1
|
Wu T, Ma Y, Yang Y, Zhang Z, Zhou J, Ju C, Zuo X, Wang X, Hu X, Wang Z. Photobiomodulation reduces spinal cord edema by decreasing the expression of AQP4 in the astrocytes of male spinal cord injury rats via the JAK2/STAT3 signaling pathway. Photodiagnosis Photodyn Ther 2024; 50:104364. [PMID: 39401645 DOI: 10.1016/j.pdpdt.2024.104364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/24/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Spinal cord swelling commonly occurs following SCI. Previous studies suggest that PBM may reduce inflammation and scar formation after SCI. However, whether PBM can alleviate post-spinal cord injury edema and its underlying mechanisms have not yet been reported. This study aims to investigate the effects of PBM on spinal cord swelling in rats following SCI and explore the underlying mechanisms. METHODS A rat model of SCI was established, and the rats received continuous PBM therapy for two weeks. Tissue hydration, motor function, AQP4 expression, and pathological changes in the spinal cord were evaluated at different time points. In vitro, astrocytes were subjected to PBM and treated with either cucurbitacin I or TGN020 following OGD. RESULTS The results indicate that PBM reduces tissue swelling in rats with SCI, improves motor function recovery, and inhibits the upregulation of AQP4 and GFAP associated with SCI. In vitro, PBM reduces abnormal activation of the JAK2/STAT3 signaling pathway in astrocytes, leading to decreased AQP4 synthesis and astrocyte activation. CONCLUSIONS These findings suggest that PBM reduces spinal cord swelling in rats after injury. This effect is associated with the inhibition of JAK2/STAT3 signaling pathway activation in astrocytes and the reduction in AQP4 expression.
Collapse
Affiliation(s)
- Tingyu Wu
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yangguang Ma
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | | | - Zhihao Zhang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jie Zhou
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Cheng Ju
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiaoshuang Zuo
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xuankang Wang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xueyu Hu
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Zhe Wang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
2
|
Serra M, Simola N, Pollack AE, Costa G. Brain dysfunctions and neurotoxicity induced by psychostimulants in experimental models and humans: an overview of recent findings. Neural Regen Res 2024; 19:1908-1918. [PMID: 38227515 DOI: 10.4103/1673-5374.390971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/10/2023] [Indexed: 01/17/2024] Open
Abstract
Preclinical and clinical studies indicate that psychostimulants, in addition to having abuse potential, may elicit brain dysfunctions and/or neurotoxic effects. Central toxicity induced by psychostimulants may pose serious health risks since the recreational use of these substances is on the rise among young people and adults. The present review provides an overview of recent research, conducted between 2018 and 2023, focusing on brain dysfunctions and neurotoxic effects elicited in experimental models and humans by amphetamine, cocaine, methamphetamine, 3,4-methylenedioxymethamphetamine, methylphenidate, caffeine, and nicotine. Detailed elucidation of factors and mechanisms that underlie psychostimulant-induced brain dysfunction and neurotoxicity is crucial for understanding the acute and enduring noxious brain effects that may occur in individuals who use psychostimulants for recreational and/or therapeutic purposes.
Collapse
Affiliation(s)
- Marcello Serra
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy
| | - Nicola Simola
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy
| | - Alexia E Pollack
- Department of Biology, University of Massachusetts-Boston, Boston, MA, USA
| | - Giulia Costa
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy
| |
Collapse
|
3
|
Lorini Franciscatto I, Scherer Seibert B, Dries SS, Linden R, Ziulkoski AL, Perassolo MS. Evaluation of oxidative stress and its association with drug therapy in inpatients treated for cocaine dependence. Drug Chem Toxicol 2024; 47:372-380. [PMID: 37259499 DOI: 10.1080/01480545.2023.2219039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 04/22/2023] [Indexed: 06/02/2023]
Abstract
The use of cocaine affects several systems and organs of the human body and the consumption of this substance leads to an increase in the production of reactive oxygen species, and to the reduction of antioxidant defenses. The aim of this study was to evaluate the oxidative stress (OS), biochemical and hematological parameters in patients hospitalized for treatment of cocaine addiction, comparing levels at hospital admission and discharge. Forty patients were included in the study. OS was evaluated using catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GPx), total antioxidant power (FRAP), malondialdehyde (MDA), and sulfhydryl group (GS). The medications used during hospitalization were registered and their influence on the parameters of OS was analyzed. After the hospitalization period, there was an increase in GGT levels, a reduction in SOD activity, and an increase in GPx activity and FRAP levels. Carbamazepine users had higher SOD values and lower FRAP values at hospital discharge. The use of chlorpromazine caused differences in creatinine and gamma-glutamyltransferase (GGT) serum leves, and the levels of glutamic oxalacetic transaminase (TGO), MDA, and FRAP were increased at hospital discharge. Haloperidol and thiamine during hospitalization interfered with alkaline phosphatase levels. The use of risperidone caused an increase in the levels of SOD, and folic acid use was associated with lower levels of GPx and higher levels of glutamic-pyruvic transaminase (TGP) and alkaline phosphatase. Drug rehabilitation treatment was effective in decreasing oxidative damage represented by the reduction of biological markers.
