1
|
Iglesias-Jiménez A, Artiaga G, Moreno-Gordaliza E, Milagros Gómez-Gómez M. Metallomic evaluation of selenium nanoparticles and selenomethionine for the attenuation of cisplatin-induced nephrotoxicity. Eur J Pharm Biopharm 2025; 212:114737. [PMID: 40345401 DOI: 10.1016/j.ejpb.2025.114737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 04/23/2025] [Accepted: 05/06/2025] [Indexed: 05/11/2025]
Abstract
Nephrotoxicity is one of the most limiting side effects in oncologic patients treated with cisplatin and is still clinically unresolved. In this work, chitosan-stabilised selenium nanoparticles (Ch-SeNPs) and selenomethionine (SeMet) have been evaluated as nephroprotectors of cisplatin using renal proximal tubule epithelial cells (RPTEC/TERT1) as a model. Moreover, the antineoplastic efficacy of cisplatin co-administered with these selenocompounds has been tested in cervical cancer cells (HeLa). Cell viability, cell localisation of Ch-SeNPs and changes in the morphology and cell ultrastructure, Pt and Se cellular internalisation and cisplatin binding to DNA, and speciation of Pt and Se in the cytosolic extracts were evaluated by MTT assays, transmission electron microscopy coupled to energy dispersive X-ray spectroscopy (TEM-EDS), inductively coupled plasma mass spectrometry (ICP-MS), and both size exclusion chromatography (SEC) and anion exchange chromatography (AEC) coupled to either ICP-MS or UV-Vis. Differences in the pharmacological activity of the two selenospecies were observed. SeMet exerted a moderate protection on kidney cells while reducing their degree of cisplatin intracellular accumulation and DNA binding in both cell lines, but the antitumour effect of cisplatin was not significantly altered. Conversely, Ch-SeNPs did not impair the Pt-drug uptake or DNA binding in any cell type; and even increased its antitumour effect, which might enable using lower doses of cisplatin without loss of anticancer efficacy, which would result in decreased risk of renotoxicity. Furthermore, cells incubated either with SeMet or SeNPs showed higher levels of selenoproteins, which might enhance cellular defences against the reactive oxygen species (ROS) involved in cisplatin renotoxicity. Hence, both selenocompounds are envisioned as potential coadjuvants to reduce the risk of kidney impairment in future treatments with cisplatin.
Collapse
Affiliation(s)
- Alejandro Iglesias-Jiménez
- Department of Analytical Chemistry, Faculty of Chemical Sciences, Universidad Complutense de Madrid, Avenida Complutense s/n, 28040 Madrid, Spain.
| | - Gema Artiaga
- Department of Analytical Chemistry, Faculty of Chemical Sciences, Universidad Complutense de Madrid, Avenida Complutense s/n, 28040 Madrid, Spain.
| | - Estefanía Moreno-Gordaliza
- Department of Analytical Chemistry, Faculty of Chemical Sciences, Universidad Complutense de Madrid, Avenida Complutense s/n, 28040 Madrid, Spain.
| | - M Milagros Gómez-Gómez
- Department of Analytical Chemistry, Faculty of Chemical Sciences, Universidad Complutense de Madrid, Avenida Complutense s/n, 28040 Madrid, Spain.
| |
Collapse
|
2
|
Varlamova EG. Selenium-containing compounds, selenium nanoparticles and selenoproteins in the prevention and treatment of lung cancer. J Trace Elem Med Biol 2025; 88:127620. [PMID: 39970692 DOI: 10.1016/j.jtemb.2025.127620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 01/25/2025] [Accepted: 02/13/2025] [Indexed: 02/21/2025]
Abstract
THE OBJECTIVE Is to review the latest data on the role of key organic and inorganic compounds of the essential trace element selenium, selenium-containing nanocomposites and nanoparticles, and selenoproteins in lung cancer therapy. OBJECT OF RESEARCH Sodium selenite, methylselenic acid, selenomethionine, selenium nanoparticles, mammalian selenoproteins KEY OBJECTIVES:: To describe the molecular mechanisms of the cytotoxic effect of sodium selenite, methylselenic acid and selenomethionine on lung cancer cells, to discuss the latest advances in lung cancer nanomedicine using selenium-based nanoparticles and nanocomposites and to assess the prospects for creating antitumor drugs based on them, to assess the role of selenoproteins in the progression or inhibition of lung cancer and to study the molecular mechanisms of such regulation CONCLUSIONS:: This review provides a complete picture of the role of selenium and selenium-containing agents of various natures in the regulation of carcinogenesis and therapy of lung cancer, which significantly complements the fundamental data on the functions of these compounds, on the molecular mechanisms of regulation of processes associated with lung cancer. This knowledge provides insight into the latest developments and future prospects in the treatment and prevention of lung cancer with the active participation of the trace element selenium.
Collapse
Affiliation(s)
- Elena G Varlamova
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", st. Institutskaya 3, Pushchino, 142290, Russia.
| |
Collapse
|
3
|
Yang W, Ding C, Ji Y, He C, Xiong F, Aiyiti W, Shuai C. Self-augmented catabolism mediated by Se/Fe co-doped bioceramics boosts ROS storm for highly efficient antitumor therapy of bone scaffolds. Colloids Surf B Biointerfaces 2025; 248:114477. [PMID: 39740489 DOI: 10.1016/j.colsurfb.2024.114477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/18/2024] [Accepted: 12/24/2024] [Indexed: 01/02/2025]
Abstract
The overexpression of glutathione (GSH) within the tumor microenvironment has long been considered as the major obstacle for reactive oxygen species (ROS)-based antitumor therapies. To address this challenge, a selenite (SeO32 -) and ferric ion co-doped hydroxyapatite (SF-HAP) nanohybrid was synthesized, which is then introduced into poly-L-lactic acid (PLLA) to prepare porous scaffold by selective laser sintering to continuously release Fe3+ and SeO32- ions. Of great significance is the released SeO32- catabolize GSH to generate superoxide anion (O2•-) rather than directly eliminating GSH, thereby reversing the obstacle posed by its overexpression and achieving a "waste-to-treasure" transformation. The newly generated O2•- synergizes with the hydroxyl radicals (•OH) produced by the Fenton reaction between Fe3+/2+ and hydrogen peroxide, triggering high concentration ROS storms. Collectively, the PLLA/SF-HAP scaffold mediated self-augmented catabolism dynamic progress significantly raised intracellular ROS levels, almost twice as much as PLLA/Fe-HAP scaffold, thereby effectively inducing tumor cell apoptosis. The study provides an innovative inspiration for ROS-based antitumor therapies.
Collapse
Affiliation(s)
- Wenjing Yang
- Jiangxi Province Key Laboratory of Additive Manufacturing of Implantable Medical Device, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Chenhang Ding
- Jiangxi Province Key Laboratory of Additive Manufacturing of Implantable Medical Device, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Yibing Ji
- Jiangxi Province Key Laboratory of Additive Manufacturing of Implantable Medical Device, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Chongxian He
- Jiangxi Province Key Laboratory of Additive Manufacturing of Implantable Medical Device, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Feilong Xiong
- Jiangxi Province Key Laboratory of Additive Manufacturing of Implantable Medical Device, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Wurikaixi Aiyiti
- College of Mechanical Engineering, Xinjiang University, Urumqi 830017, China.
| | - Cijun Shuai
- Jiangxi Province Key Laboratory of Additive Manufacturing of Implantable Medical Device, Jiangxi University of Science and Technology, Nanchang 330013, China; State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
| |
Collapse
|
4
|
Raturi P, Ahmad N, Rawat N, Singhvi N. Synthesis and Biomedical Based Applications of Selenium Nanoparticles: A Comprehensive Review. Indian J Microbiol 2025; 65:204-215. [PMID: 40371022 PMCID: PMC12069214 DOI: 10.1007/s12088-024-01302-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2025] Open
Abstract
Selenium nanoparticles (SeNPs) captivate researchers due to their unique properties and promise in biomedicine. This review explores SeNP synthesis methods, emphasizing how they influence functionality in diverse applications. Chemical, physical, and biological approaches tailor SeNP size, shape, and surface chemistry, impacting their biocompatibility and potential for drug delivery, imaging, and therapy. SeNPs' remarkable electrochemical and optical properties position them for advancements in biosensing and diagnostics. However, challenges in consistent production, large-scale synthesis, and potential toxicity demand attention. We provide a concise analysis of current SeNP research, encompassing synthesis strategies, characterization techniques, and a broad spectrum of biomedical applications, while also addressing ongoing challenges and future directions in this rapidly evolving field. Graphical Abstract The multifaceted biological roles of Se NPs encompass orchestrating cellular processes, targeted drug delivery, enhancing chemotherapy efficacy, and providing protective effects against treatment-related toxicity.
Collapse
Affiliation(s)
- Pratishtha Raturi
- School of Allied Sciences, Dev Bhoomi Uttarakhand University, Dehradun, 248007 India
| | - Nabeel Ahmad
- School of Allied Sciences, Dev Bhoomi Uttarakhand University, Dehradun, 248007 India
| | - Neha Rawat
- School of Allied Sciences, Dev Bhoomi Uttarakhand University, Dehradun, 248007 India
| | - Nirjara Singhvi
- School of Allied Sciences, Dev Bhoomi Uttarakhand University, Dehradun, 248007 India
| |
Collapse
|
5
|
Fang C, Chen Q, Zheng G, Zhang F, Li Z, Mei J, Wu X, Chen X, Zeng K, Yang L. Cellulose-like chitosan microfibrils facilitate targeted release and enhance the prolonged residence time of quercetin-selenium nanoparticles for Alzheimer's disease treatment. Int J Pharm 2025; 670:125129. [PMID: 39722372 DOI: 10.1016/j.ijpharm.2024.125129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/18/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024]
Abstract
The effect of digestion on nanocarriers will affect the release and pharmacological effects of bioactive compounds in delivery systems. The digestion of cellulose is limited to gut microbiota, which offers a new research strategy for targeted delivery of bioactive compounds. Herein, positively charged cellulose-like chitosan/polyvinylpyrrolidone nanofiber was prepared to improve the residence time, colon target and gut microbiota regulation activity of quercetin decorated selenium nanoparticles (QUE@SeNPs/CS/PVPNFs). Selenium nanoparticles block the degradation of quercetin and QUE@SeNPs/CS/PVPNFs only decompose when caused by chitosanase secretion from gut microbiota. In vivo imaging showed that the residence time of QUE@SeNPs/CS/PVPNFs was longer than that of QUE@SeNPs. Thus, it significantly decreased the lipid concentrations in liver, which further inhibited insulin resistance in mice. Moreover, QUE@SeNPs/CS/PVPNFs treatment improves gut barrier integrity, increased the relative abundance of anti-obesity and anti-inflammation related bacterial including Akkermansia, Lactobacillus and Bacteroides. Consequently, the inflammatory factor (IL-β and TNF-α) levels in gut, liver and brain were also decreased. Nissl and PSD-95 staining indicated that QUE@SeNPs/CS/PVPNFs ameliorated synapse dysfunction in the brain. Therefore, QUE@SeNPs/CS/PVPNFs has a greater effect than QUE@SeNPs in improving cognitive ability in Morris water maze. Overall, QUE@SeNPs/CS/PVPNFs with prolonged residence time attenuates cognitive disorder via gut-liver-brain axis in AD.
Collapse
Affiliation(s)
- Chaoping Fang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Qingchang Chen
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
| | - Guodong Zheng
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Fang Zhang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Zhiwei Li
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jingtao Mei
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Xiaohua Wu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Xu Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Kailu Zeng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Licong Yang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China.
| |
Collapse
|
6
|
Mishra AP, Kumar R, Harilal S, Nigam M, Datta D, Singh S, Waranuch N, Chittasupho C. Demystifying the management of cancer through smart nano-biomedicine via regulation of reactive oxygen species. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:497-532. [PMID: 39480523 DOI: 10.1007/s00210-024-03469-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/17/2024] [Indexed: 11/02/2024]
Abstract
Advancements in therapeutic strategies and combinatorial approaches for cancer management have led to the majority of cancers in the initial stages to be regarded as treatable and curable. However, certain high-grade cancers in the initial stages are still regarded as chronic and difficult to manage, requiring novel therapeutic strategies. In this era of targeted and precision therapy, novel strategies for targeted delivery of drug and synergistic therapies, integrating nanotherapeutics, polymeric materials, and modulation of the tumor microenvironment are being developed. One such strategy is the study and utilization of smart-nano biomedicine, which refers to stimuli-responsive polymeric materials integrated with the anti-cancer drug that can modulate the reactive oxygen species (ROS) in the tumor microenvironment or can be ROS responsive for the mitigation as well as management of various cancers. The article explores in detail the ROS, its types, and sources; the antioxidant system, including scavengers and their role in cancer; the ROS-responsive targeted polymeric materials, including synergistic therapies for the treatment of cancer via modulating the ROS in the tumor microenvironment, involving therapeutic strategies promoting cancer cell death; and the current landscape and future prospects.
Collapse
Affiliation(s)
- Abhay Prakash Mishra
- Cosmetics and Natural Products Research Centre, Department of Pharmaceutical Technology, Naresuan University, Phitsanulok, 65000, Thailand
| | - Rajesh Kumar
- Faculty of Pharmaceutical Sciences, Kerala University of Health Sciences, Kerala, 680596, India.
| | - Seetha Harilal
- Faculty of Pharmaceutical Sciences, Kerala University of Health Sciences, Kerala, 680596, India
| | - Manisha Nigam
- Department of Biochemistry, Hemvati Nandan Bahuguna Garhwal University, Srinagar Garhwal, Uttarakhand, 246174, India
| | - Deepanjan Datta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal Karnataka, 576104, India
| | - Sudarshan Singh
- Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Neti Waranuch
- Cosmetics and Natural Products Research Centre, Department of Pharmaceutical Technology, Naresuan University, Phitsanulok, 65000, Thailand
| | - Chuda Chittasupho
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
| |
Collapse
|
7
|
Ahmed F, Zhang D, Tang X, Malakar PK. Targeting Spore-Forming Bacteria: A Review on the Antimicrobial Potential of Selenium Nanoparticles. Foods 2024; 13:4026. [PMID: 39766969 PMCID: PMC11728422 DOI: 10.3390/foods13244026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 01/15/2025] Open
Abstract
Spore-forming bacterial species pose a serious threat to food plants and healthcare facilities that use high-temperature processing and sterilizing techniques to sanitize medical equipment and food items. These severe processing conditions trigger sporulation, which is the process by which spore-forming bacteria, such as those of the Bacillus and Clostridium species, begin to produce spores, which are extremely resilient entities capable of withstanding adverse environmental circumstances. Additionally, these spores are resistant to a wide range of disinfectants and antibacterial therapies, such as hydrolytic enzymes, radiation, chemicals, and antibiotics. Because of their ability to combat bacteria through several biological pathways, selenium nanoparticles (SeNPs) have emerged as an effective method for either eliminating or preventing the formation of spore-forming bacteria. This review aims to investigate every potential pathway of entry and mechanism by which SeNPs impact bacterial species that produce spores. Additionally, SeNPs' antibacterial efficacy against several infections is reviewed. To precisely explain the antibacterial mechanism of SeNPs and the various factors that can affect their effectiveness, more research is necessary.
