolic health among familial CCM patients with Hispanic CCM1 mutation. Metab Brain Dis 2024; 39:885-893. [PMID: 38795261 DOI: 10.1007/s11011-024-01359-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 05/07/2024] [Indexed: 05/27/2024]
Abstract
Cerebral cavernous malformations (CCMs) are abnormal clusters of capillaries in the nervous system. This pilot study analyzed the cardiometabolic health status of individuals with familial CCMs caused by a rare mutation in the CCM1 gene (fCCM1). The aim was to compare plasma water T2 values from individuals with fCCM1 with values from metabolically unhealthy and healthy individuals with no known CCM mutations. This observational, cross-sectional study included 75 participants: 11 fCCM1 patients, 24 metabolically unhealthy and 40 metabolically healthy individuals. Plasma water T2, an early, global and practical marker of cardiometabolic health, was measured in the time domain using benchtop magnetic resonance relaxometry. The results were stratified by age (equal to or less than 45 vs. older than 45 years). Group means were compared using Welch's one-way ANOVA and post hoc Tukey-Kramer tests. Multivariable linear regression, with T2 as the outcome variable, was used to explore associations with age, gender, Hispanic ethnicity and fCCM1 status. In the younger age stratum, the fCCM1 group had a mean plasma water T2 value comparable to the metabolically healthy group (p = 0.6388), but higher than the unhealthy group (p < 0.0001). By contrast, in the older stratum, the mean plasma water T2 value for the fCCM1 group was comparable to the metabolically unhealthy group (p = 0.7819) and lower than the healthy group (p = 0.0005). Multivariable linear regression revealed that age and the interaction between age and fCCM1 status were significant predictors of T2, even after adjusting for gender and Hispanic ethnicity. Plasma water T2 shows potential as a biomarker for assessing the health status of individuals with fCCM1. Further research is needed to validate these preliminary observations and elucidate the association between CCMs and cardiometabolic health.
Collapse
Affiliation(s)
- Jacob Croft
- Center of Cancer Research, Department of Molecular and Translation Medicine Texas Tech University Health Science Center El Paso, El Paso, TX, 79905, USA
| | - Diana F Sandoval
- Center of Diabetes and Metabolic Syndrome, Department of Molecular and Translation Medicine Texas Tech University Health Science Center El Paso, El Paso, TX, 79905, USA
| | - David Cistola
- Center of Diabetes and Metabolic Syndrome, Department of Molecular and Translation Medicine Texas Tech University Health Science Center El Paso, El Paso, TX, 79905, USA
| | - Jun Zhang
- Center of Cancer Research, Department of Molecular and Translation Medicine Texas Tech University Health Science Center El Paso, El Paso, TX, 79905, USA.
- Department of Biomedical Sciences, Texas Tech University Health Science Center, 5001 El Paso Drive, El Paso, TX, 79905, USA.
| |
Collapse
|
4
|
Croft J, Grajeda B, Aguirre LA, Abou-Fadel JS, Ellis CC, Estevao I, Almeida IC, Zhang J. Circulating Blood Prognostic Biomarker Signatures for Hemorrhagic Cerebral Cavernous Malformations (CCMs). Int J Mol Sci 2024; 25:4740. [PMID: 38731959 PMCID: PMC11084792 DOI: 10.3390/ijms25094740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Cerebral cavernous malformations (CCMs) are a neurological disorder characterized by enlarged intracranial capillaries in the brain, increasing the susceptibility to hemorrhagic strokes, a major cause of death and disability worldwide. The limited treatment options for CCMs underscore the importance of prognostic biomarkers to predict the likelihood of hemorrhagic events, aiding in treatment decisions and identifying potential pharmacological targets. This study aimed to identify blood biomarkers capable of diagnosing and predicting the risk of hemorrhage in CCM1 patients, establishing an initial set of circulating biomarker signatures. By analyzing proteomic profiles from both human and mouse CCM models and conducting pathway enrichment analyses, we compared groups to identify potential blood biomarkers with statistical significance. Specific candidate biomarkers primarily associated with metabolism and blood clotting pathways were identified. These biomarkers show promise as prognostic indicators for CCM1 deficiency and the risk of hemorrhagic stroke, strongly correlating with the likelihood of hemorrhagic cerebral cavernous malformations (CCMs). This lays the groundwork for further investigation into blood biomarkers to assess the risk of hemorrhagic CCMs.
Collapse
Affiliation(s)
- Jacob Croft
- Department of Molecular and Translational Medicine, Texas Tech University Health Science Center El Paso (TTUHSCEP), El Paso, TX 79905, USA (J.S.A.-F.)
| | - Brian Grajeda
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79902, USA; (B.G.); (I.E.)
| | - Luis A. Aguirre
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79902, USA; (B.G.); (I.E.)
| | - Johnathan S. Abou-Fadel
- Department of Molecular and Translational Medicine, Texas Tech University Health Science Center El Paso (TTUHSCEP), El Paso, TX 79905, USA (J.S.A.-F.)
| | - Cameron C. Ellis
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79902, USA; (B.G.); (I.E.)
| | - Igor Estevao
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79902, USA; (B.G.); (I.E.)
| | - Igor C. Almeida
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79902, USA; (B.G.); (I.E.)
| | - Jun Zhang
- Department of Molecular and Translational Medicine, Texas Tech University Health Science Center El Paso (TTUHSCEP), El Paso, TX 79905, USA (J.S.A.-F.)
| |
Collapse
|
5
|
Alhujaily M. Molecular Assessment of Methylglyoxal-Induced Toxicity and Therapeutic Approaches in Various Diseases: Exploring the Interplay with the Glyoxalase System. Life (Basel) 2024; 14:263. [PMID: 38398772 PMCID: PMC10890012 DOI: 10.3390/life14020263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
This comprehensive exploration delves into the intricate interplay of methylglyoxal (MG) and glyoxalase 1 (GLO I) in various physiological and pathological contexts. The linchpin of the narrative revolves around the role of these small molecules in age-related issues, diabetes, obesity, cardiovascular diseases, and neurodegenerative disorders. Methylglyoxal, a reactive dicarbonyl metabolite, takes center stage, becoming a principal player in the development of AGEs and contributing to cell and tissue dysfunction. The dual facets of GLO I-activation and inhibition-unfold as potential therapeutic avenues. Activators, spanning synthetic drugs like candesartan to natural compounds like polyphenols and isothiocyanates, aim to restore GLO I function. These molecular enhancers showcase promising outcomes in conditions such as diabetic retinopathy, kidney disease, and beyond. On the contrary, GLO I inhibitors emerge as crucial players in cancer treatment, offering new possibilities in diseases associated with inflammation and multidrug resistance. The symphony of small molecules, from GLO I activators to inhibitors, presents a nuanced understanding of MG regulation. From natural compounds to synthetic drugs, each element contributes to a molecular orchestra, promising novel interventions and personalized approaches in the pursuit of health and wellbeing. The abstract concludes with an emphasis on the necessity of rigorous clinical trials to validate these findings and acknowledges the importance of individual variability in the complex landscape of health.
Collapse
Affiliation(s)
- Muhanad Alhujaily
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
| |
Collapse
|
6
|
Elhendawy HA. Clinical implications of heat shock protein 70 in oral carcinogenesis and prediction of progression and recurrence in oral squamous cell carcinoma patients: a retrospective clinicopathological study. Eur J Med Res 2023; 28:464. [PMID: 37884988 PMCID: PMC10604814 DOI: 10.1186/s40001-023-01433-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/05/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Oral cancer is a common cause of death worldwide. The search for novel biomarkers for oral cancer is an ongoing struggle. Prognostic biomarkers are of great importance in diagnosis, and prediction of the cancer outcome. There are several disagreements in oral cancer studies over the role of heat shock proteins as prognostic markers. The current study investigated HSP70 expression in diverse tissues ranging from normal oral mucosa to dysplastic oral epithelium and oral squamous cell carcinoma to determine its role in oral carcinogenesis. Moreover, HSP70 was evaluated concerning different prognostic parameters to determine its capability in predicting cancer progression. Recurrence of tumor was recorded, and patients` disease-free survival was calculated and analyzed considering HSP70 expression to determine the potential utility of HSP70 immuno-expression in predicting recurrence. METHODS A retrospective study was accomplished on 50 cases of OSCC. Biopsies from the cancerous tissue, the free surgical margin, and the normal oral mucosa were used. The grading of dysplastic epithelium and OSCCs followed the criteria of WHO classification (2017). The clinicopathological and follow-up records for each patient were retrieved. Pearson's Chi-square test, one-way ANOVA, and post hoc tests were used to analyze the variance of HSP70 immuno-expression concerning different parameters. The Kaplan-Meier method was used to compute and visualize disease-free survival, and the log-rank test was used to analyze the data. With Cox regression, univariate and multivariate survival analyses were run. A P-value of 0.05 or less was regarded as statistically significant. RESULTS A significant increased expression of HSP70 was observed as the tissue progressed from normal to dysplastic epithelium, and carcinoma (P = 0.000). HSP70 revealed a significant increased expression by progression from mild to severe dysplasia (P = 0.023), and also from well to moderately and poorly differentiated carcinoma (P = 0.000). High HSP70 immuno-expression was significantly associated with progression of OSCC; large-sized tumors (P = 0.002), advanced TNM clinical stages (P = 0.001), positive nodal involvement (P = 0.001), presence of recurrence (P = .008), and reduced DFS (P = 0.014). CONCLUSION HSP70 has a crucial contribution to oral carcinogenesis, and its immune-expression could potentially be used as predictor of progression and recurrence of OSCC patients. TRIAL REGISTRATION Retrospectively registered.
Collapse
|
7
|
Phillips CM, Johnson AM, Stamatovic SM, Keep RF, Andjelkovic AV. 20 kDa isoform of connexin-43 augments spatial reorganization of the brain endothelial junctional complex and lesion leakage in cerebral cavernous malformation type-3. Neurobiol Dis 2023; 186:106277. [PMID: 37652184 DOI: 10.1016/j.nbd.2023.106277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/14/2023] [Accepted: 08/29/2023] [Indexed: 09/02/2023] Open
Abstract
Cerebral cavernous malformation type-3 (CCM3) is a type of brain vascular malformation caused by mutations in programmed cell death protein-10 (PDCD10). It is characterized by early life occurrence of hemorrhagic stroke and profound blood-brain barrier defects. The pathogenic mechanisms responsible for microvascular hyperpermeability and lesion progression in CCM3 are still largely unknown. The current study examined brain endothelial barrier structural defects formed in the absence of CCM3 in vivo and in vitro that may lead to CCM3 lesion leakage. We found significant upregulation of a 20 kDa isoform of connexin 43 (GJA1-20 k) in brain endothelial cells (BEC) in both non-leaky and leaky lesions, as well as in an in vitro CCM3 knockdown model (CCM3KD-BEC). Morphological, biochemical, FRET, and FRAP analyses of CCM3KD-BEC found GJA1-20 k regulates full-length GJA1 biogenesis, prompting uncontrolled gap junction growth. Furthermore, by binding to a tight junction scaffolding protein, ZO-1, GJA1-20 k interferes with Cx43/ZO-1 interactions and gap junction/tight junction crosstalk, promoting ZO-1 dissociation from tight junction complexes and diminishing claudin-5/ZO-1 interaction. As a consequence, the tight junction complex is destabilized, allowing "replacement" of tight junctions with gap junctions leading to increased brain endothelial barrier permeability. Modifying cellular levels of GJA1-20 k rescued brain endothelial barrier integrity re-establishing the spatial organization of gap and tight junctional complexes. This study highlights generation of potential defects at the CCM3-affected brain endothelial barrier which may underlie prolonged vascular leakiness.
Collapse
Affiliation(s)
- Chelsea M Phillips
- Neuroscience Graduate program, University of Michigan, Ann Arbor, MI, USA
| | | | | | - Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA; Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Anuska V Andjelkovic
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA; Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
8
|
Croft J, Sandoval DF, Cistola D, Zhang J. Plasma water T2 detects age-stratified differences in cardiometabolic health among familial CCM patients with Hispanic CCM1 mutation. RESEARCH SQUARE 2023:rs.3.rs-3253817. [PMID: 37674713 PMCID: PMC10479402 DOI: 10.21203/rs.3.rs-3253817/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Introduction Cerebral cavernous malformations (CCMs) are abnormal clusters of capillaries in the nervous system. This pilot study analyzed the cardiometabolic health status of individuals with familial CCMs caused by a rare mutation in the CCM1 gene (fCCM1). The aim was to compare plasma water T2 values from individuals with fCCM1 with values from metabolically unhealthy and healthy individuals with no known CCM mutations. Design This observational, cross-sectional study included 75 participants: 11 fCCM1 patients, 24 metabolically unhealthy and 40 metabolically healthy individuals. Plasma water T2, an early, global and practical marker of cardiometabolic health, was measured in the time domain using benchtop magnetic resonance relaxometry. The results were stratified by age (equal to or less than 45 vs. older than 45 years). Group means were compared using Welch's one-way ANOVA and post hoc Tukey-Kramer tests. Multivariable linear regression, with T2 as the outcome variable, was used to explore associations with age, gender, Hispanic ethnicity and fCCM1 status. Results In the younger age stratum, the fCCM1 group had a mean plasma water T2 value comparable to the metabolically healthy group (p=0.6388), but higher than the unhealthy group (p<0.0001). By contrast, in the older stratum, the mean plasma water T2 value for the fCCM1 group was comparable to the metabolically unhealthy group (p=0.7819) and lower than the healthy group (p=0.0005). Multivariable linear regression revealed that age and the interaction between age and fCCM1 status were significant predictors of T2, even after adjusting for gender and Hispanic ethnicity. Conclusion Plasma water T2 shows potential as a biomarker for assessing the health status of individuals with fCCM1. Further research is needed to validate these preliminary observations and elucidate the association between CCMs and cardiometabolic health.
