1
|
Shen J, Wang X, Yang C, Ren G, Wang L, Piao S, Zhang B, Sun W, Ge X, Jing J, Xiang Y, He Z, Wang L, Yao B, Liu Z. Development and evaluation of a microfluidic human testicular tissue chip: a novel in vitro platform for reproductive biology and pharmacology studies. LAB ON A CHIP 2025; 25:577-589. [PMID: 39820994 DOI: 10.1039/d4lc00780h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Organ-on-a-chip culture systems using human organ tissues provide invaluable preclinical insights into systemic functions in vitro. This study aimed to develop a novel human testicular tissue chip within a microfluidic device employing computer-aided design software and photolithography technology. Polydimethylsiloxane was used as the primary material to ensure marked gas permeability and no biotoxicity, enabling effective mimicry of the in vivo testicular microenvironment. This biochip preserved the structural integrity and cellular composition of human testicular tissue, as well as part of its functionality, over an extended period in vitro. Moreover, compared to traditional static culture methods, it more effectively maintained tissue viability and endocrine function. The chip maintained cellular components, histological morphology, and an ultrastructure similar to those in vivo. Notably, the addition of gonadotropins to the human testis tissue on the chip resulted in consistent and steady in vitro production of testosterone and inhibin B. Additionally, the chip displayed sensitivity to the reproductive toxicity of the chemotherapeutic drug busulfan. The results demonstrate the successful establishment of a novel human testicular tissue chip culture system, providing a novel in vitro approach enabling the exploration of human reproductive biology, reproductive pharmacology, toxicology, individual diagnosis, and treatment strategies.
Collapse
Affiliation(s)
- Jiaming Shen
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China.
| | - Xinlong Wang
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China.
| | - Chenghua Yang
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China.
| | - Guanyu Ren
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China.
| | - Lei Wang
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China.
| | - Shuguang Piao
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China.
| | - Boyang Zhang
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China.
| | - Weihao Sun
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China.
| | - Xie Ge
- Department of Reproductive Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jun Jing
- Department of Reproductive Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yijian Xiang
- Department of Reproductive Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhaowanyue He
- Department of Reproductive Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Linhui Wang
- Department of Reproductive Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Bing Yao
- Department of Reproductive Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhiyong Liu
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
2
|
Li J, Huang X, Luo L, Sun J, Guo Q, Yang X, Zhang C, Ni B. The role of p53 in male infertility. Front Endocrinol (Lausanne) 2024; 15:1457985. [PMID: 39469578 PMCID: PMC11513281 DOI: 10.3389/fendo.2024.1457985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/27/2024] [Indexed: 10/30/2024] Open
Abstract
The tumor suppressor p53 is a transcription factor involved in a variety of crucial cellular functions, including cell cycle arrest, DNA repair and apoptosis. Still, a growing number of studies indicate that p53 plays multiple roles in spermatogenesis, as well as in the occurrence and development of male infertility. The representative functions of p53 in spermatogenesis include the proliferation of spermatogonial stem cells (SSCs), spermatogonial differentiation, spontaneous apoptosis, and DNA damage repair. p53 is involved in various male infertility-related diseases. Innovative therapeutic strategies targeting p53 have emerged in recent years. This review focuses on the role of p53 in spermatogenesis and male infertility and analyses the possible underlying mechanism involved. All these conclusions may provide a new perspective on drug intervention targeting p53 for male infertility treatment.
Collapse
Affiliation(s)
- Jing Li
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xia Huang
- Department of Human Resource, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lei Luo
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jialin Sun
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qie Guo
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xue Yang
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chuanzhou Zhang
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Beibei Ni
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
3
|
Ren JJ, Yuan XW, Meng ZL, Cao NH, Xu YN, Kim NH, Li YH. Diosmetin Promotes Early Embryonic Development in Pigs by Alleviating Oxidative Stress. Mol Reprod Dev 2024; 91:e23775. [PMID: 39350355 DOI: 10.1002/mrd.23775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/06/2024] [Accepted: 09/19/2024] [Indexed: 12/18/2024]
Abstract
Diosmetin (DIOS), a natural flavonoid monomer derived from lemons and present in various plants such as spearmint and spider moss, exhibits antioxidant, anti-inflammatory, and antiaging properties. Nonetheless, its impact on early embryonic development in pigs remains unexplored. This study aimed to determine the influence of DIOS supplementation in an in vitro culture (IVC) medium on porcine embryo development and to elucidate the underlying mechanisms. Findings revealed that embryos cultured in IVC medium with 0.1 μM DIOS demonstrated an increased blastocyst formation rate, higher total cell number, reduced LC3B and CASPASE3 levels, elevated Nrf2 levels, decreased ROS, and enhanced GSH and mitochondrial membrane potential at the 4-cell embryonic stage. Additionally, the expression of proapoptotic genes (CAS3, CAS8, and BAX) and autophagy-related genes (BECLIN1, ATG5, LC3B, and P62) was downregulated, whereas the expression of embryonic development-related genes (CDK1 and CDK2), antioxidant-related genes (SOD1 and SOD2), and mitochondrial biogenesis-related genes (NRF2) was upregulated. These findings suggest that DIOS promotes early embryonic development in pigs by mitigating oxidative stress and enhancing mitochondrial function, thereby reducing autophagy and apoptosis levels.
Collapse
Affiliation(s)
- Jia-Jun Ren
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, South China Institute of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, China
| | - Xiu-Wen Yuan
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, South China Institute of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, China
| | - Zi-Long Meng
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, South China Institute of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, China
| | - Neng-Hao Cao
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, South China Institute of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, China
| | - Yong-Nan Xu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, South China Institute of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, China
| | - Nam-Hyung Kim
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, South China Institute of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, China
| | - Ying-Hua Li
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, South China Institute of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, China
| |
Collapse
|
4
|
Navid S, Saadatian Z, Talebi A, Toolee H, Seyedi S. The effect of biological mechanisms of melatonin on the proliferation of spermatogonial stem cells: a systematic review. Anat Cell Biol 2024; 57:163-171. [PMID: 38590095 PMCID: PMC11184433 DOI: 10.5115/acb.23.256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/02/2024] [Accepted: 02/14/2024] [Indexed: 04/10/2024] Open
Abstract
In the last decade, melatonin has gained recognition as a potent scavenger and an effective antioxidant capable of neutralizing free radicals, including reactive oxygen species. Additionally, it exhibits anti-apoptotic properties. In this review, we will examine a compilation of articles that explore the cellular signaling function of melatonin on spermatogonial stem cells (SSCs) and adjacent cells such as Sertoli and Leydig cells. These cells play a crucial role in the proliferation of SSCs both in vitro and in vivo. In this review, we analyze the function of melatonin in the proliferation of SSCs from other aspects. For this purpose, we examine the articles based on the presence of melatonin on SSCs in four groups: As a supplement in SSCs medium culture, SSCs three-dimensional culture system, SSCs freezing medium, and as a therapeutic factor in vivo. Mechanisms of growth and proliferation of SSCs were considered. The purpose of this study is to investigate the potential effects of melatonin as a powerful antioxidant or growth stimulant for SSCs, both in vivo and in vitro.
Collapse
Affiliation(s)
- Shadan Navid
- Department of Anatomy, Faculty of Medicine, Social Determinants of Health Research Center, Gonabad University of Medical Science, Gonabad, Iran
| | - Zahra Saadatian
- Department of Anatomy, Faculty of Medicine, Social Determinants of Health Research Center, Gonabad University of Medical Science, Gonabad, Iran
| | - Ali Talebi
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Sexual Health and Fertility Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Heidar Toolee
- Department of Anatomy, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Saba Seyedi
- Department of Medical Laboratory Sciences, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
5
|
Cao C, Zhang H, He Z, Zhang K, Qian Z, Shen J, Zheng L, Xue M, Sun S, Li C, Zhao W, Jing J, Ma R, Ge X, Yao B. Octanoic acid mitigates busulfan-induced blood-testis barrier damage by alleviating oxidative stress and autophagy. Lipids Health Dis 2024; 23:180. [PMID: 38862993 PMCID: PMC11165768 DOI: 10.1186/s12944-024-02157-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/21/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND The management of male infertility continues to encounter an array of challenges and constraints, necessitating an in-depth exploration of novel therapeutic targets to enhance its efficacy. As an eight-carbon medium-chain fatty acid, octanoic acid (OCA) shows promise for improving health, yet its impact on spermatogenesis remains inadequately researched. METHODS Mass spectrometry was performed to determine the fatty acid content and screen for a pivotal lipid component in the serum of patients with severe spermatogenesis disorders. The sperm quality was examined, and histopathological analysis and biotin tracer tests were performed to assess spermatogenesis function and the integrity of the blood-testis barrier (BTB) in vivo. Cell-based in vitro experiments were carried out to investigate the effects of OCA administration on Sertoli cell dysfunction. This research aimed to elucidate the mechanism by which OCA may influence the function of Sertoli cells. RESULTS A pronounced reduction in OCA content was observed in the serum of patients with severe spermatogenesis disorders, indicating that OCA deficiency is related to spermatogenic disorders. The protective effect of OCA on reproduction was tested in a mouse model of spermatogenic disorder induced by busulfan at a dose 30 mg/kg body weight (BW). The mice in the study were separated into distinct groups and administered varying amounts of OCA, specifically at doses of 32, 64, 128, and 256 mg/kg BW. After evaluating sperm parameters, the most effective dose was determined to be 32 mg/kg BW. In vivo experiments showed that treatment with OCA significantly improved sperm quality, testicular histopathology and BTB integrity, which were damaged by busulfan. Moreover, OCA intervention reduced busulfan-induced oxidative stress and autophagy in mouse testes. In vitro, OCA pretreatment (100 µM) significantly ameliorated Sertoli cell dysfunction by alleviating busulfan (800 µM)-induced oxidative stress and autophagy. Moreover, rapamycin (5 µM)-induced autophagy led to Sertoli cell barrier dysfunction, while OCA administration exerted a protective effect by alleviating autophagy. CONCLUSIONS This study demonstrated that OCA administration suppressed oxidative stress and autophagy to alleviate busulfan-induced BTB damage. These findings provide a deeper understanding of the toxicology of busulfan and a promising avenue for the development of novel OCA-based therapies for male infertility.
