1
|
Meng L, Hao D, Liu Y, Yu P, Luo J, Li C, Jiang T, Yu J, Zhang Q, Liu S, Shi L. LRRC8A drives NADPH oxidase-mediated mitochondrial dysfunction and inflammation in allergic rhinitis. J Transl Med 2024; 22:1034. [PMID: 39550567 PMCID: PMC11568585 DOI: 10.1186/s12967-024-05853-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/02/2024] [Indexed: 11/18/2024] Open
Abstract
OBJECTIVES Allergic rhinitis (AR) is a complex disorder with variable pathogenesis. Increasing evidence suggests that the LRRC8A is involved in maintaining cellular stability, regulating immune cell activation and function, and playing significant roles in inflammation. However, the involvement of LRRC8A in AR inflammation and its underlying mechanisms remain unclear. METHODS LRRC8A expression in AR patients, confirmed by qRT-PCR and Western blotting, was analyzed to investigate its relationship with the clinical characteristics of AR patients. In vitro, IL-13 stimulated HNEpCs to establish a Th2 inflammation model, with subsequent LRRC8A knockout or overexpression. NOX1/NOX4 inhibitor (GKT137831) and chloride channel inhibitor (DCPIB) were utilized to investigate AR development mechanisms during LRRC8A overexpression. An OVA-induced AR model with nasal mucosa LRRC8A knockdown confirmed LRRC8A's regulatory role in AR inflammation. RESULTS LRRC8A mRNA and protein levels were significantly elevated in AR patients, positively correlating with NADPH oxidase subunits and Th2 inflammatory markers. In vitro, IL-13 stimulation of HNEpCs resulted in upregulation of LRRC8A and increased expression of NOX1, NOX4, and p22phox, along with mitochondrial dysfunction and NF-κB pathway activation. The knockout of LRRC8A reversed these effects. In nasal mucosal epithelial cells, DCPIB and GKT137831 completely blocked mitochondrial dysfunction caused by the overexpression of LRRC8A, which led to up-regulation of NOX1, NOX4, and p22phox. In vivo, knocking down LRRC8A reduced eosinophil infiltration, downregulated the expression of NOX1, NOX4, p22phox IL-4, IL-5, and IL-13, and decreased NF-κB pathway activation. CONCLUSION LRRC8A drives the upregulation of NOX1, NOX4, and p22phox, leading to ROS overproduction and mitochondrial dysfunction. It also activates NF-κB, ultimately leading to nasal mucosal epithelial inflammation. LRRC8A may be a potential target for the treatment of AR.
Collapse
Affiliation(s)
- Linghui Meng
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250000, Shandong, China
- Shandong Provincial Key Medical and Health Discipline of Allergy, Shandong Second Provincial General Hospital, Jinan, Shandong, China
| | - Dingqian Hao
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250000, Shandong, China
- Shandong Provincial Key Medical and Health Discipline of Allergy, Shandong Second Provincial General Hospital, Jinan, Shandong, China
| | - Yuan Liu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250000, Shandong, China
- Department of Otolaryngology Head & Neck Surgery, The Second People's Hospital of Shenzhen, Shenzhen, Guangdong, People's Republic of China
| | - Peng Yu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250000, Shandong, China
- Shandong Provincial Key Medical and Health Discipline of Allergy, Shandong Second Provincial General Hospital, Jinan, Shandong, China
| | - Jinfeng Luo
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250000, Shandong, China
- Shandong Provincial Key Medical and Health Discipline of Allergy, Shandong Second Provincial General Hospital, Jinan, Shandong, China
| | - Chunhao Li
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250000, Shandong, China
- Shandong Provincial Key Medical and Health Discipline of Allergy, Shandong Second Provincial General Hospital, Jinan, Shandong, China
| | - Tianjiao Jiang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250000, Shandong, China
- Shandong Provincial Key Medical and Health Discipline of Allergy, Shandong Second Provincial General Hospital, Jinan, Shandong, China
| | - JinZhuang Yu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250000, Shandong, China
- Shandong Provincial Key Medical and Health Discipline of Allergy, Shandong Second Provincial General Hospital, Jinan, Shandong, China
| | - Qian Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250000, Shandong, China
- Shandong Provincial Key Medical and Health Discipline of Allergy, Shandong Second Provincial General Hospital, Jinan, Shandong, China
| | - Shengyang Liu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250000, Shandong, China.