Collapse
Affiliation(s)
- Jacob Croft
- Texas Tech University Health Sciences Center
| | | | | | | |
Collapse
|
9
|
Croft J, Sandoval DF, Cistola D, Zhang J. Plasma water T 2 detects age-stratified differences in cardiometabolic health among familial CCM patients with Hispanic CCM1 mutation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.10.23293944. [PMID: 37645828 PMCID: PMC10462205 DOI: 10.1101/2023.08.10.23293944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Introduction Cerebral cavernous malformations (CCMs) are abnormal clusters of capillaries in the nervous system. This pilot study analyzed the cardiometabolic health status of individuals with familial CCMs caused by a rare mutation in the CCM1 gene (fCCM1). The aim was to compare plasma water T2 values from individuals with fCCM1 with values from metabolically unhealthy and healthy individuals with no known CCM mutations. Design This observational, cross-sectional study included 75 participants: 11 fCCM1 patients, 24 metabolically unhealthy and 40 metabolically healthy individuals. Plasma water T2, an early, global and practical marker of cardiometabolic health, was measured in the time domain using benchtop magnetic resonance relaxometry. The results were stratified by age (≤ 45 vs. >45 years). Group means were compared using Welch's one-way ANOVA and post hoc Tukey-Kramer tests. Multivariable linear regression, with T2 as the outcome variable, was used to explore associations with age, gender, Hispanic ethnicity and fCCM1 status. Results In the younger age stratum, the fCCM1 group had a mean plasma water T2 value comparable to the metabolically healthy group (p=0.6388), but higher than the unhealthy group (p<0.0001). By contrast, in the older stratum, the mean plasma water T2 value for the fCCM1 group was comparable to the metabolically unhealthy group (p=0.7819) and lower than the healthy group (p=0.0005). Multivariable linear regression revealed that age and the interaction between age and fCCM1 status were significant predictors of T2, even after adjusting for gender and Hispanic ethnicity. Conclusion Plasma water T2 shows potential as a biomarker for assessing the health status of individuals with fCCM1. Further research is needed to validate these preliminary observations and elucidate the association between CCMs and cardiometabolic health.
Collapse
Affiliation(s)
- Jacob Croft
- Center of Cancer Research, Department of Molecular and Translation Medicine Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| | - Diana F. Sandoval
- Center of Diabetes and Metabolic Syndrome, Department of Molecular and Translation Medicine Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| | - David Cistola
- Center of Diabetes and Metabolic Syndrome, Department of Molecular and Translation Medicine Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| | - Jun Zhang
- Center of Cancer Research, Department of Molecular and Translation Medicine Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| |
Collapse
|
10
|
Thiruvengadam R, Venkidasamy B, Samynathan R, Govindasamy R, Thiruvengadam M, Kim JH. Association of nanoparticles and Nrf2 with various oxidative stress-mediated diseases. Chem Biol Interact 2023; 380:110535. [PMID: 37187268 DOI: 10.1016/j.cbi.2023.110535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/18/2023] [Accepted: 05/08/2023] [Indexed: 05/17/2023]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that regultes the cellular antioxidant defense system at the posttranscriptional level. During oxidative stress, Nrf2 is released from its negative regulator Kelch-like ECH-associated protein 1 (Keap1) and binds to antioxidant response element (ARE) to transcribe antioxidative metabolizing/detoxifying genes. Various transcription factors like aryl hydrocarbon receptor (AhR) and nuclear factor kappa light chain enhancer of activated B cells (NF-kB) and epigenetic modification including DNA methylation and histone methylation might also regulate the expression of Nrf2. Despite its protective role, Keap1/Nrf2/ARE signaling is considered as a pharmacological target due to its involvement in various pathophysiological conditions such as diabetes, cardiovascular disease, cancer, neurodegenerative diseases, hepatotoxicity and kidney disorders. Recently, nanomaterials have received a lot of attention due to their unique physiochemical properties and are also used in various biological applications, for example, biosensors, drug delivery systems, cancer therapy, etc. In this review, we will be discussing the functions of nanoparticles and Nrf2 as a combined therapy or sensitizing agent and their significance in various diseases such as diabetes, cancer and oxidative stress-mediated diseases.
Collapse
Affiliation(s)
- Rekha Thiruvengadam
- Department of Integrative Bioscience & Biotechnology, Sejong University, Seoul, 05006, Republic of Korea
| | - Baskar Venkidasamy
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077, India
| | - Ramkumar Samynathan
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077, India
| | - Rajakumar Govindasamy
- Department of Periodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077, India
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, College of Life and Environmental Sciences, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jin Hee Kim
- Department of Integrative Bioscience & Biotechnology, Sejong University, Seoul, 05006, Republic of Korea.
| |
Collapse
|
11
|
Scimone C, Alibrandi S, Donato L, De Gaetano GV, Fusco C, Nardella G, Castori M, Rinaldi C, Alafaci C, Germanò A, D'Angelo R, Sidoti A. Amplification of protease-activated receptors signaling in sporadic cerebral cavernous malformation endothelial cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119474. [PMID: 37030452 DOI: 10.1016/j.bbamcr.2023.119474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/13/2023] [Accepted: 03/30/2023] [Indexed: 04/10/2023]
Abstract
In the central nervous system, thrombin-mediated activation of protease-activated receptors (PARs) results in neuroinflammation and increased vascular permeability. These events have been linked to cancer and neurodegeneration. Endothelial cells (ECs) isolated from sporadic cerebral cavernous malformation (CCM) specimens showed dysregulation of genes involved in "thrombin-mediated PAR-1 activation" signaling. CCM is a vascular disease involving brain capillaries. In CCM, ECs show defective cell junctions. Oxidative stress and neuroinflammation play a key role in disease onset and progression. In order to confirm the possible role of thrombin pathway in sporadic CCM pathogenesis, we evaluated PARs expression in CCM-ECs. We found that sporadic CCM-ECs overexpress PAR1, PAR3 and PAR4, together with other coagulation factor encoding genes. Moreover, we investigated about expression of the three familial CCM genes (KRIT1, CCM2 and PDCD10) in human cerebral microvascular ECs, following thrombin exposure, as well as protein level. Thrombin exposure affects EC viability and results in dysregulation of CCM gene expression and, then, in decreased protein level. Our results confirm amplification of PAR pathway in CCM suggesting, for the first time, the possible role of PAR1-mediated thrombin signaling in sporadic CCM. Thrombin-mediated PARs over activation results in increased blood-brain barrier permeability due to loss of cell junction integrity and, in this context, also the three familial CCM genes may be involved.
Collapse
Affiliation(s)
- Concetta Scimone
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, via Consolare Valeria 1, 98125 Messina, Italy; Department of Biomolecular Strategies, Genetics, Cutting-edge Therapies, I.E.ME.S.T., via Michele Miraglia 20, Palermo 90139, Italy
| | - Simona Alibrandi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, via Consolare Valeria 1, 98125 Messina, Italy; Department of Biomolecular Strategies, Genetics, Cutting-edge Therapies, I.E.ME.S.T., via Michele Miraglia 20, Palermo 90139, Italy; Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, C.da Papardo-Sperone 31, 98100 Messina, Italy
| | - Luigi Donato
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, via Consolare Valeria 1, 98125 Messina, Italy; Department of Biomolecular Strategies, Genetics, Cutting-edge Therapies, I.E.ME.S.T., via Michele Miraglia 20, Palermo 90139, Italy
| | | | - Carmela Fusco
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy
| | - Grazia Nardella
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy
| | - Marco Castori
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy
| | - Carmela Rinaldi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, via Consolare Valeria 1, 98125 Messina, Italy.
| | - Concetta Alafaci
- Neurosurgery Unit, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, via Consolare Valeria 1, 98125 Messina, Italy
| | - Antonino Germanò
- Neurosurgery Unit, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, via Consolare Valeria 1, 98125 Messina, Italy
| | - Rosalia D'Angelo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, via Consolare Valeria 1, 98125 Messina, Italy; Department of Biomolecular Strategies, Genetics, Cutting-edge Therapies, I.E.ME.S.T., via Michele Miraglia 20, Palermo 90139, Italy
| | - Antonina Sidoti
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, via Consolare Valeria 1, 98125 Messina, Italy; Department of Biomolecular Strategies, Genetics, Cutting-edge Therapies, I.E.ME.S.T., via Michele Miraglia 20, Palermo 90139, Italy
| |
Collapse
|
12
|
Perrelli A, Ferraris C, Berni E, Glading AJ, Retta SF. KRIT1: A Traffic Warden at the Busy Crossroads Between Redox Signaling and the Pathogenesis of Cerebral Cavernous Malformation Disease. Antioxid Redox Signal 2023; 38:496-528. [PMID: 36047808 PMCID: PMC10039281 DOI: 10.1089/ars.2021.0263] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 08/15/2022] [Accepted: 08/22/2022] [Indexed: 12/18/2022]
Abstract
Significance: KRIT1 (Krev interaction trapped 1) is a scaffolding protein that plays a critical role in vascular morphogenesis and homeostasis. Its loss-of-function has been unequivocally associated with the pathogenesis of Cerebral Cavernous Malformation (CCM), a major cerebrovascular disease of genetic origin characterized by defective endothelial cell-cell adhesion and ensuing structural alterations and hyperpermeability in brain capillaries. KRIT1 contributes to the maintenance of endothelial barrier function by stabilizing the integrity of adherens junctions and inhibiting the formation of actin stress fibers. Recent Advances: Among the multiple regulatory mechanisms proposed so far, significant evidence accumulated over the past decade has clearly shown that the role of KRIT1 in the stability of endothelial barriers, including the blood-brain barrier, is largely based on its involvement in the complex machinery governing cellular redox homeostasis and responses to oxidative stress and inflammation. KRIT1 loss-of-function has, indeed, been demonstrated to cause an impairment of major redox-sensitive mechanisms involved in spatiotemporal regulation of cell adhesion and signaling, which ultimately leads to decreased cell-cell junction stability and enhanced sensitivity to oxidative stress and inflammation. Critical Issues: This review explores the redox mechanisms that influence endothelial cell adhesion and barrier function, focusing on the role of KRIT1 in such mechanisms. We propose that this supports a novel model wherein redox signaling forms the common link between the various pathogenetic mechanisms and therapeutic approaches hitherto associated with CCM disease. Future Directions: A comprehensive characterization of the role of KRIT1 in redox control of endothelial barrier physiology and defense against oxy-inflammatory insults will provide valuable insights into the development of precision medicine strategies. Antioxid. Redox Signal. 38, 496-528.
Collapse
Affiliation(s)
- Andrea Perrelli
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
- CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York, USA
| | - Chiara Ferraris
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
- CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Elisa Berni
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
- CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Angela J. Glading
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York, USA
| | - Saverio Francesco Retta
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
- CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| |
Collapse
|
13
|
Perrelli A, Bozza A, Ferraris C, Osella S, Moglia A, Mioletti S, Battaglia L, Retta SF. Multidrug-Loaded Lipid Nanoemulsions for the Combinatorial Treatment of Cerebral Cavernous Malformation Disease. Biomedicines 2023; 11:biomedicines11020480. [PMID: 36831015 PMCID: PMC9953270 DOI: 10.3390/biomedicines11020480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/04/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
Cerebral cavernous malformation (CCM) or cavernoma is a major vascular disease of genetic origin, whose main phenotypes occur in the central nervous system, and is currently devoid of pharmacological therapeutic strategies. Cavernomas can remain asymptomatic during a lifetime or manifest with a wide range of symptoms, including recurrent headaches, seizures, strokes, and intracerebral hemorrhages. Loss-of-function mutations in KRIT1/CCM1 are responsible for more than 50% of all familial cases, and have been clearly shown to affect cellular junctions, redox homeostasis, inflammatory responses, and angiogenesis. In this study, we investigated the therapeutic effects of multidrug-loaded lipid nanoemulsions in rescuing the pathological phenotype of CCM disease. The pro-autophagic rapamycin, antioxidant avenanthramide, and antiangiogenic bevacizumab were loaded into nanoemulsions, with the aim of reducing the major molecular dysfunctions associated with cavernomas. Through Western blot analysis of biomarkers in an in vitro CCM model, we demonstrated that drug-loaded lipid nanoemulsions rescue antioxidant responses, reactivate autophagy, and reduce the effect of pro-angiogenic factors better than the free drugs. Our results show the importance of developing a combinatorial preventive and therapeutic approach to reduce the risk of lesion formation and inhibit or completely revert the multiple hallmarks that characterize the pathogenesis and progression of cavernomas.