Collapse
Affiliation(s)
- Chun Cao
- Department of Reproductive Medicine, Affiliated Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, 305 Zhongshan East Road, Nanjing, 210002, China
| | - Hong Zhang
- Center of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China
| | - Zhaowanyue He
- Center of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China
| | - Kemei Zhang
- Reproductive Medical Center, Jinling Hospital Department, Nanjing Medical University, Nanjing, 210002, Jiangsu, China
| | - Zhang Qian
- Center of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China
| | - Jiaming Shen
- Center of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China
| | - Lu Zheng
- Center of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China
| | - Mengqi Xue
- Reproductive Medical Center, Jinling Hospital Department, Nanjing Medical University, Nanjing, 210002, Jiangsu, China
| | - Shanshan Sun
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Chuwei Li
- Center of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China
| | - Wei Zhao
- Center of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China
| | - Jun Jing
- Reproductive Medical Center, Jinling Hospital Department, Nanjing Medical University, Nanjing, 210002, Jiangsu, China
| | - Rujun Ma
- Department of Reproductive Medicine, Affiliated Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, 305 Zhongshan East Road, Nanjing, 210002, China
- Center of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China
| | - Xie Ge
- Department of Reproductive Medicine, Affiliated Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, 305 Zhongshan East Road, Nanjing, 210002, China.
- Center of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China.
| | - Bing Yao
- Department of Reproductive Medicine, Affiliated Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, 305 Zhongshan East Road, Nanjing, 210002, China.
- Center of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China.
- Reproductive Medical Center, Jinling Hospital Department, Nanjing Medical University, Nanjing, 210002, Jiangsu, China.
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China.
| |
Collapse
|
6
|
Askar EM, Abdelmegid AM, Elshal LM, Shaheen MA. Effect of platelet rich plasma versus melatonin on testicular injury induced by Busulfan in adult albino rats: a histological and immunohistochemical study. Ultrastruct Pathol 2024; 48:192-212. [PMID: 38420954 DOI: 10.1080/01913123.2024.2322567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
This study was done to estimate the testicular histological alterations induced by Busulfan (BUS) and compare the possible protective effects of melatonin (MT) and platelet rich plasma (PRP) in a rat model. Sixty-four male rats were dispersed into: control group, BUS group, melatonin group, and PRP group. Blood samples were processed for biochemical analysis. Tissue specimens were managed for light and electron microscopic studies. Immunohistochemical expression of vimentin and proliferating cell nuclear antigen (PCNA) was performed. Busulfan induced severe testicular damage in all studied methodologies. It showed a statistically significant decrease in serum testosterone and elevation of MDA when compared to the control group. Abnormal testicular cytostructures suggesting defective spermatogenesis were observed: distorted seminiferous tubules, deformed spermatogenic cells, low germinal epithelium height, few mature spermatozoa, and also deformed barrier. Vimentin and PCNA expressions were reduced. Ultrastructurally, Sertoli cells and the blood testis barrier were deformed, spermatogenic cells were affected, and mature spermatozoa were few and showed abnormal structure. Both melatonin and PRP induced improvement in all the previous parameters and restoration of spermatogenesis as confirmed by improvement of Johnsen's score from 2.6 ± .74 to 7.6 ± .92. In conclusion, melatonin and PRP have equal potential to ameliorate the testicular toxicity of BUS. Melatonin can provide a better noninvasive way to combat BUS induced testicular injury.
Collapse
Affiliation(s)
- Eman M Askar
- Medical Histology and Cell Biology Department, Faculty of Medicine, Zagazig university, Zagazig, Egypt
| | - Amira M Abdelmegid
- Medical Histology and Cell Biology Department, Faculty of Medicine, Zagazig university, Zagazig, Egypt
| | | | - Mohamed A Shaheen
- Medical Histology and Cell Biology Department, Faculty of Medicine, Zagazig university, Zagazig, Egypt
| |
Collapse
|
7
|
Cheng J, Xu J, Gu Y, Wang Y, Wang J, Sun F. Melatonin ameliorates 10-hydroxycamptothecin-induced oxidative stress and apoptosis via autophagy-regulated p62/Keap1/Nrf2 pathway in mouse testicular cells. J Pineal Res 2024; 76:e12959. [PMID: 38738543 DOI: 10.1111/jpi.12959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/27/2024] [Accepted: 04/30/2024] [Indexed: 05/14/2024]
Abstract
10-Hydroxycamptothecin (HCPT) is a widely used clinical anticancer drug but has a significant side effect profile. Melatonin has a beneficial impact on the chemotherapy of different cancer cells and reproductive processes, but the effect and underlying molecular mechanism of melatonin's involvement in the HCPT-induced side effects in cells, especially in the testicular cells, are poorly understood. In this study, we found that melatonin therapy significantly restored HCPT-induced testicular cell damage and did not affect the antitumor effect of HCPT. Further analysis found that melatonin therapy suppressed HCPT-induced DNA damage associated with ataxia-telangiectasia mutated- and Rad3-related and CHK1 phosphorylation levels in the testis. Changes in apoptosis-associated protein levels (Bax, Bcl-2, p53, and Cleaved caspase-3) and in reactive oxygen species-associated proteins (Nrf2 and Keap1) and index (malondialdehyde and glutathione) suggested that melatonin treatment relieved HCPT-induced cell apoptosis and oxidative damage, respectively. Mechanistically, melatonin-activated autophagy proteins (ATG7, Beclin1, and LC3bII/I) may induce p62-dependent autophagy to degrade Keap1, eliciting Nrf2 from Keap1-Nrf2 interaction to promote antioxidant enzyme expression such as HO-1, which would salvage HCPT-induced ROS production and mitochondrial dysfunction. Collectively, this study reveals that melatonin therapy may protect testicular cells from HCPT-induced damage via the activation of autophagy, which alleviates oxidative stress, mitochondrial dysfunction, and cell apoptosis.
Collapse
Affiliation(s)
- Jinmei Cheng
- School of Medicine, Institute of Reproductive Medicine, Nantong University, Nantong, China
| | - Junjie Xu
- School of Medicine, Institute of Reproductive Medicine, Nantong University, Nantong, China
- Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yimin Gu
- School of Medicine, Institute of Reproductive Medicine, Nantong University, Nantong, China
| | - Yueming Wang
- School of Medicine, Institute of Reproductive Medicine, Nantong University, Nantong, China
| | - Jianyu Wang
- School of Medicine, Institute of Reproductive Medicine, Nantong University, Nantong, China
| | - Fei Sun
- School of Medicine, Institute of Reproductive Medicine, Nantong University, Nantong, China
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
8
|
Anisimov VN, Golubev AG. Melatonin and carcinogenesis in mice: the 50th anniversary of relationships. Oncotarget 2023; 14:972-976. [PMID: 38085132 PMCID: PMC10715041 DOI: 10.18632/oncotarget.28537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
The history of studies of melatonin effects on cancer in mice is outlined, the main lesson being that the systemic in vivo effects of melatonin on animals may overwhelm the in vitro effects found using tissue explants or cell cultures. In particular, the timing of melatonin administration is of crucial importance for using the drug, which is freely available over counter and thus needs no licensing for its applications in oncology.
Collapse
Affiliation(s)
- Vladimir N. Anisimov
- Department of Carcinogenesis and Oncogerontology, N.N. Petrov National Medical Research Center of Oncology, Saint Petersburg 197758, Russia
- The authors contributed equally to this work
| | - Alexey G. Golubev
- Department of Carcinogenesis and Oncogerontology, N.N. Petrov National Medical Research Center of Oncology, Saint Petersburg 197758, Russia
- The authors contributed equally to this work
| |
Collapse
|
9
|
Wei R, Zhang X, Li X, Wen J, Liu H, Fu J, Li L, Zhang W, Liu Z, Yang Y, Zou K. A rapid and stable spontaneous reprogramming system of Spermatogonial stem cells to Pluripotent State. Cell Biosci 2023; 13:222. [PMID: 38041111 PMCID: PMC10693117 DOI: 10.1186/s13578-023-01150-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/20/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND The scarcity of pluripotent stem cells poses a major challenge to the clinical application, given ethical and biosafety considerations. While germline stem cells commit to gamete differentiation throughout life, studies demonstrated the spontaneous acquisition of pluripotency by spermatogonial stem cells (SSCs) from neonatal testes at a low frequency (1 in 1.5 × 107). Notably, this process occurs without exogenous oncogenes or chemical supplementation. However, while knockout of the p53 gene accelerates the transformation of SSCs, it also increases risk and hampers their clinical use. RESULTS We report a transformation system that efficiently and stably convert SSCs into pluripotent stem cells around 10 passages with the morphology similar to that of epiblast stem cells, which convert to embryonic stem (ES) cell-like colonies after change with ES medium. Epidermal growth factor (EGF), leukemia inhibitory factor (LIF) and fresh mouse embryonic fibroblast feeder (MEF) are essential for transformation, and addition of 2i (CHIR99021 and PD0325901) further enhanced the pluripotency. Transcriptome analysis revealed that EGF activated the RAS signaling pathway and inhibited p38 to initiate transformation, and synergically cooperated with LIF to promote the transformation. CONCLUSION This system established an efficient and safe resource of pluripotent cells from autologous germline, and provide new avenues for regenerative medicine and animal cloning.