- Shandong Provincial Key Medical and Health Discipline of Allergy, Shandong Second Provincial General Hospital, Jinan, Shandong, China.
| | - Li Shi
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250000, Shandong, China.
- Shandong Provincial Key Medical and Health Discipline of Allergy, Shandong Second Provincial General Hospital, Jinan, Shandong, China.
| |
Collapse
|
2
|
Matsui M, Kajikuri J, Kito H, Elboray EE, Suzuki T, Ohya S. Downregulation of IL-8 and IL-10 by LRRC8A Inhibition through the NOX2-Nrf2-CEBPB Transcriptional Axis in THP-1-Derived M 2 Macrophages. Int J Mol Sci 2024; 25:9612. [PMID: 39273558 PMCID: PMC11395230 DOI: 10.3390/ijms25179612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
M2-polarized, tumor-associated macrophages (TAMs) produce pro-tumorigenic and angiogenic mediators, such as interleukin-8 (IL-8) and IL-10. Leucine-rich repeat-containing protein 8 members (LRRC8s) form volume-regulated anion channels and play an important role in macrophage functions by regulating cytokine and chemokine production. We herein examined the role of LRRC8A in IL-8 and IL-10 expression in THP-1-differentiated M2-like macrophages (M2-MACs), which are a useful tool for investigating TAMs. In M2-MACs, the pharmacological inhibition of LRRC8A led to hyperpolarizing responses after a transient depolarization phase, followed by a slight elevation in the intracellular concentration of Ca2+. Both the small interfering RNA-mediated and pharmacological inhibition of LRRC8A repressed the transcriptional expression of IL-8 and IL-10, resulting in a significant reduction in their secretion. The inhibition of LRRC8A decreased the nuclear translocation of phosphorylated nuclear factor-erythroid 2-related factor 2 (Nrf2), while the activation of Nrf2 reversed the LRRC8A inhibition-induced transcriptional repression of IL-8 and IL-10 in M2-MACs. We identified the CCAAT/enhancer-binding protein isoform B, CEBPB, as a downstream target of Nrf2 signaling in M2-MACs. Moreover, among several upstream candidates, the inhibition of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2) suppressed the Nrf2-CEBPB transcriptional axis in M2-MACs. Collectively, the present results indicate that the inhibition of LRRC8A repressed IL-8 and IL-10 transcription in M2-MACs through the NOX2-Nrf2-CEBPB axis and suggest that LRRC8A inhibitors suppress the IL-10-mediated evasion of tumor immune surveillance and IL-8-mediated metastasis and neovascularization in TAMs.
Collapse
Affiliation(s)
- Miki Matsui
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan; (M.M.); (J.K.); (H.K.)
| | - Junko Kajikuri
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan; (M.M.); (J.K.); (H.K.)
| | - Hiroaki Kito
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan; (M.M.); (J.K.); (H.K.)
| | - Elghareeb E. Elboray
- Department of Complex Molecular Chemistry, SANKEN, Osaka University, Osaka 560-0043, Japan; (E.E.E.); (T.S.)