Collapse
Affiliation(s)
- Faraz Ahmed
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China;
- International Research Centre for Food and Health, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
| | - Dingwu Zhang
- Shanghai Kangshi Food Science and Technology Co., Ltd., Shanghai 201103, China
| | - Xiaoyang Tang
- Shanghai Kangshi Food Science and Technology Co., Ltd., Shanghai 201103, China
| | - Pradeep K. Malakar
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China;
- International Research Centre for Food and Health, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
| |
Collapse
|
8
|
Al-Shimmary SMH, Al-Thwani AN. Synthesis, Characterization, and Biomedical Applications of Bacteriocin-Selenium Nanoconjugates. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10420-2. [PMID: 39658757 DOI: 10.1007/s12602-024-10420-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2024] [Indexed: 12/12/2024]
Abstract
The antibiotic overuse in hospitals, the food industry, and animal feed over past times has led to a significant rise in the incidence of antibiotic-resistant bacteria. To address these potentially life-threatening antibiotic-resistant illnesses, a quick identification and development of novel antimicrobials are necessary. The aim of this study was to synthesize a novel bacteriocin-nanoconjugates by combining selenium nanoparticles with purified bacteriocin from the Enterococcus faecium SMAA23 and investigate some of its biomedical activities. The nanoconjugates were characterized via X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray desorption (EDX), and zeta potential analytical techniques. There is investigation of the antibacterial, antifungal, and anticancer properties of nanoconjugates. Purified bacteriocin has a known molecular weight of approximately 43,000 Daltons. The characterization of nanoparticles and nanoconjugates was performed. The crystallite size of nanoconjugate was determined via X-ray diffraction (XRD) to be 15.29 nm. Transmission electron microscopy (TEM) detected particles of irregular form of nanoconjugate, measuring between 11 and 24 nm in diameter. Energy dispersive X-ray spectroscopy (EDX) confirmed the presence of selenium and protein. The measured zeta potential was - 12.1 + 0.12 mV. The results revealed potent antibacterial activity against Acinetobacter baumannii, with a growth inhibition zone of 23 mm ± SD. A minimum inhibitory concentration (MIC) of nanoconjugate was 15.625 µg/mL, while a minimum bactericidal concentration (MBC) was 31.25 µg/mL. The application of scanning electron microscopy (SEM) enhanced the rupture of the bacterial cell wall. The antifungal activity against C. albicans and C. tropicalis resulted in growth inhibition zones of 14 mm and 16 mm (± SD), respectively. Various concentrations of the nanoconjugate strongly inhibited MDA-MB-231 cells in the MTT experiment. The novel synthesized bacteriocin-nanoconjugates exhibited substantial antibacterial, antifungal, and anticancer properties.
Collapse
Affiliation(s)
- Sana M H Al-Shimmary
- Institute of Genetic Engineering and Biotechnology for Post Graduate Studies, University of Baghdad, Baghdad, Iraq.
- College of Science for Women, University of Baghdad, Baghdad, Iraq.
| | - Amina N Al-Thwani
- Institute of Genetic Engineering and Biotechnology for Post Graduate Studies, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
9
|
He L, Javid Anbardan Z, Habibovic P, van Rijt S. Doxorubicin- and Selenium-Incorporated Mesoporous Silica Nanoparticles as a Combination Therapy for Osteosarcoma. ACS APPLIED NANO MATERIALS 2024; 7:25400-25411. [PMID: 39606122 PMCID: PMC11590048 DOI: 10.1021/acsanm.4c04294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 11/29/2024]
Abstract
Doxorubicin (Dox) is a promising anticancer chemotherapeutic, which has been widely investigated in osteosarcoma (OS) treatment. However, there are several disadvantages regarding its clinical use. Specifically, Dox has low specificity toward cancer cells, which can lead to serious side effects. In addition, cancer cells can develop resistance toward Dox, reducing its therapeutic efficiency. Combination therapy (CT) facilitated by nanoparticle delivery systems is a promising strategy to overcome these drawbacks. In this study, we investigated the effectiveness of Dox and selenium (Se) CT using mesoporous silica nanoparticles (MSN) coated with hyaluronic acid (HA) as drug carriers. We hypothesized that combining Se as a second agent can increase Dox anti-OS effectiveness and that MSN can be used to facilitate dual drug delivery. In our system, HA was used as a gatekeeper to control the intracellular release of Se/Dox by means of its pH-responsive degradation. CT therapy using MSNs coated with HA led to a higher OS inhibitory efficiency in vitro compared to MSNs carrying either Se or Dox alone. This study demonstrates that using MSNs for the dual delivery of Se and Dox is a promising method for OS therapy.
Collapse
Affiliation(s)
- Lei He
- Department of Instructive
Biomaterials Engineering, MERLN Institute for Technology Inspired
Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Zahra Javid Anbardan
- Department of Instructive
Biomaterials Engineering, MERLN Institute for Technology Inspired
Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Pamela Habibovic
- Department of Instructive
Biomaterials Engineering, MERLN Institute for Technology Inspired
Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Sabine van Rijt
- Department of Instructive
Biomaterials Engineering, MERLN Institute for Technology Inspired
Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
10
|
Li Y, Liu W, Wang Y, Liu T, Feng Y. Nanotechnology-Mediated Immunomodulation Strategy for Inflammation Resolution. Adv Healthc Mater 2024; 13:e2401384. [PMID: 39039994 DOI: 10.1002/adhm.202401384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/02/2024] [Indexed: 07/24/2024]
Abstract
Inflammation serves as a common characteristic across a wide range of diseases and plays a vital role in maintaining homeostasis. Inflammation can lead to tissue damage and the onset of inflammatory diseases. Although significant progress is made in anti-inflammation in recent years, the current clinical approaches mainly rely on the systemic administration of corticosteroids and antibiotics, which only provide short-term relief. Recently, immunomodulatory approaches have emerged as promising strategies for facilitating the resolution of inflammation. Especially, the advanced nanosystems with unique biocompatibility and multifunctionality have provided an ideal platform for immunomodulation. In this review, the pathophysiology of inflammation and current therapeutic strategies are summarized. It is mainly focused on the nanomedicines that modulate the inflammatory signaling pathways, inflammatory cells, oxidative stress, and inflammation targeting. Finally, the challenges and opportunities of nanomaterials in addressing inflammation are also discussed. The nanotechnology-mediated immunomodulation will open a new treatment strategy for inflammation therapy.
Collapse
Affiliation(s)
- Ying Li
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, P. R. China
| | - Wen Liu
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, P. R. China
| | - Yuanchao Wang
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, P. R. China
| | - Taotao Liu
- Department of Gastroenterology and Hepatology, Characteristic Medical Center of the Chinese People's Armed Police Force, Tianjin Key Laboratory of Hepatopancreatic Fibrosis and Molecular Diagnosis & Treatment, Tianjin, 300162, China
| | - Yakai Feng
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, P. R. China
- Frontiers Science Center for Synthetic Biology, Tianjin University, Weijin Road 92, Tianjin, 300072, P. R. China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Weijin Road 92, Tianjin, 300072, P. R. China
| |
Collapse
|
11
|
Mendes C, Lemos I, Hipólito A, Abreu B, Freitas-Dias C, Martins F, Pires R, Barros H, Bonifácio V, Gonçalves L, Serpa J. Metabolic profiling and combined therapeutic strategies unveil the cytotoxic potential of selenium-chrysin (SeChry) in NSCLC cells. Biosci Rep 2024; 44:BSR20240752. [PMID: 38990147 PMCID: PMC11292474 DOI: 10.1042/bsr20240752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/02/2024] [Accepted: 07/11/2024] [Indexed: 07/12/2024] Open
Abstract
Lung cancer ranks as the predominant cause of cancer-related mortalities on a global scale. Despite progress in therapeutic interventions, encompassing surgical procedures, radiation, chemotherapy, targeted therapies and immunotherapy, the overall prognosis remains unfavorable. Imbalances in redox equilibrium and disrupted redox signaling, common traits in tumors, play crucial roles in malignant progression and treatment resistance. Cancer cells, often characterized by persistent high levels of reactive oxygen species (ROS) resulting from genetic, metabolic, and microenvironmental alterations, counterbalance this by enhancing their antioxidant capacity. Cysteine availability emerges as a critical factor in chemoresistance, shaping the survival dynamics of non-small cell lung cancer (NSCLC) cells. Selenium-chrysin (SeChry) was disclosed as a modulator of cysteine intracellular availability. This study comprehensively characterizes the metabolism of SeChry and investigates its cytotoxic effects in NSCLC. SeChry treatment induces notable metabolic shifts, particularly in selenocompound metabolism, impacting crucial pathways such as glycolysis, gluconeogenesis, the tricarboxylic acid (TCA) cycle, and amino acid metabolism. Additionally, SeChry affects the levels of key metabolites such as acetate, lactate, glucose, and amino acids, contributing to disruptions in redox homeostasis and cellular biosynthesis. The combination of SeChry with other treatments, such as glycolysis inhibition and chemotherapy, results in greater efficacy. Furthermore, by exploiting NSCLC's capacity to consume lactate, the use of lactic acid-conjugated dendrimer nanoparticles for SeChry delivery is investigated, showing specificity to cancer cells expressing monocarboxylate transporters.
Collapse
Affiliation(s)
- Cindy Mendes
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto 1099-023, Lisboa, Portugal
| | - Isabel Lemos
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto 1099-023, Lisboa, Portugal
| | - Ana Hipólito
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto 1099-023, Lisboa, Portugal
| | - Bruna Abreu
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto 1099-023, Lisboa, Portugal
| | - Catarina Freitas-Dias
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto 1099-023, Lisboa, Portugal
| | - Filipa Martins
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto 1099-023, Lisboa, Portugal
| | - Rita F. Pires
- IBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Hélio Barros
- IBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Vasco D.B. Bonifácio
- IBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Luís G. Gonçalves
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Avenida da República (EAN), 2780-157 Oeiras, Portugal
| | - Jacinta Serpa
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto 1099-023, Lisboa, Portugal
| |
Collapse
|
12
|
Zhang Y, Chen Y, Wang B, Cai Y, Zhang M, Guo X, Wu A, Wang W, Liu N, Wang X, Gong Y, Pan J, Jin Y. A novel selenium nanocomposite modified by AANL inhibits tumor growth by upregulating CLK2 in lung cancer. Bioorg Chem 2024; 148:107459. [PMID: 38761707 DOI: 10.1016/j.bioorg.2024.107459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/25/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Lung cancer is a malignant tumor with high mortality and drug resistance. Therefore, it is urgent to explore natural and nontoxic drugs to treat lung cancer. In this study, the natural active ingredient AANL extracted from Agrocybe aegirita was used to modify nanoselenium by an oxidation-reduction method. Transmission electron microscope detection and infrared spectroscopy showed that a novel selenium nanocomposite named AANL-SeNPs was successfully prepared. The results of nanoscale characterization showed that AANL-SeNPs had good stability and uniform dispersion in aqueous solution by zeta potential and spectrum analysis. At the cellular level, we found that AANL-SeNPs significantly inhibited the cell viability of lung cancer cells, and the cell inhibition rate of 60 nM AANL-SeNPs was 39 % in H157 cells, 67 % in H147 cells, and 62 % in A549 cells. The IC50 value of AANL-SeNPs was 51.85 nM in A549 cells and 81.57 nM in H157 cells. Moreover, AANL-SeNPs could inhibit the cell proliferation and migration, and enhance the sensitivity of lung cancer cells to osimertinib and has no toxic to normal cells. In vivo, AANL-SeNPs significantly slowed tumor growth in tumor-bearing mice by establishing a subcutaneous transplantation tumor model for lung cancer, and the tumor size was smaller and was reduced about 79 % in 2 mg/kg AANL-SeNPs group compared with PBS group. Mechanistically, a total of 38 differentially expressed proteins were identified by data-independent acquisition mass spectrometry. A significantly upregulated protein, CDC-like kinase 2 (CLK2), was screened and validated for further analysis, which showed that the expression levels of CLK2 were increased in H157 and H1437 cells after AANL-SeNPs treatment. The results obtained in this study suggest that a novel selenium nanocomposite AANL-SeNPs, which inhibits lung cancer by upregulating the expression of CLK2.