Collapse
Affiliation(s)
- Rui Wei
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoyu Zhang
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoxiao Li
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jian Wen
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hongyang Liu
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiqiang Fu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, China
| | - Li Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, China
| | - Wenyi Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Zhen Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, China
| | - Yang Yang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Kang Zou
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
- Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
10
|
Dehdari Ebrahimi N, Sadeghi A, Shojaei-Zarghani S, Shahlaee MA, Taherifard E, Rahimian Z, Eghlidos Z, Azarpira N, Safarpour AR. Protective effects of exogenous melatonin therapy against oxidative stress to male reproductive tissue caused by anti-cancer chemical and radiation therapy: a systematic review and meta-analysis of animal studies. Front Endocrinol (Lausanne) 2023; 14:1184745. [PMID: 37701901 PMCID: PMC10494246 DOI: 10.3389/fendo.2023.1184745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 08/10/2023] [Indexed: 09/14/2023] Open
Abstract
Background Male testicular dysfunction is a considerable complication of anti-cancer therapies, including chemotherapy and radiotherapy, partly due to the increased oxidative stress caused by these treatments. Melatonin is an effective antioxidant agent that protects testicles against physical and toxic chemical stressors in animal models. This study aims to systematically review the melatonin's protective effects against anti-cancer stressors on rodential testicular tissue. Materials and Method An extensive search was conducted in Web of Science, Scopus, and PubMed for animal studies investigating exogenous melatonin's protective effects on rodent testicles exposed to anti-cancer chemicals and radiotherapeutic agents. Using the DerSimonian and Laird random-effect model, standardized mean differences and 95% confidence intervals were estimated from the pooled data. The protocol was prospectively registered in the International Prospective Register of Systematic Reviews (PROSPERO: CRD42022355293). Results The meta-analysis included 38 studies from 43 studies that were eligible for the review. Rats and mice were exposed to radiotherapy (ionizing radiations such as gamma- and roentgen radiation and radioactive iodine) or chemotherapy (methotrexate, paclitaxel, busulfan, cisplatin, doxorubicin, vinblastine, bleomycin, cyclophosphamide, etoposide, Taxol, procarbazine, docetaxel, and chlorambucil). According to our meta-analysis, all outcomes were significantly improved by melatonin therapy, including sperm quantity and quality (count, motility, viability, normal morphology, number of spermatogonia, Johnsen's testicular biopsy score, seminiferous tubular diameter, and seminiferous epithelial height), serum level of reproductive hormones (Follicle-Stimulating Hormone and testosterone), tissue markers of oxidative stress (testicular tissue malondialdehyde, superoxide dismutase, glutathione peroxidase, catalase, glutathione, caspase-3, and total antioxidant capacity), and weight-related characteristics (absolute body, epididymis, testis, and relative testis to body weights). Most SYRCLE domains exhibited a high risk of bias in the included studies. Also, significant heterogeneity and small-study effects were detected. Conclusion In male rodents, melatonin therapy was related to improved testicular histopathology, reproductive hormones, testis and body weights, and reduced levels of oxidative markers in testicular tissues of male rodents. Future meticulous studies are recommended to provide a robust scientific backbone for human applications. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022355293, identifier CRD42022355293.
Collapse
Affiliation(s)
| | - Alireza Sadeghi
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Shojaei-Zarghani
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Colorectal Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Erfan Taherifard
- MPH Department, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Rahimian
- Department of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Eghlidos
- Department of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Reza Safarpour
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
11
|
Ye M, Shan Y, Lu B, Luo H, Li B, Zhang Y, Wang Z, Guo Y, Ouyang L, Gu J, Xiong Z, Zhang T. Creating a semi-opened micro-cavity ovary through sacrificial microspheres as an in vitro model for discovering the potential effect of ovarian toxic agents. Bioact Mater 2023; 26:216-230. [PMID: 36936809 PMCID: PMC10017366 DOI: 10.1016/j.bioactmat.2023.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/26/2023] [Accepted: 02/26/2023] [Indexed: 03/09/2023] Open
Abstract
The bio-engineered ovary is an essential technology for treating female infertility. Especially the development of relevant in vitro models could be a critical step in a drug study. Herein, we develop a semi-opened culturing system (SOCS) strategy that maintains a 3D structure of follicles during the culture. Based on the SOCS, we further developed micro-cavity ovary (MCO) with mouse follicles by the microsphere-templated technique, where sacrificial gelatin microspheres were mixed with photo-crosslinkable gelatin methacryloyl (GelMA) to engineer a micro-cavity niche for follicle growth. The semi-opened MCO could support the follicle growing to the antral stage, secreting hormones, and ovulating cumulus-oocyte complex out of the MCO without extra manipulation. The MCO-ovulated oocyte exhibits a highly similar transcriptome to the in vivo counterpart (correlation of 0.97) and can be fertilized. Moreover, we found that a high ROS level could affect the cumulus expansion, which may result in anovulation disorder. The damage could be rescued by melatonin, but the end of cumulus expansion was 3h earlier than anticipation, validating that MCO has the potential for investigating ovarian toxic agents in vitro. We provide a novel approach for building an in vitro ovarian model to recapitulate ovarian functions and test chemical toxicity, suggesting it has the potential for clinical research in the future.
Collapse
Affiliation(s)
- Min Ye
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, China
- Biomanufacturing and Engineering Living Systems, Innovation International Talents Base (111 Base), Beijing, 100084, China
| | - Yiran Shan
- MOE Key Laboratory of Bioinformatics, BNRIST Bioinformatics Division, Department of Automation, Tsinghua University, Beijing, 100084, China
| | - Bingchuan Lu
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, China
- Biomanufacturing and Engineering Living Systems, Innovation International Talents Base (111 Base), Beijing, 100084, China
| | - Hao Luo
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, China
- Biomanufacturing and Engineering Living Systems, Innovation International Talents Base (111 Base), Beijing, 100084, China
| | - Binhan Li
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, China
- Biomanufacturing and Engineering Living Systems, Innovation International Talents Base (111 Base), Beijing, 100084, China
| | - Yanmei Zhang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, China
- Biomanufacturing and Engineering Living Systems, Innovation International Talents Base (111 Base), Beijing, 100084, China
| | - Zixuan Wang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, China
- Biomanufacturing and Engineering Living Systems, Innovation International Talents Base (111 Base), Beijing, 100084, China
| | - Yuzhi Guo
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, China
- Biomanufacturing and Engineering Living Systems, Innovation International Talents Base (111 Base), Beijing, 100084, China
| | - Liliang Ouyang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, China
- Biomanufacturing and Engineering Living Systems, Innovation International Talents Base (111 Base), Beijing, 100084, China
| | - Jin Gu
- MOE Key Laboratory of Bioinformatics, BNRIST Bioinformatics Division, Department of Automation, Tsinghua University, Beijing, 100084, China
| | - Zhuo Xiong
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, China
- Biomanufacturing and Engineering Living Systems, Innovation International Talents Base (111 Base), Beijing, 100084, China
- Corresponding author. Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China.
| | - Ting Zhang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, China
- Biomanufacturing and Engineering Living Systems, Innovation International Talents Base (111 Base), Beijing, 100084, China
- Corresponding author. Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
12
|
Li C, Yao Z, Ma L, Song X, Wang W, Wan C, Ren S, Chen D, Zheng Y, Zhu YT, Chang G, Wu S, Miao K, Luo F, Zhao XY. Lovastatin promotes the self-renewal of murine and primate spermatogonial stem cells. Stem Cell Reports 2023; 18:969-984. [PMID: 37044069 PMCID: PMC10147841 DOI: 10.1016/j.stemcr.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/24/2023] [Accepted: 02/24/2023] [Indexed: 04/14/2023] Open
Abstract
The spermatogonial stem cell (SSC) niche is critical for SSC maintenance and subsequent spermatogenesis. Numerous reproductive hazards impair the SSC niche, thereby resulting in aberrant SSC self-renewal and male infertility. However, promising agents targeting the impaired SSC niche to promote SSC self-renewal are still limited. Here, we screen out and assess the effects of Lovastatin on the self-renewal of mouse SSCs (mSSCs). Mechanistically, Lovastatin promotes the self-renewal of mSSCs and inhibits its inflammation and apoptosis through the regulation of isoprenoid intermediates. Remarkably, treatment by Lovastatin could promote the proliferation of undifferentiated spermatogonia in the male gonadotoxicity model generated by busulfan injection. Of note, we demonstrate that Lovastatin could enhance the proliferation of primate undifferentiated spermatogonia. Collectively, our findings uncover that lovastatin could promote the self-renewal of both murine and primate SSCs and have implications for the treatment of certain types of male infertility using small compounds.
Collapse
Affiliation(s)
- Chaohui Li
- Shunde Hospital of Southern Medical University, Shunde, Guangdong, China; State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhaokai Yao
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Linzi Ma
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China; Reproductive Medicine Center, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiuling Song
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Wen Wang
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Cong Wan
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Shaofang Ren
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Dingyao Chen
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yi Zheng
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yong-Tong Zhu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Gang Chang
- Department of Biochemistry and Molecular Biology, Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| | - Shihao Wu
- Shunde Hospital of Southern Medical University, Shunde, Guangdong, China
| | - Kai Miao
- Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau, SAR, China.
| | - Fang Luo
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.
| | - Xiao-Yang Zhao
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China; Sino-America Joint Research Center for Translational Medicine in Developmental Disabilities, Guangzhou, China; Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China; National Clinical Research Canter for Kidney Disease, Guangzhou, China; Key Laboratory of Mental Health of the Ministry of Education, Guangzhou, China.
| |
Collapse
|
13
|
Duan H, Ge W, Wu J, Lv J, Li Z, Dong W, Du X, Zhang L, Zhang Y, Hu J, Zhao X. Melatonin regulates dihydrotestosterone formation via its membrane receptor in the epididymal epithelial cells of sheep. Theriogenology 2023; 198:273-281. [PMID: 36623430 DOI: 10.1016/j.theriogenology.2022.12.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
Both melatonin and androgen, which affect sperm fertility, are the important factors in epididymis of male animal. In the present study, we confirmed that melatonin regulates the formation of dihydrotestosterone (DHT) in sheep epididymides. Here, we investigated the localization and the expression levels of melatonin keys synthases AANAT and HIOMT, membrane receptors MT1 and MT2, and nuclear receptor RORα in sheep epididymides and testes. We also cultured epididymal epithelial cells and treated them with different concentrations of melatonin (10-11-10-7 M) and luzindole (10-5 M) and 4P-PDOT (10-5 M) to investigate whether melatonin is involved in the regulation of DHT formation and whether these effects are mediated through its receptor pathways. The results showed that AANAT, HIOMT, MT1, MT2, and RORα were differentially expressed between sheep epididymides and testes. In addition, melatonin is involved in mediating the formation of DHT in epididymal epithelial cells, and its influence on DHT is at least partially regulated by the melatonin receptor pathway. Our findings showed that melatonin regulates the functions of the testes and epididymides through an autocrine mechanism and regulates the formation of androgen in sheep epididymides via the receptor pathway. These results provide a basis for further exploring the regulatory mechanisms of melatonin in animal reproduction.