- Department of Chemistry, Faculty of Science, South Valley University, Qena 83523, Egypt
| | - Takayoshi Suzuki
- Department of Complex Molecular Chemistry, SANKEN, Osaka University, Osaka 560-0043, Japan; (E.E.E.); (T.S.)
| | - Susumu Ohya
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan; (M.M.); (J.K.); (H.K.)
| |
Collapse
|
3
|
Cao G, Guo J, Yang K, Xu R, Jia X, Wang X. DCPIB Attenuates Ischemia-Reperfusion Injury by Regulating Microglial M1/M2 Polarization and Oxidative Stress. Neuroscience 2024; 551:119-131. [PMID: 38734301 DOI: 10.1016/j.neuroscience.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/21/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
The inflammatory response plays an indispensable role in ischemia-reperfusion injury, the most significant of which is the inflammatory response caused by microglial polarization. Anti-inflammatory therapy is also an important remedial measure after failed vascular reconstruction. Maintaining the internal homeostasis of the brain is a crucial measure for suppressing the inflammatory response. The mechanism underlying the relationship between DCPIB, a selective blocker of volume-regulated anion channels (VRAC), and inflammation induced by cerebral ischemia-reperfusion injury is currently unclear. The purpose of this study was to investigate the relationship between DCPIB and microglial M1/M2 polarization-mediated inflammation after cerebral ischemia-reperfusion injury. C57BL/6 mice were subjected to transient middle cerebral artery occlusion (tMCAO). DCPIB was administered by a lateral ventricular injection within 5 min after reperfusion. Behavioral assessments were conducted at 1, 3, and 7 days after tMCAO/R. Pathological injuries were evaluated using TTC assay, HE and Nissl staining, brain water content measurement, and immunofluorescence staining. The levels of inflammatory cytokines were analyzed using qPCR and ELISA. Additionally, the phenotypic variations of microglia were examined using immunofluorescence staining. In mouse tMCAO/R model, DCPIB administration markably reduced mortality, improved behavioral performance, and alleviated pathological injury. DCPIB treatment significantly inhibited the inflammatory response, promoted the conversion of M1 microglia to M2 microglia via the MAPK signaling pathway, and ultimately protected neurons from the microglia-mediated inflammatory response. In addition, DCPIB inhibited oxidative stress induced by cerebral ischemia-reperfusion injury. In conclusion, DCPIB attenuates cerebral ischemia-reperfusion injury by regulating microglial M1/M2 polarization and oxidative stress.
Collapse
Affiliation(s)
- Guihua Cao
- Department of Geriatrics, Xijing Hospital of Air Force Military Medical University, Xi'an 710032, China
| | - Jianbin Guo
- Department of Orthopedics, Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an 710032, China
| | - Kaikai Yang
- Department of Geriatrics, Xijing Hospital of Air Force Military Medical University, Xi'an 710032, China
| | - Rong Xu
- Department of Geriatrics, Xijing Hospital of Air Force Military Medical University, Xi'an 710032, China
| | - Xin Jia
- Department of Geriatrics, Xijing Hospital of Air Force Military Medical University, Xi'an 710032, China
| | - Xiaoming Wang
- Department of Geriatrics, Xijing Hospital of Air Force Military Medical University, Xi'an 710032, China.
| |
Collapse
|
4
|
Lamb FS, Choi H, Miller MR, Stark RJ. Vascular Inflammation and Smooth Muscle Contractility: The Role of Nox1-Derived Superoxide and LRRC8 Anion Channels. Hypertension 2024; 81:752-763. [PMID: 38174563 PMCID: PMC10954410 DOI: 10.1161/hypertensionaha.123.19434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Vascular inflammation underlies the development of hypertension, and the mechanisms by which it increases blood pressure remain the topic of intense investigation. Proinflammatory factors including glucose, salt, vasoconstrictors, cytokines, wall stress, and growth factors enhance contractility and impair relaxation of vascular smooth muscle cells. These pathways share a dependence upon redox signaling, and excessive activation promotes oxidative stress that promotes vascular aging. Vascular smooth muscle cell phenotypic switching and migration into the intima contribute to atherosclerosis, while hypercontractility increases systemic vascular resistance and vasospasm that can trigger ischemia. Here, we review factors that drive the initiation and progression of this vasculopathy in vascular smooth muscle cells. Emphasis is placed on the contribution of reactive oxygen species generated by the Nox1 NADPH oxidase which produces extracellular superoxide (O2•-). The mechanisms of O2•- signaling remain poorly defined, but recent evidence demonstrates physical association of Nox1 with leucine-rich repeat containing 8 family volume-sensitive anion channels. These may provide a pathway for influx of O2•- to the cytoplasm, creating an oxidized cytoplasmic nanodomain where redox-based signals can affect both cytoskeletal structure and vasomotor function. Understanding the mechanistic links between inflammation, O2•- and vascular smooth muscle cell contractility may facilitate targeting of anti-inflammatory therapy in hypertension.