Collapse
Affiliation(s)
- Yueyang Zhang
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, China
| | - Ying Chen
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, China
| | - Bo Wang
- Chinese Academy of Sciences Shenzhen Institutes of Advanced Technology, Institute of Synthetic Biology, Shenzhen 518055, China
| | - Ying Cai
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, China
| | - Menghang Zhang
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, China
| | - Xin Guo
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, China
| | - Aobo Wu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, China
| | - Weidong Wang
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, China
| | - Na Liu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, China
| | - Xianping Wang
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, China
| | - Yongsheng Gong
- Suzhou Municipal Hospital, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, China
| | - Jicheng Pan
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, China.
| | - Yanxia Jin
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, China.
| |
Collapse
|
13
|
Lin JH, Liu CC, Liu CY, Hsu TW, Yeh YC, How CK, Hsu HS, Hung SC. Selenite selectively kills lung fibroblasts to treat bleomycin-induced pulmonary fibrosis. Redox Biol 2024; 72:103148. [PMID: 38603946 PMCID: PMC11017345 DOI: 10.1016/j.redox.2024.103148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/01/2024] [Accepted: 04/01/2024] [Indexed: 04/13/2024] Open
Abstract
BACKGROUND Interstitial lung disease (ILD) treatment is a critical unmet need. Selenium is an essential trace element for human life and an antioxidant that activates glutathione, but the gap between its necessity and its toxicity is small and requires special attention. Whether selenium can be used in the treatment of ILD remains unclear. METHODS We investigated the prophylactic and therapeutic effects of selenite, a selenium derivative, in ILD using a murine model of bleomycin-induced idiopathic pulmonary fibrosis (IPF). We further elucidated the underlying mechanism using in vitro cell models and examined their relevance in human tissue specimens. The therapeutic effect of selenite in bleomycin-administered mice was assessed by respiratory function and histochemical changes. Selenite-induced apoptosis and reactive oxygen species (ROS) production in murine lung fibroblasts were measured. RESULTS Selenite, administered 1 day (inflammation phase) or 8 days (fibrotic phase) after bleomycin, prevented and treated deterioration of lung function and pulmonary fibrosis in mice. Mechanistically, selenite inhibited the proliferation and induced apoptosis of murine lung fibroblasts after bleomycin treatment both in vitro and in vivo. In addition, selenite upregulated glutathione reductase (GR) and thioredoxin reductase (TrxR) in murine lung fibroblasts, but not in lung epithelial cells, upon bleomycin treatment. GR and TrxR inhibition eliminates the therapeutic effects of selenite. Furthermore, we found that GR and TrxR were upregulated in the human lung fibroblasts of IPF patient samples. CONCLUSIONS Selenite induces ROS production and apoptosis in murine lung fibroblasts through GR and TrxR upregulation, thereby providing a therapeutic effect in bleomycin-induced IPF.
Collapse
Affiliation(s)
- Jiun-Han Lin
- Institute of Emergency and Critical Care Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Division of Thoracic Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chen-Chi Liu
- Institute of Emergency and Critical Care Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Division of Traumatology, Emergency Department, Taipei Veterans General Hospital, Taipei, Taiwan; Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Chao-Yu Liu
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Division of Thoracic Surgery, Department of Surgery, Far-Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Tien-Wei Hsu
- Institute of Emergency and Critical Care Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Division of Thoracic Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Chen Yeh
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chorng-Kuang How
- Division of Traumatology, Emergency Department, Taipei Veterans General Hospital, Taipei, Taiwan; Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Han-Shui Hsu
- Institute of Emergency and Critical Care Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Division of Thoracic Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.
| | - Shih-Chieh Hung
- Drug Development Center, Institute of Translational Medicine and New Drug Development, School of Medicine, Taiwan; College of Life Sciences, China Medical University, Taichung, Taiwan; Integrative Stem Cell Center, Department of Orthopedics, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
14
|
Zhang Z, Wang F, Zhang J. Comment on "Engineered Selenium/Human Serum Albumin Nanoparticles for Efficient Targeted Treatment of Parkinson's Disease via Oral Gavage". ACS NANO 2024; 18:11487-11488. [PMID: 38712357 DOI: 10.1021/acsnano.4c00171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Affiliation(s)
- Zhichao Zhang
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200240, People's Republic of China
| | - Fuming Wang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, Anhui 230036, People's Republic of China
| | - Jinsong Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, Anhui 230036, People's Republic of China
| |
Collapse
|
15
|
Xu K, Huang P, Peng Y, Qu S. Reply to "Comment on 'Engineered Selenium/Human Serum Albumin Nanoparticles for Efficient Targeted Treatment of Parkinson's Disease via Oral Gavage'". ACS NANO 2024; 18:11489-11491. [PMID: 38712356 DOI: 10.1021/acsnano.4c04245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Affiliation(s)
- Kai Xu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, People's Republic of China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, Guangdong 510515, People's Republic of China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong 510515, People's Republic ofChina
| | - Peng Huang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, People's Republic of China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, Guangdong 510515, People's Republic of China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong 510515, People's Republic ofChina
| | - Yongbo Peng
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, The Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Shaogang Qu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, People's Republic of China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, Guangdong 510515, People's Republic of China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong 510515, People's Republic ofChina
- Department of Neurology, Ganzhou People's Hospital, Ganzhou, Jiangxi 341000, People's Republic of China
| |
Collapse
|
16
|
Mitusova KA, Akhmetova DR, Rogova A, Karpov TE, Tishchenko YA, Dadadzhanov DR, Matyushevskaya AO, Gavrilova NV, Priakhin EE, Timin AS. Multifunctional Inorganic-Organic Composite Carriers for Synergistic Dual Therapy of Melanoma. ACS Biomater Sci Eng 2024; 10:2324-2336. [PMID: 38520335 DOI: 10.1021/acsbiomaterials.4c00156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
Abstract
Many methods for cancer treatment have been developed. Among them photothermal therapy (PTT) has drawn the most significant attention due to its noninvasiveness, remote control activation, and low side effects. However, a limited depth of light penetration of PTT is the main drawback. To improve the therapeutic efficiency, the development of combined PTT with other therapeutic agents is highly desirable. In this work, we have designed multifunctional composite carriers based on polylactic acid (PLA) particles decorated with gold nanorods (Au NRs) as nanoheaters and selenium nanoparticles (Se NPs) for reactive oxygen species (ROS) production in order to perform a combined PTT against B16-F10 melanoma. To do this, we have optimized the synthesis of PLA particles modified with Se NPs and Au NRs (PLA-Se:Au), studied the cellular interactions of PLA particles with B16-F10 cells, and analyzed in vivo biodistribution and tumor inhibition efficiency. The results of in vitro and in vivo experiments demonstrated the synergistic effect from ROS induced by Se NPs and the heating from Au NRs. In melanoma tumor-bearing mice, intratumoral injection of PLA-Se:Au followed by laser irradiation leads to almost complete elimination of tumor tissues. Thus, the optimal photothermal properties and ROS-generating capacity allow us to recommend PLA-Se:Au as a promising candidate for the development of the combined PTT against melanoma.
Collapse
Affiliation(s)
- Kseniya A Mitusova
- Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russian Federation
| | - Darya R Akhmetova
- Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russian Federation
- School of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg 191002, Russian Federation
| | - Anna Rogova
- Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russian Federation
- Saint-Petersburg State Chemical-Pharmaceutical University, Professora Popova Street 14, St. Petersburg 19702, Russian Federation
| | - Timofey E Karpov
- Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russian Federation
| | - Yulia A Tishchenko
- Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russian Federation
- Alferov Federal State Budgetary Institution of Higher Education and Science Saint Petersburg National Research Academic University of the Russian Academy of Sciences, Khlopina 8, St. Petersburg 194021, Russian Federation
| | - Daler R Dadadzhanov
- International Research and Education Center for Physics of Nanostructures, ITMO University, 49 Kronverksky Pr., St. Petersburg 197101, Russian Federation
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Anna O Matyushevskaya
- Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russian Federation
- Alferov Federal State Budgetary Institution of Higher Education and Science Saint Petersburg National Research Academic University of the Russian Academy of Sciences, Khlopina 8, St. Petersburg 194021, Russian Federation
| | - Nina V Gavrilova
- Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russian Federation
- Smorodintsev Research Institute of Influenza, Ministry of Healthcare of the Russian Federation, Prof. Popov Str. 15/17, St. Petersburg 197376, Russian Federation
| | - Evgeny E Priakhin
- Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russian Federation
- Alferov Federal State Budgetary Institution of Higher Education and Science Saint Petersburg National Research Academic University of the Russian Academy of Sciences, Khlopina 8, St. Petersburg 194021, Russian Federation
| | - Alexander S Timin
- Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russian Federation
| |
Collapse
|
17
|
Wiita EG, Toprakcioglu Z, Jayaram AK, Knowles TPJ. Selenium-silk microgels as antifungal and antibacterial agents. NANOSCALE HORIZONS 2024; 9:609-619. [PMID: 38288551 PMCID: PMC10962633 DOI: 10.1039/d3nh00385j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/29/2023] [Indexed: 03/26/2024]
Abstract
Antimicrobial resistance is a leading threat to global health. Alternative therapeutics to combat the rise in drug-resistant strains of bacteria and fungi are thus needed, but the development of new classes of small molecule therapeutics has remained challenging. Here, we explore an orthogonal approach and address this issue by synthesising micro-scale, protein colloidal particles that possess potent antimicrobial properties. We describe an approach for forming silk-based microgels that contain selenium nanoparticles embedded within the protein scaffold. We demonstrate that these materials have both antibacterial and antifungal properties while, crucially, also remaining highly biocompatible with mammalian cell lines. By combing the nanoparticles with silk, the protein microgel is able to fulfill two critical functions; it protects the mammalian cells from the cytotoxic effects of the bare nanoparticles, while simultaneously serving as a carrier for microbial eradication. Furthermore, since the antimicrobial activity originates from physical contact, bacteria and fungi are unlikely to develop resistance to our hybrid biomaterials, which remains a critical issue with current antibiotic and antifungal treatments. Therefore, taken together, these results provide the basis for innovative antimicrobial materials that can target drug-resistant microbial infections.
Collapse
Affiliation(s)
- Elizabeth G Wiita
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lenseld Road, Cambridge CB2 1EW, UK.
| | - Zenon Toprakcioglu
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lenseld Road, Cambridge CB2 1EW, UK.
| | - Akhila K Jayaram
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lenseld Road, Cambridge CB2 1EW, UK.
- Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, UK
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lenseld Road, Cambridge CB2 1EW, UK.
| |
Collapse
|
18
|
Khaledizade E, Tafvizi F, Jafari P. Anti-breast cancer activity of biosynthesized selenium nanoparticles using Bacillus coagulans supernatant. J Trace Elem Med Biol 2024; 82:127357. [PMID: 38103517 DOI: 10.1016/j.jtemb.2023.127357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/07/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND In the present study, Selenium Nanoparticles (SeNPs) were prepared using Bacillus coagulans, which is a type of Lactic Acid Bacteria (LAB), and then they were applied to treat breast cancer cells. METHODS The chemicophysical properties of the bioengineered SeNPs were investigated by Transmission Electron Microscopy (TEM), Field Emission Scanning Electron Microscopy (FE-SEM), zeta potential, dynamic light scattering, Fourier Transform Infrared Spectroscopy (FT-IR), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction analysis (XRD). The cytotoxic potential of SeNPs was evaluated by MTT assay against MCF-7 breast cancer cell line. The expression levels of apoptotic genes including BAX, BCL2, VEGF, ERBB2, CASP3, CASP9, CCNE1, CCND1, MMP2 and MMP9 were determined by real-time PCR. The rate of apoptosis and necrosis of the cancer cells as well as the results of the cell cycle were evaluated by flow cytometry method. RESULTS The synthesized SeNPs had an average particle size of about 24-40 nm and a zeta potential of -16.1 mV, indicating the high stability of SeNPs. EDX results showed presence of SeNPs because amount of selenium in SeNPs was 86.6 % by weight. The cytotoxicity results showed a concentration-dependent effect against MCF-7 cells. The half-maximal inhibitory concentration (IC50) values of B. coagulans supernatant and SeNPs against breast cancer cells were 389.7 µg/mL and 17.56 µg/mL, respectively. In addition, SeNPs synthesized by the green process exhibited enhanced apoptotic potential in MCF-7 cancer cells compared with bacterial supernatants. Cancer cells treated with IC50 concentration of SeNPs induced 32 % apoptosis compared to untreated cells (3 % apoptosis). The gene expression levels of BAX, CASP3, and CASP9 were upregulated, while the expression levels of BCL2, CCNE1, CCND1, MMP2, MMP9, VEGF, and ERBB2 were downregulated after SeNPs treatment of cells. The potential of SeNPs to induce cell apoptosis was demonstrated by the increase in the expression level of BAX gene and the decrease in the expression level of BCL2 after treatment of cancer cells with SeNPs. CONCLUSION The obtained results indicated that SeNPs had strong potential to induce significant cell apoptosis and are cytotoxic against the MCF-7 cancer cell line.
Collapse
Affiliation(s)
- Elaheh Khaledizade
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran
| | - Farzaneh Tafvizi
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran.
| | - Parvaneh Jafari
- Microbiology Department, Faculty of Science, Arak Branch, Islamic Azad University, Arak, Iran
| |
Collapse
|
19
|
Haji Mehdi Nouri Z, Tafvizi F, Amini K, Khandandezfully N, Kheirkhah B. Enhanced Induction of Apoptosis and Cell Cycle Arrest in MCF-7 Breast Cancer and HT-29 Colon Cancer Cell Lines via Low-Dose Biosynthesis of Selenium Nanoparticles Utilizing Lactobacillus casei. Biol Trace Elem Res 2024; 202:1288-1304. [PMID: 37392361 DOI: 10.1007/s12011-023-03738-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/18/2023] [Indexed: 07/03/2023]
Abstract
As a leading global cause of mortality, cancer continues to pose a significant challenge. The shortcomings of prevalent cancer treatments, such as surgery, radiation therapy, and chemotherapy, necessitate the exploration of alternative therapeutic strategies. Selenium nanoparticles (SeNPs) have emerged as a promising solution, with their synthesis being widely researched due to their potential applications. Among the diverse synthesis methods for SeNPs, the green chemistry approach holds a distinctive position within nanotechnology. This research delves into the anti-proliferative and anticancer properties of green-synthesized SeNPs via the cell-free supernatant (CFS) of Lactobacillus casei (LC-SeNPs), with a specific focus on MCF-7 and HT-29 cancer cell lines. SeNPs were synthesized employing the supernatant of L. casei. The characterization of these green-synthesized SeNPs was performed using TEM, FE-SEM, XRD, FT-IR, UV-vis, energy-dispersive X-ray spectroscopy, and DLS. The biological impact of LC-SNPs on MCF-7 and HT-29 cancer cells was examined via MTT, flow cytometry, scratch tests, and qRT-PCR. Both FE-SEM and TEM images substantiated the spherical shape of the synthesized nanoparticles. The biosynthesized LC-SNPs reduced the survival of MCF-7 (by 20%) and HT-29 (by 30%) cells at a concentration of 100 μg/mL. Flow cytometry revealed that LC-SNPs were capable of inducing 28% and 23% apoptosis in MCF-7 and HT-29 cells, respectively. In addition, it was found that LC-SNPs treated MCF-7 and HT-29 cells were arrested in the sub-G1 phase. Gene expression analysis indicated that the expression levels of the CASP3, CASP9, and BAX genes were elevated after treating MCF-7 and HT-29 cells with LC-SNPs. Further, SeNPs were observed to inhibit migration and invasion of MCF-7 and HT-29 cancer cells. The SeNPs, produced via L. casei, demonstrated strong anticancer effects on MCF-7 and HT-29 cells, suggesting their potential as biological agents in cancer treatment following additional in vivo experiments.
