1
|
Qu X, Xu D, Yang T, Tian Y, King CT, Wang X, Sheng M, Lin Y, Bian X, Li C, Jiang L, Xia Q, Farmer DG, Ke B. Macrophage Dvl2 deficiency promotes NOD1-Driven pyroptosis and exacerbates inflammatory liver injury. Redox Biol 2024; 79:103455. [PMID: 39644526 DOI: 10.1016/j.redox.2024.103455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/21/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024] Open
Abstract
Dishevelled 2 (Dvl2) is a key mediator of the Wingless/Wnt signaling pathway that regulates cell proliferation, migration, and immune function. However, little is known about the role of macrophage Dvl2 in modulating NOD1-mediated pyroptosis and hepatocyte death in oxidative stress-induced inflammatory liver injury. In a mouse model of oxidative stress-induced liver inflammation, mice with myeloid-specific Dvl2 knockout (Dvl2M-KO) displayed exacerbated ischemia/reperfusion (IR) stress-induced hepatocellular damage with increased serum ALT levels, oxidative stress, and proinflammatory mediators. Unlike in Dvl2FL/FL controls, Dvl2M-KO enhanced NOD1, caspase-1, GSDMD, and NF-κB activation in liver macrophages after IR. Interestingly, IR stress enhanced YAP colocalized with HSF1 in Dvl2FL/FL macrophages, while macrophage Dvl2 deficiency reduced YAP and HSF1 colocalization in the nucleus under inflammatory conditions. Importantly, Dvl2 deletion diminished nuclear YAP interacted with HSF1 and augmented NOD1/caspase-1 and GSDMD activation in response to inflammatory stimulation. However, Dvl2 activation increased YAP interaction with HSF1 and activated HSF1 target gene eEF2, inhibiting NOD1/caspase-1, GSDMD, and NF-κB activity. Moreover, macrophage eEF2 deletion increased the NOD1-caspase-1 interaction, GSDMD activation, HMGB1 release, and hepatocyte LDH release after macrophage/hepatocyte co-culture. Adoptive transfer of eEF2-expressing macrophages in Dvl2M-KO mice alleviated IR-triggered liver inflammation and hepatocellular damage. Therefore, macrophage Dvl2 deficiency promotes NOD1-mediated pyroptosis and exacerbates IR-induced hepatocellular death by disrupting the YAP-HSF1 axis. eEF2 is crucial for modulating NOD1-driven pyroptosis, inflammatory response, and hepatocyte death. Our findings underscore a novel role of macrophage Dvl2 in modulating liver inflammatory injury and imply the therapeutic potential in organ IRI and transplant recipients.
Collapse
Affiliation(s)
- Xiaoye Qu
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA; Department of Liver Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dongwei Xu
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA; Department of Liver Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Tao Yang
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA.
| | - Yizhu Tian
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Christopher T King
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Xiao Wang
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Mingwei Sheng
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Yuanbang Lin
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Xiyun Bian
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Changyong Li
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Longfeng Jiang
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Douglas G Farmer
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Bibo Ke
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
2
|
Lupu A, Fotea S, Jechel E, Starcea IM, Ioniuc I, Knieling A, Salaru DL, Sasaran MO, Cirstea O, Revenco N, Mihai CM, Lupu VV, Nedelcu AH. Is oxidative stress - antioxidants imbalance the physiopathogenic core in pediatric obesity? Front Immunol 2024; 15:1394869. [PMID: 39176098 PMCID: PMC11338799 DOI: 10.3389/fimmu.2024.1394869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 07/23/2024] [Indexed: 08/24/2024] Open
Abstract
Despite the early recognition of obesity as an epidemic with global implications, research on its pathogenesis and therapeutic approach is still on the rise. The literature of the 21st century records an excess weight found in up to 1/3 of children. Both the determining factors and its systemic effects are multiple and variable. Regarding its involvement in the potentiation of cardio-vascular, pulmonary, digestive, metabolic, neuro-psychic or even dermatological diseases, the information is already broadly outlined. The connection between the underlying disease and the associated comorbidities seems to be partially attributable to oxidative stress. In addition to these, and in the light of the recent COVID-19 pandemic, the role played by oxidative stress in the induction, maintenance and potentiation of chronic inflammation among overweight children and adolescents becomes a topic of interest again. Thus, this review's purpose is to update general data on obesity, with an emphasis on the physiopathological mechanisms that underlie it and involve oxidative stress. At the same time, we briefly present the latest principles of pathology diagnosis and management. Among these, we will mainly emphasize the impact played by endogenous and exogenous antioxidants in the evolutionary course of pediatric obesity. In order to achieve our objectives, we will refer to the most recent studies published in the specialized literature.