Collapse
Affiliation(s)
- Andrea Perrelli
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, TO, Italy
- CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, TO, Italy
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, Rochester, NY 14620, USA
| | - Annalisa Bozza
- Department of Drug Science and Technology, University of Torino, 10125 Torino, TO, Italy
| | - Chiara Ferraris
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, TO, Italy
- CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, TO, Italy
| | - Sara Osella
- San Giovanni Bosco Hospital, University of Torino, 10154 Torino, TO, Italy
| | - Andrea Moglia
- Department of Agricultural, Forest and Food Sciences, University of Torino, 10095 Grugliasco, TO, Italy
| | - Silvia Mioletti
- Department of Veterinary Sciences, University of Torino, 10095 Grugliasco, TO, Italy
| | - Luigi Battaglia
- Department of Drug Science and Technology, University of Torino, 10125 Torino, TO, Italy
- Nanostructured Interfaces and Surfaces (NIS) Interdepartmental Centre, University of Torino, 10124 Torino, TO, Italy
- Correspondence: (L.B.); (S.F.R.)
| | - Saverio Francesco Retta
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, TO, Italy
- CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, TO, Italy
- Correspondence: (L.B.); (S.F.R.)
| |
Collapse
|
14
|
Nobiletti N, Liu J, Glading AJ. KRIT1-mediated regulation of neutrophil adhesion and motility. FEBS J 2023; 290:1078-1095. [PMID: 36107440 PMCID: PMC9957810 DOI: 10.1111/febs.16627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/31/2022] [Accepted: 09/12/2022] [Indexed: 12/01/2022]
Abstract
Loss of Krev interaction-trapped-1 (KRIT1) expression leads to the development of cerebral cavernous malformations (CCM), a disease in which abnormal blood vessel formation compromises the structure and function of the blood-brain barrier. The role of KRIT1 in regulating endothelial function is well-established. However, several studies have suggested that KRIT1 could also play a role in regulating nonendothelial cell types and, in particular, immune cells. In this study, we generated a mouse model with neutrophil-specific deletion of KRIT1 in order to investigate the effect of KRIT1 deficiency on neutrophil function. Neutrophils isolated from adult Ly6Gtm2621(cre)Arte Krit1flox/flox mice had a reduced ability to attach and spread on the extracellular matrix protein fibronectin and exhibited a subsequent increase in migration. However, adhesion to and migration on ICAM-1 was unchanged. In addition, we used a monomeric, fluorescently-labelled fragment of fibronectin to show that integrin activation is reduced in the absence of KRIT1 expression, though β1 integrin expression appears unchanged. Finally, neutrophil migration in response to lipopolysaccharide-induced inflammation in the lung was decreased, as shown by reduced cell number and myeloperoxidase activity in lavage samples from Krit1PMNKO mice. Altogether, we show that KRIT1 regulates neutrophil adhesion and migration, likely through regulation of integrin activation, which can lead to altered inflammatory responses in vivo.
Collapse
Affiliation(s)
- Nicholas Nobiletti
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester, NY, USA
| | - Jing Liu
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester, NY, USA
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, NY, USA
| | - Angela J. Glading
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester, NY, USA
| |
Collapse
|
15
|
Oxidative Stress and Intracranial Hypertension after Aneurysmal Subarachnoid Hemorrhage. Antioxidants (Basel) 2022; 11:antiox11122423. [PMID: 36552631 PMCID: PMC9774559 DOI: 10.3390/antiox11122423] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/25/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Intracranial hypertension is a common phenomenon in patients with aneurysmal subarachnoid hemorrhage (aSAH). Elevated intracranial pressure (ICP) plays an important role in early brain injuries and is associated with unfavorable outcomes. Despite advances in the management of aSAH, there is no consensus about the mechanisms involved in ICP increases after aSAH. Recently, a growing body of evidence suggests that oxidative stress (OS) may play a crucial role in physio-pathological changes following aSAH, which may also contribute to increased ICP. Herein, we discuss a potential relation between increased ICP and OS, and resultantly propose antioxidant mechanisms as a potential therapeutic strategy for the treatment of ICP elevation following aSAH.
Collapse
|
16
|
Bianconi A, Salvati LF, Perrelli A, Ferraris C, Massara A, Minardi M, Aruta G, Rosso M, Massa Micon B, Garbossa D, Retta SF. Distant Recurrence of a Cerebral Cavernous Malformation in the Vicinity of a Developmental Venous Anomaly: Case Report of Local Oxy-Inflammatory Events. Int J Mol Sci 2022; 23:ijms232314643. [PMID: 36498972 PMCID: PMC9736411 DOI: 10.3390/ijms232314643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Cerebral cavernous malformations (CCMs) are a major type of cerebrovascular lesions of proven genetic origin that occur in either sporadic (sCCM) or familial (fCCM) forms, the latter being inherited as an autosomal dominant condition linked to loss-of-function mutations in three known CCM genes. In contrast to fCCMs, sCCMs are rarely linked to mutations in CCM genes and are instead commonly and peculiarly associated with developmental venous anomalies (DVAs), suggesting distinct origins and common pathogenic mechanisms. CASE REPORT A hemorrhagic sCCM in the right frontal lobe of the brain was surgically excised from a symptomatic 3 year old patient, preserving intact and pervious the associated DVA. MRI follow-up examination performed periodically up to 15 years after neurosurgery intervention demonstrated complete removal of the CCM lesion and no residual or relapse signs. However, 18 years after surgery, the patient experienced acute episodes of paresthesia due to a distant recurrence of a new hemorrhagic CCM lesion located within the same area as the previous one. A new surgical intervention was, therefore, necessary, which was again limited to the CCM without affecting the pre-existing DVA. Subsequent follow-up examination by contrast-enhanced MRI evidenced a persistent pattern of signal-intensity abnormalities in the bed of the DVA, including hyperintense gliotic areas, suggesting chronic inflammatory conditions. CONCLUSIONS This case report highlights the possibility of long-term distant recurrence of hemorrhagic sCCMs associated with a DVA, suggesting that such recurrence is secondary to focal sterile inflammatory conditions generated by the DVA.
Collapse
Affiliation(s)
- Andrea Bianconi
- Division of Neurosurgery, Department of Neurosciences “Rita Levi Montalcini”, City of Health and Science and University of Turin, 10124 Torino, Italy
- CCM Italia Research Network, National Coordination Center, Department of Clinical and Biological Sciences, University of Turin, 10124 Orbassano, Italy
- Correspondence: (A.B.); (S.F.R.)
| | | | - Andrea Perrelli
- CCM Italia Research Network, National Coordination Center, Department of Clinical and Biological Sciences, University of Turin, 10124 Orbassano, Italy
- Department of Clinical and Biological Sciences, School of Medicine and Surgery, University of Turin, Regione Gonzole 10, 10124 Orbassano, Italy
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14602, USA
| | - Chiara Ferraris
- CCM Italia Research Network, National Coordination Center, Department of Clinical and Biological Sciences, University of Turin, 10124 Orbassano, Italy
- Department of Clinical and Biological Sciences, School of Medicine and Surgery, University of Turin, Regione Gonzole 10, 10124 Orbassano, Italy
| | - Armando Massara
- Division of Neurosurgery, Department of Neurosciences “Rita Levi Montalcini”, City of Health and Science and University of Turin, 10124 Torino, Italy
| | - Massimiliano Minardi
- Division of Neurosurgery, Department of Neurosciences “Rita Levi Montalcini”, City of Health and Science and University of Turin, 10124 Torino, Italy
| | - Gelsomina Aruta
- Division of Neurosurgery, Department of Neurosciences “Rita Levi Montalcini”, City of Health and Science and University of Turin, 10124 Torino, Italy
| | - Miriam Rosso
- Division of Neurosurgery, Department of Neurosciences “Rita Levi Montalcini”, City of Health and Science and University of Turin, 10124 Torino, Italy
| | - Barbara Massa Micon
- Division of Neurosurgery, Department of Neurosciences “Rita Levi Montalcini”, City of Health and Science and University of Turin, 10124 Torino, Italy
| | - Diego Garbossa
- Division of Neurosurgery, Department of Neurosciences “Rita Levi Montalcini”, City of Health and Science and University of Turin, 10124 Torino, Italy
- CCM Italia Research Network, National Coordination Center, Department of Clinical and Biological Sciences, University of Turin, 10124 Orbassano, Italy
| | - Saverio Francesco Retta
- CCM Italia Research Network, National Coordination Center, Department of Clinical and Biological Sciences, University of Turin, 10124 Orbassano, Italy
- Department of Clinical and Biological Sciences, School of Medicine and Surgery, University of Turin, Regione Gonzole 10, 10124 Orbassano, Italy
- Correspondence: (A.B.); (S.F.R.)
| |
Collapse
|
17
|
Yang Z, Zhang W, Lu H, Cai S. Methylglyoxal in the Brain: From Glycolytic Metabolite to Signalling Molecule. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227905. [PMID: 36432007 PMCID: PMC9696358 DOI: 10.3390/molecules27227905] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022]
Abstract
Advances in molecular biology technology have piqued tremendous interest in glycometabolism and bioenergetics in homeostasis and neural development linked to ageing and age-related diseases. Methylglyoxal (MGO) is a by-product of glycolysis, and it can covalently modify proteins, nucleic acids, and lipids, leading to cell growth inhibition and, eventually, cell death. MGO can alter intracellular calcium homeostasis, which is a major cell-permeant precursor to advanced glycation end-products (AGEs). As side-products or signalling molecules, MGO is involved in several pathologies, including neurodevelopmental disorders, ageing, and neurodegenerative diseases. In this review, we demonstrate that MGO (the metabolic side-product of glycolysis), the GLO system, and their analogous relationship with behavioural phenotypes, epigenetics, ageing, pain, and CNS degeneration. Furthermore, we summarise several therapeutic approaches that target MGO and the glyoxalase (GLO) system in neurodegenerative diseases.
Collapse
Affiliation(s)
- Zeyong Yang
- Department of Anesthesiology, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Embryo Original Disease, Shanghai Municipal Key Clinical Specialty, Huashan Rd. 1961, Shanghai 200030, China
- Correspondence: (Z.Y.); (S.C.)
| | - Wangping Zhang
- Department of Anesthesiology, Women and Children’s Hospital of Jiaxing University, No. 2468 Zhonghuan East Road, Jiaxing 314000, China
| | - Han Lu
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shu Cai
- School of Nursing, Guangdong Pharmaceutical University, No. 283 Jianghai Avenue, Haizhu District, Guangzhou 510310, China
- Correspondence: (Z.Y.); (S.C.)
| |
Collapse
|
18
|
Heterozygous Loss of KRIT1 in Mice Affects Metabolic Functions of the Liver, Promoting Hepatic Oxidative and Glycative Stress. Int J Mol Sci 2022; 23:ijms231911151. [PMID: 36232456 PMCID: PMC9570113 DOI: 10.3390/ijms231911151] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 12/04/2022] Open
Abstract
KRIT1 loss-of-function mutations underlie the pathogenesis of Cerebral Cavernous Malformation (CCM), a major vascular disease affecting the central nervous system (CNS). However, KRIT1 is also expressed outside the CNS and modulates key regulators of metabolic and oxy-inflammatory pathways, including the master transcription factor FoxO1, suggesting a widespread functional significance. Herein, we show that the KRIT1/FoxO1 axis is implicated in liver metabolic functions and antioxidative/antiglycative defenses. Indeed, by performing comparative studies in KRIT1 heterozygous (KRIT1+/−) and wild-type mice, we found that KRIT1 haploinsufficiency resulted in FoxO1 expression/activity downregulation in the liver, and affected hepatic FoxO1-dependent signaling pathways, which are markers of major metabolic processes, including gluconeogenesis, glycolysis, mitochondrial respiration, and glycogen synthesis. Moreover, it caused sustained activation of the master antioxidant transcription factor Nrf2, hepatic accumulation of advanced glycation end-products (AGEs), and abnormal expression/activity of AGE receptors and detoxifying systems. Furthermore, it was associated with an impairment of food intake, systemic glucose disposal, and plasma levels of insulin. Specific molecular alterations detected in the liver of KRIT1+/− mice were also confirmed in KRIT1 knockout cells. Overall, our findings demonstrated, for the first time, that KRIT1 haploinsufficiency affects glucose homeostasis and liver metabolic and antioxidative/antiglycative functions, thus inspiring future basic and translational studies.
Collapse
|
19
|
Next-Generation Sequencing Advances the Genetic Diagnosis of Cerebral Cavernous Malformation (CCM). Antioxidants (Basel) 2022; 11:antiox11071294. [PMID: 35883785 PMCID: PMC9311989 DOI: 10.3390/antiox11071294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/24/2022] [Accepted: 06/26/2022] [Indexed: 02/07/2023] Open
Abstract
Cerebral Cavernous Malformation (CCM) is a cerebrovascular disease of genetic origin that predisposes to seizures, focal neurological deficits and fatal intracerebral hemorrhage. It may occur sporadically or in familial forms, segregating as an autosomal dominant condition with incomplete penetrance and highly variable expressivity. Its pathogenesis has been associated with loss-of-function mutations in three genes, namely KRIT1 (CCM1), CCM2 and PDCD10 (CCM3), which are implicated in defense mechanisms against oxidative stress and inflammation. Herein, we screened 21 Italian CCM cases using clinical exome sequencing and found six cases (~29%) with pathogenic variants in CCM genes, including a large 145−256 kb genomic deletion spanning the KRIT1 gene and flanking regions, and the KRIT1 c.1664C>T variant, which we demonstrated to activate a donor splice site in exon 16. The segregation of this cryptic splicing mutation was studied in a large Italian family (five affected and seven unaffected cases), and showed a largely heterogeneous clinical presentation, suggesting the implication of genetic modifiers. Moreover, by analyzing ad hoc gene panels, including a virtual panel of 23 cerebrovascular disease-related genes (Cerebro panel), we found two variants in NOTCH3 and PTEN genes, which could contribute to the abnormal oxidative stress and inflammatory responses to date implicated in CCM disease pathogenesis.