Collapse
Affiliation(s)
- Hongwei Duan
- Key Lab of Animal Generational Physiology and Reproductive Regulation of Gansu Province, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Wenbo Ge
- Key Lab of Animal Generational Physiology and Reproductive Regulation of Gansu Province, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, PR China; Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Animal Science and Veterinary Pharmaceutics, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, PR China
| | - Jianxin Wu
- Key Lab of Animal Generational Physiology and Reproductive Regulation of Gansu Province, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Jianshu Lv
- Key Lab of Animal Generational Physiology and Reproductive Regulation of Gansu Province, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Zongshuai Li
- Key Lab of Animal Generational Physiology and Reproductive Regulation of Gansu Province, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Weitao Dong
- Key Lab of Animal Generational Physiology and Reproductive Regulation of Gansu Province, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Xianghong Du
- Key Lab of Animal Generational Physiology and Reproductive Regulation of Gansu Province, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Lihong Zhang
- Key Lab of Animal Generational Physiology and Reproductive Regulation of Gansu Province, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Yong Zhang
- Key Lab of Animal Generational Physiology and Reproductive Regulation of Gansu Province, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Junjie Hu
- Key Lab of Animal Generational Physiology and Reproductive Regulation of Gansu Province, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, PR China.
| | - Xingxu Zhao
- Key Lab of Animal Generational Physiology and Reproductive Regulation of Gansu Province, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, PR China.
| |
Collapse
|
14
|
Yao Y, Zhu W, Han D, Shi X, Xu S. New Insights into How Melatonin Ameliorates Bisphenol A-Induced Colon Damage: Inhibition of NADPH Oxidase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2566-2578. [PMID: 36633214 DOI: 10.1021/acs.jafc.2c07236] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Bisphenol A (BPA) is an endocrine disruptor, widely employed, and detected in many consumer products and food items. Oral intake poses a great threat to intestinal health. Melatonin (MT) stands out as an endogenous, dietary, and therapeutic molecule with potent antioxidant capacity. To explore the protective effect of MT against BPA-induced colon damage and the role of NADPH oxidase (NOX) in this process, we established mice and colonic epithelial cell (NCM460) models of BPA exposure and treated with MT. In vitro and in vivo results showed that MT ameliorated BPA-induced oxidative stress, DNA damage, and the G2/M cell cycle arrest. MT also downregulated the expression of NOX family-related genes, reversed the inhibition of the base excision repair (BER) pathway, promoted the activation of non-homologous end-joining (NHEJ) pathway, and suppressed the mRNA and protein expression of ATM, Chk1/2, and p53. Diphenyleneiodonium chloride (DPI), a NOX-specific inhibitor, also attenuated the toxic effects of BPA on NCM460 cells. Furthermore, molecular docking revealed that MT could bind to NOX. Conclusively, our finding suggested that MT can ameliorate BPA-induced colonic DNA damage by scavenging NOX-derived ROS, which further attenuates G2/M cell cycle arrest dependent on the ATM-Chk1/2-p53 axis.
Collapse
Affiliation(s)
- Yujie Yao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Wenjing Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Dongxu Han
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Xu Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| |
Collapse
|
15
|
Heidarizadi S, Rashidi Z, Jalili C, Gholami M. Overview of biological effects of melatonin on testis: A review. Andrologia 2022; 54:e14597. [PMID: 36168927 DOI: 10.1111/and.14597] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022] Open
Abstract
Infertility is a major global health issue and male factors account for half of all infertility cases. One of the causes of male infertility is the loss of spermatogonial stem cells, which may occur because of chemotherapy, radiotherapy or genetic defects. In numerous animal species, the evidence suggests the pineal gland and melatonin secretion in their reproductive activities are involved. Recently, considerable attention has pointed to the usage of melatonin in the treatment of diseases. Melatonin is associated with the regulation of circadian and seasonal rhythmic functions, immune system functions, retinal physiology, spermatogenesis and inhibition of tumour growth in different species. Several studies demonstrated that melatonin acts as an anti-apoptotic, anti-inflammatory, anticancer and antioxidant agent. Melatonin can also protect testicles and spermatogonia against oxidative damage, chemotherapy drugs, environmental radiation, toxic substances, hyperthermia, ischemia/reperfusion, diabetes-induced testicular damage, metal-induced testicular toxicity, improve sperm quality and it affects the testosterone secretion pathway by affecting Leydig cells. Therefore, the objective of this study is to investigate the biological effects of melatonin as a natural antioxidant on testicles and their disorders.
Collapse
Affiliation(s)
- Somayeh Heidarizadi
- Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zahra Rashidi
- Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Cyrus Jalili
- Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammadreza Gholami
- Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
16
|
Li T, Zheng Y, Li T, Guo M, Wu X, Liu R, Liu Q, You X, Zeng W, Lv Y. Potential dual protective effects of melatonin on spermatogonia against hexavalent chromium. Reprod Toxicol 2022; 111:92-105. [DOI: 10.1016/j.reprotox.2022.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/06/2022] [Accepted: 05/16/2022] [Indexed: 01/18/2023]
|
17
|
Nazeri T, Hedayatpour A, Kazemzadeh S, Safari M, Safi S, Khanehzad M. Antioxidant Effect of Melatonin on Proliferation, Apoptosis, and Oxidative Stress Variables in Frozen-Thawed Neonatal Mice Spermatogonial Stem Cells. Biopreserv Biobank 2022; 20:374-383. [PMID: 35984941 DOI: 10.1089/bio.2021.0128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cryopreservation of spermatogonial stem cells (SSCs) is an important method to restore and maintain fertility in preadolescent children suffering from cancer. For protection of SSCs from cryoinjury, various antioxidant agents have been used. The aim of this study was to assess the antiapoptotic and antioxidant effects of melatonin in frozen-thawed SSCs. SSCs were isolated from testes of neonatal mice (3-6 days old) and their purities were measured by flow cytometry with promyelocytic leukemia zinc finger protein. After culturing, the cells were frozen in two groups (1) control and (2) melatonin (100 μM) and stored for 1 month. Finally, the cell viability, colonization rate, expression of Bcl-2 and BAX gene, and intracellular reactive oxygen species (ROS) were evaluated after freezing-thawing. Melatonin increased the viability and colonization of SSCs and Bcl-2 gene expression. It also diminished BAX gene expression and intracellular ROS. The results of this study show that melatonin with antioxidant and antiapoptotic effects can be used as an additive for freezing and long-term storage of cells and infertility treatment in the clinic.
Collapse
Affiliation(s)
- Tahoora Nazeri
- Department of Biology, Islamic Azad University of SariBranch, Mazandaran, Iran
| | - Azim Hedayatpour
- Department of Anatomy, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Shokoofeh Kazemzadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Mahmoud Safari
- Department of Anatomy, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Samiullah Safi
- Department of Anatomy, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Maryam Khanehzad
- Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
18
|
Ge W, Xiao L, Duan H, Zhao X, Li J, Hu J. Proteomic analysis of iTRAQ in melatonin-treated sheep epididymal epithelial cells. Reprod Domest Anim 2022; 57:1406-1417. [PMID: 35881670 DOI: 10.1111/rda.14217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/08/2022] [Accepted: 07/25/2022] [Indexed: 11/28/2022]
Abstract
During maturation, spermatozoa acquire motility and fertilizing capacity as they transit through the epididymis. Melatonin is a lipophilic hormone with multiple functions in regulating the fertility. Previous studies have shown that melatonin affected the capacitation or maturation of sperm in the epididymis. The aim of this study was to investigate the effects of melatonin on epididymal caput epithelial cells in sheep. In the study, we used iTRAQ labelling coupled with LC-MS/MS for quantitative identification of differentially expressed proteins in melatonin-treated sheep epididymal caput epithelial cells. We identified 69 differentially expressed protein; 41 were upregulated and 28 were downregulated in samples from sheep in melatonin treated. We validated the differential expression of a subset of these proteins using qPCR and Western blot. Gene ontology annotation identified that the differentially expressed proteins function in cellular processes and metabolic processes. Notably, five of the differentially expressed proteins as SOD1, COL1A1, PRM1, NQO2, and FN1 are involved in sperm migration and sperm maturation. KEGG enrichment analysis demonstrated significant enrichment in several cardiac-related pathways, such as "PI3K-Akt signaling pathway", "AGE-RAGE signaling pathway in diabetic complications", "ECM-receptor interaction", and "Ribosome". Our results suggest that candidate biomarker (SOD1, COL1A1, PRM1, NQO2, and FN1) discovery can aid in understanding sperm development and maturation in sheep. These results provide insights into the potential mechanisms of melatonin regulation of sperm maturation in epididymal caput epithelial cells.
Collapse
Affiliation(s)
- Wenbo Ge
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Longfei Xiao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Hongwei Duan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Jianyong Li
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Junjie Hu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
19
|
Zi T, Liu Y, Zhang Y, Wang Z, Wang Z, Zhan S, Peng Z, Li N, Liu X, Liu F. Protective effect of melatonin on alleviating early oxidative stress induced by DOX in mice spermatogenesis and sperm quality maintaining. Reprod Biol Endocrinol 2022; 20:105. [PMID: 35850689 PMCID: PMC9290234 DOI: 10.1186/s12958-022-00977-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 07/07/2022] [Indexed: 11/10/2022] Open
Abstract
Doxorubicin (DOX) is an effective chemotherapy drug, but its clinical use has adverse effects on male reproduction. However, there are few studies about the specific biological processes related to male reproduction or strategies for improving fertility protection. In this paper, we examined the effects of DOX on spermatogenesis and sperm function, and tested the possible protective role of melatonin (MLT) against DOX's reproductive toxicity. DOX-treated mice showed signs of significantly impaired spermatogenesis, including vacuolated epithelial cells, decreased testis weights, and lowered sperm counts and motility. DOX also reduced germ cell proliferation (PCNA) and meiosis-related proteins (SYCP3), but this effect could be partially improved with MLT administration. HSPA2 expression was maintained, which indicated that although MLT did not improve sperm motility, it did have a significant protective effect on elongated sperm. IVF results showed that MLT could partially promote two-cell and blastocyte development that was restricted by DOX. MLT reversed DOX-driven changes in the testes, including the antioxidant indices of SOD1, CAT and PRDX6, and the apoptotic indices of BAX and Caspase3. These results suggest that MLT effectively prevents DOX-induced early reproductive toxicity, and increase our understanding of the molecular mechanisms underlying DOX's effects on male reproduction and the protective mechanism of MLT.