Collapse
Affiliation(s)
- Ancuta Lupu
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Silvia Fotea
- Clinical Medical Department, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University, Galati, Romania
| | - Elena Jechel
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | | | - Ileana Ioniuc
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Anton Knieling
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Delia Lidia Salaru
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Maria Oana Sasaran
- Pediatrics, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, Targu Mures, Romania
| | - Olga Cirstea
- Pediatrics, Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau, Moldova
| | - Neli Revenco
- Pediatrics, Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau, Moldova
| | | | - Vasile Valeriu Lupu
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Alin Horatiu Nedelcu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| |
Collapse
|
3
|
Qu X, Yang T, Wang X, Xu D, Yu Y, Li J, Jiang L, Xia Q, Farmer DG, Ke B. Macrophage RIPK3 triggers inflammation and cell death via the XBP1-Foxo1 axis in liver ischaemia-reperfusion injury. JHEP Rep 2023; 5:100879. [PMID: 37841640 PMCID: PMC10568422 DOI: 10.1016/j.jhepr.2023.100879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 05/12/2023] [Accepted: 07/22/2023] [Indexed: 10/17/2023] Open
Abstract
Background & Aims Receptor-interacting serine/threonine-protein kinase 3 (RIPK3) is a central player in triggering necroptotic cell death. However, whether macrophage RIPK3 may regulate NOD1-dependent inflammation and calcineurin/transient receptor potential cation channel subfamily M member 7 (TRPM7)-induced hepatocyte death in oxidative stress-induced liver inflammatory injury remains elusive. Methods A mouse model of hepatic ischaemia-reperfusion (IR) injury, the primary hepatocytes, and bone marrow-derived macrophages were used in the myeloid-specific RIPK3 knockout (RIPK3M-KO) and RIPK3-proficient (RIPK3FL/FL) mice. Results RIPK3M-KO diminished IR stress-induced liver damage with reduced serum alanine aminotransferase/aspartate aminotransferase levels, macrophage/neutrophil infiltration, and pro-inflammatory mediators compared with the RIPK3FL/FL controls. IR stress activated RIPK3, inositol-requiring transmembrane kinase/endoribonuclease 1α (IRE1α), x-box binding protein 1 (XBP1), nucleotide-binding oligomerisation domain-containing protein 1 (NOD1), NF-κB, forkhead box O1 (Foxo1), calcineurin A, and TRPM7 in ischaemic livers. Conversely, RIPK3M-KO depressed IRE1α, XBP1, NOD1, calcineurin A, and TRPM7 activation with reduced serum tumour necrosis factor α (TNF-α) levels. Moreover, Foxo1M-KO alleviated IR-induced liver injury with reduced NOD1 and TRPM7 expression. Interestingly, chromatin immunoprecipitation coupled with massively parallel sequencing revealed that macrophage Foxo1 colocalised with XBP1 and activated its target gene Zc3h15 (zinc finger CCCH domain-containing protein 15). Activating macrophage XBP1 enhanced Zc3h15, NOD1, and NF-κB activity. However, disruption of macrophage Zc3h15 inhibited NOD1 and hepatocyte calcineurin/TRPM7 activation, with reduced reactive oxygen species production and lactate dehydrogenase release after macrophage/hepatocyte coculture. Furthermore, adoptive transfer of Zc3h15-expressing macrophages in RIPK3M-KO mice augmented IR-triggered liver inflammation and cell death. Conclusions Macrophage RIPK3 activates the IRE1α-XBP1 pathway and Foxo1 signalling in IR-stress livers. The XBP1-Foxo1 interaction is essential for modulating target gene Zc3h15 function, which is crucial for the control of NOD1 and calcineurin-mediated TRPM7 activation. XBP1 functions as a transcriptional coactivator of Foxo1 in regulating NOD1-driven liver inflammation and calcineurin/TRPM7-induced cell death. Our findings underscore a novel role of macrophage RIPK3 in stress-induced liver inflammation and cell death, implying the potential therapeutic targets in liver inflammatory diseases. Impact and implications Macrophage RIPK3 promotes NOD1-dependent inflammation and calcineurin/TRPM7-induced cell death cascade by triggering the XBP1-Foxo1 axis and its target gene Zc3h15, which is crucial for activating NOD1 and calcineurin/TRPM7 function, implying the potential therapeutic targets in stress-induced liver inflammatory injury.