Collapse
|
20
|
Wang D, Wang C, Hao X, Carter G, Carter R, Welch WJ, Wilcox CS. Activation of Nrf2 in Mice Causes Early Microvascular Cyclooxygenase-Dependent Oxidative Stress and Enhanced Contractility. Antioxidants (Basel) 2022; 11:antiox11050845. [PMID: 35624708 PMCID: PMC9137799 DOI: 10.3390/antiox11050845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 12/05/2022] Open
Abstract
Nuclear factor erythroid factor E2-related factor 2 (Nrf2) transcribes antioxidant genes that reduce the blood pressure (BP), yet its activation with tert-butylhydroquinone (tBHQ) in mice infused with angiotensin II (Ang II) increased mean arterial pressure (MAP) over the first 4 days of the infusion. Since tBHQ enhanced cyclooxygenase (COX) 2 expression in vascular smooth muscle cells (VSMCs), we tested the hypothesis that tBHQ administration during an ongoing Ang II infusion causes an early increase in microvascular COX-dependent reactive oxygen species (ROS) and contractility. Mesenteric microarteriolar contractility was assessed on a myograph, and ROS by RatioMaster™. Three days of oral tBHQ administration during the infusion of Ang II increased the mesenteric microarteriolar mRNA for p47phox, the endothelin type A receptor and thromboxane A2 synthase, and increased the excretion of 8-isoprostane F2α and the microarteriolar ROS and contractions to a thromboxane A2 (TxA2) agonist (U-46,619) and endothelin 1 (ET1). These were all prevented in Nrf2 knockout mice. Moreover, the increases in ROS and contractility were prevented in COX1 knockout mice with blockade of COX2 and by blockade of thromboxane prostanoid receptors (TPRs). In conclusion, the activation of Nrf2 over 3 days of Ang II infusion enhances microarteriolar ROS and contractility, which are dependent on COX1, COX2 and TPRs. Therefore, the blockade of these pathways may diminish the early adverse cardiovascular disease events that have been recorded during the initiation of Nrf2 therapy.
Collapse
Affiliation(s)
- Dan Wang
- Division of Nephrology and Hypertension and Hypertension Center, Georgetown University, Washington, DC 20007, USA
| | - Cheng Wang
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Xueqin Hao
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang 471023, China
| | - Gabriela Carter
- Division of Nephrology and Hypertension and Hypertension Center, Georgetown University, Washington, DC 20007, USA
| | - Rafaela Carter
- Division of Nephrology and Hypertension and Hypertension Center, Georgetown University, Washington, DC 20007, USA
| | - William J Welch
- Division of Nephrology and Hypertension and Hypertension Center, Georgetown University, Washington, DC 20007, USA
| | - Christopher S Wilcox
- Division of Nephrology and Hypertension and Hypertension Center, Georgetown University, Washington, DC 20007, USA
| |
Collapse
|
21
|
Liu W, Liu M, Lu D, Wang J, Cao Z, Liu X, Feng Z, Huang B, Wang X. A Chinese Family With Cerebral Cavernous Malformation Caused by a Frameshift Mutation of the CCM1 Gene: A Case Report and Review of the Literature. Front Neurol 2022; 13:795514. [PMID: 35444609 PMCID: PMC9013744 DOI: 10.3389/fneur.2022.795514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/10/2022] [Indexed: 11/29/2022] Open
Abstract
Background Familial cerebral cavernous malformation (FCCM) is a vascular malformation disease closely linked to three identified genes: KRIT1/CCM1, MGC4607/CCM2 and PDCD10/CCM3. Over the past decade, a few cases of cerebral cavernous malformation (CCM) caused by different gene mutations have been reported in Chinese families. Herein, we introduce a Chinese family affected by FCCM due to a kind of KRIT1/CCM1 frameshift mutation. At the same time, a literature review was conducted to identify case reports of familial cerebral cavernous malformation. Case presentation The proband in the family in question demonstrated a series of clinical symptoms and features, including headache and bleeding. The proband was hospitalized for headache twice and, both times was examined under suspicion of CCM and received surgical treatment. Magnetic resonance imaging results showed that the proband had multiple intracranial vascular lesions, including on the brain, brainstem, and cerebellum. Genetic test results showed that the classic KRIT1 gene in the proband had a pathogenic mutation. The family members of the proband also showed typical cerebral cavernous malformation when considering clinical manifestations, magnetic resonance imaging findings and genetic test results. Conclusions We report a case of Chinese FCCM and its associated symptoms with CCM1-deletion mutations in China. Our findings deepen our understanding of CCM mutations and related phenotypes, the investigation results of this clinical experiment further show that the gene mutation form we reported plays an important role in human FCCM, and this trial investigation is beneficial for genetic counseling for CCM patients.
Collapse
Affiliation(s)
- Wenyu Liu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Key Laboratory of Brain Function Remodeling, Qilu Hospital of Shandong University, Jinan, China
| | - Ming Liu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Key Laboratory of Brain Function Remodeling, Qilu Hospital of Shandong University, Jinan, China
| | - Di Lu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Key Laboratory of Brain Function Remodeling, Qilu Hospital of Shandong University, Jinan, China
| | - Jiwei Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Key Laboratory of Brain Function Remodeling, Qilu Hospital of Shandong University, Jinan, China
| | - Zexin Cao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Key Laboratory of Brain Function Remodeling, Qilu Hospital of Shandong University, Jinan, China
| | - Xuchen Liu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Key Laboratory of Brain Function Remodeling, Qilu Hospital of Shandong University, Jinan, China
| | - Zichao Feng
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Key Laboratory of Brain Function Remodeling, Qilu Hospital of Shandong University, Jinan, China
| | - Bin Huang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Key Laboratory of Brain Function Remodeling, Qilu Hospital of Shandong University, Jinan, China
| | - Xinyu Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Key Laboratory of Brain Function Remodeling, Qilu Hospital of Shandong University, Jinan, China
- *Correspondence: Xinyu Wang
| |
Collapse
|
22
|
Rihal V, Khan H, Kaur A, Singh TG. Vitamin D as therapeutic modulator in cerebrovascular diseases: a mechanistic perspectives. Crit Rev Food Sci Nutr 2022; 63:7772-7794. [PMID: 35285752 DOI: 10.1080/10408398.2022.2050349] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Vitamin D deficiency has been linked to several major chronic diseases, such as cardiovascular and neurodegenerative diseases, diabetes, and cancer, linked to oxidative stress, inflammation, and aging. Vitamin D deficiency appears to be particularly harmful to the cardiovascular system, as it can cause endothelial dysfunctioning and vascular abnormalities through the modulation of various downstream mechanisms. As a result, new research indicates that therapeutic approaches targeting vitamin D inadequacies or its significant downstream effects, such as impaired autophagy, abnormal pro-inflammatory and pro-oxidant reactions, may delay the onset and severity of major cerebrovascular disorders such as stroke and neurologic malformations. Vitamin D modulates the various molecular pathways, i.e., Nitric Oxide, PI3K-Akt Pathway, cAMP pathway, NF-kB Pathway, Sirtuin 1, Nrf2, FOXO, in cerebrovascular disorder. The current review shows evidence for vitamin D's mitigating or slowing the progression of these cerebrovascular disorders, which are significant causes of disability and death worldwide.
Collapse
Affiliation(s)
- Vivek Rihal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | | |
Collapse
|
23
|
Combined Treatment of Monopolar and Bipolar Radiofrequency Increases Skin Elasticity by Decreasing the Accumulation of Advanced Glycated End Products in Aged Animal Skin. Int J Mol Sci 2022; 23:ijms23062993. [PMID: 35328415 PMCID: PMC8950306 DOI: 10.3390/ijms23062993] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 01/27/2023] Open
Abstract
It is well known that skin aging is related to the destruction of collagen and elastin fibers by metalloproteinases (MMPs). Aged fibroblasts have a decreased ability to synthesize collagen and elastin. Nuclear factor erythroid 2-related factor 2 (NRF2) involves glyoxalase (GLO) activation, which inhibits the production of advanced glycated end products (AGE) and the expression of its receptor (RAGE). RAGE increases nuclear transcription factor-kappa B (NF-κB), which upregulates MMPs and decreases skin elasticity. NRF2 also decreases M1 macrophages, which secrete tumor necrosis factor-alpha (TNF-α), thereby decreasing AGE production. It is well known that radiofrequency (RF) decreases skin elasticity by increasing collagen synthesis. We evaluated whether RF increases skin elasticity via NRF2/GLO and whether they decrease AGE and RAGE expression in aged animal skin. We also compared the effects of RF based on the modes (monopolar or bipolar) or the combination used. In aged skin, NRF2, GLO-1, and M2 macrophage expression was decreased, and their expression increased when RF was applied. M1 and TNF-α demonstrated increased expression in the aged skin and decreased expression after RF application. AGE accumulation and RAGE, NF-κB, and MMP2/3/9 expression were increased in the aged skin, and they were decreased by RF. The papillary and reticular fibroblast markers showed decreased expression in young skin and increased expression in aged skin. The densities of collagen and elastin fiber in the aged skin were low, and they were increased by RF. In conclusion, RF leads to increased collagen and elastin fibers by increasing NRF2/GLO-1 and modulating M1/M2 polarization, which leads to decreased AGE and RAGE and, consequently, decreased NF-κB, which eventually slows collagen and elastin destruction. RF also leads to increased collagen and elastin fiber synthesis by increasing papillary and reticular fibroblast expression.
Collapse
|
24
|
Kim Y, Cho AY, Kim HC, Ryu D, Jo SA, Jung YS. Effects of Natural Polyphenols on Oxidative Stress-Mediated Blood–Brain Barrier Dysfunction. Antioxidants (Basel) 2022; 11:antiox11020197. [PMID: 35204080 PMCID: PMC8868362 DOI: 10.3390/antiox11020197] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 02/01/2023] Open
Abstract
The blood-brain barrier (BBB), which consists mainly of brain microvascular endothelial cells and astrocytes connected by tight junctions (TJs) and adhesion molecules (AMs), maintains the homeostatic balance between brain parenchyma and extracellular fluid. Accumulating evidence shows that BBB dysfunction is a common feature of neurodegenerative diseases, including stroke, traumatic brain injury, and Alzheimer’s disease. Among the various pathological pathways of BBB dysfunction, reactive oxygen species (ROS) are known to play a key role in inducing BBB disruption mediated via TJ modification, AM induction, cytoskeletal reorganization, and matrix metalloproteinase activation. Thus, antioxidants have been suggested to exert beneficial effects on BBB dysfunction-associated brain diseases. In this review, we summarized the sources of ROS production in multiple cells that constitute or surround the BBB, such as BBB endothelial cells, astrocytes, microglia, and neutrophils. We also reviewed various pathological mechanisms by which BBB disruption is caused by ROS in these cells. Finally, we summarized the effects of various natural polyphenols on BBB dysfunction to suggest a therapeutic strategy for BBB disruption-related brain diseases.
Collapse
Affiliation(s)
- Yeonjae Kim
- College of Pharmacy, Ajou University, Suwon 16499, Korea; (Y.K.); (A.Y.C.); (H.C.K.); (D.R.)
- Research Institute of Pharmaceutical Sciences and Technology, Ajou University, Suwon 16499, Korea
| | - A Yeon Cho
- College of Pharmacy, Ajou University, Suwon 16499, Korea; (Y.K.); (A.Y.C.); (H.C.K.); (D.R.)
| | - Hong Cheol Kim
- College of Pharmacy, Ajou University, Suwon 16499, Korea; (Y.K.); (A.Y.C.); (H.C.K.); (D.R.)
| | - Dajung Ryu
- College of Pharmacy, Ajou University, Suwon 16499, Korea; (Y.K.); (A.Y.C.); (H.C.K.); (D.R.)
- Research Institute of Pharmaceutical Sciences and Technology, Ajou University, Suwon 16499, Korea
| | - Sangmee Ahn Jo
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea;
- Department of Pharmacology, College of Pharmacy, Dankook University, Cheonan 31116, Korea
| | - Yi-Sook Jung
- College of Pharmacy, Ajou University, Suwon 16499, Korea; (Y.K.); (A.Y.C.); (H.C.K.); (D.R.)
- Research Institute of Pharmaceutical Sciences and Technology, Ajou University, Suwon 16499, Korea
- Correspondence: ; Tel.: +82-31-219-3444
| |
Collapse
|
25
|
Swamy H, Glading AJ. Is Location Everything? Regulation of the Endothelial CCM Signaling Complex. Front Cardiovasc Med 2022; 9:954780. [PMID: 35898265 PMCID: PMC9309484 DOI: 10.3389/fcvm.2022.954780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Recent advances have steadily increased the number of proteins and pathways known to be involved in the development of cerebral cavernous malformation (CCM). Our ability to synthesize this information into a cohesive and accurate signaling model is limited, however, by significant gaps in our knowledge of how the core CCM proteins, whose loss of function drives development of CCM, are regulated. Here, we review what is known about the regulation of the three core CCM proteins, the scaffolds KRIT1, CCM2, and CCM3, with an emphasis on binding interactions and subcellular location, which frequently control scaffolding protein function. We highlight recent work that challenges the current model of CCM complex signaling and provide recommendations for future studies needed to address the large number of outstanding questions.
Collapse
Affiliation(s)
- Harsha Swamy
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, United States
| | - Angela J Glading
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, United States
| |
Collapse
|
26
|
Swamy H, Glading AJ. Contribution of protein-protein interactions to the endothelial barrier-stabilizing function of KRIT1. J Cell Sci 2021; 135:274104. [PMID: 34918736 PMCID: PMC8917353 DOI: 10.1242/jcs.258816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 12/08/2021] [Indexed: 11/20/2022] Open
Abstract
Krev-interaction trapped 1 (KRIT1) is an endothelial scaffold protein that promotes adherens junction (AJ) stability. The precise mechanism by which KRIT1 promotes barrier stabilization is unclear. We tested the ability of a panel of KRIT1 constructs containing mutations that inhibit Rap1 binding, ICAP1 binding, disrupt KRIT1's protein tyrosine binding domain (PTB), or direct KRIT1 to the plasma membrane, either alone or in combination, to restore barrier function in KRIT1-deficient endothelial cells. We found that ablating the 192NPAY195 motif or disrupting the PTB domain was sufficient to restore AJ protein localization and barrier function to control levels, irrespective of the junctional localization of KRIT1 or Rap1 binding. The ability of our KRIT1 constructs to rescue AJ/barrier function in KRIT1 depleted endothelial cells correlated with decreased 1 integrin activity and maintenance of cortical actin fibers. Together, our findings indicate that Rap1 binding, ICAP1 binding, and junctional localization are not required for the ability of KRIT1 to stabilize endothelial contacts, and suggest that the ability of KRIT1 to limit integrin activity may be involved in barrier stabilization.