Collapse
Affiliation(s)
- Zahra Haji Mehdi Nouri
- Department of Cellular and Molecular Biology, Sirjan Branch, Islamic Azad University, Sirjan, Iran
| | - Farzaneh Tafvizi
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran.
| | - Kumarss Amini
- Department of Microbiology, School of Basic Science, Saveh Branch, Islamic Azad University, Saveh, Iran
| | - Nooshin Khandandezfully
- Faculty Member, Department of Microbiology, Sirjan Branch, Islamic Azad University, Sirjan, Iran
| | - Babak Kheirkhah
- Department of Microbiology, Faculty of Veterinary Medicine, Baft Branch, Islamic Azad University, Baft, Iran
| |
Collapse
|
20
|
Yang M, Wu X, He Y, Li X, Yang L, Song T, Wang F, Yang CS, Zhang J. EGCG oxidation-derived polymers induce apoptosis in digestive tract cancer cells via regulating the renin-angiotensin system. Food Funct 2024; 15:2052-2063. [PMID: 38293823 DOI: 10.1039/d3fo03795a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Green tea polyphenol (-)-Epigallocatechin-3-gallate (EGCG) has been well studied for its biological activities in the prevention of chronic diseases. However, the biological activities of EGCG oxidation-derived polymers remain unclear. Previously, we found that these polymers accumulated in intraperitoneal tissues after intraperitoneal injection and gained an advantage over native EGCG in increasing insulin sensitivity via regulating the renin-angiotensin system (RAS) in type 2 diabetic mice. The present study determined the pro-apoptosis activities and anticancer mechanisms of the EGCG oxidation-derived polymer preparation (the >10 kDa EGCG polymers) in digestive tract cancer cells. Upon incubation of the >10 kDa EGCG polymers with CaCo2 colon cancer cells, these polymers coated the cell surface and regulated multiple components of the RAS in favor of cancer inhibition, including the downregulation of angiotensin-converting enzyme (ACE), angiotensin-II (AngII) and AngII receptor type 1 (AT1R) in the pro-tumor axis, as well as the upregulation of angiotensin-converting enzyme 2 (ACE2) and angiotensin1-7 (Ang(1-7)) in the anti-tumor axis. The treatment also markedly increased angiotensinogen (AGT), which is the precursor of the angiotensin peptides. The regulation of these RAS components occurred prior to apoptosis. Similar pro-apoptotic mechanisms of the >10 kDa EGCG polymers, were also observed in TCA8113 oral cancer cells. The >10 kDa EGCG polymers exhibited compromised activities in scavenging or initiating reactive oxygen species compared to EGCG, but gained a higher reactivity toward sulfhydryl groups, including protein cysteine thiols. We propose that the polymers bind onto the cell surface and regulate multiple RAS components by reacting with the sulfhydryl groups on the ectodomains of transmembrane proteins.
Collapse
Affiliation(s)
- Mingchuan Yang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Anhui Agricultural University, Hefei, Anhui, China.
| | - Ximing Wu
- Anhui Engineering Laboratory for Medicinal and Food Homologous Natural Resources Exploration, School of Biological and Food Engineering, Hefei Normal University, Hefei, Anhui, China
| | - Yufeng He
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Anhui Agricultural University, Hefei, Anhui, China.
| | - Xiuli Li
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Anhui Agricultural University, Hefei, Anhui, China.
| | - Lumin Yang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Anhui Agricultural University, Hefei, Anhui, China.
| | - Tingting Song
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Anhui Agricultural University, Hefei, Anhui, China.
| | - Fuming Wang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Anhui Agricultural University, Hefei, Anhui, China.
| | - Chung S Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, USA.
- Joint International Research Laboratory of Tea Chemistry and Health Effects, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, Anhui, China
| | - Jinsong Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Anhui Agricultural University, Hefei, Anhui, China.
- Joint International Research Laboratory of Tea Chemistry and Health Effects, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, Anhui, China
| |
Collapse
|
21
|
Wu X, Wang Y, Wang D, Wang Z, Yang M, Yang L, Wang F, Wang W, Zhang X. Formation of EGCG oxidation self-assembled nanoparticles and their antioxidant activity in vitro and hepatic REDOX regulation activity in vivo. Food Funct 2024; 15:2181-2196. [PMID: 38315103 DOI: 10.1039/d3fo05309a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
(-)-Epigallocatechin-3-gallate (EGCG) is a major polyphenol in tea and exerts several health-promoting effects. It easily autoxidizes into complex polymers and becomes deactivated due to the presence of multiple phenolic hydroxyl structures. Nonetheless, the morphology and biological activity of complex EGCG polymers are yet to be clarified. The present study demonstrated that EGCG autoxidation self-assembled nanoparticles (ENPs) exhibit antioxidant activity in vitro and hepatic REDOX homeostasis regulation activity in vivo. Also, the formation of ENPs during the EGCG autoxidation process was based on the intermolecular interaction forces that maintain the stability of the nanoparticles. Similar to EGCG, ENPs are scavengers of reactive oxygen species and hydroxyl radicals in vitro and also regulate hepatic REDOX activity through liver redox enzymes, including thioredoxin reductase (TrxR), thioredoxin (Trx), glutathione reductase (GR), glutaredoxin (Grx), and glutathione S-transferase (GST) in vivo. Moreover, ENPs activate the NRF2 antioxidant-responsive element pathway, exerting a detoxification effect at high doses. Unlike EGCG, ENPs do not cause liver damage at low doses and also maintain liver biosafety at high doses through self-assembly, forming large particles, which is supported by the unchanged levels of liver damage biomarkers, including serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), liver γ-phosphorylated histone 2AX (γ-H2AX), and P53-related genes (Thbs, MDM2, P53, and Bax). Collectively, these findings revealed that ENPs, with adequate biosafety and regulation of hepatic redox activity in vivo, may serve as substitutes with significant potential for antioxidant applications or as food additives to overcome the instability and liver toxicity of EGCG.
Collapse
Affiliation(s)
- Ximing Wu
- Anhui Engineering Laboratory for Medicinal and Food Homologous Natural Resources Exploration, School of Biological and Food Engineering, Hefei Normal University, Hefei, 230601, China.
- Laboratory of Redox Biology, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science, Anhui Agricultural University, Hefei, 230036, China
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.
| | - Yijun Wang
- Laboratory of Redox Biology, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science, Anhui Agricultural University, Hefei, 230036, China
| | - Dongxu Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Ziqi Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.
| | - Mingchuan Yang
- Laboratory of Redox Biology, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science, Anhui Agricultural University, Hefei, 230036, China
| | - Lumin Yang
- Laboratory of Redox Biology, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science, Anhui Agricultural University, Hefei, 230036, China
| | - Fuming Wang
- Laboratory of Redox Biology, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science, Anhui Agricultural University, Hefei, 230036, China
| | - Wei Wang
- Anhui Engineering Laboratory for Medicinal and Food Homologous Natural Resources Exploration, School of Biological and Food Engineering, Hefei Normal University, Hefei, 230601, China.
| | - Xiangchun Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.
| |
Collapse
|
22
|
Deshmukh R, Singh R, Sharma S, Mishra AK, Harwansh RK. A Snapshot of Selenium-enclosed Nanoparticles for the Management of Cancer. Curr Pharm Des 2024; 30:841-858. [PMID: 38462835 DOI: 10.2174/0113816128297329240305071103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/12/2024] [Accepted: 02/22/2024] [Indexed: 03/12/2024]
Abstract
Among the primary causes of mortality in today's world is cancer. Many drugs are employed to give lengthy and severe chemotherapy and radiation therapy, like nitrosoureas (Cisplatin, Oxaliplatin), Antimetabolites (5-fluorouracil, Methotrexate), Topoisomerase inhibitors (Etoposide), Mitotic inhibitors (Doxorubicin); such treatment is associated with significant adverse effects. Antitumor antibiotics have side effects similar to chemotherapy and radiotherapy. Selenium (Se) is an essential trace element for humans and animals, and additional Se supplementation is required, particularly for individuals deficient in Se. Due to its unique features and high bioactivities, selenium nanoparticles (SeNPs), which act as a supplement to counter Se deficiency, have recently gained worldwide attention. This study presented a safer and more economical way of preparing stable SeNPs. The researcher has assessed the antiproliferative efficiency of SeNPs-based paclitaxel delivery systems against tumor cells in vitro with relevant mechanistic visualization. SeNPs stabilized by Pluronic F-127 were synthesized and studied. The significant properties and biological activities of PTX-loaded SeNPs on cancer cells from the lungs, breasts, cervical, and colons. In one study, SeNPs were formulated using chitosan (CTS) polymer and then incorporated into CTS/citrate gel, resulting in a SeNPs-loaded chitosan/citrate complex; in another study, CTS was used in the synthesis of SeNPs and then situated into CTS/citrate gel, resulting in Se loaded nanoparticles. These formulations were found to be more successful in cancer treatment.
Collapse
Affiliation(s)
- Rohitas Deshmukh
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| | - Rajesh Singh
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| | - Sandeep Sharma
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| | - Ashwini Kumar Mishra
- Delhi Institute of Pharmaceutical Sciences and Research University, Delhi 110017, India
| | | |
Collapse
|
23
|
Fang L, Zhang R, Shi L, Xie J, Ma L, Yang Y, Yan X, Fan K. Protein-Nanocaged Selenium Induces t(8;21) Leukemia Cell Differentiation via Epigenetic Regulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300698. [PMID: 37888866 PMCID: PMC10724402 DOI: 10.1002/advs.202300698] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 08/13/2023] [Indexed: 10/28/2023]
Abstract
The success of arsenic in degrading PML-RARα oncoprotein illustrates the great anti-leukemia value of inorganics. Inspired by this, the therapeutic effect of inorganic selenium on t(8; 21) leukemia is studied, which has shown promising anti-cancer effects on solid tumors. A leukemia-targeting selenium nanomedicine is rationally built with bioengineered protein nanocage and is demonstrated to be an effective epigenetic drug for inducing the differentiation of t(8;21) leukemia. The selenium drug significantly induces the differentiation of t(8;21) leukemia cells into more mature myeloid cells. Mechanistic analysis shows that the selenium is metabolized into bioactive forms in cells, which drives the degradation of the AML1-ETO oncoprotein by inhibiting histone deacetylases activity, resulting in the regulation of AML1-ETO target genes. The regulation results in a significant increase in the expression levels of myeloid differentiation transcription factors PU.1 and C/EBPα, and a significant decrease in the expression level of C-KIT protein, a member of the type III receptor tyrosine kinase family. This study demonstrates that this protein-nanocaged selenium is a potential therapeutic drug against t(8;21) leukemia through epigenetic regulation.
Collapse
Affiliation(s)
- Long Fang
- Savaid Medical SchoolUniversity of Chinese Academy of SciencesBeijing100049China
- CAS Engineering Laboratory for NanozymeKey Laboratory of BiomacromoleculesInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
| | - Ruofei Zhang
- CAS Engineering Laboratory for NanozymeKey Laboratory of BiomacromoleculesInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
| | - Lin Shi
- Department of HematologyPeking University International HospitalBeijing102206China
| | - Jiaying Xie
- CAS Engineering Laboratory for NanozymeKey Laboratory of BiomacromoleculesInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
| | - Long Ma
- CAS Engineering Laboratory for NanozymeKey Laboratory of BiomacromoleculesInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
| | - Yili Yang
- China Regional Research CentreInternational Centre of Genetic Engineering and BiotechnologyTaizhou212200China
| | - Xiyun Yan
- CAS Engineering Laboratory for NanozymeKey Laboratory of BiomacromoleculesInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
- Nanozyme Medical CenterSchool of Basic Medical SciencesZhengzhou UniversityZhengzhou450052China
| | - Kelong Fan
- CAS Engineering Laboratory for NanozymeKey Laboratory of BiomacromoleculesInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
- Nanozyme Medical CenterSchool of Basic Medical SciencesZhengzhou UniversityZhengzhou450052China
| |
Collapse
|
24
|
Mitusova KA, Rogova A, Gerasimova EN, Ageev EI, Yaroshenko VV, Shipilovskikh SA, Feng L, Yang P, Petrov AA, Muslimov AR, Zyuzin MV, Timin AS. Theoretical simulation and experimental design of selenium and gold incorporated polymer-based microcarriers for ROS-mediated combined photothermal therapy. J Colloid Interface Sci 2023; 643:232-246. [PMID: 37060699 DOI: 10.1016/j.jcis.2023.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/14/2023] [Accepted: 04/05/2023] [Indexed: 04/17/2023]
Abstract
Recently, multi-modal combined photothermal therapy (PTT) with the use of photo-active materials has attracted significant attention for cancer treatment. However, drug carriers enabling efficient heating at the tumor site are yet to be designed: this is a fundamental requirement for broad implementation of PTT in clinics. In this work, we design and develop hybrid carriers based on multilayer capsules integrated with selenium nanoparticles (Se NPs) and gold nanorods (Au NRs) to realize reactive oxygen species (ROS)-mediated combined PTT. We show theoretically and experimentally that cooperative interaction of Se NPs with Au NRs improves the heat release efficiency of the developed capsules. In addition, after uptake by tumor cells, intracellular ROS level amplified by Se NPs inhibits the tumor growth. As a consequence, the synergy between Se NPs and Au NRs exhibits the advantages of hybrid carriers such as (i) improved photothermal conversion efficiency and (ii) dual-therapeutic effect. The results of in vitro and in vivo experiments demonstrate that the combination of ROS-mediated therapy and PTT has a higher tumor inhibition efficiency compared to the single-agent treatment (using only Se-loaded or Au-loaded capsules). Furthermore, the developed hybrid carriers show negligible in vivo toxicity towards major organs such as the heart, lungs, liver, kidneys and spleen. This study not only provides a potential strategy for the design of multifunctional "all-in-one" carriers, but also contributes to the development of combined PTT in clinical practice.