Collapse
Affiliation(s)
- Xiaoye Qu
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Department of Liver Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Tao Yang
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Department of Infectious Diseases, the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Xiao Wang
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Department of Infectious Diseases, the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Dongwei Xu
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Department of Liver Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yeping Yu
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jun Li
- Department of Infectious Diseases, the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Longfeng Jiang
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Department of Infectious Diseases, the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Douglas G. Farmer
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Bibo Ke
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
4
|
Rodrigues E-Lacerda R, Fang H, Robin N, Bhatwa A, Marko DM, Schertzer JD. Microbiota and Nod-like receptors balance inflammation and metabolism during obesity and diabetes. Biomed J 2023; 46:100610. [PMID: 37263539 PMCID: PMC10505681 DOI: 10.1016/j.bj.2023.100610] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/03/2023] Open
Abstract
Gut microbiota influence host immunity and metabolism during obesity. Bacterial sensors of the innate immune system relay signals from specific bacterial components (i.e., postbiotics) that can have opposing outcomes on host metabolic inflammation. NOD-like receptors (NLRs) such as Nod1 and Nod2 both recruit receptor-interacting protein kinase 2 (RIPK2) but have opposite effects on blood glucose control. Nod1 connects bacterial cell wall-derived signals to metabolic inflammation and insulin resistance, whereas Nod2 can promote immune tolerance, insulin sensitivity, and better blood glucose control during obesity. NLR family pyrin domain containing (NLRP) inflammasomes can also generate divergent metabolic outcomes. NLRP1 protects against obesity and metabolic inflammation potentially because of a bias toward IL-18 regulation, whereas NLRP3 appears to have a bias toward IL-1β-mediated metabolic inflammation and insulin resistance. Targeting specific postbiotics that improve immunometabolism is a key goal. The Nod2 ligand, muramyl dipeptide (MDP) is a short-acting insulin sensitizer during obesity or during inflammatory lipopolysaccharide (LPS) stress. LPS with underacylated lipid-A antagonizes TLR4 and counteracts the metabolic effects of inflammatory LPS. Providing underacylated LPS derived from Rhodobacter sphaeroides improved insulin sensitivity in obese mice. Therefore, certain types of LPS can generate metabolically beneficial metabolic endotoxemia. Engaging protective adaptive immunoglobulin immune responses can also improve blood glucose during obesity. A bacterial vaccine approach using an extract of the entire bacterial community in the upper gut promotes protective adaptive immune response and long-lasting improvements in blood glucose control. A key future goal is to identify and combine postbiotics that cooperate to improve blood glucose control.