Collapse
Affiliation(s)
- Isabela Lorini Franciscatto
- Graduate Program on Toxicology and Analytical Toxicology, Feevale University, Novo Hamburgo, RS, Brazil
- University Pharmacy, Feevale University, Novo Hamburgo, RS, Brazil
| | - Bruna Scherer Seibert
- Graduate Program on Toxicology and Analytical Toxicology, Feevale University, Novo Hamburgo, RS, Brazil
- University Pharmacy, Feevale University, Novo Hamburgo, RS, Brazil
| | - Samuel Selbach Dries
- Graduate Program on Toxicology and Analytical Toxicology, Feevale University, Novo Hamburgo, RS, Brazil
- University Pharmacy, Feevale University, Novo Hamburgo, RS, Brazil
| | - Rafael Linden
- Graduate Program on Toxicology and Analytical Toxicology, Feevale University, Novo Hamburgo, RS, Brazil
- Laboratory of Analytical Toxicology, Feevale University, Novo Hamburgo, Brazil
| | - Ana Luiza Ziulkoski
- Graduate Program on Toxicology and Analytical Toxicology, Feevale University, Novo Hamburgo, RS, Brazil
- Molecular Microbiology Laboratory, Feevale University, Novo Hamburgo, Brazil
| | - Magda Susana Perassolo
- Graduate Program on Toxicology and Analytical Toxicology, Feevale University, Novo Hamburgo, RS, Brazil
- University Pharmacy, Feevale University, Novo Hamburgo, RS, Brazil
| |
Collapse
|
4
|
Spelta LEW, Real CC, Bruno V, Buchpiguel CA, Garcia RCT, Torres LH, de Paula Faria D, Marcourakis T. Impact of cannabidiol on brain glucose metabolism of C57Bl/6 male mice previously exposed to cocaine. J Neurosci Res 2024; 102:e25327. [PMID: 38588037 DOI: 10.1002/jnr.25327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/04/2024] [Accepted: 03/24/2024] [Indexed: 04/10/2024]
Abstract
Despite evidence of the beneficial effects of cannabidiol (CBD) in animal models of cocaine use disorder (CUD), CBD neuronal mechanisms remain poorly understood. This study investigated the effects of CBD treatment on brain glucose metabolism, in a CUD animal model, using [18F]FDG positron emission tomography (PET). Male C57Bl/6 mice were injected with cocaine (20 mg/kg, i.p.) every other day for 9 days, followed by 8 days of CBD administration (30 mg/kg, i.p.). After 48 h, animals were challenged with cocaine. Control animals received saline/vehicle. [18F]FDG PET was performed at four time points: baseline, last day of sensitization, last day of withdrawal/CBD treatment, and challenge. Subsequently, the animals were euthanized and immunohistochemistry was performed on the hippocampus and amygdala to assess the CB1 receptors, neuronal nuclear protein, microglia (Iba1), and astrocytes (GFAP). Results showed that cocaine administration increased [18F]FDG uptake following sensitization. CBD treatment also increased [18F]FDG uptake in both saline and cocaine groups. However, animals that were sensitized and challenged with cocaine, and those receiving only an acute cocaine injection during the challenge phase, did not exhibit increased [18F]FDG uptake when treated with CBD. Furthermore, CBD induced modifications in the integrated density of NeuN, Iba, GFAP, and CB1R in the hippocampus and amygdala. This is the first study addressing the impact of CBD on brain glucose metabolism in a preclinical model of CUD using PET. Our findings suggest that CBD disrupts cocaine-induced changes in brain energy consumption and activity, which might be correlated with alterations in neuronal and glial function.
Collapse
Affiliation(s)
- Lidia Emmanuela Wiazowski Spelta
- Laboratory of Neurotoxicology, Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- Laboratory of Nuclear Medicine, Department of Radiology and Oncology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Caroline Cristiano Real
- Laboratory of Nuclear Medicine, Department of Radiology and Oncology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
- Department of Clinical Medicine, Nuclear Medicine and PET Centre, Aarhus University, Aarhus, Denmark
| | - Vitor Bruno
- Laboratory of Neurotoxicology, Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Carlos Alberto Buchpiguel
- Laboratory of Nuclear Medicine, Department of Radiology and Oncology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | | | - Larissa Helena Torres
- Department of Food and Drugs, School of Pharmaceutical Sciences, Federal University of Alfenas, Alfenas, Brazil
| | - Daniele de Paula Faria
- Laboratory of Nuclear Medicine, Department of Radiology and Oncology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Tania Marcourakis
- Laboratory of Neurotoxicology, Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
Nguyen YND, Jeong JH, Sharma N, Tran NKC, Tran HYP, Dang DK, Park JH, Byun JK, Ko SK, Nah SY, Kim HC, Shin EJ. Ginsenoside Re protects against kainate-induced neurotoxicity in mice by attenuating mitochondrial dysfunction through activation of the signal transducers and activators of transcription 3 signaling. Free Radic Res 2024; 58:276-292. [PMID: 38613520 DOI: 10.1080/10715762.2024.2341885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/21/2024] [Indexed: 04/15/2024]
Abstract
It was demonstrated that ginsenosides exert anti-convulsive potentials and interleukin-6 (IL-6) is protective from excitotoxicity induced by kainate (KA), a model of temporal lobe epilepsy. Ginsenosides-mediated mitochondrial recovery is essential for attenuating KA-induced neurotoxicity, however, little is known about the effects of ginsenoside Re (GRe), one of the major ginsenosides. In this study, GRe significantly attenuated KA-induced seizures in mice. KA-induced redox changes were more evident in mitochondrial fraction than in cytosolic fraction in the hippocampus of mice. GRe significantly attenuated KA-induced mitochondrial oxidative stress (i.e. increases in reactive oxygen species, 4-hydroxynonenal, and protein carbonyl) and mitochondrial dysfunction (i.e. the increase in intra-mitochondrial Ca2+ and the decrease in mitochondrial membrane potential). GRe or mitochondrial protectant cyclosporin A restored phospho-signal transducers and activators of transcription 3 (STAT3) and IL-6 levels reduced by KA, and the effects of GRe were reversed by the JAK2 inhibitor AG490 and the mitochondrial toxin 3-nitropropionic acid (3-NP). Thus, we used IL-6 knockout (KO) mice to investigate whether the interaction between STAT3 and IL-6 is involved in the GRe effects. Importantly, KA-induced reduction of manganese superoxide dismutase (SOD-2) levels and neurodegeneration (i.e. astroglial inhibition, microglial activation, and neuronal loss) were more prominent in IL-6 KO than in wild-type (WT) mice. These KA-induced detrimental effects were attenuated by GRe in WT and, unexpectedly, IL-6 KO mice, which were counteracted by AG490 and 3-NP. Our results suggest that GRe attenuates KA-induced neurodegeneration via modulating mitochondrial oxidative burden, mitochondrial dysfunction, and STAT3 signaling in mice.