Collapse
Affiliation(s)
- Ksenia A Mitusova
- School of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg, 191002, Russian Federation; Laboratory of nano- and microencapsulation of biologically active compounds, Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg, 195251, Russian Federation
| | - Anna Rogova
- School of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg, 191002, Russian Federation; Laboratory of nano- and microencapsulation of biologically active compounds, Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg, 195251, Russian Federation
| | - Elena N Gerasimova
- School of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg, 191002, Russian Federation
| | - Eduard I Ageev
- School of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg, 191002, Russian Federation
| | - Vitaly V Yaroshenko
- School of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg, 191002, Russian Federation
| | - Sergei A Shipilovskikh
- School of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg, 191002, Russian Federation; Laboratory of nano- and microencapsulation of biologically active compounds, Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg, 195251, Russian Federation
| | - Lili Feng
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Andrey A Petrov
- School of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg, 191002, Russian Federation
| | - Albert R Muslimov
- Laboratory of nano- and microencapsulation of biologically active compounds, Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg, 195251, Russian Federation
| | - Mikhail V Zyuzin
- School of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg, 191002, Russian Federation.
| | - Alexander S Timin
- School of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg, 191002, Russian Federation; Laboratory of nano- and microencapsulation of biologically active compounds, Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg, 195251, Russian Federation.
| |
Collapse
|
25
|
He L, Habibovic P, van Rijt S. Selenium-incorporated mesoporous silica nanoparticles for osteosarcoma therapy. Biomater Sci 2023; 11:3828-3839. [PMID: 37074160 PMCID: PMC10227887 DOI: 10.1039/d2bm02102a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/16/2023] [Indexed: 04/20/2023]
Abstract
Selenium (Se) compounds are promising chemotherapeutics due to their ability to inhibit cancer cell activity via the generation of reactive oxygen species (ROS). However, to circumvent adverse effects on bone healthy cells, new methods are needed to allow intracellular Se delivery. Mesoporous silica nanoparticles (MSNs) are promising carriers for therapeutic ion delivery due to their biocompability, rapid uptake via endocytosis, and ability to efficiently incorporate ions within their tunable structure. With the aim of selectively inhibiting cancer cells, here we developed three types of MSNs and investigated their ability to deliver Se. Specifically, MSNs containing SeO32- loaded on the surface and in the pores (MSN-SeL), SeO32- doped in the silica matrix (Se-MSNs) and Se nanoparticles (SeNP) coated with mesoporous silica (SeNP-MSNs), were successfully synthesized. All synthesized nanoparticles were stable in neutral conditions but showed rapid Se release in the presence of glutathione (GSH) and nicotinamide adenine dinucleotide phosphate (NADPH). Furthermore, all nanoparticles were cytotoxic towards SaoS-2 cells and showed significantly lower toxicity towards healthy osteoblasts, where Se doped MSNs showed lowest toxicity towards osteoblasts. We further show that the nanoparticles could induce ROS and cell apoptosis. Here we demonstrate MSNs as promising Se delivery carriers for osteosarcoma (OS) therapy.
Collapse
Affiliation(s)
- Lei He
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Pamela Habibovic
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Sabine van Rijt
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| |
Collapse
|
26
|
Shi M, Deng J, Min J, Zheng H, Guo M, Fan X, Cheng S, Zhang S, Ma X. Synthesis, characterization, and cytotoxicity analysis of selenium nanoparticles stabilized by Morchella sextelata polysaccharide. Int J Biol Macromol 2023:125143. [PMID: 37247714 DOI: 10.1016/j.ijbiomac.2023.125143] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 05/31/2023]
Abstract
Natural bioactive molecules have been widely used as stabilizers in the functional improvement of selenium nanoparticles (SeNPs) in recent years. In this study, Morchella sextelata polysaccharide (MSP) was introduced as a novel stabilizer for the synthesis of SeNPs based on the redox system of sodium selenite and ascorbic acid. The size, morphology, stability, and anti-cancer cell activities were respectively analyzed by various methods. The results showed that the synthesized SeNPs with MSP were 72.07 ± 0.53 nm in size, red in color, spherical in shape, and amorphous in nature. MSP-SeNPs showed high scavenging activity against DPPH and ABTS radicals. And, these MSP-SeNPs exhibited a significant anti-proliferation effect on human liver (HepG2) and cervical cancer (Hela) cells in vitro, while no significant cytotoxicity against normal human kidney cells (HK-2) was observed. Moreover, the mitochondria-dependent apoptosis pathway triggered by MSP-SeNPs in HepG2 cell was identified. The expression levels of p53, Bax, cytochrome c, caspase-3 and caspase-9 were all up-regulated in HepG2 cells after MSP-SeNPs treatment, while Bcl-2 expression was down-regulated. These results suggest that MSP-SeNPs have strong potential as the food supplement for application in cancer chemoprevention.
Collapse
Affiliation(s)
- Menghua Shi
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jie Deng
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jinying Min
- National R&D Center for Se-Rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Hanyu Zheng
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Mengpei Guo
- Institute of Vegetable, Wuhan Academy of Agricultural Sciences, Wuhan 430065, China
| | - Xiaolin Fan
- Wuhan HuaYuXinMei Mycology Industry Co., Ltd., Wuhan 430070, China
| | - Shuiyuan Cheng
- National R&D Center for Se-Rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shaopeng Zhang
- National R&D Center for Se-Rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Xiaolong Ma
- Institute of Vegetable, Wuhan Academy of Agricultural Sciences, Wuhan 430065, China.
| |
Collapse
|
27
|
Ban Q, Chi W, Wang X, Wang S, Hai D, Zhao G, Zhao Q, Granato D, Huang X. (-)-Epigallocatechin-3-Gallate Attenuates the Adverse Reactions Triggered by Selenium Nanoparticles without Compromising Their Suppressing Effect on Peritoneal Carcinomatosis in Mice Bearing Hepatocarcinoma 22 Cells. Molecules 2023; 28:molecules28093904. [PMID: 37175313 PMCID: PMC10180376 DOI: 10.3390/molecules28093904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Increasing evidence shows that selenium and polyphenols are two types of the most reported compounds in tumor chemoprevention due to their remarkable antitumor activity and high safety profile. The cross-talk between polyphenols and selenium is a hot research topic, and the combination of polyphenols and selenium is a valuable strategy for fighting cancer. The current work investigated the combination anti-peritoneal carcinomatosis (PC) effect of selenium nanoparticles (SeNPs) and green tea (Camellia sinensis) polyphenol (-)-epigallocatechin-3-gallate (EGCG) in mice bearing murine hepatocarcinoma 22 (H22) cells. Results showed that SeNPs alone significantly inhibited cancer cell proliferation and extended the survival time of mice bearing H22 cells. Still, the potential therapeutic efficacy is accompanied by an approximately eighty percent diarrhea rate. When EGCG was combined with SeNPs, EGCG did not affect the tumor proliferation inhibition effect but eliminated diarrhea triggered by SeNPs. In addition, both the intracellular selectively accumulated EGCG without killing effect on cancer cells and the enhanced antioxidant enzyme levels in ascites after EGCG was delivered alone by intraperitoneal injection indicated that H22 cells were insensitive to EGCG. Moreover, EGCG could prevent SeNP-caused systemic oxidative damage by enhancing serum superoxide dismutase, glutathione, and glutathione peroxidase levels in healthy mice. Overall, we found that H22 cells are insensitive to EGCG, but combining EGCG with SeNPs could protect against SeNP-triggered diarrhea without compromising the suppressing efficacy of SeNPs on PC in mice bearing H22 cells and attenuate SeNP-caused systemic toxicity in healthy mice. These results suggest that EGCG could be employed as a promising candidate for preventing the adverse reactions of chemotherapy including chemotherapy-induced diarrhea and systemic toxicity in cancer individuals.
Collapse
Affiliation(s)
- Qiuyan Ban
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Wenjing Chi
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaoxiao Wang
- College of Food Science & Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Shiqiong Wang
- College of Food Science & Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Dan Hai
- College of Food Science & Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Guangshan Zhao
- College of Food Science & Technology, Henan Agricultural University, Zhengzhou 450002, China
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Qiuyan Zhao
- College of Food Science & Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Daniel Granato
- Department of Biological Sciences, Faculty of Science and Engineering, University of Limerick, V94 T9PX Limerick, Ireland
| | - Xianqing Huang
- College of Food Science & Technology, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
28
|
Xiao X, Deng H, Lin X, Ali ASM, Viscardi A, Guo Z, Qiao L, He Y, Han J. Selenium nanoparticles: Properties, preparation methods, and therapeutic applications. Chem Biol Interact 2023; 378:110483. [PMID: 37044285 DOI: 10.1016/j.cbi.2023.110483] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/26/2023] [Accepted: 04/08/2023] [Indexed: 04/14/2023]
Abstract
Selenium nanoparticles (SeNPs) are a unique type of nano-sized elemental selenium that have recently found wide application in biomedicine. It has been shown that the properties of SeNPs can be varied by different fabrication methods. Moreover, SeNPs have various therapeutic effects in medical applications due to their excellent biological and adaptable physical properties. At the same time, SeNPs can be used as a carrier medium for various therapeutic substances, which can bring out the full curative effects of the drugs. In this review, the differences in bioactivity properties of SeNPs prepared from different substances were reviewed; the therapeutic effects and mechanisms of SeNPs in cancer, inflammation, neurodegenerative diseases, diabetes, reproductive diseases, cardiovascular diseases, and other diseases were discussed; and the importance of the development of SeNPs was further emphasized.
Collapse
Affiliation(s)
- Xiang Xiao
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| | - Huan Deng
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| | - Xue Lin
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| | - Ahmed Sameir Mohamed Ali
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China.
| | - Angelo Viscardi
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| | - Ziwei Guo
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| | - Lichun Qiao
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| | - Yujie He
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| | - Jing Han
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| |
Collapse
|
29
|
Thu Tran H, Xuan LE C, Ngoc Tran MT, Thuy Nguyen TN, Pham N, Vu D. Nano selenium–alginate edible coating extends hydroponic strawberry shelf life and provides selenium fortification as a micro-nutrient. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
30
|
Toprakcioglu Z, Wiita EG, Jayaram AK, Gregory RC, Knowles TPJ. Selenium Silk Nanostructured Films with Antifungal and Antibacterial Activity. ACS APPLIED MATERIALS & INTERFACES 2023; 15:10452-10463. [PMID: 36802477 PMCID: PMC9982822 DOI: 10.1021/acsami.2c21013] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
The rapid emergence of drug-resistant bacteria and fungi poses a threat for healthcare worldwide. The development of novel effective small molecule therapeutic strategies in this space has remained challenging. Therefore, one orthogonal approach is to explore biomaterials with physical modes of action that have the potential to generate antimicrobial activity and, in some cases, even prevent antimicrobial resistance. Here, to this effect, we describe an approach for forming silk-based films that contain embedded selenium nanoparticles. We show that these materials exhibit both antibacterial and antifungal properties while crucially also remaining highly biocompatible and noncytotoxic toward mammalian cells. By incorporating the nanoparticles into silk films, the protein scaffold acts in a 2-fold manner; it protects the mammalian cells from the cytotoxic effects of the bare nanoparticles, while also providing a template for bacterial and fungal eradication. A range of hybrid inorganic/organic films were produced and an optimum concentration was found, which allowed for both high bacterial and fungal death while also exhibiting low mammalian cell cytotoxicity. Such films can thus pave the way for next-generation antimicrobial materials for applications such as wound healing and as agents against topical infections, with the added benefit that bacteria and fungi are unlikely to develop antimicrobial resistance to these hybrid materials.
Collapse
Affiliation(s)
- Zenon Toprakcioglu
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Elizabeth G. Wiita
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Akhila K. Jayaram
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- Cavendish
Laboratory, Department of Physics, University
of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Rebecca C. Gregory
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Tuomas P. J. Knowles
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- Cavendish
Laboratory, Department of Physics, University
of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| |
Collapse
|
31
|
Xu J, Younis MR, Zhang Z, Feng Y, Su L, Que Y, Jiao Y, Fan C, Chang J, Ni S, Yang C. Mild Heat-Assisted Polydopamine/Alginate Hydrogel Containing Low-Dose Nanoselenium for Facilitating Infected Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:7841-7854. [PMID: 36719417 DOI: 10.1021/acsami.2c21516] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In clinical practice, it has become urgent to develop multifunctional wound dressings that can combat infection and prompt wound healing simultaneously. In this study, we proposed a polydopamine/alginate/nanoselenium composite hydrogel (Alg-PDA-Se) for the treatment of infected wounds. In particular, polydopamine endows the composite hydrogel with controllable near-infrared photothermal properties, while low-dosage selenium nanoparticles (Se NPs) offer excellent anti-oxidation, anti-inflammatory, pro-proliferative, pro-migration, and pro-angiogenic performances, which are verified by multiple cells, including macrophages, fibroblasts, and endothelial cells. More interestingly, the combination of mild temperature with low-dosage Se NPs produces a synergistic effect on combating both Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) and promoting the healing of bacteria-infected wounds in vivo. We anticipate that the designed composite hydrogel might be a potential candidate for anti-infection bioactive dressing.