Collapse
Affiliation(s)
- Harsha Swamy
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, USA
| | - Angela J Glading
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, USA
| |
Collapse
|
27
|
Hu L, Xu Y, Wang Q, Liu M, Meng L, Yan D, Hu H, Xiao M, Yin Z, Li Y, Kang X. Yiqi Huoxue Recipe inhibits cardiomyocyte apoptosis caused by heart failure through Keap1/Nrf2/HIF-1α signaling pathway. Bioengineered 2021; 12:969-978. [PMID: 33739243 PMCID: PMC8806323 DOI: 10.1080/21655979.2021.1900634] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/04/2021] [Indexed: 12/19/2022] Open
Abstract
Yiqi Huoxue Recipe (YHR) is commonly used in China to treat diseases such as heart failure (HF). It has been reported that YHR can treat HF and has a certain protective effect on myocardial cell damage. The purpose of this study is to determine the cardioprotective effects of YHR on HF-induced apoptosis and to clarify its mechanism of action. Oxygen glucose deprivation/recovery (OGD/R) induces H9C2 cell apoptosis model. Ligation of the left anterior descending artery (LAD) coronary artery can induce an animal model of HF. We found that YHR protected H9C2 cells from OGD/R-induced apoptosis, reduced the level of reactive oxygen species (ROS) in H9C2 cells, and increased the mitochondrial membrane potential in H9C2 cells. The results of in vivo animal experiments showed that in the HF model, YHR could reduce infarct area of heart tissue and cardiomyocyte apoptosis rate. YHR regulated the expression of key apoptotic molecules, including increasing the ratio of Bcl-2 and Bax, and reducing the expression of Kelch-like ECH-associated protein 1 (Keap1) and caspase-3. Interestingly, YHR also regulates the expression of NF-E2-related factor 2 (Nrf2) in the nucleus. In summary, YHR may provide cardioprotective effects in heart failure through inhibiting the Keap1/Nrf2/HIF-1α apoptosis pathway.
Collapse
Affiliation(s)
- Ling Hu
- Internal medicine, Beijing Xiaotangshan Hospital, Beijing, China
| | - Yanan Xu
- Department of Cardiopulmonary Rehabilitation, Beijing Xiaotangshan Hospital, Beijing, China
| | - Qian Wang
- Rehabilitation Department, Beijing Xiaotangshan Hospital, Beijing, China
| | - Meijie Liu
- Animal Laboratory, Medical Experimental Center, Chinese Academy of Chinese Medical Sciences, Beijing
| | - Linfeng Meng
- Rehabilitation Department, Beijing Xiaotangshan Hospital, Beijing, China
| | - Dongyan Yan
- Department of Cardiopulmonary Rehabilitation, Beijing Xiaotangshan Hospital, Beijing, China
| | - Huagang Hu
- Research Laboratory, Beijing Xiaotangshan Hospital, Beijing, China
| | - Minjia Xiao
- Rehabilitation Department, Beijing Xiaotangshan Hospital, Beijing, China
| | - Zhenzhen Yin
- Rehabilitation Department, Beijing Xiaotangshan Hospital, Beijing, China
| | - Ying Li
- Research Laboratory, Beijing Xiaotangshan Hospital, Beijing, China
| | - Xiaoping Kang
- Internal medicine, Beijing Xiaotangshan Hospital, Beijing, China
| |
Collapse
|
28
|
Pariano M, Costantini C, Santarelli I, Puccetti M, Giovagnoli S, Talesa VN, Romani L, Antognelli C. Defective Glyoxalase 1 Contributes to Pathogenic Inflammation in Cystic Fibrosis. Vaccines (Basel) 2021; 9:vaccines9111311. [PMID: 34835243 PMCID: PMC8625157 DOI: 10.3390/vaccines9111311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 12/19/2022] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive disorder that affects multiple organs, although a decline in respiratory function represents the major cause of morbidity and mortality. The airways of CF patients are characterized by a chronic inflammatory state to which the receptor for advanced glycation end-products greatly contributes. Glyoxalase 1 (GLO1) is the major enzyme metabolizing methylglyoxal, a potent precursor of advanced glycation end-products. Its role in CF has never been investigated. We herein resorted to murine and human preclinical models of CF to define the contribution of GLO1 to inflammatory pathology. We found that the expression and activity of GLO1, measured by real-time PCR and Western blot or a specific spectrophotometric assay, respectively, are defective in mice and human bronchial cells from CF patients exposed to Aspergillus fumigatus, a common pathogen in CF, but could be restored upon blockade of interleukin-1 receptor signaling by anakinra in mice. This study suggests that GLO1 contributes to pathology in CF and may be potentially targeted to mitigate inflammation.
Collapse
Affiliation(s)
- Marilena Pariano
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (M.P.); (C.C.); (I.S.); (V.N.T.); (L.R.)
| | - Claudio Costantini
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (M.P.); (C.C.); (I.S.); (V.N.T.); (L.R.)
| | - Ilaria Santarelli
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (M.P.); (C.C.); (I.S.); (V.N.T.); (L.R.)
| | - Matteo Puccetti
- Department of Pharmaceutical Science, University of Perugia, 06132 Perugia, Italy; (M.P.); (S.G.)
| | - Stefano Giovagnoli
- Department of Pharmaceutical Science, University of Perugia, 06132 Perugia, Italy; (M.P.); (S.G.)
| | - Vincenzo N. Talesa
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (M.P.); (C.C.); (I.S.); (V.N.T.); (L.R.)
| | - Luigina Romani
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (M.P.); (C.C.); (I.S.); (V.N.T.); (L.R.)
| | - Cinzia Antognelli
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (M.P.); (C.C.); (I.S.); (V.N.T.); (L.R.)
- Correspondence: ; Tel.:+39-075-585-8354
| |
Collapse
|
29
|
Lin H, Lin TY, Lin JA, Cheng KC, Santoso SP, Chou CH, Hsieh CW. Effect of Pholiota nameko Polysaccharides Inhibiting Methylglyoxal-Induced Glycation Damage In Vitro. Antioxidants (Basel) 2021; 10:antiox10101589. [PMID: 34679724 PMCID: PMC8533542 DOI: 10.3390/antiox10101589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 02/01/2023] Open
Abstract
Advanced glycation end products (AGEs) can induce oxidative stress and inflammation. AGEs are major risk factors for the development of many aging-related diseases, such as cancer and diabetes. In this study, Pholiota nameko polysaccharides (PNPs) were prepared from water extract of P. nameko via graded alcohol precipitation (40%, 60%, and 80% v/v). We explored the in vitro antiglycation ability of the PNPs and inhibition of methylglyoxal (MG)-induced Hs68 cell damage. In a bovine serum albumin (BSA) glycation system, PNPs significantly inhibited the formation of Amadori products. Fluorescence spectrophotometry revealed that the PNPs trapped MG and reduced MG-induced changes in functional groups (carbonyl and ε-NH2) in the BSA. Pretreating Hs68 cells with PNPs enhanced the cell survival rate and protected against MG-induced cell damage. This was due to decreased intracellular ROS content. PNPs thus mitigate skin cell damage and oxidative stress resulting from glycation stress, making them a potential raw material for antiaging-related skincare products.
Collapse
Affiliation(s)
- His Lin
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City 40227, Taiwan; (H.L.); (T.-Y.L.)
| | - Ting-Yun Lin
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City 40227, Taiwan; (H.L.); (T.-Y.L.)
| | - Jer-An Lin
- Graduate Institute of Food Safety, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City 40227, Taiwan;
| | - Kuan-Chen Cheng
- Institute of Biotechnology, National Taiwan University, Taipei 10617, Taiwan;
- Graduate Institute of Food Science Technology, National Taiwan University, Taipei 10617, Taiwan
- Department of Optometry, Asia University, 500, Lioufeng Rd., Wufeng, Taichung City 41354, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung City 406040, Taiwan
| | - Shella Permatasari Santoso
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia;
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Keelung Rd. 43, Da’an Dist., Taipei 10607, Taiwan
| | - Chun-Hsu Chou
- Dr Jou Biotech Co., Ltd., No. 21, Lugong S. 2nd Rd., Lukang Township, Changhua 505, Taiwan;
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City 40227, Taiwan; (H.L.); (T.-Y.L.)
- Department of Medical Research, China Medical University Hospital, Taichung City 406040, Taiwan
- Correspondence: ; Tel.: +886-4-2284-0385 (ext. 5031); Fax: +886-4-2287-6211
| |
Collapse
|
30
|
Antognelli C, Marinucci L, Frosini R, Macchioni L, Talesa VN. Metastatic Prostate Cancer Cells Secrete Methylglyoxal-Derived MG-H1 to Reprogram Human Osteoblasts into a Dedifferentiated, Malignant-like Phenotype: A Possible Novel Player in Prostate Cancer Bone Metastases. Int J Mol Sci 2021; 22:ijms221910191. [PMID: 34638532 PMCID: PMC8508123 DOI: 10.3390/ijms221910191] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/09/2021] [Accepted: 09/16/2021] [Indexed: 02/07/2023] Open
Abstract
Bone metastases from prostate cancer (PCa) result from a complex cross-talk between PCa cells and osteoblasts (OB). Thus, targeting this interplay has become an attractive strategy to interfere with PCa bone dissemination. The agents currently used in clinical trials have proved ineffective, boosting research to identify additional mechanisms that may be involved in this two-directional talk. Here, we investigated whether and how 5-hydro-5-methylimidazolone (MG-H1), a specific methylglyoxal (MG)-derived advanced glycation end product (AGE), was a novel player in the dialogue between PCa and OB to drive PCa bone metastases. Conditioned medium from osteotropic PC3 PCa cells, pre-treated or not with a specific MG scavenger, was administrated to human primary OB and cell morphology, mesenchymal trans-differentiation, pro-osteogenic determinants, PCa-specific molecules, and migration/invasion were studied by phase-contrast microscopy, real-time PCR, western blot and specific assays, respectively. We found that PC3 cells were able to release MG-H1 that, by binding to the receptor for AGEs (RAGE) on OB, reprogrammed them into a less-differentiate phenotype, endowed with some PCa-specific molecular features and malignant properties, in a mechanism involving reactive oxidative species (ROS) production and NF-kB pathway activation. These findings provide novel insights into the mechanisms of PCa osteoblastic metastases and foster in vivo research toward new therapeutic strategies interfering with PCa/OB cross-talk.
Collapse
Affiliation(s)
- Cinzia Antognelli
- Department of Medicine and Surgery, Bioscience and Medical Embryology Division, University of Perugia, L. Severi Square, 06129 Perugia, Italy; (L.M.); (R.F.); (V.N.T.)
- Correspondence: ; Tel.: +39-075-585-8354
| | - Lorella Marinucci
- Department of Medicine and Surgery, Bioscience and Medical Embryology Division, University of Perugia, L. Severi Square, 06129 Perugia, Italy; (L.M.); (R.F.); (V.N.T.)
| | - Roberta Frosini
- Department of Medicine and Surgery, Bioscience and Medical Embryology Division, University of Perugia, L. Severi Square, 06129 Perugia, Italy; (L.M.); (R.F.); (V.N.T.)
| | - Lara Macchioni
- Department of Medicine and Surgery, Biochemistry and Physiology Division, University of Perugia, L. Severi Square, 06129 Perugia, Italy;
| | - Vincenzo Nicola Talesa
- Department of Medicine and Surgery, Bioscience and Medical Embryology Division, University of Perugia, L. Severi Square, 06129 Perugia, Italy; (L.M.); (R.F.); (V.N.T.)
| |
Collapse
|
31
|
Glyoxal-Lysine Dimer, an Advanced Glycation End Product, Induces Oxidative Damage and Inflammatory Response by Interacting with RAGE. Antioxidants (Basel) 2021; 10:antiox10091486. [PMID: 34573117 PMCID: PMC8470194 DOI: 10.3390/antiox10091486] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 01/16/2023] Open
Abstract
The glyoxal-lysine dimer (GOLD), which is a glyoxal (GO)-derived advanced glycation end product (AGE), is produced by the glycation reaction. In this study, we evaluated the effect of GOLD on the oxidative damage and inflammatory response in SV40 MES 13 mesangial cells. GOLD significantly increased the linkage with the V-type immunoglobulin domain of RAGE, a specific receptor of AGE. We found that GOLD treatment increased RAGE expression and reactive oxygen species (ROS) production in mesangial cells. GOLD remarkably regulated the protein and mRNA expression of nuclear factor erythroid 2-related factor 2 (NRF2) and glyoxalase 1 (GLO1). In addition, mitochondrial deterioration and inflammation occurred via GOLD-induced oxidative stress in mesangial cells. GOLD regulated the mitogen-activated protein kinase (MAPK) and the release of proinflammatory cytokines associated with the inflammatory mechanism of mesangial cells. Furthermore, oxidative stress and inflammatory responses triggered by GOLD were suppressed through RAGE inhibition using RAGE siRNA. These results demonstrate that the interaction of GOLD and RAGE plays an important role in the function of mesangial cells.