Collapse
Affiliation(s)
- Yen Nhi Doan Nguyen
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, Republic of Korea
| | - Ji Hoon Jeong
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, Republic of Korea
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Ngoc Kim Cuong Tran
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, Republic of Korea
| | - Hoang-Yen Phi Tran
- Department of Physical Chemistry, University of Medicine and Pharmacy at Ho Chi Minh City, Viet Nam, Ho Chi Minh City
| | - Duy-Khanh Dang
- Department of Pharmacy, Can Tho University of Medicine and Pharmacy, Can Tho City, Viet Nam, Ho Chi Minh City
| | - Jung Hoon Park
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, Republic of Korea
| | - Jae Kyung Byun
- Korea Society of Forest Environmental Research, Namyangju, Republic of Korea
| | - Sung Kwon Ko
- Department of Oriental Medical Food & Nutrition, Semyung University, Jecheon, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, Republic of Korea
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, Republic of Korea
| |
Collapse
|
6
|
Cuong Tran NK, Jeong JH, Sharma N, Doan Nguyen YN, Phi Tran HY, Dang DK, Park JH, Byun JK, Jin D, Xiaoyan Z, Ko SK, Nah SY, Kim HC, Shin EJ. Ginsenoside Re blocks Bay k-8644-induced neurotoxicity via attenuating mitochondrial dysfunction and PKCδ activation in the hippocampus of mice: Involvement of antioxidant potential. Food Chem Toxicol 2023:113869. [PMID: 37308051 DOI: 10.1016/j.fct.2023.113869] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/01/2023] [Indexed: 06/14/2023]
Abstract
Although the anticonvulsant effects of ginsenosides are recognized, little is known about their effects on the convulsive behaviors induced by the activation of L-type Ca2+ channels. Here, we investigated whether ginsenoside Re (GRe) modulates excitotoxicity induced by the L-type Ca2+ channel activator Bay k-8644. GRe significantly attenuated Bay k-8644-induced convulsive behaviors and hippocampal oxidative stress in mice. GRe-mediated antioxidant potential was more pronounced in the mitochondrial fraction than cytosolic fraction. As L-type Ca2+ channels are thought to be targets of protein kinase C (PKC), we investigated the role of PKC under excitotoxic conditions. GRe attenuated Bay k-8644-induced mitochondrial dysfunction, PKCδ activation, and neuronal loss. The PKCδ inhibition and neuroprotection mediated by GRe were comparable to those by the ROS inhibitor N-acetylcysteine, the mitochondrial protectant cyclosporin A, the microglial inhibitor minocycline, or the PKCδ inhibitor rottlerin. Consistently, the GRe-mediated PKCδ inhibition and neuroprotection were counteracted by the mitochondrial toxin 3-nitropropionic acid or the PKC activator bryostatin-1. GRe treatment did not have additional effects on PKCδ gene knockout-mediated neuroprotection, suggesting that PKCδ is a molecular target of GRe. Collectively, our results suggest that GRe-mediated anticonvulsive/neuroprotective effects require the attenuation of mitochondrial dysfunction and altered redox status and inactivation of PKCδ.
Collapse
Affiliation(s)
- Ngoc Kim Cuong Tran
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea.
| | - Ji Hoon Jeong
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea.
| | - Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Yen Nhi Doan Nguyen
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Hoang-Yen Phi Tran
- Physical Chemistry Department, University of Medicine and Pharmacy, Ho Chi Minh City, 760000, Viet Nam
| | - Duy-Khanh Dang
- Pharmacy Faculty, Can Tho University of Medicine and Pharmacy, Can Tho City, 900000, Viet Nam
| | - Jung Hoon Park
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Jae Kyung Byun
- Korea Society of Forest Environmental Research, Namyangju, 12106, Republic of Korea
| | - Dezhong Jin
- Department of Oriental Medical Food & Nutrition, Semyung University, Jecheon, 27316, Republic of Korea
| | - Zeng Xiaoyan
- Department of Oriental Medical Food & Nutrition, Semyung University, Jecheon, 27316, Republic of Korea
| | - Sung Kwon Ko
- Department of Oriental Medical Food & Nutrition, Semyung University, Jecheon, 27316, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea.
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea.
| |
Collapse
|
7
|
Shin EJ, Nguyen BT, Sharma N, Tran NKC, Nguyen YND, Hwang Y, Park JH, Nah SY, Ko SK, Byun JK, Lee Y, Kim DJ, Jeong JH, Kim HC. Ginsenoside Re mitigates memory impairments in aged GPx-1 KO mice by inhibiting the interplay between PAFR, NFκB, and microgliosis in the hippocampus. Food Chem Toxicol 2023; 173:113627. [PMID: 36682417 DOI: 10.1016/j.fct.2023.113627] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/04/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
Ginsenoside Re (GRe) upregulates anti-aging klotho by mainly upregulating glutathione peroxidase-1 (GPx-1). However, the anti-aging mechanism of GPx-1 remains elusive. Here we investigated whether the GRe-mediated upregulation of GPx-1 modulates oxidative and proinflammatory insults. GPx-1 gene depletion altered redox homeostasis and platelet-activating factor receptor (PAFR) and nuclear factor kappa B (NFκB) expression, whereas the genetic overexpression of GPx-1 or GRe mitigated this phenomenon in aged mice. Importantly, the NFκB inhibitor pyrrolidine dithiocarbamate (PDTC) did not affect PAFR expression, while PAFR inhibition (i.e., PAFR knockout or ginkgolide B) significantly attenuated NFκB nuclear translocation, suggesting that PAFR could be an upstream molecule for NFκB activation. Iba-1-labeled microgliosis was more underlined in aged GPx-1 KO than in aged WT mice. Triple-labeling immunocytochemistry showed that PAFR and NFκB immunoreactivities were co-localized in Iba-1-positive populations in aged mice, indicating that microglia released these proteins. GRe inhibited triple-labeled immunoreactivity. The microglial inhibitor minocycline attenuated aging-related reduction in phospho-ERK. The effect of minocycline was comparable with that of GRe. GRe, ginkgolide B, PDTC, or minocycline also attenuated aging-evoked memory impairments. Therefore, GRe ameliorated aging-associated memory impairments in the absence of GPx-1 by inactivating oxidative insult, PAFR, NFkB, and microgliosis.