Collapse
Affiliation(s)
- Jinfeng Xu
- College of Biological Science and Medical Engineering, Donghua University, Shanghai201620, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou325000, China
| | - Muhammad Rizwan Younis
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen518060, China
| | - Zhaowenbin Zhang
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou325000, China
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou325000, China
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai200050, China
| | - Yanping Feng
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou325000, China
| | - Lefeng Su
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou325000, China
| | - Yumei Que
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou325000, China
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou325000, China
| | - Yiren Jiao
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou325000, China
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou325000, China
| | - Chen Fan
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou325000, China
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou325000, China
| | - Jiang Chang
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou325000, China
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou325000, China
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai200050, China
| | - Siyu Ni
- College of Biological Science and Medical Engineering, Donghua University, Shanghai201620, China
| | - Chen Yang
- College of Biological Science and Medical Engineering, Donghua University, Shanghai201620, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou325000, China
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou325000, China
| |
Collapse
|
32
|
Naemi S, Meshkini A. Phytosynthesis of graphene oxide encapsulated selenium nanoparticles using Crocus Sativus petals’ extract and evaluation of their bioactivity. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
33
|
Constructing Selenium Nanoparticles with Enhanced Storage Stability and Antioxidant Activities via Conformational Transition of Curdlan. Foods 2023; 12:foods12030563. [PMID: 36766092 PMCID: PMC9914686 DOI: 10.3390/foods12030563] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 02/03/2023] Open
Abstract
Selenium nanoparticles (SeNPs) are among the emerging selenium supplements because of their high bioactivity and low toxicity. However, bare SeNPs are prone to activity loss caused by aggregation and sedimentation. This study aims to stabilize SeNPs with curdlan (CUR), a polysaccharide, to maintain or even enhance their biological activity. Herein, the stable SeNPs were constructed via the unique conformational transition of CUR induced by alkali-neutralization (AN) pretreatment. The physicochemical properties and structures of the prepared SeNPs were characterized by dynamic light scattering (DLS), UV-visible spectroscopy, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM), and free-radical-scavenging activity assays. The results show that most SeNPs are stabilized within the triple helix of CUR that has been pretreated with high-intensity AN treatment. These amorphous, small-sized (average size was 53.6 ± 17.7 nm), and stabilized SeNPs have significantly enhanced free-radical-scavenging ability compared to the control and can be well-stabilized for at least 240 days at 4 °C. This work indicates that CUR, as a food additive, can be used to well-stabilize SeNPs by AN pretreatment and provides a facile method to prepare and enhance the stability and bioactivity of SeNPs via triple-helix conformational transition.
Collapse
|
34
|
Zambonino MC, Quizhpe EM, Mouheb L, Rahman A, Agathos SN, Dahoumane SA. Biogenic Selenium Nanoparticles in Biomedical Sciences: Properties, Current Trends, Novel Opportunities and Emerging Challenges in Theranostic Nanomedicine. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:424. [PMID: 36770385 PMCID: PMC9921003 DOI: 10.3390/nano13030424] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Selenium is an important dietary supplement and an essential trace element incorporated into selenoproteins with growth-modulating properties and cytotoxic mechanisms of action. However, different compounds of selenium usually possess a narrow nutritional or therapeutic window with a low degree of absorption and delicate safety margins, depending on the dose and the chemical form in which they are provided to the organism. Hence, selenium nanoparticles (SeNPs) are emerging as a novel therapeutic and diagnostic platform with decreased toxicity and the capacity to enhance the biological properties of Se-based compounds. Consistent with the exciting possibilities offered by nanotechnology in the diagnosis, treatment, and prevention of diseases, SeNPs are useful tools in current biomedical research with exceptional benefits as potential therapeutics, with enhanced bioavailability, improved targeting, and effectiveness against oxidative stress and inflammation-mediated disorders. In view of the need for developing eco-friendly, inexpensive, simple, and high-throughput biomedical agents that can also ally with theranostic purposes and exhibit negligible side effects, biogenic SeNPs are receiving special attention. The present manuscript aims to be a reference in its kind by providing the readership with a thorough and comprehensive review that emphasizes the current, yet expanding, possibilities offered by biogenic SeNPs in the biomedical field and the promise they hold among selenium-derived products to, eventually, elicit future developments. First, the present review recalls the physiological importance of selenium as an oligo-element and introduces the unique biological, physicochemical, optoelectronic, and catalytic properties of Se nanomaterials. Then, it addresses the significance of nanosizing on pharmacological activity (pharmacokinetics and pharmacodynamics) and cellular interactions of SeNPs. Importantly, it discusses in detail the role of biosynthesized SeNPs as innovative theranostic agents for personalized nanomedicine-based therapies. Finally, this review explores the role of biogenic SeNPs in the ongoing context of the SARS-CoV-2 pandemic and presents key prospects in translational nanomedicine.
Collapse
Affiliation(s)
- Marjorie C. Zambonino
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador
| | - Ernesto Mateo Quizhpe
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador
| | - Lynda Mouheb
- Laboratoire de Recherche de Chimie Appliquée et de Génie Chimique, Hasnaoua I, Université Mouloud Mammeri, BP 17 RP, Tizi-Ouzou 15000, Algeria
| | - Ashiqur Rahman
- Center for Midstream Management and Science, Lamar University, 211 Redbird Ln., Beaumont, TX 77710, USA
| | - Spiros N. Agathos
- Earth and Life Institute, Catholic University of Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Si Amar Dahoumane
- Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079, Succ. Centre-Ville, Montréal, QC H3C 3A7, Canada
- Department of Chemistry and Biochemistry, Université de Moncton, 18, Ave Antonine-Maillet, Moncton, NB E1A 3E9, Canada
| |
Collapse
|
35
|
Ashraf H, Cossu D, Ruberto S, Noli M, Jasemi S, Simula ER, Sechi LA. Latent Potential of Multifunctional Selenium Nanoparticles in Neurological Diseases and Altered Gut Microbiota. MATERIALS (BASEL, SWITZERLAND) 2023; 16:699. [PMID: 36676436 PMCID: PMC9862321 DOI: 10.3390/ma16020699] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 12/31/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Neurological diseases remain a major concern due to the high world mortality rate and the absence of appropriate therapies to cross the blood-brain barrier (BBB). Therefore, the major focus is on the development of such strategies that not only enhance the efficacy of drugs but also increase their permeability in the BBB. Currently, nano-scale materials seem to be an appropriate approach to treating neurological diseases based on their drug-loading capacity, reduced toxicity, targeted delivery, and enhanced therapeutic effect. Selenium (Se) is an essential micronutrient and has been of remarkable interest owing to its essential role in the physiological activity of the nervous system, i.e., signal transmission, memory, coordination, and locomotor activity. A deficiency of Se leads to various neurological diseases such as Parkinson's disease, epilepsy, and Alzheimer's disease. Therefore, owing to the neuroprotective role of Se (selenium) nanoparticles (SeNPs) are of particular interest to treat neurological diseases. To date, many studies investigate the role of altered microbiota with neurological diseases; thus, the current review focused not only on the recent advancement in the field of nanotechnology, considering SeNPs to cure neurological diseases, but also on investigating the potential role of SeNPs in altered microbiota.
Collapse
Affiliation(s)
- Hajra Ashraf
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Davide Cossu
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Stefano Ruberto
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Marta Noli
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Seyedesomaye Jasemi
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Elena Rita Simula
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Leonardo A. Sechi
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
- Complex Structure of Microbiology and Virology, AOU Sassari, 07100 Sassari, Italy
| |
Collapse
|
36
|
Dong R, Pan J, Zhao G, Zhao Q, Wang S, Li N, Song L, Huang X, Miao S, Ying J, Wu F, Wang D, Cheng K, Granato D, Ban Q. Antioxidant, antihyperglycemic, and antihyperlipidemic properties of Chimonanthus salicifolius S. Y. Hu leaves in experimental animals: modulation of thioredoxin and glutathione systems, renal water reabsorption, and gut microbiota. Front Nutr 2023; 10:1168049. [PMID: 37187875 PMCID: PMC10176510 DOI: 10.3389/fnut.2023.1168049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/03/2023] [Indexed: 05/17/2023] Open
Abstract
Introduction Excessive calorie intake and physical inactivity have dramatically increased nutrient overload-associated disease, becoming a global public health issue. Chimonanthus salicifolius S. Y. Hu (CHI) is a homology plant of food and medicine in China and shows several health benefits. Methods This work investigated the antioxidant activity, the alleviating effects, and the mechanism of action on diabetes and hyperlipidemia of CHI leaves. Results and discussion Results showed that CHI leaves infusion displayed in vitro antioxidant activity measured by ABTS and ferric reducing antioxidant power methods. In wild-type Kunming mice, CHI leaves infusion consumption activated the hepatic antioxidant enzymes, including glutathione reductase, glutathione S-transferase, glutathione peroxidase and thioredoxin reductase as well as thioredoxin reductase 1. In alloxan-induced type 1 diabetic mice, CHI leaves infusion ameliorated diabetic symptoms, including polyuria, polydipsia, polyphagia and hyperglycemia, in a dose-dependent and time-course manners. The mechanism involved CHI leaves up-regulating renal water reabsorption associated protein - urine transporter A1-and promoting the trafficking of urine transporter A1 and aquaporin 2 to the apical plasma membrane. Despite this, in high-fat diet-induced hyperlipidemic golden hamsters, CHI leaves powder did not significantly effect on hyperlipidemia and body weight gain. This might be attributed to CHI leaves powder increasing the calorie intake. Interestingly, we found that CHI leaves extract containing a lower dose of total flavonoid than CHI leaves powder pronouncedly reduced the levels of total cholesterol, triglyceride, and low-density lipoprotein cholesterol in serum in golden hamsters fed a high-fat diet. Furthermore, CHI leaves extract elevated the diversity of gut microbiota and the abundance of Bifidobacterium and Ruminococcaceae_UCG-014. It also decreased the abundance of Lactobacillus at the genus level in golden hamsters fed a high-fat diet. Overall, CHI leaves benefit oxidative stress prevention and metabolic syndrome amelioration in vivo.
Collapse
Affiliation(s)
- Ruixia Dong
- College of Horticulture, Jinling Institute of Technology, Nanjing, China
- College of Forestry Science and Technology, Lishui Vocational and Technical College, Lishui, China
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Junjie Pan
- Chemical Biology Center, Lishui Institute of Agriculture and Forestry Sciences, Lishui, China
| | - Guangshan Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
- Innovation Team of Food Nutrition and Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
- *Correspondence: Guangshan Zhao,
| | - Qiuyan Zhao
- Innovation Team of Food Nutrition and Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Shiqiong Wang
- Innovation Team of Food Nutrition and Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Ning Li
- Innovation Team of Food Nutrition and Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Lianjun Song
- Innovation Team of Food Nutrition and Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Xianqing Huang
- Innovation Team of Food Nutrition and Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Shuxing Miao
- College of Horticulture, Jinling Institute of Technology, Nanjing, China
| | - Junhui Ying
- College of Forestry Science and Technology, Lishui Vocational and Technical College, Lishui, China
| | - Fangying Wu
- College of Forestry Science and Technology, Lishui Vocational and Technical College, Lishui, China
| | - Dongxu Wang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
- Dongxu Wang,
| | - Kejun Cheng
- Chemical Biology Center, Lishui Institute of Agriculture and Forestry Sciences, Lishui, China
- Kejun Cheng,
| | - Daniel Granato
- Bioactivity and Applications Lab, Department of Biological Sciences, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland
- Daniel Granato,
| | - Qiuyan Ban
- Department of Tea Science, College of Horticulture, Henan Agricultural University, Zhengzhou, China
- Qiuyan Ban,
| |
Collapse
|
37
|
Pepper-Mediated Green Synthesis of Selenium and Tellurium Nanoparticles with Antibacterial and Anticancer Potential. J Funct Biomater 2022; 14:jfb14010024. [PMID: 36662072 PMCID: PMC9867025 DOI: 10.3390/jfb14010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/17/2022] [Accepted: 12/24/2022] [Indexed: 01/03/2023] Open
Abstract
The production of nanoparticles for biomedical applications (namely with antimicrobial and anticancer properties) has been significantly hampered using traditional physicochemical approaches, which often produce nanostructures with poor biocompatibility properties requiring post-synthesis functionalization to implement features that such biomedical applications require. As an alternative, green nanotechnology and the synthesis of environmentally friendly nanomaterials have been gaining attention over the last few decades, using living organisms or biomolecules derived from them, as the main raw materials to produce cost-effective, environmentally friendly, and ready-to-be-used nanomaterials. In this article and building upon previous knowledge, we have designed and implemented the synthesis of selenium and tellurium nanoparticles using extracts from fresh jalapeño and habanero peppers. After characterization, in this study, the nanoparticles were tested for both their antimicrobial and anticancer features against isolates of antibiotic-resistant bacterial strains and skin cancer cell lines, respectively. The nanosystems produced nanoparticles via a fast, eco-friendly, and cost-effective method showing different antimicrobial profiles between elements. While selenium nanoparticles lacked an antimicrobial effect at the concentrations tested, those made of tellurium produced a significant antibacterial effect even at the lowest concentration tested. These effects were correlated when the nanoparticles were tested for their cytocompatibility and anticancer properties. While selenium nanoparticles were biocompatible and had a dose-dependent anticancer effect, tellurium-based nanoparticles lacked such biocompatibility while exerting a powerful anti-cancer effect. Further, this study demonstrated a suitable mechanism of action for killing bacteria and cancer cells involving reactive oxygen species (ROS) generation. In summary, this study introduces a new green nanomedicine synthesis approach to create novel selenium and tellurium nanoparticles with attractive properties for numerous biomedical applications.
Collapse
|
38
|
Hu X, Lin R, Zhang C, Pian Y, Luo H, Zhou L, Shao J, Ren X. Nano-selenium Alleviates Cadmium-Induced Mouse Leydig Cell Injury, via the Inhibition of Reactive Oxygen Species and the Restoration of Autophagic Flux. Reprod Sci 2022; 30:1808-1822. [PMID: 36509961 DOI: 10.1007/s43032-022-01146-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
Cadmium (Cd) is a well-known environmental pollutant that can contribute to male reproductive toxicity through oxidative stress. Nano-selenium (Nano-se) is an active single body of selenium with strong antioxidant properties and low toxicity. Some studies have addressed the potential ameliorative effect of Nano-se against Cd-induced testicular toxicity; however, the underlying mechanisms remain to be investigated. This study aimed to explore the protective effect of Nano-se on Cd-induced mouse testicular TM3 cell toxicity by regulating autophagy process. We showed that cadmium exposure to TM3 cells inhibited cell viability and elevated the level of reactive oxygen species (ROS) generation. Morphology observation by transmission electron microscope and the presence of mRFP-GFP-LC3 fluorescence puncta demonstrated that cadmium increased autophagosome formation and accumulation in TM3 cells, resulting in blocking the autophagic flux of TM3 cells. Meanwhile, cadmium remarkably increased the ratio of LC3-II to LC3-I protein expression (2.07 ± 0.31) and the Beclin-1 protein expression (1.97 ± 0.40) in TM3 cells (P < 0.01). Pretreatment with Nano-se significantly reduced Cd-induced TM3 cell toxicity (P < 0.01). Furthermore, Nano-se treatment reversed Cd-induced ROS production and autophagosome accumulation, and autophagy as evidenced by the ratio of LC3-II to LC3-I and Beclin-1 expression. In addition, ROS scavenger, N-acetyl-L-cysteine (NAC) or autophagy inhibitor, 3-methyladenine (3-MA) reversed cadmium-induced ROS generation, autophagosome accumulation, and autophagy-related protein expression levels, which confirmed that cadmium induced TM3 cell injury via ROS signal pathway and blockage of autophagic flux. Collectively, our results reveal that Nano-se attenuates Cd-induced TM3 cell toxicity through the inhibition of ROS production and the amelioration of autophagy disruption.