Collapse
Affiliation(s)
- Rodrigo Rodrigues E-Lacerda
- Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute, And Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Han Fang
- Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute, And Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Nazli Robin
- Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute, And Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Arshpreet Bhatwa
- Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute, And Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Daniel M Marko
- Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute, And Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Jonathan D Schertzer
- Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute, And Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
5
|
Gulzar F, Ahmad S, Singh S, Kumar P, Sharma A, Tamrakar AK. NOD1 activation in 3T3-L1 adipocytes confers lipid accumulation in HepG2 cells. Life Sci 2023; 316:121400. [PMID: 36657640 DOI: 10.1016/j.lfs.2023.121400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/04/2023] [Accepted: 01/12/2023] [Indexed: 01/17/2023]
Abstract
AIMS Activation of specific innate immune receptors has been characterized to modulate nutrient metabolism in individual metabolic tissue directly or indirectly via secretory molecules. Activation of the nucleotide-binding oligomerization domain-containing protein 1 (NOD1) in adipocytes has been reported to induce lipolysis linked with insulin resistance and inflammatory response. These cues are positioned to modulate metabolic action in distal organs through paracrine/endocrine signaling. Here, we assessed the role of NOD1-mediated lipolysis and inflammatory response in adipocytes to affect lipid metabolism in hepatocytes. MAIN METHODS Human hepatoma cells (HepG2) were exposed to conditioned medium obtained from 3 T3-L1 adipocytes pretreated with NOD1 ligand (iE-DAP) and the effects on lipid accumulation, inflammation and insulin response were assessed. Activation of mechanisms leading to hepatic lipid accumulation was investigated by gene expression analysis. KEY FINDINGS The conditioned medium from NOD1-activated 3 T3-L1 adipocytes (CM-DAP) induced lipid accumulation in HepG2 cells, driven by both lipolysis and inflammatory responses. The CM-DAP-induced lipid accumulation was independent to de novo lipogenesis and resulted from the enhanced transport of fatty acids inside and consequent increase in rate of triglycerides synthesis in hepatocytes. Moreover, CM-DAP-induced lipid accumulation instigated the expression of the markers of fatty acid oxidation and VLDL assembly for the export of triglycerides from hepatocyte. Furthermore, CM-DAP-induced lipid accumulation was associated with induction of inflammatory response and impairment of insulin signaling in HepG2 cells. SIGNIFICANCE Beyond showing liver-specific mechanisms to adipocytes-derived factors, our findings support the involvement of adipose tissue as a mediator in NOD1-mediated biological responses to modulate hepatic metabolism.
Collapse
Affiliation(s)
- Farah Gulzar
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Shadab Ahmad
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India
| | - Sushmita Singh
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India
| | - Pawan Kumar
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India
| | - Aditya Sharma
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Akhilesh K Tamrakar
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India.
| |
Collapse
|
6
|
Luo X, Ng C, He J, Yang M, Luo X, Herbert TP, Whitehead JP. Vitamin C protects against hypoxia, inflammation, and ER stress in primary human preadipocytes and adipocytes. Mol Cell Endocrinol 2022; 556:111740. [PMID: 35932980 DOI: 10.1016/j.mce.2022.111740] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 07/22/2022] [Accepted: 07/28/2022] [Indexed: 11/18/2022]
Abstract
Dysregulation of adipose tissue involves increased cellular hypoxia, ER stress, and inflammation and altered adipokine production, contributing to the aetiology of obesity-related diseases including type 2 diabetes and cardiovascular disease. This study aimed to investigate the effects of Vitamin C supplementation on these processes in primary human preadipocytes and adipocytes. Treatment of preadipocytes and adipocytes with the proinflammatory cytokine TNFα and palmitic acid (PA), to mimic the obesogenic milieu, significantly increased markers of hypoxia, ER stress and inflammation and reduced secretion of high molecular weight (HMW) adiponectin. Importantly, Vitamin C abolished TNFα+PA induced hypoxia and significantly reduced the increases in ER stress and inflammation in both cell types. Vitamin C also significantly increased the secretion of HMW adiponectin from adipocytes. These findings indicate that Vitamin C can reduce obesity-associated cellular stress and thus provide a rationale for future investigations.
Collapse
Affiliation(s)
- Xiaoqin Luo
- Mater Research, Translational Research Institute, Brisbane, Queensland, Australia; School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Choaping Ng
- Mater Research, Translational Research Institute, Brisbane, Queensland, Australia
| | - Jingjing He
- Mater Research, Translational Research Institute, Brisbane, Queensland, Australia
| | - Mengliu Yang
- Mater Research, Translational Research Institute, Brisbane, Queensland, Australia
| | - Xiao Luo
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | | | - Jonathan P Whitehead
- Mater Research, Translational Research Institute, Brisbane, Queensland, Australia; Department of Life Sciences, University of Lincoln, Lincolnshire, UK.