Collapse
Affiliation(s)
- Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Bao Trong Nguyen
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Ngoc Kim Cuong Tran
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Yen Nhi Doan Nguyen
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Yeonggwang Hwang
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Jung Hoon Park
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, 05029, Republic of Korea
| | - Sung Kwon Ko
- Department of Oriental Medical Food & Nutrition, Semyung University, Jecheon, 27136, Republic of Korea
| | - Jae Kyung Byun
- Korea Society of Forest Environmental Research, Namyanju, 12106, Republic of Korea
| | - Yi Lee
- Department of Industrial Plant Science & Technology, Chungbuk National University, Chungju, 28644, Republic of Korea
| | - Dae-Joong Kim
- Department of Anatomy and Cell Biology, Medical School, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Ji Hoon Jeong
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea.
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea.
| |
Collapse
|
8
|
Yang J, Li H, Hao Z, Jing X, Zhao Y, Cheng X, Ma H, Wang J, Wang J. Mitigation Effects of Selenium Nanoparticles on Depression-Like Behavior Induced by Fluoride in Mice via the JAK2-STAT3 Pathway. ACS APPLIED MATERIALS & INTERFACES 2022; 14:3685-3700. [PMID: 35023338 DOI: 10.1021/acsami.1c18417] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Depression is a mental health problem with typically high levels of distress and dysfunction, and 150 mg/L fluoride (F) can induce depression-like behavior. The development of depression is correlated with neuronal atrophy, insufficient secretion of monoamine neurotransmitters, extreme deviations from the normal microglial activation status, and immune-inflammatory response. Studies found that Se supplementation was related to the improvement of depression. In this study, we applied selenium nanoparticles (SeNPs) for F-induced depression disease mitigation by regulating the histopathology, metabolic index, genes, and protein expression related to the JAK2-STAT3 signaling pathway in vivo. Results showed that F and 2 mg Se/kg BW/day SeNPs lowered the dopamine (DA) content (P < 0.05), altered the microglial morphology, ramification index as well as solidity, and triggered the microglial neuroinflammatory response by increasing the p-STAT3 nuclear translocation (P < 0.01). Furthermore, F reduced the cortical Se content and the number of surviving neurons (P < 0.05), increasing the protein expressions of p-JAK2/JAK2 and p-STAT3/STAT3 of the cortex (P < 0.01), accompanied by the depression-like behavior. Importantly, 1 mg Se/kg BW/day SeNPs alleviated the microglial ramification index as well as solidity changes and decreased the interleukin-1β secretion induced by F by suppressing the p-STAT3 nuclear translocation (P < 0.01). Likewise, 1 mg Se/kg BW/day SeNPs restored the F-disturbed dopamine and noradrenaline secretion, increased the number of cortical surviving neurons, and reduced the vacuolation area, ultimately suppressing the occurrence of depression-like behavior through inhibiting the JAK2-STAT3 pathway activation. In conclusion, 1 mg Se/kg BW/day SeNPs have mitigation effects on the F-induced depression-like behavior. The mechanism of how SeNPs repair neural functions will benefit depression mitigation. This study also indicates that inhibiting the JAK/STAT pathway can be a promising novel treatment for depressive disorders.
Collapse
Affiliation(s)
- Jiarong Yang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, P.R. China
- Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, P.R. China
| | - Haojie Li
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, P.R. China
- Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, P.R. China
| | - Zijun Hao
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, P.R. China
- Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, P.R. China
| | - Xiaoyuan Jing
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, Shanxi, P.R. China
| | - Yangfei Zhao
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, P.R. China
- Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, P.R. China
| | - Xiaofang Cheng
- Department of Basic Science, Shanxi Agricultural University, Taigu 030801, Shanxi, P.R. China
| | - Haili Ma
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, P.R. China
| | - Jundong Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, P.R. China
- Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, P.R. China
| | - Jinming Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, P.R. China
- Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, P.R. China
| |
Collapse
|
9
|
Tang JJ, Huang LF, Deng JL, Wang YM, Guo C, Peng XN, Liu Z, Gao JM. Cognitive enhancement and neuroprotective effects of OABL, a sesquiterpene lactone in 5xFAD Alzheimer's disease mice model. Redox Biol 2022; 50:102229. [PMID: 35026701 PMCID: PMC8760418 DOI: 10.1016/j.redox.2022.102229] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 12/30/2021] [Accepted: 01/05/2022] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease in which oxidative stress and neuroinflammation were demonstrated to be associated with neuronal loss and cognitive deficits. However, there are still no specific treatments that can prevent the progression of AD. In this study, a screening of anti-inflammatory hits from 4207 natural compounds of two different molecular libraries indicated 1,6-O,O-diacetylbritannilactone (OABL), a 1,10-seco-eudesmane sesquiterpene lactone isolated from the herb Inula britannica L., exhibited strong anti-inflammatory activity in vitro as well as favorable BBB penetration property. OABL reduced LPS-induced neuroinflammation in BV-2 microglial cells as assessed by effects on the levels of inflammatory mediators including NO, PGE2, TNF-α, iNOS, and COX-2, as well as the translocation of NF-κB. Besides, OABL also exhibited pronounced neuroprotective effects against oxytosis and ferroptosis in the rat pheochromocytoma PC12 cell line. For in vivo research, OABL (20 mg/kg B.W., i.p.) for 21 d attenuated the impairments in cognitive function observed in 6-month-old 5xFAD mice, as assessed with the Morris water maze test. OABL restored neuronal damage and postsynaptic density protein 95 (PSD95) expression in the hippocampus. OABL also significantly reduced the accumulation of amyloid plaques, the Aβ expression, the phosphorylation of Tau protein, and the expression of BACE1 in AD mice brain. In addition, OABL attenuated the overactivation of microglia and astrocytes by suppressing the expressions of inflammatory cytokines, and increased glutathione (GSH) and reduced malondialdehyde (MDA) and super oxide dismutase (SOD) levels in the 5xFAD mice brain. In conclusion, these results highlight the beneficial effects of the natural product OABL as a novel treatment with potential application for drug discovery in AD due to its pharmacological profile.