Collapse
Affiliation(s)
- Xindi Hu
- Department of Nutrition, School of Public Health, Xuzhou Medical University, No. 209 Tongshan Road, Yunlong Area, Xuzhou, 221004, Jiangsu Province, China.,Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Rui Lin
- Department of Nutrition, School of Public Health, Xuzhou Medical University, No. 209 Tongshan Road, Yunlong Area, Xuzhou, 221004, Jiangsu Province, China.,Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Chaoqin Zhang
- Department of Nutrition, School of Public Health, Xuzhou Medical University, No. 209 Tongshan Road, Yunlong Area, Xuzhou, 221004, Jiangsu Province, China.,Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Yajing Pian
- Department of Nutrition, School of Public Health, Xuzhou Medical University, No. 209 Tongshan Road, Yunlong Area, Xuzhou, 221004, Jiangsu Province, China.,Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Haolong Luo
- Department of Nutrition, School of Public Health, Xuzhou Medical University, No. 209 Tongshan Road, Yunlong Area, Xuzhou, 221004, Jiangsu Province, China.,Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Li Zhou
- Department of Nutrition, School of Public Health, Xuzhou Medical University, No. 209 Tongshan Road, Yunlong Area, Xuzhou, 221004, Jiangsu Province, China.,Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Jihong Shao
- Department of Nutrition, School of Public Health, Xuzhou Medical University, No. 209 Tongshan Road, Yunlong Area, Xuzhou, 221004, Jiangsu Province, China.,Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Xiangmei Ren
- Department of Nutrition, School of Public Health, Xuzhou Medical University, No. 209 Tongshan Road, Yunlong Area, Xuzhou, 221004, Jiangsu Province, China. .,Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
39
|
Dávila-Vega JP, Gastelum-Hernández AC, Serrano-Sandoval SN, Serna-Saldívar SO, Guitiérrez-Uribe JA, Milán-Carrillo J, Martínez-Cuesta MC, Guardado-Félix D. Metabolism and Anticancer Mechanisms of Selocompounds: Comprehensive Review. Biol Trace Elem Res 2022:10.1007/s12011-022-03467-1. [PMID: 36342630 DOI: 10.1007/s12011-022-03467-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022]
Abstract
Selenium (Se) is an essential micronutrient with several functions in cellular and molecular anticancer processes. There is evidence that Se depending on its chemical form and the dosage use could act as a modulator in some anticancer mechanisms. However, the metabolism of organic and inorganic forms of dietary selenium converges on the main pathways. Different selenocompounds have been reported to have crucial roles as chemopreventive agents, such as antioxidant activity, activation of apoptotic pathways, selective cytotoxicity, antiangiogenic effect, and cell cycle modulation. Nowadays, great interest has arisen to find therapies that could enhance the antitumor effects of different Se sources. Herein, different studies are reported related to the effects of combinatorial therapies, where Se is used in combination with proteins, polysaccharides, chemotherapeutic agents or as nanoparticles. Another important factor is the presence of single nucleotide polymorphisms in genes related to Se metabolism or selenoprotein synthesis which could prevent cancer. These studies and mechanisms show promising results in cancer therapies. This review aims to compile studies that have demonstrated the anticancer effects of Se at molecular levels and its potential to be used as chemopreventive and in cancer treatment.
Collapse
Affiliation(s)
- Juan Pablo Dávila-Vega
- Escuela de Ingeniería Y Ciencias, Centro de Biotecnología FEMSA, Tecnológico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, México
- Tecnologico de Monterrey, The Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, Mexico
| | - Ana Carolina Gastelum-Hernández
- Facultad de Ciencias Químico Biológicas, Programa Regional de Posgrado en Biotecnología, Universidad Autónoma de Sinaloa, FCQB-UAS, AP 1354, CP 80000, Culiacán, Sinaloa, Mexico
| | - Sayra N Serrano-Sandoval
- Escuela de Ingeniería Y Ciencias, Centro de Biotecnología FEMSA, Tecnológico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, México
- Tecnologico de Monterrey, The Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, Mexico
| | - Sergio O Serna-Saldívar
- Escuela de Ingeniería Y Ciencias, Centro de Biotecnología FEMSA, Tecnológico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, México
| | - Janet A Guitiérrez-Uribe
- Tecnologico de Monterrey, The Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, Mexico
- Escuela de Ingeniería Y Ciencias, Tecnologico de Monterrey, Reserva Territorial Atlixcáyotl, Campus Puebla, Vía Atlixcáyotl 5718, C.P. 72453, Puebla, Pue, México
| | - Jorge Milán-Carrillo
- Tecnologico de Monterrey, The Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, Mexico
| | - M Carmen Martínez-Cuesta
- Department of Food Biotechnology and Microbiology, Instituto de Investigación en Ciencias de La Alimentación, CIAL (CSIC-UAM), Nicolás Cabrera 9, 28049, Madrid, Spain
| | - Daniela Guardado-Félix
- Escuela de Ingeniería Y Ciencias, Centro de Biotecnología FEMSA, Tecnológico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, México.
- Tecnologico de Monterrey, The Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, Mexico.
| |
Collapse
|
40
|
K D, Venugopal S. Therapeutic potential of selenium nanoparticles. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.1042338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Diseases have always been a disconcerting issue and have changed into being an inevitable member of the world’s population. Medical advancements have brought in improved treatments for particular ailments, but unfortunately those betterments have resulted in either side effects or turned out futile to a certain extent. The emergence of nanotechnology has considerably benefitted medical experts in disease diagnosis and therapeutics. Currently, an expansive range of nanoparticles is being explored for their effectiveness in therapies, and one among them is selenium nanoparticles (SeNPs). Nano-selenium exhibits significant properties which make it best suited for this purpose. The article highlights the key role of SeNPs in treating major diseases like cancer, diabetes, and microbial infections.
Collapse
|
41
|
Ehudin MA, Golla U, Trivedi D, Potlakayala SD, Rudrabhatla SV, Desai D, Dovat S, Claxton D, Sharma A. Therapeutic Benefits of Selenium in Hematological Malignancies. Int J Mol Sci 2022; 23:ijms23147972. [PMID: 35887320 PMCID: PMC9323677 DOI: 10.3390/ijms23147972] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 12/14/2022] Open
Abstract
Supplementing chemotherapy and radiotherapy with selenium has been shown to have benefits against various cancers. This approach has also been shown to alleviate the side effects associated with standard cancer therapies and improve the quality of life in patients. In addition, selenium levels in patients have been correlated with various cancers and have served as a diagnostic marker to track the efficiency of treatments or to determine whether these selenium levels cause or are a result of the disease. This concise review presents a survey of the selenium-based literature, with a focus on hematological malignancies, to demonstrate the significant impact of selenium in different cancers. The anti-cancer mechanisms and signaling pathways regulated by selenium, which impart its efficacious properties, are discussed. An outlook into the relationship between selenium and cancer is highlighted to guide future cancer therapy development.
Collapse
Affiliation(s)
- Melanie A. Ehudin
- Division of Hematology and Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (M.A.E.); (S.D.)
| | - Upendarrao Golla
- Division of Hematology and Oncology, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (U.G.); (D.C.)
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (D.T.); (D.D.)
| | - Devnah Trivedi
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (D.T.); (D.D.)
| | - Shobha D. Potlakayala
- Department of Biological Sciences, School of Science Engineering and Technology, Penn State Harrisburg, Middletown, PA 17057, USA; (S.D.P.); (S.V.R.)
| | - Sairam V. Rudrabhatla
- Department of Biological Sciences, School of Science Engineering and Technology, Penn State Harrisburg, Middletown, PA 17057, USA; (S.D.P.); (S.V.R.)
| | - Dhimant Desai
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (D.T.); (D.D.)
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Sinisa Dovat
- Division of Hematology and Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (M.A.E.); (S.D.)
| | - David Claxton
- Division of Hematology and Oncology, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (U.G.); (D.C.)
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (D.T.); (D.D.)
| | - Arati Sharma
- Division of Hematology and Oncology, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (U.G.); (D.C.)
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (D.T.); (D.D.)
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Correspondence:
| |
Collapse
|
42
|
Salem SS, Badawy MSEM, Al-Askar AA, Arishi AA, Elkady FM, Hashem AH. Green Biosynthesis of Selenium Nanoparticles Using Orange Peel Waste: Characterization, Antibacterial and Antibiofilm Activities against Multidrug-Resistant Bacteria. LIFE (BASEL, SWITZERLAND) 2022; 12:life12060893. [PMID: 35743924 PMCID: PMC9227136 DOI: 10.3390/life12060893] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 12/13/2022]
Abstract
There is an increase of pathogenic multidrug-resistant bacteria globally due to the misuse of antibiotics. Recently, more scientists used metal nanoparticles to counteract antibacterial resistance. In this study, orange peel waste (OPW) was used for selenium nanoparticles’ (Se-NPs) biosynthesis through the green and ecofriendly method, and their applications as antibacterial and antibiofilm agents. Green biosynthesized Se-NPs were characterized using FTIR, XRD, SEM, EDAX, and TEM. Characterization results revealed that biosynthesized Se-NPs were highly crystalline, spherical, and polydisperse, and had sizes in the range of 16–95 nm. The biosynthesized Se-NPs were evaluated as antibacterial and antibiofilm activities against multidrug-resistant bacteria. Results illustrated that Se-NPs exhibited potential antibacterial activity against Gram-positive bacteria (S. aureus ATCC 29213 and biofilm-producing clinical isolates of S. aureus) and Gram-negative bacteria (Pseudomonas aeruginosa PAO1, MDR, biofilm, and quorum-sensing and producing clinical isolates of MDR P. aeruginosa, MDR E. coli, and K. pneumonia). Moreover, results illustrated that S. aureus ATCC 29213 was the most sensitive bacteria to Se-NPs at 1000 µg/mL, where the inhibition zone was 35 mm and MIC was 25 µg/mL. Furthermore, Se-NPs at 0.25 and 0.5 MIC decreased the biofilm significantly. The largest inhibition of biofilm was noticed in MDR K. pneumonia, which was 62% and 92% at 0.25 and 0.5 MIC, respectively. In conclusion, Se-NPs were successfully biosynthesized using OPW through the green method and had promising antibacterial and antibiofilm activity against multidrug-resistant bacteria, which can be used later in fighting resistant bacteria.
Collapse
Affiliation(s)
- Salem S. Salem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
- Correspondence: (S.S.S.); (A.A.A.-A.); (A.H.H.)
| | - Mona Shaban E. M. Badawy
- Department of Microbiology and Immunology, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11884, Egypt;
| | - Abdulaziz A. Al-Askar
- Department of Botany and Microbiology, Faculty of Science, King Saud University, Riyadh 12372, Saudi Arabia
- Correspondence: (S.S.S.); (A.A.A.-A.); (A.H.H.)
| | - Amr Abker Arishi
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia;
| | - Fathy M. Elkady
- Microbiology and Immunology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11884, Egypt;
| | - Amr H. Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
- Correspondence: (S.S.S.); (A.A.A.-A.); (A.H.H.)
| |
Collapse
|
43
|
Youssef DM, Alshubaily FA, Tayel AA, Alghuthaymi MA, Al-Saman MA. Application of Nanocomposites from Bees Products and Nano-Selenium in Edible Coating for Catfish Fillets Biopreservation. Polymers (Basel) 2022; 14:polym14122378. [PMID: 35745953 PMCID: PMC9229794 DOI: 10.3390/polym14122378] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 12/10/2022] Open
Abstract
Bee products, e.g., chitosan and propolis (Pro), have extraordinary importance in many disciplines including food biopreservation. Fish meat is highly susceptible to vast spoilage, especially catfish (Clarias gariepinus) products. The current work involved the extraction of bees’ chitosan nanoparticles (BCht), Pro, Pro-mediated SeNPs and their composites, to evaluate them as potential antimicrobial and preservative nano-compounds, for the preservation of catfish fillets and augment their quality. BCht was extracted from bees (Apis mellifera) corpses and had a 151.9 nm mean particle diameter. The Pro was used for biosynthesis of SeNPs, which had 11.2 nm mean diameters. The entire compounds/composites exhibited powerful antibacterial acts against Escherichia coli, Staphylococcus aureus and Salmonella typhimurium, where S aureus had the uppermost resistance. BCht/Pro/SeNPs were the most forceful toward all bacterial strains. The constructed edible coatings (ECs) from produced compounds/composites (BCht, Pro, Pro/SeNPs, Pro/BCht and BCht/Pro/SeNPs) had elevated efficiency for preserving catfish fillets during cold storages for 7 days. The microbiological (total counts, psychrophilic bacteria, yeast and molds), spoilage chemical parameters (TVB-N, TBARS) and sensorial attributes (appearance, odor, color, overall quality) of ECs-treated fillets indicated the nanocomposite’s efficiency for protecting the fish from microbial growth, the progress of chemical spoilage indicators and maintaining the sensorial quality of treated stored fillets. The most effective nanocomposite for maintaining the entire fillet’s quality was the BCht/Pro/SeNP. The based ECs on BNCt, Pro/SeNPs and their nanocomposites could be endorsed for prospective employment in the biopreservation of various seafoods.