| |
Collapse
|
7
|
Rai R, Singh KB, Khanka S, Maurya R, Singh D. Cladrin alleviates dexamethasone-induced apoptosis of osteoblasts and promotes bone formation through autophagy induction via AMPK/mTOR signaling. Free Radic Biol Med 2022; 190:339-350. [PMID: 35998794 DOI: 10.1016/j.freeradbiomed.2022.08.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/05/2022] [Accepted: 08/16/2022] [Indexed: 12/09/2022]
Abstract
Glucocorticoid-induced osteoporosis (GIOP) is a common clinical consequence that arises due to the extensive usage of glucocorticoids. Cladrin (Clad), a methoxylated isoflavone has been reported to have a bone protecting effect by enhancing osteoblast proliferation and differentiation. However, its consequences on GIOP are not reported yet. This study investigates whether Clad protects against the deleterious effects of Dexamethasone (Dex) on osteoblast and bone. Mice calvarial osteoblasts were treated with Clad and then exposed to Dex to study the effect on osteoblast differentiation, proliferation, and survival. Further, GIOP mice were treated with Clad (5 and 10 mg/kg) doses along with reference standard alendronate (ALN 3 mg/kg) for evaluation of bone protecting effect of Clad. We analyzed bone and vertebral microarchitecture, mechanical strength, and biochemical parameters. We observed that Clad at 10 nM concentration mitigated Dex-induced cytotoxicity and defend osteoblasts against apoptosis. Subsequent results demonstrate that Clad suppressed apoptosis of osteoblast in the presence of Dex by enhancing autophagy in a way that was reliant on the AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) pathway. Furthermore, micro-CT scanning, eco MRI results, and serum CTX levels revealed that 12 weeks of Clad treatment prevented bone loss and preserved trabecular bone mass in GIOP animals. We also observed that Clad treated osteoblasts had a lower rate of apoptosis and a greater LC3-II/LC3-I ratio than the Dex group. Our findings show that Clad can protect osteoblasts against glucocorticoids by inducing autophagy via the AMPK/mTOR pathway.
Collapse
Affiliation(s)
- Reena Rai
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Krishna Bhan Singh
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR) Ghaziabad, Uttar Pradesh, 201002, India
| | - Sonu Khanka
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR) Ghaziabad, Uttar Pradesh, 201002, India
| | - Rakesh Maurya
- Division of Medicinal & Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Divya Singh
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR) Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
8
|
Shi XD, Zhang JX, Hu XD, Zhuang T, Lu N, Ruan CC. Leonurine Attenuates Obesity-Related Vascular Dysfunction and Inflammation. Antioxidants (Basel) 2022; 11:antiox11071338. [PMID: 35883829 PMCID: PMC9311755 DOI: 10.3390/antiox11071338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/30/2022] [Accepted: 07/02/2022] [Indexed: 02/05/2023] Open
Abstract
Oxidative stress in adipose tissue is a crucial pathogenic mechanism of obesity-associated cardiovascular diseases. Chronic low-grade inflammation caused by obesity increases ROS production and dysregulation of adipocytokines. Leonurine (LEO) is an active alkaloid extracted from Herba Leonuri and plays a protective role in the cardiovascular system. The present study tested whether LEO alleviates inflammation and oxidative stress, and improves vascular function in an obese mouse model. Here, we found that obesity leads to inflammation and oxidative stress in epididymal white adipose tissue (EWAT), as well as vascular dysfunction. LEO significantly improved inflammation and oxidative stress both in vivo and in vitro. Obesity-induced vascular dysfunction was also improved by LEO as evidenced by the ameliorated vascular tone and decreased mesenteric artery fibrosis. Using mass spectrometry, we identified YTHDF1 as the direct target of LEO. Taken together, we demonstrated that LEO improves oxidative stress and vascular remodeling induced by obesity and targets YTHDF1, raising the possibility of LEO treating other obesity-related metabolic syndromes.
Collapse
Affiliation(s)
- Xiao-Dong Shi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; (X.-D.S.); (X.-D.H.); (T.Z.)
| | - Jia-Xin Zhang
- Department of Clinical Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China;
| | - Xi-De Hu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; (X.-D.S.); (X.-D.H.); (T.Z.)
| | - Tao Zhuang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; (X.-D.S.); (X.-D.H.); (T.Z.)
| | - Ning Lu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; (X.-D.S.); (X.-D.H.); (T.Z.)
- Correspondence: (N.L.); (C.-C.R.)
| | - Cheng-Chao Ruan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; (X.-D.S.); (X.-D.H.); (T.Z.)