Collapse
Affiliation(s)
- Jiang-Jiang Tang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China.
| | - Lan-Fang Huang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Jia-Le Deng
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Yi-Meng Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Cong Guo
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Xiao-Na Peng
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, PR China.
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China.
| |
Collapse
|
10
|
Wang X, Li X, Zuo X, Liang Z, Ding T, Li K, Ma Y, Li P, Zhu Z, Ju C, Zhang Z, Song Z, Quan H, Zhang J, Hu X, Wang Z. Photobiomodulation inhibits the activation of neurotoxic microglia and astrocytes by inhibiting Lcn2/JAK2-STAT3 crosstalk after spinal cord injury in male rats. J Neuroinflammation 2021; 18:256. [PMID: 34740378 PMCID: PMC8571847 DOI: 10.1186/s12974-021-02312-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/29/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Neurotoxic microglia and astrocytes begin to activate and participate in pathological processes after spinal cord injury (SCI), subsequently causing severe secondary damage and affecting tissue repair. We have previously reported that photobiomodulation (PBM) can promote functional recovery by reducing neuroinflammation after SCI, but little is known about the underlying mechanism. Therefore, we aimed to investigate whether PBM ameliorates neuroinflammation by modulating the activation of microglia and astrocytes after SCI. METHODS Male Sprague-Dawley rats were randomly divided into three groups: a sham control group, an SCI + vehicle group and an SCI + PBM group. PBM was performed for two consecutive weeks after clip-compression SCI models were established. The activation of neurotoxic microglia and astrocytes, the level of tissue apoptosis, the number of motor neurons and the recovery of motor function were evaluated at different days post-injury (1, 3, 7, 14, and 28 days post-injury, dpi). Lipocalin 2 (Lcn2) and Janus kinase-2 (JAK2)-signal transducer and activator of transcription-3 (STAT3) signaling were regarded as potential targets by which PBM affected neurotoxic microglia and astrocytes. In in vitro experiments, primary microglia and astrocytes were irradiated with PBM and cotreated with cucurbitacin I (a JAK2-STAT3 pathway inhibitor), an adenovirus (shRNA-Lcn2) and recombinant Lcn2 protein. RESULTS PBM promoted the recovery of motor function, inhibited the activation of neurotoxic microglia and astrocytes, alleviated neuroinflammation and tissue apoptosis, and increased the number of neurons retained after SCI. The upregulation of Lcn2 and the activation of the JAK2-STAT3 pathway after SCI were suppressed by PBM. In vitro experiments also showed that Lcn2 and JAK2-STAT3 were mutually promoted and that PBM interfered with this interaction, inhibiting the activation of microglia and astrocytes. CONCLUSION Lcn2/JAK2-STAT3 crosstalk is involved in the activation of neurotoxic microglia and astrocytes after SCI, and this process can be suppressed by PBM.
Collapse
Affiliation(s)
- Xuankang Wang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Xin Li
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.,967 Hospital of People's Liberation Army Joint Logistic Support Force, Dalian, 116044, Liaoning, China
| | - Xiaoshuang Zuo
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Zhuowen Liang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Tan Ding
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Kun Li
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Yangguang Ma
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Penghui Li
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Zhijie Zhu
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Cheng Ju
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Zhihao Zhang
- 967 Hospital of People's Liberation Army Joint Logistic Support Force, Dalian, 116044, Liaoning, China
| | - Zhiwen Song
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Huilin Quan
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Jiawei Zhang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Xueyu Hu
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| | - Zhe Wang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
11
|
The role of mitochondria in cocaine addiction. Biochem J 2021; 478:749-764. [PMID: 33626141 DOI: 10.1042/bcj20200615] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 01/03/2023]
Abstract
The incidence of cocaine abuse is increasing especially in the U.K. where the rates are among the highest in Europe. In addition to its role as a psychostimulant, cocaine has profound effect on brain metabolism, impacting glycolysis and impairing oxidative phosphorylation. Cocaine exposure alters metabolic gene expression and protein networks in brain regions including the prefrontal cortex, the ventral tegmental area and the nucleus accumbens, the principal nuclei of the brain reward system. Here, we focus on how cocaine impacts mitochondrial function, in particular through alterations in electron transport chain function, reactive oxygen species (ROS) production and oxidative stress (OS), mitochondrial dynamics and mitophagy. Finally, we describe the impact of cocaine on brain energy metabolism in the developing brain following prenatal exposure. The plethora of mitochondrial functions altered following cocaine exposure suggest that therapies maintaining mitochondrial functional integrity may hold promise in mitigating cocaine pathology and addiction.