Collapse
Affiliation(s)
- Dareen M. Youssef
- Department of Fish Processing and Biotechnology, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Fawzia A. Alshubaily
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Ahmed A. Tayel
- Department of Fish Processing and Biotechnology, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
- Correspondence: (A.A.T.); (M.A.A.)
| | - Mousa A. Alghuthaymi
- Department of Biology, Science and Humanities College, Shaqra University, Alquwayiyah 11726, Saudi Arabia
- Correspondence: (A.A.T.); (M.A.A.)
| | - Mahmoud A. Al-Saman
- Department of Industrial Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, El-Sadat City 32897, Egypt;
| |
Collapse
|
44
|
Quality Boost and Shelf-Life Prolongation of African Catfish Fillet Using Lepidium sativum Mucilage Extract and Selenium Nanoparticles. J FOOD QUALITY 2022. [DOI: 10.1155/2022/9063801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aiming to boost the catfish fillet quality, the consequences of their treatment with Lepidium sativum seeds mucilage (LSSM) and with LSSM-mediated selenium nanoparticles (LSSM-Se NPs) were investigated. The LSSM assessment for phenolic acids contents emphasized higher concentrations. Green-synthesized Se NPs were conjugated with LSSM to form LSSM-Se NPs and characterized; the NPs had spherical shapes, negatively charged with 15.47 nm mean diameters. Fish fillets were immersed in coating solutions for 2 min, drained, and stored for 25 days at 4°C. The fish groups (C: untreated samples, M: LSSM-treated, and G: LSSM-Se NPs treated) were assessed for their physicochemical, bacteriological, and sensorial attributes. On the 25th day, the samples’ pH values were 6.96, 6.6, and 6.3; TVB-N values were 38.8, 28.4, and 16.4 mg/100 g; TBARS values were 1.7, 0.97, and 0.68 malondialdehyde/kg; and overall acceptability scores were 3.9, 5.6, and 8.3, for C, M and G groups, respectively. At day 16, the psychrophilic bacterial count was 6.2, 4.0, and 3.6 log CFU/g for C, M, and G groups, respectively. The application of LSSM and LSSM-Se NPs is recommended to compose active coatings for quality boost and shelf-life extension of stored catfish fillet.
Collapse
|
45
|
Obrador E, Salvador-Palmer R, Villaescusa JI, Gallego E, Pellicer B, Estrela JM, Montoro A. Nuclear and Radiological Emergencies: Biological Effects, Countermeasures and Biodosimetry. Antioxidants (Basel) 2022; 11:1098. [PMID: 35739995 PMCID: PMC9219873 DOI: 10.3390/antiox11061098] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/17/2022] Open
Abstract
Atomic and radiological crises can be caused by accidents, military activities, terrorist assaults involving atomic installations, the explosion of nuclear devices, or the utilization of concealed radiation exposure devices. Direct damage is caused when radiation interacts directly with cellular components. Indirect effects are mainly caused by the generation of reactive oxygen species due to radiolysis of water molecules. Acute and persistent oxidative stress associates to radiation-induced biological damages. Biological impacts of atomic radiation exposure can be deterministic (in a period range a posteriori of the event and because of destructive tissue/organ harm) or stochastic (irregular, for example cell mutation related pathologies and heritable infections). Potential countermeasures according to a specific scenario require considering basic issues, e.g., the type of radiation, people directly affected and first responders, range of doses received and whether the exposure or contamination has affected the total body or is partial. This review focuses on available medical countermeasures (radioprotectors, radiomitigators, radionuclide scavengers), biodosimetry (biological and biophysical techniques that can be quantitatively correlated with the magnitude of the radiation dose received), and strategies to implement the response to an accidental radiation exposure. In the case of large-scale atomic or radiological events, the most ideal choice for triage, dose assessment and victim classification, is the utilization of global biodosimetry networks, in combination with the automation of strategies based on modular platforms.
Collapse
Affiliation(s)
- Elena Obrador
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (R.S.-P.); (B.P.); (J.M.E.)
| | - Rosario Salvador-Palmer
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (R.S.-P.); (B.P.); (J.M.E.)
| | - Juan I. Villaescusa
- Service of Radiological Protection, Clinical Area of Medical Image, La Fe University Hospital, 46026 Valencia, Spain; (J.I.V.); (A.M.)
- Biomedical Imaging Research Group GIBI230, Health Research Institute (IISLaFe), La Fe University Hospital, 46026 Valencia, Spain
| | - Eduardo Gallego
- Energy Engineering Department, School of Industrial Engineering, Polytechnic University of Madrid, 28040 Madrid, Spain;
| | - Blanca Pellicer
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (R.S.-P.); (B.P.); (J.M.E.)
| | - José M. Estrela
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (R.S.-P.); (B.P.); (J.M.E.)
| | - Alegría Montoro
- Service of Radiological Protection, Clinical Area of Medical Image, La Fe University Hospital, 46026 Valencia, Spain; (J.I.V.); (A.M.)
- Biomedical Imaging Research Group GIBI230, Health Research Institute (IISLaFe), La Fe University Hospital, 46026 Valencia, Spain
| |
Collapse
|
46
|
Wu X, Yang M, He Y, Wang F, Kong Y, Ling TJ, Zhang J. EGCG-derived polymeric oxidation products enhance insulin sensitivity in db/db mice. Redox Biol 2022; 51:102259. [PMID: 35168078 PMCID: PMC8850334 DOI: 10.1016/j.redox.2022.102259] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/03/2022] [Indexed: 12/12/2022] Open
Abstract
The present study investigated the influence of epigallocatechin-3-gallate (EGCG) and its autoxidation products on insulin sensitivity in db/db mice. Compared to EGCG, autoxidation products of EGCG alleviated diabetic symptoms by suppressing the deleterious renal axis of the renin-angiotensin system (RAS), activating the beneficial hepatic axis of RAS, and downregulating hepatic and renal SELENOP and TXNIP. A molecular weight fraction study demonstrated that polymeric oxidation products were of essential importance. The mechanism of action involved coating polymeric oxidation products on the cell surface to protect against cholesterol loading, which induces abnormal RAS. Moreover, polymeric oxidation products could regulate RAS and SELENOP at doses that were far below cytotoxicity. The proof-of-principal demonstrations of EGCG-derived polymeric oxidation products open a new avenue for discovering highly active polymeric oxidation products based on the oxidation of naturally occurring polyphenols to manage diabetes and other diseases involving abnormal RAS. EGCG autoxidation forms polymeric oxidation products. The polymeric oxidation products are coated on the surface of cells or tissues. The surface coating regulates RAS, SELENOP, and TXNIP in db/db mice. The surface coating increases insulin sensitivity in db/db mice.
Collapse
|
47
|
Apryatina KV, Murach EI, Amarantov SV, Erlykina EI, Veselov VS, Smirnova LA. Synthesis of a Bioactive Composition of Chitosan-Selenium Nanoparticles. APPL BIOCHEM MICRO+ 2022; 58:126-131. [PMID: 35345603 PMCID: PMC8943790 DOI: 10.1134/s0003683822020028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/17/2021] [Accepted: 10/02/2021] [Indexed: 11/22/2022]
Abstract
A biologically active composition of chitosan-selenium nanoparticles has been developed. Selenium nanoparticles are characterized by a clear bimodal size distribution: 2-3 and ~37 nm. The main active centers of complexation with nanoparticles are the amino and hydroxyl groups of chitosan. In experiments on culturing fibroblasts of the hTERT BJ-5ta cell line on sample films, high biocompatibility of the composition was shown. It was shown that the composition of chitosan-selenium nanoparticles has a corrective effect on the oxidative processes of the body, reducing the activity of free-radical oxidation in the blood of animals. This opens up prospects for the use of this complex in the composition of antioxidant and adaptogenic drugs.
Collapse
Affiliation(s)
- K. V. Apryatina
- National Research Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia
| | - E. I. Murach
- Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia
| | - S. V. Amarantov
- Federal Scientific Research Center “Crystallography and Photonics” of RAS, Institute of Crystallography Named After A. Shubnikov RAS, 119333 Moscow, Russia
| | - E. I. Erlykina
- Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia
| | - V. S. Veselov
- National Research Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia
| | - L. A. Smirnova
- National Research Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia
| |
Collapse
|
48
|
Wang Y, Ye Q, Sun Y, Jiang Y, Meng B, Du J, Chen J, Tugarova AV, Kamnev AA, Huang S. Selenite Reduction by Proteus sp. YS02: New Insights Revealed by Comparative Transcriptomics and Antibacterial Effectiveness of the Biogenic Se0 Nanoparticles. Front Microbiol 2022; 13:845321. [PMID: 35359742 PMCID: PMC8960269 DOI: 10.3389/fmicb.2022.845321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/17/2022] [Indexed: 02/05/2023] Open
Abstract
Biotransformation of selenite by microorganisms is an effective detoxification (in cases of dissimilatory reduction, e.g., to Se0) and assimilation process (when Se is assimilated by cells). However, the current knowledge of the molecular mechanism of selenite reduction remains limited. In this study, a selenite-resistant bacterium was isolated and identified as Proteus sp. YS02. Strain YS02 reduced 93.2% of 5.0 mM selenite to selenium nanoparticles (SeNPs) within 24 h, and the produced SeNPs were spherical and localized intracellularly or extracellularly, with an average dimension of 140 ± 43 nm. The morphology and composition of the isolated and purified SeNPs were characterized using dynamic light scattering (DLS), scanning electron microscopy (SEM) with energy-dispersive X-ray (EDX) spectrometry, and Fourier transform infrared (FTIR) spectroscopy. FTIR spectroscopy indicated the presence of proteins, polysaccharides, and lipids on the surface of the isolated SeNPs. Furthermore, the SeNPs showed excellent antimicrobial activity against several Gram-positive and Gram-negative pathogenic bacteria. Comparative transcriptome analysis was performed to elucidate the selenite reduction mechanism and biosynthesis of SeNPs. It is revealed that 197 genes were significantly upregulated, and 276 genes were significantly downregulated under selenite treatment. Gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that genes associated with ABC transporters, sulfur metabolism, pentose phosphate pathway (PPP), and pyruvate dehydrogenase were significantly enhanced, indicating selenite is reduced by sulfite reductase with PPP and pyruvate dehydrogenase supplying reducing equivalents and energy. This work suggests numerous genes are involved in the response to selenite stress, providing new insights into the molecular mechanisms of selenite bioreduction with the formation of SeNPs.
Collapse
Affiliation(s)
- Yuting Wang
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Intelligent Pathology Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qing Ye
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Intelligent Pathology Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yujun Sun
- Institute of Biomedical and Health Science, School of Life and Health Science, Anhui Science and Technology University, Fengyang, China
| | - Yulu Jiang
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Intelligent Pathology Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Bo Meng
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Intelligent Pathology Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jun Du
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Intelligent Pathology Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jingjing Chen
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Intelligent Pathology Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Anna V. Tugarova
- Laboratory of Biochemistry, Institute of Biochemistry and Physiology of Plants and Microorganisms—Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences, Saratov, Russia
| | - Alexander A. Kamnev
- Laboratory of Biochemistry, Institute of Biochemistry and Physiology of Plants and Microorganisms—Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences, Saratov, Russia
- *Correspondence: Alexander A. Kamnev, ; ; Shengwei Huang,
| | - Shengwei Huang
- Institute of Biomedical and Health Science, School of Life and Health Science, Anhui Science and Technology University, Fengyang, China
- *Correspondence: Alexander A. Kamnev, ; ; Shengwei Huang,
| |
Collapse
|
49
|
Vundela SR, Kalagatur NK, Nagaraj A, Kadirvelu K, Chandranayaka S, Kondapalli K, Hashem A, Abd_Allah EF, Poda S. Multi-Biofunctional Properties of Phytofabricated Selenium Nanoparticles From Carica papaya Fruit Extract: Antioxidant, Antimicrobial, Antimycotoxin, Anticancer, and Biocompatibility. Front Microbiol 2022; 12:769891. [PMID: 35250900 PMCID: PMC8892101 DOI: 10.3389/fmicb.2021.769891] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/28/2021] [Indexed: 12/27/2022] Open
Abstract
The present study focused on phytofabrication of selenium nanoparticles (SeNPs) from Carica papaya extract and exploration of their multi-biofunctional features. Total phenolics and flavonoids of C. papaya fruit extract were determined as 23.30 ± 1.88 mg gallic acid equivalents and 19.21 ± 0.44 mg quercetin equivalents per gram, respectively, which suggested that C. papaya fruit extract could be a competitive reducing and stabilizing agent during phytofabrication of nanoparticles. UV-Vis and FTIR spectroscopy showed the formation of SeNPs from sodium selenite, which could be related to the reducing and stabilizing activities of C. papaya fruit extract. The SeNPs were found to be stable with a Zeta potential of -32 mV. The average hydrodynamic size of SeNPs was found as 159 nm by dynamic light scattering. The SeNPs showed a broader XRD pattern with no sharp Bragg's peaks and found to be amorphous. SEM showed that SeNPs were spherical in shape and EDX pattern showed that SeNPs were made up of Se (71.81%), C (11.41%), and O (14.88%). The HR-TEM picture showed that SeNPs were spherical in morphology and have a size range of 101-137 nm. The SeNPs exhibited potent antioxidant activity and their EC50 values (effective concentration required to inhibit 50% of radicals) were 45.65 ± 2.01 and 43.06 ± 3.80 μg/ml in DPPH and ABTS assays, respectively. The antimicrobial action of SeNPs was found as a broad spectrum and suppressed microbial pathogens in ascending order: fungi > Gram-positive bacteria > Gram-negative bacteria. The SeNPs have been demonstrated to reduce the growth and ochratoxin A (OTA) of mycotoxigenic Aspergillus ochraceus and Penicillium verrucosum at 40 μg/ml in broth culture, which is noteworthy. The SeNPs reduced cancer cell proliferation (RAW 264.7, Caco-2, MCF-7, and IMR-32) more preferentially than normal cells (Vero), found to be highly biocompatible. Lower doses of SeNPs (up to 50 μg/ml) were shown to be less toxic and did not cause death in Danio rerio (zebrafish) embryos, implying that lower doses of SeNPs could be beneficial for biological purposes. The present study concluded that phytofabricated SeNPs have multiple biofunctional properties, including antioxidant, antimicrobial, antimycotoxin, and anticancer activities, as well as high biocompatibility.
Collapse
Affiliation(s)
| | | | - Anusuya Nagaraj
- Department of Biochemistry, Bharathiar University, Coimbatore, India
| | | | | | - Kasturi Kondapalli
- Department of Biotechnology, Acharya Nagarjuna University, Guntur, India
| | - Abeer Hashem
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Elsayed Fathi Abd_Allah
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Sudhakar Poda
- Department of Biotechnology, Acharya Nagarjuna University, Guntur, India
| |
Collapse
|
50
|
Development of thermo/redox-responsive diselenide linked methoxy poly (ethylene glycol)-block-poly(ε-caprolactone-co-p-dioxanone) hydrogel for localized control drug release. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02776-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|