- Correspondence: (N.L.); (C.-C.R.)
| |
Collapse
|
9
|
Singh S, Sharma A, Guru B, Ahmad S, Gulzar F, Kumar P, Ahmad I, Tamrakar AK. Fructose-mediated NLRP3 activation induces inflammation and lipogenesis in adipose tissue. J Nutr Biochem 2022; 107:109080. [PMID: 35660098 DOI: 10.1016/j.jnutbio.2022.109080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 02/02/2022] [Accepted: 05/03/2022] [Indexed: 01/07/2023]
Abstract
Adipose tissue plays a crucial role in energy intake and regulation of metabolic homeostasis. Fructose consumption implicates in development and progression of metabolic dysfunctions. Fructose is a lipogenic sugar known to induce inflammatory response. However, the role of specific inflammatory signal such as nucleotide-binding and oligomerization domain-like receptor, leucine-rich repeat and pyrin domain containing protein 3 (NLRP3) in fructose-induced inflammatory response and its relevance to lipogenesis in adipose tissue are elusive. We assessed NLRP3 activation and its significance in inflammatory response and lipogenesis in epididymal adipose tissue of 60% fructose diet (HFrD)-fed rats. The long term consumption of HFrD led to impairment of glucose metabolism, development of visceral adiposity, insulin resistance, and elevation of serum triglycerides level, accompanied by activation of NLRP3 in adipose tissue. NLRP3 inflammasome activation in adipose tissue was associated with up-regulated expression of Nlrp3, Asc, and Caspase-1, and raised caspase-1 activity, which resulted in increased expression of IL-1β and IL-18 and secretion of IL-1β. Moreover, lipid accumulation and expression of transcription factors exacerbating accumulation of lipids were augmented in adipose tissue of HFrD-fed rats. Treatment with glyburide, quercetin or allopurinol corrected HFrD-induced dyslipidemia or hyperuricemia, and blocked NLRP3 activation, leading to mitigated inflammatory signalling and lipid accumulation in adipose tissue, improved glucose tolerance and insulin sensitivity in HFrD-fed rats. These data suggest the role of NLRP3 inflammasome to establish linkage among inflammation, lipid accumulation and insulin resistance in adipose tissue, and targeting NLRP3 inflammasome may be a plausible approach for prevention and management for fructose-induced metabolic impairments.
Collapse
Affiliation(s)
- Sushmita Singh
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Aditya Sharma
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Bhavimani Guru
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Shadab Ahmad
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Farah Gulzar
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Pawan Kumar
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Ishbal Ahmad
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Akhilesh K Tamrakar
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
10
|
Cheng H, Wang Y, Liu C, Wu T, Chen S, Chen M. Development and Verification of a Prostate Cancer Prognostic Signature Based on an Immunogenomic Landscape Analysis. Front Oncol 2021; 11:711258. [PMID: 34568039 PMCID: PMC8459614 DOI: 10.3389/fonc.2021.711258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/09/2021] [Indexed: 12/11/2022] Open
Abstract
Purpose Prostate cancer (PCa) has a high incidence among older men. Until now, there are no immunological markers available to predict PCa patients’ survival. Therefore, it is necessary to explore the immunological characteristics of PCa. Methods First, we retrieved RNA-seq and clinical data of 499 PCa and 52 normal prostate tissue samples from the Cancer Genome Atlas (TCGA). We identified 193 differentially expressed immune-related genes (IRGs) between PCa and normal prostate tissues. Functional enrichment analyses showed that the immune system can participate in PCa initiation. Then, we constructed a correlation network between transcription factors (TFs) and IRGs. We performed univariate and multivariate Cox regression analyses and identified five key prognostic IRGs (S100A2, NOX1, IGHV7-81, AMH, and AGTR1). Finally, a predictive nomogram was established and verified by the C-index. Results We successfully constructed and validated an immune-related PCa prediction model. The signature could independently predict PCa patients’ survival. Results showed that high-immune-risk patients were correlated with advanced stage. We also validated the S100A2 expression in vitro using PCa and normal prostate tissues. We found that higher S100A2 expressions were related to lower biochemical recurrences. Additionally, higher AMH expressions were related to higher Gleason score, lymph node metastasis and positive rate, and tumor stages, and higher ATGR1 expressions were related to lower PSA value. Conclusion Overall, we detected five IRGs (S100A2, NOX1, IGHV7-81, AMH, and AGTR1) that can be used as independent PCa prognostic factors.