Collapse
|
12
|
Sharma N, Shin EJ, Pham DT, Sharma G, Dang DK, Duong CX, Kang SW, Nah SY, Jang CG, Lei XG, Nabeshima T, Bing G, Jeong JH, Kim HC. GPx-1-encoded adenoviral vector attenuates dopaminergic impairments induced by methamphetamine in GPx-1 knockout mice through modulation of NF-κB transcription factor. Food Chem Toxicol 2021; 154:112313. [PMID: 34082047 DOI: 10.1016/j.fct.2021.112313] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 01/10/2023]
Abstract
We suggested that selenium-dependent glutathione peroxidase (GPx) plays a protective role against methamphetamine (MA)-induced dopaminergic toxicity. We focused on GPx-1, a major selenium-dependent enzyme and constructed a GPx-1 gene-encoded adenoviral vector (Ad-GPx-1) to delineate the role of GPx-1 in MA-induced dopaminergic neurotoxicity. Exposure to Ad-GPx-1 significantly induced GPx activity and GPx-1 protein levels in GPx-1-knockout (GPx-1-KO) mice. MA-induced dopaminergic impairments [i.e., hyperthermia; increased nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) DNA-binding activity; and decreased dopamine levels, TH activity, and behavioral activity] were more pronounced in GPx-1-KO mice than in WT mice. In contrast, exposure to Ad-GPx-1 significantly attenuated MA-induced dopaminergic loss in GPx-1-KO mice. The protective effect exerted by Ad-GPx-1 was comparable to that exerted by pyrrolidine dithiocarbamate (PDTC), an NF-κB inhibitor against MA insult. Consistently, GPx-1 overexpression significantly attenuated MA dopaminergic toxicity in mice. PDTC did not significantly impact the protective effect of GPx-1 overexpression, suggesting that interaction between NF-κB and GPx-1 is critical for dopaminergic protection. Thus, NF-κB is a potential therapeutic target for GPx-1-mediated dopaminergic protective activity. This study for the first time demonstrated that Ad-GPx-1 rescued dopaminergic toxicity in vivo following MA insult. Furthermore, GPx-1-associated therapeutic interventions may be important against dopaminergic toxicity.
Collapse
Affiliation(s)
- Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, South Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, South Korea
| | - Duc Toan Pham
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, South Korea
| | - Garima Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, South Korea
| | - Duy-Khanh Dang
- Pharmacy Faculty, Can Tho University of Medicine and Pharmacy, Can Tho City, 900000, Viet Nam
| | - Chu Xuan Duong
- Pharmacy Faculty, Can Tho University of Medicine and Pharmacy, Can Tho City, 900000, Viet Nam
| | - Sang Won Kang
- Department of Life Science, College of Natural Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul, 05029, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, NY, 14853, USA
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Science, Toyoake, 470-1192, Japan
| | - Guoying Bing
- Anatomy and Neurobiology, University of Kentucky Medical Center, Medical Center MN208 800 Rose Strees, Lexington, KY, 40536, USA
| | - Ji Hoon Jeong
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea.
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, South Korea.
| |
Collapse
|
13
|
Sharma G, Shin EJ, Sharma N, Nah SY, Mai HN, Nguyen BT, Jeong JH, Lei XG, Kim HC. Glutathione peroxidase-1 and neuromodulation: Novel potentials of an old enzyme. Food Chem Toxicol 2021; 148:111945. [PMID: 33359022 DOI: 10.1016/j.fct.2020.111945] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 12/14/2022]
Abstract
Glutathione peroxidase (GPx) acts in co-ordination with other signaling molecules to exert its own antioxidant role. We have demonstrated the protective effects of GPx,/GPx-1, a selenium-dependent enzyme, on various neurodegenerative disorders (i.e., Parkinson's disease, Alzheimer's disease, cerebral ischemia, and convulsive disorders). In addition, we summarized the recent findings indicating that GPx-1 might play a role as a neuromodulator in neuropsychiatric conditions, such as, stress, bipolar disorder, schizophrenia, and drug intoxication. In this review, we attempted to highlight the mechanistic scenarios mediated by the GPx/GPx-1 gene in impacting these neurodegenerative and neuropsychiatric disorders, and hope to provide new insights on the therapeutic interventions against these disorders.
Collapse
Affiliation(s)
- Garima Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul, 05029, Republic of Korea
| | - Huynh Nhu Mai
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea; Pharmacy Faculty, Can Tho University of Medicine and Pharmacy, Can Tho City, 900000, Viet Nam
| | - Bao Trong Nguyen
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Ji Hoon Jeong
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, NY, 14853, USA
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea.
| |
Collapse
|
14
|
Mai HN, Pham DT, Chung YH, Sharma N, Cheong JH, Yun J, Nah SY, Jeong JH, Gen Lei X, Shin EJ, Nabeshima T, Kim HC. Glutathione peroxidase-1 knockout potentiates behavioral sensitization induced by cocaine in mice via σ-1 receptor-mediated ERK signaling: A comparison with the case of glutathione peroxidase-1 overexpressing transgenic mice. Brain Res Bull 2020; 164:107-120. [PMID: 32822804 DOI: 10.1016/j.brainresbull.2020.08.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 08/01/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023]
Abstract
We demonstrated that the gene of glutathione peroxidase-1 (GPx-1), a major antioxidant enzyme, is a potential protectant against the neurotoxicity and conditioned place preference induced by cocaine. Because the sigma (σ)-1 receptor is implicated in cocaine-induced drug dependence, we investigated whether the GPx-1 gene modulates the σ-1 receptor in the behavioral sensitization induced by cocaine. Cocaine-induced behavioral sensitization was more pronounced in GPx-1 knockout (KO) than wild-type (WT) mice and was less pronounced in GPx-1 overexpressing transgenic (GPx-1 TG) than non-TG mice. Cocaine treatment significantly enhanced the oxidative burden and reduced the GSH levels in the striatum of WT, GPx-1 KO, and non-TG mice but not in that of GPx-1 TG mice. In addition, cocaine significantly increased the nuclear translocation, its DNA binding activity of nuclear factor erythroid-2-related factor 2 (Nrf2) as well as the mRNA expression of γ-glutamylcysteine (GCL). The genetic depletion of GPx-1 inhibited the Nrf2-related glutathione system, whereas the genetic overexpression of GPx-1 activated this system against behavioral sensitization. BD1047, a σ-1 receptor antagonist, and U0126, an ERK inhibitor significantly induced the Nrf2-related antioxidant potential against behavioral sensitization. Unlike BD1047, U0126 did not affect the cocaine-induced σ-1 receptor immunoreactivity, suggesting that the σ-1 receptor is an upstream molecule for ERK signaling. Importantly, BD1047 and U0126 failed to affect the σ-1 receptor immunoreactivity and ERK phosphorylation induced by cocaine in GPx-1 TG mice. Our results suggest that GPx-1 is a critical mediator for the attenuation of cocaine-induced behavioral sensitization via modulating σ-1 receptor-mediated ERK activation by the induction of the Nrf2-related system.