Collapse
|
32
|
Perrelli A, Retta SF. Polymorphisms in genes related to oxidative stress and inflammation: Emerging links with the pathogenesis and severity of Cerebral Cavernous Malformation disease. Free Radic Biol Med 2021; 172:403-417. [PMID: 34175437 DOI: 10.1016/j.freeradbiomed.2021.06.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/03/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023]
Abstract
Cerebral Cavernous Malformation (CCM) is a cerebrovascular disease of genetic origin affecting 0.5% of the population and characterized by abnormally enlarged and leaky capillaries that predispose to seizures, neurological deficits, and intracerebral hemorrhage (ICH). CCM occurs sporadically or is inherited as dominant condition with incomplete penetrance and highly variable expressivity. Three disease genes have been identified: KRIT1 (CCM1), CCM2 and CCM3. Previous results demonstrated that loss-of-function mutations of CCM genes cause pleiotropic effects, including defective autophagy, altered reactive oxygen species (ROS) homeostasis, and enhanced sensitivity to oxidative stress and inflammatory events, suggesting a novel unifying pathogenetic mechanism, and raising the possibility that CCM disease onset and severity are influenced by the presence of susceptibility and modifier genes. Consistently, genome-wide association studies (GWAS) in large and homogeneous cohorts of patients sharing the familial form of CCM disease and identical mutations in CCM genes have led to the discovery of distinct genetic modifiers of major disease severity phenotypes, such as development of numerous and large CCM lesions, and susceptibility to ICH. This review deals with the identification of genetic modifiers with a significant impact on inter-individual variability in CCM disease onset and severity, including highly polymorphic genes involved in oxidative stress, inflammatory and immune responses, such as cytochrome P450 monooxygenases (CYP), matrix metalloproteinases (MMP), and Toll-like receptors (TLR), pointing to their emerging prognostic value, and opening up new perspectives for risk stratification and personalized medicine strategies.
Collapse
Affiliation(s)
- Andrea Perrelli
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Torino, Italy; CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Torino, Italy.
| | - Saverio Francesco Retta
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Torino, Italy; CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Torino, Italy.
| |
Collapse
|
33
|
Antognelli C, Mandarano M, Prosperi E, Sidoni A, Talesa VN. Glyoxalase-1-Dependent Methylglyoxal Depletion Sustains PD-L1 Expression in Metastatic Prostate Cancer Cells: A Novel Mechanism in Cancer Immunosurveillance Escape and a Potential Novel Target to Overcome PD-L1 Blockade Resistance. Cancers (Basel) 2021; 13:cancers13122965. [PMID: 34199263 PMCID: PMC8232032 DOI: 10.3390/cancers13122965] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Metastatic prostate cancer (mPCa) is a well-known lethal condition. One of the mechanisms through which PCa cells become so aggressive is the avoidance of immune surveillance that further fosters cell growth, invasion, and migration. PD-L1/PD-1 axis plays a crucial role in inhibiting cytotoxic T cells and maintaining an immunosuppressive cancer microenvironment. Hence, targeting PD-L1/PD-1 axis represents a potential way to control mPCa. Unfortunately, mPCa patients do not respond to PD-L1/PD-1 axis blockade, focusing the research to understand the possible underpinning mechanisms. Our results provide a novel pathway taking part in cancer immunosurveillance escape and in the above-mentioned immunotherapy resistance, which provides the basis for additional studies aimed at developing novel therapeutic opportunities, possibly also in combination with antibodies blocking PD-L1/PD-1 axis. Abstract Metastatic prostate cancer (mPCa) is a disease for which to date there is not curative therapy. Even the recent and attractive immunotherapeutic approaches targeting PD-L1, an immune checkpoint protein which helps cancer cells to escape from immunosurveillance, have proved ineffective. A better understanding of the molecular mechanisms contributing to keep an immunosuppressive microenvironment associated with tumor progression and refractoriness to PD-L1 inhibitors is urgently needed. In the present study, by using gene silencing and specific activators or scavengers, we demonstrated, in mPCa cell models, that methylglyoxal (MG), a potent precursor of advanced glycation end products (AGEs), especially 5-hydro-5-methylimidazolone (MG-H1), and its metabolizing enzyme, glyoxalase 1 (Glo1), contribute to maintain an immunosuppressive microenvironment through MG-H1-mediated PD-L1 up-regulation and to promote cancer progression. Moreover, our findings suggest that this novel mechanism might be responsible, at least in part, of mPCa resistance to PD-L1 inhibitors, such as atezolizumab, and that targeting it may sensitize cells to this PD-L1 inhibitor. These findings provide novel insights into the mechanisms of mPCa immunosurveillance escape and help in providing the basis to foster in vivo research toward novel therapeutic strategies for immunotherapy of mPCa.
Collapse
Affiliation(s)
- Cinzia Antognelli
- Department of Medicine and Surgery, Bioscience and Medical Embryology Division, University of Perugia, L. Severi Square, 06129 Perugia, Italy;
- Correspondence: ; Tel.: +39-075-585-8354
| | - Martina Mandarano
- Section of Anatomic Pathology and Histology, Department of Medicine and Surgery, University of Perugia, L. Severi Square, 06129 Perugia, Italy; (M.M.); (E.P.); (A.S.)
| | - Enrico Prosperi
- Section of Anatomic Pathology and Histology, Department of Medicine and Surgery, University of Perugia, L. Severi Square, 06129 Perugia, Italy; (M.M.); (E.P.); (A.S.)
| | - Angelo Sidoni
- Section of Anatomic Pathology and Histology, Department of Medicine and Surgery, University of Perugia, L. Severi Square, 06129 Perugia, Italy; (M.M.); (E.P.); (A.S.)
| | - Vincenzo Nicola Talesa
- Department of Medicine and Surgery, Bioscience and Medical Embryology Division, University of Perugia, L. Severi Square, 06129 Perugia, Italy;
| |
Collapse
|
34
|
Oxidative Stress as A Mechanism for Functional Alterations in Cardiac Hypertrophy and Heart Failure. Antioxidants (Basel) 2021; 10:antiox10060931. [PMID: 34201261 PMCID: PMC8228897 DOI: 10.3390/antiox10060931] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/01/2021] [Accepted: 06/06/2021] [Indexed: 12/23/2022] Open
Abstract
Although heart failure due to a wide variety of pathological stimuli including myocardial infarction, pressure overload and volume overload is associated with cardiac hypertrophy, the exact reasons for the transition of cardiac hypertrophy to heart failure are not well defined. Since circulating levels of several vasoactive hormones including catecholamines, angiotensin II, and endothelins are elevated under pathological conditions, it has been suggested that these vasoactive hormones may be involved in the development of both cardiac hypertrophy and heart failure. At initial stages of pathological stimuli, these hormones induce an increase in ventricular wall tension by acting through their respective receptor-mediated signal transduction systems and result in the development of cardiac hypertrophy. Some oxyradicals formed at initial stages are also involved in the redox-dependent activation of the hypertrophic process but these are rapidly removed by increased content of antioxidants in hypertrophied heart. In fact, cardiac hypertrophy is considered to be an adaptive process as it exhibits either normal or augmented cardiac function for maintaining cardiovascular homeostasis. However, exposure of a hypertrophied heart to elevated levels of circulating hormones due to pathological stimuli over a prolonged period results in cardiac dysfunction and development of heart failure involving a complex set of mechanisms. It has been demonstrated that different cardiovascular abnormalities such as functional hypoxia, metabolic derangements, uncoupling of mitochondrial electron transport, and inflammation produce oxidative stress in the hypertrophied failing hearts. In addition, oxidation of catecholamines by monoamine oxidase as well as NADPH oxidase activation by angiotensin II and endothelin promote the generation of oxidative stress during the prolonged period by these pathological stimuli. It is noteworthy that oxidative stress is known to activate metallomatrix proteases and degrade the extracellular matrix proteins for the induction of cardiac remodeling and heart dysfunction. Furthermore, oxidative stress has been shown to induce subcellular remodeling and Ca2+-handling abnormalities as well as loss of cardiomyocytes due to the development of apoptosis, necrosis, and fibrosis. These observations support the view that a low amount of oxyradical formation for a brief period may activate redox-sensitive mechanisms, which are associated with the development of cardiac hypertrophy. On the other hand, high levels of oxyradicals over a prolonged period may induce oxidative stress and cause Ca2+-handling defects as well as protease activation and thus play a critical role in the development of adverse cardiac remodeling and cardiac dysfunction as well as progression of heart failure.
Collapse
|
35
|
Cancer-secreted exosomal miR-21-5p induces angiogenesis and vascular permeability by targeting KRIT1. Cell Death Dis 2021; 12:576. [PMID: 34088891 PMCID: PMC8178321 DOI: 10.1038/s41419-021-03803-8] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022]
Abstract
Cancer-secreted exosomes are critical mediators of cancer-host crosstalk. In the present study, we showed the delivery of miR-21-5p from colorectal cancer (CRC) cells to endothelial cells via exosomes increased the amount of miR-21-5p in recipient cells. MiR-21-5p suppressed Krev interaction trapped protein 1 (KRIT1) in recipient HUVECs and subsequently activated β-catenin signaling pathway and increased their downstream targets VEGFa and Ccnd1, which consequently promoted angiogenesis and vascular permeability in CRC. A strong inverse correlation between miR-21-5p and KRIT1 expression levels was observed in CRC-adjacent vessels. Furthermore, miR-21-5p expression in circulating exosomes was markedly higher in CRC patients than in healthy donors. Thus, our data suggest that exosomal miR-21-5p is involved in angiogenesis and vascular permeability in CRC and may be used as a potential new therapeutic target.
Collapse
|
36
|
Methylglyoxal-Dependent Glycative Stress Is Prevented by the Natural Antioxidant Oleuropein in Human Dental Pulp Stem Cells through Nrf2/Glo1 Pathway. Antioxidants (Basel) 2021; 10:antiox10050716. [PMID: 34062923 PMCID: PMC8147383 DOI: 10.3390/antiox10050716] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/25/2021] [Accepted: 04/29/2021] [Indexed: 12/13/2022] Open
Abstract
Methylglyoxal (MG) is a potent precursor of glycative stress (abnormal accumulation of advanced glycation end products, AGEs), a relevant condition underpinning the etiology of several diseases, including those of the oral cave. At present, synthetic agents able to trap MG are known; however, they have never been approved for clinical use because of their severe side effects. Hence, the search of bioactive natural scavengers remains a sector of strong research interest. Here, we investigated whether and how oleuropein (OP), the major bioactive component of olive leaf, was able to prevent MG-dependent glycative stress in human dental pulp stem cells (DPSCs). The cells were exposed to OP at 50 µM for 24 h prior to the administration of MG at 300 µM for additional 24 h. We found that OP prevented MG-induced glycative stress and DPSCs impairment by restoring the activity of Glyoxalase 1 (Glo1), the major detoxifying enzyme of MG, in a mechanism involving the redox-sensitive transcription factor Nrf2. Our results suggest that OP holds great promise for the development of preventive strategies for MG-derived AGEs-associated oral diseases and open new paths in research concerning additional studies on the protective potential of this secoiridoid.
Collapse
|
37
|
Goitre L, Fornelli C, Zotta A, Perrelli A, Retta SF. Production of KRIT1-knockout and KRIT1-knockin Mouse Embryonic Fibroblasts as Cellular Models of CCM Disease. Methods Mol Biol 2021; 2152:151-167. [PMID: 32524551 DOI: 10.1007/978-1-0716-0640-7_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The development of distinct cellular and animal models has allowed the identification and characterization of molecular mechanisms underlying the pathogenesis of cerebral cavernous malformation (CCM) disease. This is a major cerebrovascular disorder of proven genetic origin, affecting 0.5% of the population. Three disease genes have been identified: CCM1/KRIT1, CCM2, and CCM3. These genes encode for proteins implicated in the regulation of major cellular structures and mechanisms, such as cell-cell and cell-matrix adhesion, actin cytoskeleton dynamics, and endothelial-to-mesenchymal transition, suggesting that they may act as pleiotropic regulators of cellular homeostasis. Indeed, accumulated evidence in cellular and animal models demonstrates that emerged pleiotropic functions of CCM proteins are mainly due to their ability to modulate redox-sensitive pathways and mechanisms involved in adaptive responses to oxidative stress and inflammation, thus contributing to the preservation of cellular homeostasis and stress defenses. In particular, we demonstrated that KRIT1 loss-of-function affects master regulators of cellular redox homeostasis and responses to oxidative stress, including major redox-sensitive transcriptional factors and antioxidant proteins, and autophagy, suggesting that altered redox signaling and oxidative stress contribute to CCM pathogenesis, and opening novel preventive and therapeutic perspectives.In this chapter, we describe materials and methods for isolation of mouse embryonic fibroblast (MEF) cells from homozygous KRIT1-knockout mouse embryos, and their transduction with a lentiviral vector encoding KRIT1 to generate cellular models of CCM disease that contributed significantly to the identification of pathogenetic mechanisms.