Collapse
Affiliation(s)
- Teng Zi
- Shandong Stem Cell Engineering Technology Research Center, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - YaNan Liu
- School of Bioscience and Technology, Weifang Medical University, Weifang, China
| | - YuSheng Zhang
- School of Bioscience and Technology, Weifang Medical University, Weifang, China
| | - ZeLin Wang
- Shandong Stem Cell Engineering Technology Research Center, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - ZhiXin Wang
- Shandong Stem Cell Engineering Technology Research Center, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Song Zhan
- Shandong Stem Cell Engineering Technology Research Center, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Zhu Peng
- Shandong Stem Cell Engineering Technology Research Center, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Ning Li
- Shandong Stem Cell Engineering Technology Research Center, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - XueXia Liu
- Shandong Stem Cell Engineering Technology Research Center, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China.
- School of Bioscience and Technology, Weifang Medical University, Weifang, China.
| | - FuJun Liu
- Shandong Stem Cell Engineering Technology Research Center, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China.
- School of Bioscience and Technology, Weifang Medical University, Weifang, China.
| |
Collapse
|
20
|
Thirouard L, Holota H, Monrose M, Garcia M, de Haze A, Damon‐Soubeyrand C, Renaud Y, Saru J, Perino A, Schoonjans K, Beaudoin C, Volle DH. Identification of a Crosstalk among TGR5, GLIS2, and TP53 Signaling Pathways in the Control of Undifferentiated Germ Cell Homeostasis and Chemoresistance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200626. [PMID: 35435331 PMCID: PMC9189661 DOI: 10.1002/advs.202200626] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Spermatogonial stem cells regenerate and maintain spermatogenesis throughout life, making testis a good model for studying stem cell biology. The effects of chemotherapy on fertility have been well-documented previously. This study investigates how busulfan, an alkylating agent that is often used for chemotherapeutic purposes, affects male fertility. Specifically, the role of the TGR5 pathway is investigated on spermatogonia homeostasis using in vivo, in vitro, and pharmacological methods. In vivo studies are performed using wild-type and Tgr5-deficient mouse models. The results clearly show that Tgr5 deficiency can facilitate restoration of the spermatogonia homeostasis and allow faster resurgence of germ cell lineage after exposure to busulfan. TGR5 modulates the expression of key genes of undifferentiated spermatogonia such as Gfra1 and Fgfr2. At the molecular level, the present data highlight molecular mechanisms underlying the interactions among the TGR5, GLIS2, and TP53 pathways in spermatogonia associated with germ cell apoptosis following busulfan exposure. This study makes a significant contribution to the literature because it shows that TGR5 plays key role on undifferentiated germ cell homeostasis and that modulating the TGR5 signaling pathway could be used as a potential therapeutic tool for fertility disorders.
Collapse
Affiliation(s)
- Laura Thirouard
- INSERM U1103Université Clermont AuvergneCNRS UMR‐6293GReD InstituteTeam‐VolleClermont‐FerrandF‐63037France
| | - Hélène Holota
- INSERM U1103Université Clermont AuvergneCNRS UMR‐6293GReD InstituteTeam‐VolleClermont‐FerrandF‐63037France
| | - Mélusine Monrose
- INSERM U1103Université Clermont AuvergneCNRS UMR‐6293GReD InstituteTeam‐VolleClermont‐FerrandF‐63037France
| | - Manon Garcia
- INSERM U1103Université Clermont AuvergneCNRS UMR‐6293GReD InstituteTeam‐VolleClermont‐FerrandF‐63037France
| | - Angélique de Haze
- INSERM U1103Université Clermont AuvergneCNRS UMR‐6293GReD InstituteTeam‐VolleClermont‐FerrandF‐63037France
| | | | - Yoan Renaud
- INSERM U1103Université Clermont AuvergneCNRS UMR‐6293GReD InstituteBio‐informatic facilityClermont‐FerrandF‐63037France
| | - Jean‐Paul Saru
- INSERM U1103Université Clermont AuvergneCNRS UMR‐6293GReD InstituteTeam‐VolleClermont‐FerrandF‐63037France
| | - Alessia Perino
- Laboratory of Metabolic SignalingInstitute of BioengineeringSchool of Life SciencesEcole Polytechnique Fédérale de LausanneLausanneCH‐1015Switzerland
| | - Kristina Schoonjans
- Laboratory of Metabolic SignalingInstitute of BioengineeringSchool of Life SciencesEcole Polytechnique Fédérale de LausanneLausanneCH‐1015Switzerland
| | - Claude Beaudoin
- INSERM U1103Université Clermont AuvergneCNRS UMR‐6293GReD InstituteTeam‐VolleClermont‐FerrandF‐63037France
| | - David H. Volle
- INSERM U1103Université Clermont AuvergneCNRS UMR‐6293GReD InstituteTeam‐VolleClermont‐FerrandF‐63037France
| |
Collapse
|
21
|
Estimation of the Regenerative Potential of para-Tyrosol in the Model of Testicular Insufficiency Caused by Damage to Spermatogonial Stem Cells. Bull Exp Biol Med 2022; 172:632-636. [PMID: 35352256 DOI: 10.1007/s10517-022-05452-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Indexed: 11/11/2022]
Abstract
The regenerative properties of p-tyrosol were investigated in a model of testicular insufficiency caused by a toxic effect on spermatogonial stem cells (single administration of paclitaxel in the maximum tolerable dose). Against the background of p-tyrosol administration, we observed an increase in the number of normal spermatogonia and Sertoli cells, stimulation of spermatogenesis, and renewal of the spermatogenic tissue. The treatment with p-tyrosol also led to a decrease in DNA damage in cells of the testicular tissue. These changes were accompanied by a decrease in the level of free radicals, an increase in antioxidant protection, and normalization of the redox potential.
Collapse
|
22
|
Wang R, Pan J, Han J, Gong M, Liu L, Zhang Y, Liu Y, Wang D, Tang Q, Wu N, Wang L, Yan J, Li H, Yuan Y. Melatonin Attenuates Dasatinib-Aggravated Hypoxic Pulmonary Hypertension via Inhibiting Pulmonary Vascular Remodeling. Front Cardiovasc Med 2022; 9:790921. [PMID: 35402542 PMCID: PMC8987569 DOI: 10.3389/fcvm.2022.790921] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Dasatinib treatment is approved as first-line therapy for chronic myeloid leukemia. However, pulmonary hypertension (PH) is a highly morbid and often fatal side-effect of dasatinib, characterized by progressive pulmonary vascular remodeling. Melatonin exerts strong antioxidant capacity against the progression of cardiovascular system diseases. The present work aimed to investigate the effect of melatonin on dasatinib-aggravated hypoxic PH and explore its possible mechanisms. Dasatinib-aggravated rat experimental model of hypoxic PH was established by utilizing dasatinib under hypoxia. The results indicated that melatonin could attenuate dasatinib-aggravated pulmonary pressure and vascular remodeling in rats under hypoxia. Additionally, melatonin attenuated the activity of XO, the content of MDA, the expression of NOX4, and elevated the activity of CAT, GPx, and SOD, the expression of SOD2, which were caused by dasatinib under hypoxia. In vitro, dasatinib led to decreased LDH activity and production of NO in human pulmonary microvascular endothelial cells (HPMECs), moreover increased generation of ROS, and expression of NOX4 both in HPMECs and primary rat pulmonary arterial smooth muscle cells (PASMCs) under hypoxia. Dasatinib up-regulated the expression of cleaved caspase-3 and the ratio of apoptotic cells in HPMECs, and also elevated the percentage of S phase and the expression of Cyclin D1 in primary PASMCs under hypoxia. Melatonin ameliorated dasatinib-aggravated oxidative damage and apoptosis in HPMECs, meanwhile reduced oxidative stress level, proliferation, and repressed the stability of HIF1-α protein in PASMCs under hypoxia. In conclusion, melatonin significantly attenuates dasatinib-aggravated hypoxic PH by inhibiting pulmonary vascular remodeling in rats. The possible mechanisms involved protecting endothelial cells and inhibiting abnormal proliferation of smooth muscle cells. Our findings may suggest that melatonin has potential clinical value as a therapeutic approach to alleviate dasatinib-aggravated hypoxic PH.
Collapse
Affiliation(s)
- Rui Wang
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
- Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, Dalian Key Laboratory of Hematology, Second Hospital of Dalian Medical University, Dalian, China
| | - Jinjin Pan
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Jinzhen Han
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Miaomiao Gong
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Liang Liu
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yunlong Zhang
- The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Ying Liu
- The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Dingyou Wang
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Qing Tang
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Na Wu
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Lin Wang
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Jinsong Yan
- Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, Dalian Key Laboratory of Hematology, Second Hospital of Dalian Medical University, Dalian, China
- Jinsong Yan,
| | - Hua Li
- College of Pharmacy, Dalian Medical University, Dalian, China
- Hua Li,
| | - Yuhui Yuan
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
- *Correspondence: Yuhui Yuan,
| |
Collapse
|
23
|
Liu S, Wei R, Liu H, Liu R, Li P, Zhang X, Wei W, Zhao X, Li X, Yang Y, Fu X, Zou K. Analysis of chromatin accessibility in p53 deficient spermatogonial stem cells for high frequency transformation into pluripotent state. Cell Prolif 2022; 55:e13195. [PMID: 35119145 PMCID: PMC8891552 DOI: 10.1111/cpr.13195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/03/2022] [Accepted: 01/18/2022] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES Spermatogonial stem cells (SSCs), the germline stem cells (GSCs) committed to spermatogenesis in niche, can transform into pluripotent state in long-term culture without introduction of exogenous factors, typically in p53 deficiency condition. As the guardian for genomic stability, p53 is associated with epigenetic alterations during SSCs transformation. However, the mechanism is still unknown, since complicated roles of p53 baffle our understanding of the regulating process. MATERIALS AND METHODS The chromatin accessibility and differentially expressed genes (DEGs) were analysed in p53+/+ and p53-/- SSCs using the Assay for Transposase-Accessible Chromatin with high-throughput Sequencing (ATAC-seq) and RNA-sequencing (RNA-seq), to explore the connection of p53 and cell fate at chromosomal level. RESULTS Several transcription factors (TFs), such as CTCF, SMAD3 and SOX2, were predicted as important factors mediating the transformation. Molecular evidence suggested that SMAD3 efficiently promoted pluripotency-associated gene expression both in fresh and long-term cultured SSCs. However, p53 knockout (KO) is insufficient to induce SMAD3 expression in SSCs. CONCLUSIONS These observations indicate that SMAD3 is a key factor for SSCs transformation, and an unknown event is required to activate SMAD3 as the prerequisite for SSCs reprogramming, which may occur in the long-term culture of SSCs. This study demonstrates the connection of p53 and pluripotency-associated factors, providing new insight for understanding the mechanisms of SSCs reprogramming and germline tumorigenesis.