Collapse
Affiliation(s)
- Huynh Nhu Mai
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea; Pharmacy Faculty, Can Tho University of Medicine and Pharmacy, Can Tho City, 900000, Viet Nam
| | - Duc Toan Pham
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Yoon Hee Chung
- Department of Anatomy, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Jae Hoon Cheong
- Department of Pharmacy, Sahmyook University, Seoul, 01795, Republic of Korea
| | - Jaesuk Yun
- College of Pharmacy, Chungbuk National University, Chungbuk, 28160, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul, 05029, Republic of Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, NY 14853, United States
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea.
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Science, Aichi, 470-1192, Japan
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea.
| |
Collapse
|
15
|
Shin EJ, Chung YH, Sharma N, Nguyen BT, Lee SH, Kang SW, Nah SY, Wie MB, Nabeshima T, Jeong JH, Kim HC. Glutathione Peroxidase-1 Knockout Facilitates Memory Impairment Induced by β-Amyloid (1-42) in Mice via Inhibition of PKC βII-Mediated ERK Signaling; Application with Glutathione Peroxidase-1 Gene-Encoded Adenovirus Vector. Neurochem Res 2020; 45:2991-3002. [PMID: 33064252 DOI: 10.1007/s11064-020-03147-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/16/2020] [Accepted: 10/07/2020] [Indexed: 12/20/2022]
Abstract
A growing body evidence suggests that selenium (Se) deficiency is associated with an increased risk of developing Alzheimer's disease (AD). Se-dependent glutathione peroxidase-1 (GPx-1) of a major antioxidant enzyme, and the most abundant isoform of GPx in the brain. In the present study, we investigated whether GPx-1 is protective against memory impairments induced by beta-amyloid (Aβ) (1-42) in mice. As the alteration of protein kinase C (PKC)-mediated ERK activation was recognized in the early stage of AD, we examined whether the GPx-1 gene modulates Aβ (1-42)-induced changes in PKC and ERK levels. We observed that Aβ (1-42) treatment (400 pmol, i.c.v.) significantly decreased PKC βII expression in the hippocampus of mice. Aβ (1-42)-induced neurotoxic changes [i.e., oxidative stress (i.e., reactive oxygen species, 4-hydroxy-2-noneal, and protein carbonyl), reduced PKC βII and phospho-ERK expressions, and memory impairment under Y-maze and passive avoidance test] were more pronounced in GPx-1 knockout than in wild type mice. Importantly, exposure to a GPx-1 gene-encoded adenovirus vector (Adv-GPx-1) significantly increased GPx-1 mRNA and GPx activity in the hippocampus of GPx-1 knockout mice. Adv-GPx-1 exposure also significantly blocked the neurotoxic changes induced by Aβ (1-42) in GPx-1 knockout mice. Treatment with ERK inhibitor U0126 did not significantly change Adv-GPx-1-mediated attenuation in PKC βII expression. In contrast, treatment with PKC inhibitor chelerythrine (CHE) reversed Adv-GPx-1-mediated attenuation in ERK phosphorylation, suggesting that PKC βII-mediated ERK signaling is important for Adv-GPx-1-mediated potentials against Aβ (1-42) insult. Our results suggest that treatment with the antioxidant gene GPx-1 rescues Aβ (1-42)-induced memory impairment via activating PKC βII-mediated ERK signaling.
Collapse
Affiliation(s)
- Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Yoon Hee Chung
- Department of Anatomy, College of Medicine, Chung-Ang University, Seoul, Seoul, 06974, Republic of Korea
| | - Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea.,Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Bao Trong Nguyen
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Sung Hoon Lee
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sang Won Kang
- Department of Life Science, College of Natural Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul, 05029, Republic of Korea
| | - Myung Bok Wie
- Department of Veterinary Toxicology, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, 24341, Korea
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Sciences, Aichi, 470-1192, Japan
| | - Ji Hoon Jeong
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea.
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea.
| |
Collapse
|
16
|
Pavlek LR, Dillard J, Rogers LK. The role of oxidative stress in toxicities due to drugs of abuse. CURRENT OPINION IN TOXICOLOGY 2020. [DOI: 10.1016/j.cotox.2020.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Pham DT, Chung YH, Mai HN, Sharma N, Yun J, Kim HJ, Cheong JH, Jeong JH, Kim DJ, Shin EJ, Kim HC. Glutathione peroxidase-1 gene rescues cocaine-induced conditioned place preference in mice by inhibiting σ-1 receptor expression. Clin Exp Pharmacol Physiol 2019; 46:791-797. [PMID: 31332816 DOI: 10.1111/1440-1681.13140] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/26/2019] [Accepted: 07/15/2019] [Indexed: 12/29/2022]
Abstract
The aim of this study was to investigate whether the glutathione peroxidase-1 gene (GPx-1) affects cocaine-induced conditioned place preference (CPP) using a mouse model. Cocaine-induced CPP was accompanied by an increase in the level of σ-1 receptor in the nucleus accumbens (NAc). This phenomenon was more pronounced in the GPx-1 gene knockout (GPx-1 KO) than in wild type (WT) mice. In contrast, the CPP and expression of σ-1 receptor were much less pronounced in GPx-1-overexpressing transgenic (GPx-1 TG) mice than non-transgenic (non-TG) mice. Treatment of the mice with BD1047, a σ-1 receptor antagonist, significantly attenuated both cocaine-induced CPP and c-Fos-immunoreactivity (c-Fos-IR) in WT and GPx-1 KO mice, although the effects were more evident in the latter group. Despite the protective effects of BD1047 on cocaine-induced CPP and c-Fos in non-TG mice, there were no additional protective effects in cocaine-treated GPx-1 TG mice, indicating that the σ-1 receptor is a critical target for GPx-1-mediated psychoprotective activity. Overall, our results suggest that GPx-1 attenuates cocaine-induced CPP via inhibition of σ-1 receptor expression.