Collapse
Affiliation(s)
- Luca Goitre
- Department of Clinical and Biological Science, University of Torino, Orbassano (Torino), Italy. .,CCM Italia Research Network, Torino, Italy.
| | - Claudia Fornelli
- Department of Clinical and Biological Science, University of Torino, Orbassano (Torino), Italy.,CCM Italia Research Network, Torino, Italy
| | - Alessia Zotta
- Department of Clinical and Biological Science, University of Torino, Orbassano (Torino), Italy.,CCM Italia Research Network, Torino, Italy
| | - Andrea Perrelli
- CCM Italia Research Network, Torino, Italy.,Department of Clinical and Biological Science, School of Medicine and Surgery, University of Torino, Orbassano (Torino), Italy
| | - Saverio Francesco Retta
- CCM Italia Research Network, Torino, Italy. .,Department of Clinical and Biological Science, School of Medicine and Surgery, University of Torino, Orbassano (Torino), Italy.
| |
Collapse
|
38
|
Retta SF, Perrelli A, Trabalzini L, Finetti F. From Genes and Mechanisms to Molecular-Targeted Therapies: The Long Climb to the Cure of Cerebral Cavernous Malformation (CCM) Disease. Methods Mol Biol 2021; 2152:3-25. [PMID: 32524540 DOI: 10.1007/978-1-0716-0640-7_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cerebral cavernous malformation (CCM) is a rare cerebrovascular disorder of genetic origin consisting of closely clustered, abnormally dilated and leaky capillaries (CCM lesions), which occur predominantly in the central nervous system. CCM lesions can be single or multiple and may result in severe clinical symptoms, including focal neurological deficits, seizures, and intracerebral hemorrhage. Early human genetic studies demonstrated that CCM disease is linked to three chromosomal loci and can be inherited as autosomal dominant condition with incomplete penetrance and highly variable expressivity, eventually leading to the identification of three disease genes, CCM1/KRIT1, CCM2, and CCM3/PDCD10, which encode for structurally unrelated intracellular proteins that lack catalytic domains. Biochemical, molecular, and cellular studies then showed that these proteins are involved in endothelial cell-cell junction and blood-brain barrier stability maintenance through the regulation of major cellular structures and mechanisms, including endothelial cell-cell and cell-matrix adhesion, actin cytoskeleton dynamics, autophagy, and endothelial-to-mesenchymal transition, suggesting that they act as pleiotropic regulators of cellular homeostasis, and opening novel therapeutic perspectives. Indeed, accumulated evidence in cellular and animal models has eventually revealed that the emerged pleiotropic functions of CCM proteins are mainly due to their ability to modulate redox-sensitive pathways and mechanisms involved in adaptive responses to oxidative stress and inflammation, thus contributing to the preservation of cellular homeostasis and stress defenses.In this introductory review, we present a general overview of 20 years of amazing progress in the identification of genetic culprits and molecular mechanisms underlying CCM disease pathogenesis, and the development of targeted therapeutic strategies.
Collapse
Affiliation(s)
- Saverio Francesco Retta
- Department of Clinical and Biological Science, School of Medicine and Surgery, University of Torino, Orbassano (Torino), Italy. .,CCM Italia Research Network, Torino, Italy.
| | - Andrea Perrelli
- Department of Clinical and Biological Science, School of Medicine and Surgery, University of Torino, Orbassano (Torino), Italy.,CCM Italia Research Network, Torino, Italy
| | - Lorenza Trabalzini
- CCM Italia Research Network, Torino, Italy.,Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Federica Finetti
- CCM Italia Research Network, Torino, Italy.,Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| |
Collapse
|
39
|
Fluorescence Analysis of Reactive Oxygen Species (ROS) in Cellular Models of Cerebral Cavernous Malformation Disease. Methods Mol Biol 2021. [PMID: 32524573 DOI: 10.1007/978-1-0716-0640-7_34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Cerebral cavernous malformation (CCM) is a vascular disease of proven genetic origin, which may arise sporadically or can be inherited as an autosomal dominant condition with incomplete penetrance and highly variable expressivity. CCM disease exhibits a range of different phenotypes, including wide interindividual differences in lesion number, size, and susceptibility to intracerebral hemorrhage (ICH). Mutations of the KRIT1 gene account for over 50% of familial cases. Previously, we demonstrated that KRIT1 loss-of-function is associated with altered homeostasis of intracellular reactive oxygen species (ROS) and abnormal activation of redox-sensitive transcription factors, which collectively result in pro-oxidative, pro-inflammatory, and pro-angiogenic effects, suggesting a novel pathogenic mechanism for CCM disease. Consistently, these original discoveries have been confirmed and extended by subsequent findings showing mechanistic relationships between pleiotropic redox-dependent effects of KRIT1 loss-of-function and enhanced cell sensitivity to oxidative stress, which may eventually lead to cellular dysfunctions and CCM disease pathogenesis. In this chapter, we describe few basic methods used for qualitative and quantitative analysis of intracellular ROS in cellular models of CCM disease.
Collapse
|
40
|
De Luca E, Perrelli A, Swamy H, Nitti M, Passalacqua M, Furfaro AL, Salzano AM, Scaloni A, Glading AJ, Retta SF. Protein kinase Cα regulates the nucleocytoplasmic shuttling of KRIT1. J Cell Sci 2021; 134:jcs250217. [PMID: 33443102 PMCID: PMC7875496 DOI: 10.1242/jcs.250217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 12/15/2020] [Indexed: 12/16/2022] Open
Abstract
KRIT1 is a scaffolding protein that regulates multiple molecular mechanisms, including cell-cell and cell-matrix adhesion, and redox homeostasis and signaling. However, rather little is known about how KRIT1 is itself regulated. KRIT1 is found in both the cytoplasm and the nucleus, yet the upstream signaling proteins and mechanisms that regulate KRIT1 nucleocytoplasmic shuttling are not well understood. Here, we identify a key role for protein kinase C (PKC) in this process. In particular, we found that PKC activation promotes the redox-dependent cytoplasmic localization of KRIT1, whereas inhibition of PKC or treatment with the antioxidant N-acetylcysteine leads to KRIT1 nuclear accumulation. Moreover, we demonstrated that the N-terminal region of KRIT1 is crucial for the ability of PKC to regulate KRIT1 nucleocytoplasmic shuttling, and may be a target for PKC-dependent regulatory phosphorylation events. Finally, we found that silencing of PKCα, but not PKCδ, inhibits phorbol 12-myristate 13-acetate (PMA)-induced cytoplasmic enrichment of KRIT1, suggesting a major role for PKCα in regulating KRIT1 nucleocytoplasmic shuttling. Overall, our findings identify PKCα as a novel regulator of KRIT1 subcellular compartmentalization, thus shedding new light on the physiopathological functions of this protein.
Collapse
Affiliation(s)
- Elisa De Luca
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Torino, Italy
- CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Torino, Italy
- Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, 73010 Arnesano, Lecce, Italy
| | - Andrea Perrelli
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Torino, Italy
- CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Torino, Italy
| | - Harsha Swamy
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642, USA
| | - Mariapaola Nitti
- Department of Experimental Medicine, University of Genoa, 16132 Genova, Italy
| | - Mario Passalacqua
- Department of Experimental Medicine, University of Genoa, 16132 Genova, Italy
| | - Anna Lisa Furfaro
- Department of Experimental Medicine, University of Genoa, 16132 Genova, Italy
| | - Anna Maria Salzano
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Napoli, Italy
| | - Andrea Scaloni
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Napoli, Italy
| | - Angela J Glading
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642, USA
| | - Saverio Francesco Retta
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Torino, Italy
- CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Torino, Italy
| |
Collapse
|
41
|
Perrelli A, Fatehbasharzad P, Benedetti V, Ferraris C, Fontanella M, De Luca E, Moglianetti M, Battaglia L, Retta SF. Towards precision nanomedicine for cerebrovascular diseases with emphasis on Cerebral Cavernous Malformation (CCM). Expert Opin Drug Deliv 2021; 18:849-876. [PMID: 33406376 DOI: 10.1080/17425247.2021.1873273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Cerebrovascular diseases encompass various disorders of the brain vasculature, such as ischemic/hemorrhagic strokes, aneurysms, and vascular malformations, also affecting the central nervous system leading to a large variety of transient or permanent neurological disorders. They represent major causes of mortality and long-term disability worldwide, and some of them can be inherited, including Cerebral Cavernous Malformation (CCM), an autosomal dominant cerebrovascular disease linked to mutations in CCM1/KRIT1, CCM2, or CCM3/PDCD10 genes.Areas covered: Besides marked clinical and etiological heterogeneity, some commonalities are emerging among distinct cerebrovascular diseases, including key pathogenetic roles of oxidative stress and inflammation, which are increasingly recognized as major disease hallmarks and therapeutic targets. This review provides a comprehensive overview of the different clinical features and common pathogenetic determinants of cerebrovascular diseases, highlighting major challenges, including the pressing need for new diagnostic and therapeutic strategies, and focusing on emerging innovative features and promising benefits of nanomedicine strategies for early detection and targeted treatment of such diseases.Expert opinion: Specifically, we describe and discuss the multiple physico-chemical features and unique biological advantages of nanosystems, including nanodiagnostics, nanotherapeutics, and nanotheranostics, that may help improving diagnosis and treatment of cerebrovascular diseases and neurological comorbidities, with an emphasis on CCM disease.
Collapse
Affiliation(s)
- Andrea Perrelli
- Department of Clinical and Biological Sciences, University of Torino, Orbassano, Torino Italy.,CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, Orbassano, Torino Italy
| | - Parisa Fatehbasharzad
- Department of Clinical and Biological Sciences, University of Torino, Orbassano, Torino Italy.,CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, Orbassano, Torino Italy
| | - Valerio Benedetti
- Department of Clinical and Biological Sciences, University of Torino, Orbassano, Torino Italy.,CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, Orbassano, Torino Italy
| | - Chiara Ferraris
- Department of Drug Science and Technology, University of Torino, Torino, Italy.,Nanostructured Interfaces and Surfaces (NIS) Interdepartmental Centre, University of Torino, Torino, Italy
| | - Marco Fontanella
- CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, Orbassano, Torino Italy.,Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Elisa De Luca
- Nanobiointeractions & Nanodiagnostics, Center for Biomolecular Nanotechnologies, Arnesano, Lecce, Italy.,Institute for Microelectronics and Microsystems (IMM), CNR, Lecce, Italy
| | - Mauro Moglianetti
- Nanobiointeractions & Nanodiagnostics, Center for Biomolecular Nanotechnologies, Arnesano, Lecce, Italy.,Istituto Italiano Di Tecnologia, Nanobiointeractions & Nanodiagnostics, Genova, Italy
| | - Luigi Battaglia
- Department of Drug Science and Technology, University of Torino, Torino, Italy.,Nanostructured Interfaces and Surfaces (NIS) Interdepartmental Centre, University of Torino, Torino, Italy
| | - Saverio Francesco Retta
- Department of Clinical and Biological Sciences, University of Torino, Orbassano, Torino Italy.,CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, Orbassano, Torino Italy
| |
Collapse
|
42
|
He Y, Zhou C, Huang M, Tang C, Liu X, Yue Y, Diao Q, Zheng Z, Liu D. Glyoxalase system: A systematic review of its biological activity, related-diseases, screening methods and small molecule regulators. Biomed Pharmacother 2020; 131:110663. [DOI: 10.1016/j.biopha.2020.110663] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/27/2022] Open
|
43
|
Aragonès G, Rowan S, G Francisco S, Yang W, Weinberg J, Taylor A, Bejarano E. Glyoxalase System as a Therapeutic Target against Diabetic Retinopathy. Antioxidants (Basel) 2020; 9:antiox9111062. [PMID: 33143048 PMCID: PMC7692619 DOI: 10.3390/antiox9111062] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/25/2020] [Accepted: 10/27/2020] [Indexed: 12/14/2022] Open
Abstract
Hyperglycemia, a defining characteristic of diabetes, combined with oxidative stress, results in the formation of advanced glycation end products (AGEs). AGEs are toxic compounds that have adverse effects on many tissues including the retina and lens. AGEs promote the formation of reactive oxygen species (ROS), which, in turn, boost the production of AGEs, resulting in positive feedback loops, a vicious cycle that compromises tissue fitness. Oxidative stress and the accumulation of AGEs are etiologically associated with the pathogenesis of multiple diseases including diabetic retinopathy (DR). DR is a devastating microvascular complication of diabetes mellitus and the leading cause of blindness in working-age adults. The onset and development of DR is multifactorial. Lowering AGEs accumulation may represent a potential therapeutic approach to slow this sight-threatening diabetic complication. To set DR in a physiological context, in this review we first describe relations between oxidative stress, formation of AGEs, and aging in several tissues of the eye, each of which is associated with a major age-related eye pathology. We summarize mechanisms of AGEs generation and anti-AGEs detoxifying systems. We specifically feature the potential of the glyoxalase system in the retina in the prevention of AGEs-associated damage linked to DR. We provide a comparative analysis of glyoxalase activity in different tissues from wild-type mice, supporting a major role for the glyoxalase system in the detoxification of AGEs in the retina, and present the manipulation of this system as a therapeutic strategy to prevent the onset of DR.
Collapse
Affiliation(s)
- Gemma Aragonès
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02155, USA; (G.A.); (S.R.); (S.G.F.); (W.Y.); (J.W.)
| | - Sheldon Rowan
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02155, USA; (G.A.); (S.R.); (S.G.F.); (W.Y.); (J.W.)
- Department of Ophthalmology, Tufts University School of Medicine, Boston, MA 02155, USA
- Friedman School of Nutrition and Science Policy, Tufts University, Boston, MA 02155, USA
| | - Sarah G Francisco
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02155, USA; (G.A.); (S.R.); (S.G.F.); (W.Y.); (J.W.)
| | - Wenxin Yang
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02155, USA; (G.A.); (S.R.); (S.G.F.); (W.Y.); (J.W.)
| | - Jasper Weinberg
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02155, USA; (G.A.); (S.R.); (S.G.F.); (W.Y.); (J.W.)
| | - Allen Taylor
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02155, USA; (G.A.); (S.R.); (S.G.F.); (W.Y.); (J.W.)
- Department of Ophthalmology, Tufts University School of Medicine, Boston, MA 02155, USA
- Friedman School of Nutrition and Science Policy, Tufts University, Boston, MA 02155, USA
- Correspondence: (A.T.); (E.B.); Tel.: +617-556-3156 (A.T.)
| | - Eloy Bejarano
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02155, USA; (G.A.); (S.R.); (S.G.F.); (W.Y.); (J.W.)
- Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Valencia, Spain
- Correspondence: (A.T.); (E.B.); Tel.: +617-556-3156 (A.T.)
| |
Collapse
|
44
|
Yoo HJ, Hong CO, Ha SK, Lee KW. Chebulic Acid Prevents Methylglyoxal-Induced Mitochondrial Dysfunction in INS-1 Pancreatic β-Cells. Antioxidants (Basel) 2020; 9:antiox9090771. [PMID: 32825285 PMCID: PMC7554990 DOI: 10.3390/antiox9090771] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/18/2020] [Accepted: 08/18/2020] [Indexed: 02/07/2023] Open
Abstract
To investigate the anti-diabetic properties of chebulic acid (CA) associated with the prevention of methyl glyoxal (MG)-induced mitochondrial dysfunction in INS-1 pancreatic β-cells, INS-1 cells were pre-treated with CA (0.5, 1.0, and 2.0 μM) for 48 h and then treated with 2 mM MG for 8 h. The effects of CA and MG on INS-1 cells were evaluated using the following: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay; glyoxalase 1 (Glo-1) expression via Western blot and enzyme activity assays; Nrf-2, nuclear factor erythroid 2-related factor 2 protein expression via Western blot assay; reactive oxygen species (ROS) production assay; mRNA expression of mitochondrial dysfunction related components (UCP2, uncoupling protein 2; VDAC1, voltage-dependent anion-selective channel-1; cyt c, cytochrome c via quantitative reverse transcriptase-PCR; mitochondrial membrane potential (MMP); adenosine triphosphate (ATP) synthesis; glucose-stimulated insulin secretion (GSIS) assay. The viability of INS-1 cells was maintained upon pre-treating with CA before exposure to MG. CA upregulated Glo-1 protein expression and enzyme activity in INS-1 cells and prevented MG-induced ROS production. Mitochondrial dysfunction was alleviated by CA pretreatment; this occurred via the downregulation of UCP2, VDAC1, and cyt c mRNA expression and the increase of MMP and ATP synthesis. Further, CA pre-treatment promoted the recovery from MG-induced decrease in GSIS. These results indicated that CA could be employed as a therapeutic agent in diabetes due to its ability to prevent MG-induced development of insulin sensitivity and oxidative stress-induced dysfunction of β-cells.
Collapse
Affiliation(s)
- Hyun-jung Yoo
- Department of Biotechnology, College of Life Science & Biotechnology, Korea University, Seoul 02841, Korea; (H.-j.Y.); (C.-O.H.)
| | - Chung-Oui Hong
- Department of Biotechnology, College of Life Science & Biotechnology, Korea University, Seoul 02841, Korea; (H.-j.Y.); (C.-O.H.)
| | - Sang Keun Ha
- Research Division of Food Functionality, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Korea;
| | - Kwang-Won Lee
- Department of Biotechnology, College of Life Science & Biotechnology, Korea University, Seoul 02841, Korea; (H.-j.Y.); (C.-O.H.)
- Correspondence: ; Tel.: +82-2-3290-3473; Fax: +82-2-927-1970
| |
Collapse
|
45
|
Gambelunghe A, Giovagnoli S, Di Michele A, Boncompagni S, Dell’Omo M, Leopold K, Iavicoli I, Talesa VN, Antognelli C. Redox-Sensitive Glyoxalase 1 Up-Regulation Is Crucial for Protecting Human Lung Cells from Gold Nanoparticles Toxicity. Antioxidants (Basel) 2020; 9:antiox9080697. [PMID: 32756399 PMCID: PMC7463694 DOI: 10.3390/antiox9080697] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 12/19/2022] Open
Abstract
Gold nanoparticles (AuNPs) are considered nontoxic upon acute exposure, at least when they are equal or above 5 nm size. However, the safeguard mechanisms contributing to maintain cell viability are scarcely explored so far. Here, we investigated the cyto-protective role of Glyoxalase 1 (Glo1), a key enzyme involved in the control of deleterious dicarbonyl stress, in two human cell types of the respiratory tract, after an acute exposure to AuNPs with a main size of 5 nm. We found that the redox sensitive Nrf-2-mediated up-regulation of Glo1 was crucial to protect cells from AuNPs-induced toxicity. However, cells challenged with a pro-inflammatory/pro-oxidative insult become susceptible to the pro-apoptotic effect of AuNPs. Notably, the surviving cells undergo epigenetic changes associated with the onset of a partial epithelial to mesenchymal transition (EMT) process (metastable phenotype), driven by the increase in dicarbonyl stress, consequent to Glo1 inactivation. As a physiological respiratory epithelium is required for the normal respiratory function, the knowledge of the protective mechanisms avoiding or (when challenged) promoting its modification/damage might provide insight into the genesis, and, most importantly, prevention of potential health effects that might occur in subjects exposed to AuNPs, through targeted surveillance programs, at least under specific influencing factors.
Collapse
Affiliation(s)
- Angela Gambelunghe
- Department of Medicine, University of Perugia, 06123 Perugia, Italy; (A.G.); (M.D.)
| | - Stefano Giovagnoli
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy;
| | | | - Simona Boncompagni
- Department of Neuroscience, University G. d’ Annunzio of Chieti, Imaging and Clinical Sciences (DNICS) & Center for Advanced Studies and Technologies (CAST), 66100 Chieti, Italy;
| | - Marco Dell’Omo
- Department of Medicine, University of Perugia, 06123 Perugia, Italy; (A.G.); (M.D.)
| | - Kerstin Leopold
- Institute of Analytical and Bioanalytical Chemistry (IABC), Ulm University, 89081 Ulm, Germany;
| | - Ivo Iavicoli
- Department of Public Health, Section of Occupational Medicine, University of Naples Federico II, 80131 Naples, Italy;
| | | | - Cinzia Antognelli
- Department of Experimental Medicine, University of Perugia, 06123 Perugia, Italy;
- Correspondence: ; Tel.: +39-075-585-8354
| |
Collapse
|
46
|
Ercoli J, Finetti F, Woodby B, Belmonte G, Miracco C, Valacchi G, Trabalzini L. KRIT1 as a possible new player in melanoma aggressiveness. Arch Biochem Biophys 2020; 691:108483. [PMID: 32735866 DOI: 10.1016/j.abb.2020.108483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 11/27/2022]
Abstract
Krev interaction trapped protein 1 (KRIT1) is a scaffold protein known to form functional complexes with distinct proteins, including Malcavernin, PDCD10, Rap1 and others. It appears involved in several cellular signaling pathways and exerts a protective role against inflammation and oxidative stress. KRIT1 has been studied as a regulator of endothelial cell functions and represents a determinant in the pathogenesis of Cerebral Cavernous Malformation (CCM), a cerebrovascular disease characterized by the formation of clusters of abnormally dilated and leaky blood capillaries, which predispose to seizures, neurological deficits and intracerebral hemorrhage. Although KRIT1 is ubiquitously expressed, few studies have described its involvement in pathologies other than CCM including cancer. Cutaneous melanoma represents the most fatal skin cancer due to its high metastatic propensity. Despite the numerous efforts made to define the signaling pathways activated during melanoma progression, the molecular mechanisms at the basis of melanoma growth, phenotype plasticity and resistance to therapies are still under investigation.
Collapse
Affiliation(s)
- Jasmine Ercoli
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Italy
| | - Federica Finetti
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Italy
| | - Brittany Woodby
- Plants for Human Health Institute, NC Research Campus, NC State University, NC, USA
| | - Giuseppe Belmonte
- Unit of Pathological Anatomy, Department of Medicine, Surgery, and Neurosciences, University of Siena, Siena, Italy
| | - Clelia Miracco
- Unit of Pathological Anatomy, Department of Medicine, Surgery, and Neurosciences, University of Siena, Siena, Italy
| | - Giuseppe Valacchi
- Plants for Human Health Institute, NC Research Campus, NC State University, NC, USA; Dept. of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy; Department of Food and Nutrition, Kyung Hee University, Seoul, South Korea.
| | - Lorenza Trabalzini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Italy.
| |
Collapse
|
47
|
Generation of CCM Phenotype by a Human Microvascular Endothelial Model. Methods Mol Biol 2020. [PMID: 32524549 DOI: 10.1007/978-1-0716-0640-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Cerebral cavernous malformations (CCMs) is a disorder of endothelial cells predominantly localized in the brain. Although a complete inactivation of each CCM protein has been found in the affected endothelium of diseased patients and a necessary and additional role of microenvironment has been demonstrated to determine in vivo the occurrence of vascular lesions, a microvascular endothelial model based on knockdown of a CCM gene represents today a convenient method to study some of critical signaling events regulating pathogenesis of CCM. For these reasons, in our laboratory we developed a microvascular cerebral endothelial model of Krit1 deficiency performing silencing experiments of CCM1 gene (Krit1) with siRNA procedure.
Collapse
|
48
|
Spectrophotometric Method for Determining Glyoxalase 1 Activity in Cerebral Cavernous Malformation (CCM) Disease. Methods Mol Biol 2020. [PMID: 32524572 DOI: 10.1007/978-1-0716-0640-7_33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Glyoxalase 1 (Glo1) is a glutathione (GSH)-dependent enzyme that catalyzes the isomerization of the hemithioacetal formed non-enzymatically from methylglyoxal (MG) and GSH to S-D-lactoylglutathione (SLG). The activity of Glo1 is measured spectrophotometrically by following the increase of absorbance at 240 nm and 25 °C, attributable to the formation of SLG. The hemithioacetal is preformed by incubation of 2 mM MG and 1 mM GSH in 0.1 M sodium phosphate buffer (PBS) pH 7.2, at 25 °C for 10 min. The cell extract is then added, and the A240 is monitored over 5-min incubation against correction for blank. Glo1 activity is given in units per mg of protein where one unit activity is defined as 1 μmole of SLG produced per min under assay conditions. Here, we describe measurement of Glo1 activity in established cellular models of cerebral cavernous malformation (CCM) disease, including KRIT1-knockout mouse embryonic fibroblast (MEF) and KRIT1-silenced human brain microvascular endothelial (hBMEC) cells.
Collapse
|
49
|
Kim HA, Perrelli A, Ragni A, Retta F, De Silva TM, Sobey CG, Retta SF. Vitamin D Deficiency and the Risk of Cerebrovascular Disease. Antioxidants (Basel) 2020; 9:antiox9040327. [PMID: 32316584 PMCID: PMC7222411 DOI: 10.3390/antiox9040327] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 02/07/2023] Open
Abstract
Vitamin D deficiency has been clearly linked to major chronic diseases associated with oxidative stress, inflammation, and aging, including cardiovascular and neurodegenerative diseases, diabetes, and cancer. In particular, the cardiovascular system appears to be highly sensitive to vitamin D deficiency, as this may result in endothelial dysfunction and vascular defects via multiple mechanisms. Accordingly, recent research developments have led to the proposal that pharmacological interventions targeting either vitamin D deficiency or its key downstream effects, including defective autophagy and abnormal pro-oxidant and pro-inflammatory responses, may be able to limit the onset and severity of major cerebrovascular diseases, such as stroke and cerebrovascular malformations. Here we review the available evidence supporting the role of vitamin D in preventing or limiting the development of these cerebrovascular diseases, which are leading causes of disability and death all over the world.
Collapse
Affiliation(s)
- Hyun Ah Kim
- Department of Physiology, Anatomy & Microbiology and Centre for Cardiovascular Biology and Disease Research, School of Life Sciences, La Trobe University, Bundoora 3086, Australia; (H.A.K.); (T.M.D.S.)
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton 3800, Australia
| | - Andrea Perrelli
- Department of Clinical and Biological Sciences, University of Torino, Orbassano, 10043 Torino, Italy;
- CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, Orbassano, 10043 Torino, Italy
| | - Alberto Ragni
- Oncological Endocrinology Unit, Department of Medical Sciences, Città della Salute e della Scienza Hospital, University of Torino, 10126 Torino, Italy; (A.R.); (F.R.)
| | - Francesca Retta
- Oncological Endocrinology Unit, Department of Medical Sciences, Città della Salute e della Scienza Hospital, University of Torino, 10126 Torino, Italy; (A.R.); (F.R.)
| | - T. Michael De Silva
- Department of Physiology, Anatomy & Microbiology and Centre for Cardiovascular Biology and Disease Research, School of Life Sciences, La Trobe University, Bundoora 3086, Australia; (H.A.K.); (T.M.D.S.)
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton 3800, Australia
| | - Christopher G. Sobey
- Department of Physiology, Anatomy & Microbiology and Centre for Cardiovascular Biology and Disease Research, School of Life Sciences, La Trobe University, Bundoora 3086, Australia; (H.A.K.); (T.M.D.S.)
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton 3800, Australia
- Correspondence: (C.G.S.); (S.F.R.); Tel.: +61-3-94791316 (C.G.S.); +39-011-6706426 (S.F.R.)
| | - Saverio Francesco Retta
- Department of Clinical and Biological Sciences, University of Torino, Orbassano, 10043 Torino, Italy;
- CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, Orbassano, 10043 Torino, Italy
- Correspondence: (C.G.S.); (S.F.R.); Tel.: +61-3-94791316 (C.G.S.); +39-011-6706426 (S.F.R.)
| |
Collapse
|
50
|
Dimitropoulos A, Rosado CJ, Thomas MC. Dicarbonyl-mediated AGEing and diabetic kidney disease. J Nephrol 2020; 33:909-915. [DOI: 10.1007/s40620-020-00718-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/05/2020] [Indexed: 12/22/2022]
|