Collapse
Affiliation(s)
- Sitong Liu
- College of Life SciencesJilin UniversityChangchunChina
| | - Rui Wei
- Germline Stem Cells and Microenvironment LabCollege of Animal Science and TechnologyNanjing Agricultural UniversityNanjingChina
| | - Hongyang Liu
- Germline Stem Cells and Microenvironment LabCollege of Animal Science and TechnologyNanjing Agricultural UniversityNanjingChina
| | - Ruiqi Liu
- Key Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Center for Systems Bio‐medicineShanghai Jiao Tong UniversityShanghaiChina
| | - Pengxiao Li
- Key Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Center for Systems Bio‐medicineShanghai Jiao Tong UniversityShanghaiChina
| | - Xiaoyu Zhang
- Germline Stem Cells and Microenvironment LabCollege of Animal Science and TechnologyNanjing Agricultural UniversityNanjingChina
| | - Wei Wei
- The Key Laboratory of Molecular Epigenetics of MOEInstitute of Genetics and CytologyNortheast Normal UniversityChangchunChina
| | - Xiaodong Zhao
- Key Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Center for Systems Bio‐medicineShanghai Jiao Tong UniversityShanghaiChina
| | - Xiaomeng Li
- The Key Laboratory of Molecular Epigenetics of MOEInstitute of Genetics and CytologyNortheast Normal UniversityChangchunChina
| | - Yang Yang
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Xueqi Fu
- College of Life SciencesJilin UniversityChangchunChina
| | - Kang Zou
- Germline Stem Cells and Microenvironment LabCollege of Animal Science and TechnologyNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
24
|
Chen Z, Zhao C, Liu P, Huang H, Zhang S, Wang X. Anti-Apoptosis and Autophagy Effects of Melatonin Protect Rat Chondrocytes against Oxidative Stress via Regulation of AMPK/Foxo3 Pathways. Cartilage 2021; 13:1041S-1053S. [PMID: 34775836 PMCID: PMC8804746 DOI: 10.1177/19476035211038748] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE Emerging evidence has indicated that excessive reactive oxygen species (ROS) have detrimental effects on osteoarthritis (OA). This study aimed to elucidate the effects of melatonin (MT), an antioxidant indolamine secreted from the pineal gland, on chondrocyte senescence and cartilage degeneration, thereby clarifying the underlying mechanisms of ROS-induced OA pathogenesis. DESIGN Hydrogen peroxide (H2O2) was used to induce oxidative stress in rat chondrocytes. ROS levels were evaluated using cytometry and immunofluorescence. Cell viability was detected using the Cell Counting Kit-8 (CCK-8) assay. Western blotting and qPCR (Quantiative Real-Time Polymerase Chain Reaction) were used to examine apoptosis and autophagy. For in vivo experiments, male Sprague-Dawley rats were randomly divided into a sham-operated group, DMM (destabilization of the medial meniscus) surgery group, and surgery groups that received melatonin. Knee joints were collected and stained for histological analysis. RESULTS The data demonstrated that melatonin treatment significantly suppressed H2O2-induced matrix degradation and apoptosis, and maintained mitochondrial redox homeostasis. In addition, an enhancement of autophagic flux was observed through western blotting. These findings corresponded with activation of the AMPK/Foxo3 signaling pathways upon melatonin treatment. Histological staining and transmission electron microscopy (TEM) micrographs also demonstrated that melatonin alleviated cartilage ossification and chondrocyte hypertrophy in vivo. CONCLUSIONS Our results indicated that melatonin protected chondrocytes via mitochondrial redox homeostasis and autophagy. The effects of melatonin on senescence may apply to other age-related diseases. Thus, melatonin may have multiple potential therapeutic applications.
Collapse
Affiliation(s)
- Zhaoxun Chen
- Shanghai Key Laboratory of Orthopaedic
Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of
China
| | - Chen Zhao
- Shanghai Key Laboratory of Orthopaedic
Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of
China
| | - Pengcheng Liu
- Shanghai Key Laboratory of Orthopaedic
Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of
China
| | - Haohan Huang
- Shanghai Key Laboratory of Orthopaedic
Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of
China
| | - Shuhong Zhang
- Shanghai Key Laboratory of Orthopaedic
Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of
China,Xiaoqing Wang, Shanghai Key Laboratory of
Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s
Hospital, Shanghai Jiaotong University School of Medicine, No. 639, Zhizaoju
Road, Shanghai 200011, People’s Republic of China.
| | - Xiaoqing Wang
- Shanghai Key Laboratory of Orthopaedic
Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of
China,Shuhong Zhang, Shanghai Key Laboratory of
Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s
Hospital, Shanghai Jiaotong University School of Medicine, No. 639, Zhizaoju
Road, Shanghai 200011, People’s Republic of China.
| |
Collapse
|
25
|
Analysis of the Reversible Impact of the Chemodrug Busulfan on Mouse Testes. Cells 2021; 10:cells10092403. [PMID: 34572051 PMCID: PMC8472455 DOI: 10.3390/cells10092403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/03/2021] [Accepted: 09/09/2021] [Indexed: 12/21/2022] Open
Abstract
Spermatogenesis is a process within the testis that leads to the production of spermatozoa. It is based on a population of spermatogonial stem cells, which have the capacity to self-renew and to differentiate throughout life to ensure the functions of reproduction are maintained. Male fertility disorders are responsible for half of the cases of infertility in couples worldwide. It is well known that cancer treatments are associated with reversible or irreversible fertility disorders. Busulfan (Bu) is an alkylating agent that significantly inhibits spermatogenesis. The present study relied on a combination of in vivo and in vitro approaches as well as RNAseq analysis to characterize the effects of Bu, in which mouse testes were used as a model. An in silico analysis revealed that many of the Bu-modulated genes are potentially regulated by the SIN3 Transcription Regulator Family Member A (SIN3A) and E2F Transcription Factor (E2F) families of transcription factors. The results demonstrate that the deregulated genes function in processes related to the cell cycle, DNA repair, and cell death mechanisms, including the Tumor Protein 53 (TP53) pathway. This reinforces the role of the TP53 signaling pathway as a major player in Bu effects. In addition, Bu altered the patterns of mRNA accumulation for various genes in undifferentiated spermatogonia. This work provides significant insight into the kinetics and impacts of busulfan, which could pave the way for developing strategies to minimize the impact of chemodrugs and, thus, could lead to germ cell lineage regeneration following anticancer treatments.
Collapse
|
26
|
Ofosu J, Qazi IH, Fang Y, Zhou G. Use of melatonin in sperm cryopreservation of farm animals: A brief review. Anim Reprod Sci 2021; 233:106850. [PMID: 34537566 DOI: 10.1016/j.anireprosci.2021.106850] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 12/30/2022]
Abstract
Melatonin (MT) is a potent antioxidant with useful applications in several fields. Due to the capacity to scavenge free radicals and enhance cellular endogenous antioxidant defenses, MT is widely used in sperm cryopreservation to protect against oxidative stress-induced damage in frozen-thawed sperm. In this article, there is a review of positive effects of MT supplementation in cryopreservation of sperm from domestic ruminants and swine. There is direct or indirect scavenging of free radicals, preventing lipid peroxidation (LPO), and reducing oxidative stress, therefore, protecting membrane and DNA integrity, enhancing post-thaw antioxidant and enzymatic functions to maintain mitochondrial functions and activity, and regulating ATP production and utilization leading to maintenance of sperm quality, motility, and viability. In addition, MT reportedly inhibits sperm apoptosis, potentially by enhancing sperm viability and modulating abundances of mRNA transcripts.
Collapse
Affiliation(s)
- Jones Ofosu
- College of Animal Science and Technology, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Izhar Hyder Qazi
- College of Animal Science and Technology, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Department of Veterinary Anatomy and Histology, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand 67210, Sindh, Pakistan
| | - Yi Fang
- Jilin Provincial Key Laboratory of Grassland Farming, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Guangbin Zhou
- College of Animal Science and Technology, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
27
|
Busulfan Suppresses Autophagy in Mouse Spermatogonial Progenitor Cells via mTOR of AKT and p53 Signaling Pathways. Stem Cell Rev Rep 2021; 16:1242-1255. [PMID: 32839922 DOI: 10.1007/s12015-020-10027-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In testis, a rare undifferentiated germ cell population with the capacity to regenerate robustly and support spermatogenesis, is defined as spermatogonial progenitor cells (SPCs) population. As a widely used drug for tumor therapy or bone marrow transplantation, busulfan has a severe side effect on SPCs population and causes a consequent infertility. Recently, accumulating evidence revealed the protective role of autophagy in stem cell maintenance under exogenous stress. To better understand the role of autophagy in SPCs fates, we investigated the potential function of autophagy in SPCs under busulfan stress, and found that treatment of busulfan induced the formation of autophagic vesicles and autophagosomes in mouse SPCs. Subsequently, a connection of autophagy and SPCs maintenance and survival was demonstrated in a dose-dependent manner. Moreover, mTOR was identified as an essential factor for autophagy in SPCs with a complicated mechanism: (1) mTOR is phosphorylated by AKT to activate its target genes, p70s6 kinase, resulting in the inhibition of autophagy during short-term busulfan treatment. (2) mTOR mediates autophagy with p53 together, to regulate the fate of SPCs. Collectively, observations from this study indicate that moderate autophagy effectively protects SPCs from the stress of chemotherapy, which may provide an important hint for fertility protection in clinic.