Collapse
Affiliation(s)
- Hong Cheng
- Department of Urology, Zhongda Hospital Affiliated to Southestern China University, Nanjing, China
| | - Yi Wang
- Department of Urology, Affiliated Hospital of Nantong University, Nantong, China
| | - Chunhui Liu
- Department of Urology, Zhongda Hospital Affiliated to Southestern China University, Nanjing, China
| | - Tiange Wu
- Department of Urology, Zhongda Hospital Affiliated to Southestern China University, Nanjing, China
| | - Shuqiu Chen
- Department of Urology, Zhongda Hospital Affiliated to Southestern China University, Nanjing, China
| | - Ming Chen
- Department of Urology, Zhongda Hospital Affiliated to Southestern China University, Nanjing, China
| |
Collapse
|
11
|
Li P, Chang M. Roles of PRR-Mediated Signaling Pathways in the Regulation of Oxidative Stress and Inflammatory Diseases. Int J Mol Sci 2021; 22:ijms22147688. [PMID: 34299310 PMCID: PMC8306625 DOI: 10.3390/ijms22147688] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress is a major contributor to the pathogenesis of various inflammatory diseases. Accumulating evidence has shown that oxidative stress is characterized by the overproduction of reactive oxygen species (ROS). Previous reviews have highlighted inflammatory signaling pathways, biomarkers, molecular targets, and pathogenetic functions mediated by oxidative stress in various diseases. The inflammatory signaling cascades are initiated through the recognition of host cell-derived damage associated molecular patterns (DAMPs) and microorganism-derived pathogen associated molecular patterns (PAMPs) by pattern recognition receptors (PRRs). In this review, the effects of PRRs from the Toll-like (TLRs), the retinoic acid-induced gene I (RIG-I)-like receptors (RLRs) and the NOD-like (NLRs) families, and the activation of these signaling pathways in regulating the production of ROS and/or oxidative stress are summarized. Furthermore, important directions for future studies, especially for pathogen-induced signaling pathways through oxidative stress are also reviewed. The present review will highlight potential therapeutic strategies relevant to inflammatory diseases based on the correlations between ROS regulation and PRRs-mediated signaling pathways.
Collapse
Affiliation(s)
- Pengwei Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China;
| | - Mingxian Chang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China;
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: ; Tel.: +86-027-6878-0760
| |
Collapse
|
12
|
Inflammation promotes adipocyte lipolysis via IRE1 kinase. J Biol Chem 2021; 296:100440. [PMID: 33610548 PMCID: PMC8010698 DOI: 10.1016/j.jbc.2021.100440] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 12/11/2022] Open
Abstract
Obesity associates with inflammation, insulin resistance, and higher blood lipids. It is unclear if immune responses facilitate lipid breakdown and release from adipocytes via lipolysis in a separate way from hormones or adrenergic signals. We found that an ancient component of ER stress, inositol-requiring protein 1 (IRE1), discriminates inflammation-induced adipocyte lipolysis versus lipolysis from adrenergic or hormonal stimuli. Our data show that inhibiting IRE1 kinase activity was sufficient to block adipocyte-autonomous lipolysis from multiple inflammatory ligands, including bacterial components, certain cytokines, and thapsigargin-induced ER stress. IRE1-mediated lipolysis was specific for inflammatory triggers since IRE1 kinase activity was dispensable for isoproterenol and cAMP-induced lipolysis in adipocytes and mouse adipose tissue. IRE1 RNase activity was not associated with inflammation-induced adipocyte lipolysis. Inhibiting IRE1 kinase activity blocked NF-κB activation, interleukin-6 secretion, and adipocyte-autonomous lipolysis from inflammatory ligands. Inflammation-induced lipolysis mediated by IRE1 occurred independently from changes in insulin signaling in adipocytes, suggesting that inflammation can promote IRE1-mediated lipolysis independent of adipocyte insulin resistance. We found no role for canonical unfolded protein responses or ABL kinases in linking ER stress to IRE1-mediated lipolysis. Adiponectin-Cre-mediated IRE1 knockout in mice showed that adipocyte IRE1 was required for inflammatory ligand-induced lipolysis in adipose tissue explants and that adipocyte IRE1 was required for approximately half of the increase in blood triglycerides after a bacterial endotoxin-mediated inflammatory stimulus in vivo. Together, our results show that IRE1 propagates an inflammation-specific lipolytic program independent from hormonal or adrenergic regulation. Targeting IRE1 kinase activity may benefit metabolic syndrome and inflammatory lipid disorders.
Collapse
|