Collapse
Affiliation(s)
- Duc Toan Pham
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, Korea
| | - Yoon Hee Chung
- Department of Anatomy, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Huynh Nhu Mai
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, Korea
| | - Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, Korea
| | - Jaesuk Yun
- College of Pharmacy, Chungbuk National University, Chungbuk, Korea
| | - Hee Jin Kim
- Department of Pharmacy, Sahmyook University, Seoul, Korea
| | | | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Dae-Joong Kim
- Department of Anatomy and Cell Biology, Medical School, Kangwon National University, Chunchon, Korea
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, Korea
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, Korea
| |
Collapse
|
18
|
Protein kinase Cδ mediates methamphetamine-induced dopaminergic neurotoxicity in mice via activation of microsomal epoxide hydrolase. Food Chem Toxicol 2019; 133:110761. [PMID: 31422080 DOI: 10.1016/j.fct.2019.110761] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 08/09/2019] [Accepted: 08/13/2019] [Indexed: 12/17/2022]
Abstract
We previously demonstrated that activation of protein kinase Cδ (PKCδ) is critical for methamphetamine (MA)-induced dopaminergic toxicity. It was recognized that microsomal epoxide hydrolase (mEH) also induces dopaminergic neurotoxicity. It was demonstrated that inhibition of PKC modulates the expression of mEH. We investigated whether MA-induced PKCδ activation requires mEH induction in mice. MA treatment (8 mg/kg, i.p., × 4; 2 h interval) significantly enhanced the level of phosphorylated PKCδ in the striatum of wild type (WT) mice. Subsequently, treatment with MA resulted in significant increases in the expression of cleaved PKCδ and mEH. Treatment with MA resulted in enhanced interaction between PKCδ and mEH. PKCδ knockout mice exhibited significant attenuation of the enhanced mEH expression induced by MA. MA-induced hyperthermia, oxidative stress, proapoptotic potentials, and dopaminergic impairments were attenuated by PKCδ knockout or mEH knockout in mice. However, treating mEH knockout in mice with PKCδ inhibitor, rottlerin did not show any additive beneficial effects, indicating that mEH is a critical mediator of neurotoxic potential of PKCδ. Our results suggest that MA-induced PKCδ activation requires mEH induction as a downstream signaling pathway and that the modulation of the PKCδ and mEH interaction is important for the pharmacological intervention against MA-induced dopaminergic neurotoxicity.
Collapse
|
19
|
Gan F, Zhou X, Zhou Y, Hou L, Chen X, Pan C, Huang K. Nephrotoxicity instead of immunotoxicity of OTA is induced through DNMT1-dependent activation of JAK2/STAT3 signaling pathway by targeting SOCS3. Arch Toxicol 2019; 93:1067-1082. [PMID: 30923867 DOI: 10.1007/s00204-019-02434-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/14/2019] [Indexed: 02/06/2023]
Abstract
Ochratoxin A (OTA) is reported to induce nephrotoxicity and immunotoxicity in animals and humans. However, the underlying mechanism and the effects of OTA on DNA damage have not been reported until now. The present study aims to investigate OTA-induced cytotoxicity and DNA damage and the underlying mechanism in PK15 cells and PAMs. The results showed that OTA at 2.0-8.0 µg/mL for 24 h induced cytotoxicity and DNA damage in PK15 cells and PAMs as demonstrated by decreasing cell viabilities and mRNA levels of DNA repair genes (OGG1, NEIL1 and NEIL3), increasing LDH release, Annexin V staining cells, apoptotic nuclei and the accumulation of γ-H2AX foci. OTA at 2.0-8.0 µg/mL increased DNMT1 and SOCS3 mRNA expressions about 2-4 fold in PK15 cells or 1.3-2 fold in PAMs. OTA at 2.0-8.0 µg/mL increased DNMT1, SOCS3, JAK2 and STAT3 protein expressions in PK15 cells or PAMs. DNMT inhibitor (5-Aza-2-dc), promoted SOCS3 expression, inhibited JAK2 and STAT3 expression, alleviated cytotoxicity, apoptosis and DNA damage induced by OTA at 4.0 µg/mL in PK15 cells. While, in PAMs, 5-Aza-2-dc had no effects on SOCS3 expression induced by OTA at 4.0 µg/mL, but inhibited JAK2 and STAT3 expression, and alleviated cytotoxicity, apoptosis and DNA damage induced by OTA. JAK inhibitor (AG490) or STAT3-siRNA alleviated OTA-induced cytotoxicity and DNA damage in PK15 cells or PAMs. Taken together, nephrotoxicity instead of immunotoxicity of OTA is induced by targeting SOCS3 through DNMT1-mediated JAK2/STAT3 signaling pathway. These results provide a scientific and new explanation of the underlying mechanism of OTA-induced nephrotoxicity and immunotoxicity.
Collapse
Affiliation(s)
- Fang Gan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Xuan Zhou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Yajiao Zhou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Lili Hou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Xingxiang Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Cuiling Pan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.
| |
Collapse
|