Collapse
|
28
|
Sun Y, Liu Y, Ma X, Hu H. The Influence of Cell Cycle Regulation on Chemotherapy. Int J Mol Sci 2021; 22:6923. [PMID: 34203270 PMCID: PMC8267727 DOI: 10.3390/ijms22136923] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/14/2022] Open
Abstract
Cell cycle regulation is orchestrated by a complex network of interactions between proteins, enzymes, cytokines, and cell cycle signaling pathways, and is vital for cell proliferation, growth, and repair. The occurrence, development, and metastasis of tumors are closely related to the cell cycle. Cell cycle regulation can be synergistic with chemotherapy in two aspects: inhibition or promotion. The sensitivity of tumor cells to chemotherapeutic drugs can be improved with the cooperation of cell cycle regulation strategies. This review presented the mechanism of the commonly used chemotherapeutic drugs and the effect of the cell cycle on tumorigenesis and development, and the interaction between chemotherapy and cell cycle regulation in cancer treatment was briefly introduced. The current collaborative strategies of chemotherapy and cell cycle regulation are discussed in detail. Finally, we outline the challenges and perspectives about the improvement of combination strategies for cancer therapy.
Collapse
Affiliation(s)
- Ying Sun
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China; (Y.S.); (Y.L.)
| | - Yang Liu
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China; (Y.S.); (Y.L.)
| | - Xiaoli Ma
- Qingdao Institute of Measurement Technology, Qingdao 266000, China;
| | - Hao Hu
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China; (Y.S.); (Y.L.)
| |
Collapse
|
29
|
Lv Y, Li T, Yang M, Su L, Zhu Z, Zhao S, Zeng W, Zheng Y. Melatonin Attenuates Chromium (VI)-Induced Spermatogonial Stem Cell/Progenitor Mitophagy by Restoration of METTL3-Mediated RNA N 6-Methyladenosine Modification. Front Cell Dev Biol 2021; 9:684398. [PMID: 34150779 PMCID: PMC8212693 DOI: 10.3389/fcell.2021.684398] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/06/2021] [Indexed: 12/11/2022] Open
Abstract
Spermatogonial stem cells (SSCs) are the basis of spermatogenesis, and any damage to SSCs may result in spermatogenic disorder and male infertility. Chromium (Cr) (VI) is a proven toxin, mutagen, and carcinogen, perpetually detrimental to environmental organisms due to its intricate and enduring detoxification process in vivo. Despite this, the deleterious effects of Cr (VI) on SSCs and the underlying mechanisms remain poorly understood. In this study, we identified that Cr (VI) impaired male reproductive system in mouse testes and induced mitochondrial dynamic imbalance and mitophagy in SSCs/progenitors. Cr (VI) also downregulated the RNA N6-methyladenosine (m6A) modification levels in mitochondrial dynamic balance and mitophagy genes in SSCs/progenitors. Inspiringly, the toxic effects of Cr (VI) could be relieved by melatonin pretreatment. Melatonin alleviated Cr (VI)-induced damage to male reproductive system and autophagy in mouse testes. Melatonin also attenuated Cr (VI)-induced cell viability loss and reactive oxygen species (ROS) generation, as well as mitochondrial dynamic disorders and mitophagy in SSCs/progenitors. The protective roles of melatonin against Cr (VI)-induced mitophagy were exerted by restoration of METTL3-mediated RNA m6A modification and activation of mitochondrial fusion proteins MFN2 and OPA1, as well as inhibition of the mitophagy BNIP3/NIX receptor pathway. Thus, our study provides novel insights into the molecular mechanisms for RNA m6A modification underlying the gene regulatory network responsible for mitochondrial dynamic balance, and also lays new experimental groundwork for treatment of Cr (VI)-induced damage to male fertility.
Collapse
Affiliation(s)
- Yinghua Lv
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, China.,Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Tianjiao Li
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Manman Yang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, China
| | - Lihong Su
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Zhendong Zhu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Sihang Zhao
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Wenxian Zeng
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yi Zheng
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
30
|
Lu J, Liu Z, Shu M, Zhang L, Xia W, Tang L, Li J, Huang B, Li H. Human placental mesenchymal stem cells ameliorate chemotherapy-induced damage in the testis by reducing apoptosis/oxidative stress and promoting autophagy. Stem Cell Res Ther 2021; 12:199. [PMID: 33743823 PMCID: PMC7981860 DOI: 10.1186/s13287-021-02275-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/09/2021] [Indexed: 01/18/2023] Open
Abstract
Background The side effects of busulfan on male reproduction are serious, so fertility preservation in children undergoing busulfan treatment is a major worldwide concern. Human placental mesenchymal stem cells (hPMSCs) have advantages such as stable proliferation and lower immunogenicity that make them an ideal material for stimulating tissue repair, especially restoring spermatogenesis. The protective effects of hPMSCs in busulfan-induced Sertoli cells and in busulfan-treated mouse testes have not been determined. Our study aimed to elaborate the protective effect and potential mechanisms of hPMSCs in busulfan-treated testes and Sertoli cells. Methods First, we developed a mouse model of busulfan-induced testicular toxicity in vivo and a mouse Sertoli cell line treated with busulfan in vitro to assess the protective effect and mechanisms of hPMSC treatment on spermatogenesis. Then, the length, width, and weight of the testes were monitored using Vernier calipers. Furthermore, at 1 week and 4 weeks after the transplantation of hPMSCs, histological sections of testes were stained with hematoxylin-eosin, and the seminiferous tubules with fluid-filled cavities were counted. Through ELISA analysis, testosterone levels and MDA, SOD, LDH, and CAT activities, which are associated with ROS, were detected. Markers of ROS, proliferation (Ki67), and apoptosis (Annexin V) were evaluated by FACS. Next, the fluorescence intensity of proliferation markers (BrdU and SCP3), an antioxidant marker (SIRT1), a spermatogenesis marker (PLZF), and autophagy-related genes (P62 and LC3AB) were detected by fluorescence microscopy. The mRNA expression of γ-H2AX, BRCA1, PARP1, PCNA, Ki67, P62, and LC3 was determined by qRT-PCR. Results hPMSCs restored disrupted spermatogenesis, promoted improved semen parameters, and increased testosterone levels, testis size, and autophagy in the testis toxicity mouse model induced by busulfan. hPMSCs suppressed the apoptosis of Sertoli cells and enhanced their rate of proliferation in vitro. Additionally, hPMSCs protected against oxidative stress and decreased oxidative damage in the testis toxicity mouse model induced by busulfan. Furthermore, hPMSCs increased the expression of proliferation genes (PCNA and KI67) and decreased the mRNA levels of apoptotic genes such as γ-H2AX, BRCA1, and PARP1. Conclusions This research showed that hPMSC injection ameliorated busulfan-induced damage in the testis by reducing apoptosis/oxidative stress and promoting autophagy. The present study offers an idea for a new method for clinical treatment of chemotherapy-induced spermatogenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02275-z.
Collapse
Affiliation(s)
- Jiafeng Lu
- Center of Reproduction and Genetics, The affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Suzhou, 215002, China
| | - Zhenxing Liu
- Center of Reproduction and Genetics, The affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Suzhou, 215002, China
| | - Mingkai Shu
- Medical College of Soochow University, 199 Renai Road, Industrial Park District, Suzhou, 215123, China
| | - Liya Zhang
- Center of Reproduction and Genetics, The affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Suzhou, 215002, China
| | - Wenjuan Xia
- Center of Reproduction and Genetics, The affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Suzhou, 215002, China
| | - Liuna Tang
- Center of Reproduction and Genetics, The affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Suzhou, 215002, China
| | - Jincheng Li
- Center of Reproduction and Genetics, The affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Suzhou, 215002, China
| | - Boxian Huang
- Center of Reproduction and Genetics, The affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Suzhou, 215002, China.
| | - Hong Li
- Center of Reproduction and Genetics, The affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Suzhou, 215002, China.
| |
Collapse
|
31
|
Yang M, Guan S, Tao J, Zhu K, Lv D, Wang J, Li G, Gao Y, Wu H, Liu J, Cao L, Fu Y, Ji P, Lian Z, Zhang L, Liu G. Melatonin promotes male reproductive performance and increases testosterone synthesis in mammalian Leydig cells†. Biol Reprod 2021; 104:1322-1336. [PMID: 33709108 DOI: 10.1093/biolre/ioab046] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 03/09/2021] [Indexed: 01/16/2023] Open
Abstract
Leydig cells play a critical role in male reproductive physiology, and their dysfunction is usually associated with male infertility. Melatonin has an important protective and regulatory role in these cells. However, the lack of suitable animal models impedes us from addressing the impact of endogenous melatonin on these cells. In the current study, by using arylalkylamine N-acetyltransferase (AANAT) overexpression transgenic sheep and AANAT knockout mice, we confirmed the regulatory effects of endogenously occurring melatonin on Leydig cells as well as its beneficial effects on male reproductive performance. The results showed that the endogenously elevated melatonin level was correlated with decreased Leydig cell apoptosis, increased testosterone production, and improved quality of sperm in melatonin-enriched transgenic mammals. Signal transduction analysis indicated that melatonin targeted the mitochondrial apoptotic Bax/Bcl2 pathway and thus suppressed Leydig cell apoptosis. In addition, melatonin upregulated the expression of testosterone synthesis-related genes of Steroidogenic Acute Regulatory Protein (StAR), Steroidogenic factor 1 (SF1), and Transcription factor GATA-4 (Gata4) in Leydig cells. This action was primarily mediated by the melatonin nuclear receptor RAR-related orphan receptor alpha (RORα) since blockade of this receptor suppressed the effect of melatonin on testosterone synthesis. All of these actions of melatonin cause Leydig cells to generate more testosterone, which is necessary for spermatogenesis in mammals. In contrast, AANAT knockout animals have dysfunctional Leydig cells and reduced reproductive performance.