Collapse
Affiliation(s)
- Fred S Lamb
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - Hyehun Choi
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - Michael R Miller
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - Ryan J Stark
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
5
|
Choi H, Miller MR, Nguyen HN, Rohrbough JC, Koch SR, Boatwright N, Yarboro MT, Sah R, McDonald WH, Reese JJ, Stark RJ, Lamb FS. LRRC8A anion channels modulate vascular reactivity via association with myosin phosphatase rho interacting protein. FASEB J 2023; 37:e23028. [PMID: 37310356 PMCID: PMC10591482 DOI: 10.1096/fj.202300561r] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/23/2023] [Accepted: 06/01/2023] [Indexed: 06/14/2023]
Abstract
Leucine-rich repeat containing 8A (LRRC8A) volume regulated anion channels (VRACs) are activated by inflammatory and pro-contractile stimuli including tumor necrosis factor alpha (TNFα), angiotensin II and stretch. LRRC8A associates with NADPH oxidase 1 (Nox1) and supports extracellular superoxide production. We tested the hypothesis that VRACs modulate TNFα signaling and vasomotor function in mice lacking LRRC8A exclusively in vascular smooth muscle cells (VSMCs, Sm22α-Cre, Knockout). Knockout (KO) mesenteric vessels contracted normally but relaxation to acetylcholine (ACh) and sodium nitroprusside (SNP) was enhanced compared to wild type (WT). Forty-eight hours of ex vivo exposure to TNFα (10 ng/mL) enhanced contraction to norepinephrine (NE) and markedly impaired dilation to ACh and SNP in WT but not KO vessels. VRAC blockade (carbenoxolone, CBX, 100 μM, 20 min) enhanced dilation of control rings and restored impaired dilation following TNFα exposure. Myogenic tone was absent in KO rings. LRRC8A immunoprecipitation followed by mass spectroscopy identified 33 proteins that interacted with LRRC8A. Among them, the myosin phosphatase rho-interacting protein (MPRIP) links RhoA, MYPT1 and actin. LRRC8A-MPRIP co-localization was confirmed by confocal imaging of tagged proteins, Proximity Ligation Assays, and IP/western blots. siLRRC8A or CBX treatment decreased RhoA activity in VSMCs, and MYPT1 phosphorylation was reduced in KO mesenteries suggesting that reduced ROCK activity contributes to enhanced relaxation. MPRIP was a target of redox modification, becoming oxidized (sulfenylated) after TNFα exposure. Interaction of LRRC8A with MPRIP may allow redox regulation of the cytoskeleton by linking Nox1 activation to impaired vasodilation. This identifies VRACs as potential targets for treatment or prevention of vascular disease.