Collapse
Affiliation(s)
- Minghui Yang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shengyu Guan
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jingli Tao
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China.,College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Kuanfeng Zhu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dongying Lv
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jing Wang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Guangdong Li
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yuefeng Gao
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hao Wu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jinghao Liu
- Laboratory Animal Centre, Peking University, Beijing, China
| | - Lin Cao
- Beijing Institute of Feed Control, Beijing Municipal Bureau of Agriculture and Rural Affairs, Beijing, China
| | - Yao Fu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Pengyun Ji
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhengxing Lian
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lu Zhang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Guoshi Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
32
|
Kazemzadeh S, Rastegar T, Zangi BM, Malekzadeh M, Khanehzad M, Khanlari P, Madadi S, Bashghareh A, Hedayatpour A. Effect of a Freezing Medium Containing Melatonin on Markers of Pre-meiotic and Post-meiotic Spermatogonial Stem Cells (SSCs) After Transplantation in an Azoospermia Mouse Model Due to Testicular Torsion. Reprod Sci 2021; 28:1508-1522. [PMID: 33481217 DOI: 10.1007/s43032-020-00447-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/27/2020] [Indexed: 01/07/2023]
Abstract
Spermatogonial stem cells (SSCs) are essential to the initiation of spermatogenesis. Cryopreservation, long-term maintenance, and auto-transplantation of SSCs could be a new treatment for infertility. The aim of this study was to add melatonin to the basic freezing medium and to evaluate its effect on the efficiency of the thawed SSCs after transplantation into the testicles of azoospermic mice. SSCs were isolated from newborn NMRI mice, and the cells were enriched to assess morphological features. The thawed SSCs were evaluated for survival, apoptosis, and ROS level before transplantation, and the proliferation (MVH and ID4) and differentiation (c-Kit, SCP3, TP1, TP2, and Prm1) markers of SSCs were examined using immunofluorescence, western blot, and quantitative real-time polymerase chain reaction (PCR) after transplantation. It was found that the survival rate of SSCs after thawing was significantly higher in the melatonin group compared with the cryopreservation group containing basic freezing medium, and the rate of apoptosis and level of ROS production also decreased significantly in the cryopreservation group with melatonin (p < 0.05). The expression of proliferation and differentiation markers after transplantation was significantly higher in the cryopreservation group with melatonin compared to the cryopreservation group (p < 0.05). The results suggest that adding melatonin to the basic freezing medium can effectively protect the SSCs by increasing the viability and reducing the ROS production and apoptosis and improve the transplantation efficiency of SSCs after cryopreservation, which will provide a significant suggestion for fertility protection in the clinic.
Collapse
Affiliation(s)
- Shokoofeh Kazemzadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Tayebeh Rastegar
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Minaei Zangi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrnoush Malekzadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Khanehzad
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Parastoo Khanlari
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Soheila Madadi
- Department of Anatomy, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Alieh Bashghareh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Azim Hedayatpour
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
33
|
Wyns C, Kanbar M, Giudice MG, Poels J. Fertility preservation for prepubertal boys: lessons learned from the past and update on remaining challenges towards clinical translation. Hum Reprod Update 2020; 27:433-459. [PMID: 33326572 DOI: 10.1093/humupd/dmaa050] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/25/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Childhood cancer incidence and survivorship are both on the rise. However, many lifesaving treatments threaten the prepubertal testis. Cryopreservation of immature testicular tissue (ITT), containing spermatogonial stem cells (SSCs), as a fertility preservation (FP) option for this population is increasingly proposed worldwide. Recent achievements notably the birth of non-human primate (NHP) progeny using sperm developed in frozen-thawed ITT autografts has given proof of principle of the reproductive potential of banked ITT. Outlining the current state of the art on FP for prepubertal boys is crucial as some of the boys who have cryopreserved ITT since the early 2000s are now in their reproductive age and are already seeking answers with regards to their fertility. OBJECTIVE AND RATIONALE In the light of past decade achievements and observations, this review aims to provide insight into relevant questions for clinicians involved in FP programmes. Have the indications for FP for prepubertal boys changed over time? What is key for patient counselling and ITT sampling based on the latest achievements in animals and research performed with human ITT? How far are we from clinical application of methods to restore reproductive capacity with cryostored ITT? SEARCH METHODS An extensive search for articles published in English or French since January 2010 to June 2020 using keywords relevant to the topic of FP for prepubertal boys was made in the MEDLINE database through PubMed. Original articles on fertility preservation with emphasis on those involving prepubertal testicular tissue, as well as comprehensive and systematic reviews were included. Papers with redundancy of information or with an absence of a relevant link for future clinical application were excluded. Papers on alternative sources of stem cells besides SSCs were excluded. OUTCOMES Preliminary follow-up data indicate that around 27% of boys who have undergone testicular sampling as an FP measure have proved azoospermic and must therefore solely rely on their cryostored ITT to ensure biologic parenthood. Auto-transplantation of ITT appears to be the first technique that could enter pilot clinical trials but should be restricted to tissue free of malignant cells. While in vitro spermatogenesis circumvents the risk linked to cancer cell contamination and has led to offspring in mice, complete spermatogenesis has not been achieved with human ITT. However, generation of haploid germ cells paves the way to further studies aimed at completing the final maturation of germ cells and increasing the efficiency of the processes. WIDER IMPLICATIONS Despite all the research done to date, FP for prepubertal boys remains a relatively young field and is often challenging to healthcare providers, patients and parents. As cryopreservation of ITT is now likely to expand further, it is important not only to acknowledge some of the research questions raised on the topic, e.g. the epigenetic and genetic integrity of gametes derived from strategies to restore fertility with banked ITT but also to provide healthcare professionals worldwide with updated knowledge to launch proper multicollaborative care pathways in the field and address clinical issues that will come-up when aiming for the child's best interest.
Collapse
Affiliation(s)
- Christine Wyns
- Andrology lab, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium.,Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Marc Kanbar
- Andrology lab, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium.,Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Maria Grazia Giudice
- Andrology lab, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium.,Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Jonathan Poels
- Andrology lab, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium.,Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
34
|
Melatonin as an Agent for Direct Pulp-Capping Treatment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17031043. [PMID: 32041360 PMCID: PMC7037898 DOI: 10.3390/ijerph17031043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 01/31/2020] [Accepted: 02/04/2020] [Indexed: 12/15/2022]
Abstract
Melatonin plays an essential role in the regulation of bone growth. The actions that melatonin exerts on odontoblasts may be similar to its action on osteoblasts. This research aimed to evaluate the pulp response to melatonin used for direct pulp capping to evaluate the antioxidant effect of melatonin administered orally and its influence on dental pulp. Direct pulp capping was performed on the upper molars of Sprague Dawley rats using melatonin or Mineral Trioxide Aggregate (MTA). The study groups were: MTA; Melatonin; MTA + Melatonin administered orally; and Melatonin + Melatonin administered orally. In the latter two groups, the animals drank water dosed with melatonin ad libitum (10 mg/100 mL). After 30 days, the animals were sacrificed, and 5 ml of blood, the kidneys, and the liver were extracted in order to evaluate oxidative stress using thiobarbituric acid reactive substances testing (TBARS). Fragments of the maxilla containing the study molars were prepared for histological evaluation. The degree of pulp inflammation and pulp necrosis, the presence of reparative dentin and dentin bridging the pulp chamber, the presence and regularity of the odontoblastic layer, and the presence of pulp fibrosis were evaluated. No significant differences were found between the four study groups for any of the studied histological variables. The oral administration of melatonin did not modify the local effects of MTA or melatonin on dental pulp, or reduce basal-level oxidative stress. The effect of melatonin on pulp is similar to that of MTA and may be used as an agent for direct pulp capping.
Collapse
|
35
|
Xia Q, Zhang D, Wang J, Zhang X, Song W, Chen R, Li H, Xie W, Zou K. Androgen Indirectly Regulates Gap Junction Component Connexin 43 Through Wilms Tumor-1 in Sertoli Cells. Stem Cells Dev 2020; 29:169-176. [DOI: 10.1089/scd.2019.0166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Qin Xia
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Danchen Zhang
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jingjing Wang
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiaoyu Zhang
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Weixiang Song
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Rong Chen
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Hua Li
- Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Wenhai Xie
- School of Life Sciences, Shandong University of Technology, Zibo, Shandong, China
| | - Kang Zou
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
36
|
Modulation of Reactive Oxygen Species in Health and Disease. Antioxidants (Basel) 2019; 8:antiox8110513. [PMID: 31717825 PMCID: PMC6912431 DOI: 10.3390/antiox8110513] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 12/15/2022] Open
|
37
|
Oncofertility: Pharmacological Protection and Immature Testicular Tissue (ITT)-Based Strategies for Prepubertal and Adolescent Male Cancer Patients. Int J Mol Sci 2019; 20:ijms20205223. [PMID: 31640294 PMCID: PMC6834329 DOI: 10.3390/ijms20205223] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 10/12/2019] [Accepted: 10/18/2019] [Indexed: 01/15/2023] Open
Abstract
While the incidence of cancer in children and adolescents has significantly increased over the last decades, improvements made in the field of cancer therapy have led to an increased life expectancy for childhood cancer survivors. However, the gonadotoxic effect of the treatments may lead to infertility. Although semen cryopreservation represents the most efficient and safe fertility preservation method for males producing sperm, it is not feasible for prepubertal boys. The development of an effective strategy based on the pharmacological protection of the germ cells and testicular function during gonadotoxic exposure is a non-invasive preventive approach that prepubertal boys could benefit from. However, the progress in this field is slow. Currently, cryopreservation of immature testicular tissue (ITT) containing spermatogonial stem cells is offered to prepubertal boys as an experimental fertility preservation strategy by a number of medical centers. Several in vitro and in vivo fertility restoration approaches based on the use of ITT have been developed so far with autotransplantation of ITT appearing more promising. In this review, we discuss the pharmacological approaches for fertility protection in prepubertal and adolescent boys and the fertility restoration approaches developed on the utilization of ITT.
Collapse
|
38
|
Melatonin synergistically enhances protective effect of atorvastatin against busulfan-induced spermatogenesis injuries in a rat model. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s00580-019-03040-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|