Collapse
Affiliation(s)
- Hyehun Choi
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Michael R Miller
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Hong-Ngan Nguyen
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jeffrey C Rohrbough
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Stephen R Koch
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Naoko Boatwright
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Michael T Yarboro
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Rajan Sah
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - W Hayes McDonald
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - J Jeffrey Reese
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ryan J Stark
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Fred S Lamb
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
6
|
Fu D, Luo J, Wu Y, Zhang L, Li L, Chen H, Wen T, Fu Y, Xiong W. Angiotensin II-induced calcium overload affects mitochondrial functions in cardiac hypertrophy by targeting the USP2/MFN2 axis. Mol Cell Endocrinol 2023; 571:111938. [PMID: 37100191 DOI: 10.1016/j.mce.2023.111938] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/12/2023] [Accepted: 04/23/2023] [Indexed: 04/28/2023]
Abstract
Ubiquitination, a common type of post-translational modification, is known to affect various diseases, including cardiac hypertrophy. Ubiquitin-specific peptidase 2 (USP2) plays a crucial role in regulating cell functions, but its role in cardiac functions remains elusive. The present study aims to investigate the mechanism of USP2 in cardiac hypertrophy. Animal and cell models of cardiac hypertrophy were established using Angiotensin II (Ang II) induction. Our experiments revealed that Ang II induced USP2 downregulation in the in vitro and in vivo models. USP2 overexpression suppressed the degree of cardiac hypertrophy (decreased ANP, BNP, and β-MHC mRNA levels, cell surface area, and ratio of protein/DNA), calcium overload (decreased Ca2+ concentration and t-CaMKⅡ and p-CaMKⅡ, and increased SERCA2), and mitochondrial dysfunction (decreased MDA and ROS and increased MFN1, ATP, MMP, and complex Ⅰ and II) both in vitro and in vivo. Mechanically, USP2 interacted with MFN2 and improved the protein level of MFN2 through deubiquitination. Rescue experiments confirmed that MFN2 downregulation neutralized the protective role of USP2 overexpression in cardiac hypertrophy. Overall, our findings suggested that USP2 overexpression mediated deubiquitination to upregulate MFN2, thus alleviating calcium overload-induced mitochondrial dysfunction and cardiac hypertrophy.
Collapse
Affiliation(s)
- Daoyao Fu
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China; Hypertension Research Institute of Jiangxi Province, Nanchang, 330006, Jiangxi, China
| | - Jing Luo
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China; Hypertension Research Institute of Jiangxi Province, Nanchang, 330006, Jiangxi, China
| | - Yanze Wu
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China; Hypertension Research Institute of Jiangxi Province, Nanchang, 330006, Jiangxi, China
| | - Liuping Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China; Hypertension Research Institute of Jiangxi Province, Nanchang, 330006, Jiangxi, China
| | - Lei Li
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China; Hypertension Research Institute of Jiangxi Province, Nanchang, 330006, Jiangxi, China
| | - Hui Chen
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China; Hypertension Research Institute of Jiangxi Province, Nanchang, 330006, Jiangxi, China
| | - Tong Wen
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China; Hypertension Research Institute of Jiangxi Province, Nanchang, 330006, Jiangxi, China
| | - Yongnan Fu
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China; Hypertension Research Institute of Jiangxi Province, Nanchang, 330006, Jiangxi, China
| | - Wenjun Xiong
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China; Hypertension Research Institute of Jiangxi Province, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
7
|
Choi H, Miller MR, Nguyen HN, Rohrbough JC, Koch SR, Boatwright N, Yarboro MT, Sah R, McDonald WH, Reese JJ, Stark RJ, Lamb FS. LRRC8A anion channels modulate vasodilation via association with Myosin Phosphatase Rho Interacting Protein (MPRIP). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.08.531807. [PMID: 36945623 PMCID: PMC10028897 DOI: 10.1101/2023.03.08.531807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
BACKGROUND In vascular smooth muscle cells (VSMCs), LRRC8A volume regulated anion channels (VRACs) are activated by inflammatory and pro-contractile stimuli including tumor necrosis factor alpha (TNFα), angiotensin II and stretch. LRRC8A physically associates with NADPH oxidase 1 (Nox1) and supports its production of extracellular superoxide (O 2 -• ). METHODS AND RESULTS Mice lacking LRRC8A exclusively in VSMCs (Sm22α-Cre, KO) were used to assess the role of VRACs in TNFα signaling and vasomotor function. KO mesenteric vessels contracted normally to KCl and phenylephrine, but relaxation to acetylcholine (ACh) and sodium nitroprusside (SNP) was enhanced compared to wild type (WT). 48 hours of ex vivo exposure to TNFα (10ng/ml) markedly impaired dilation to ACh and SNP in WT but not KO vessels. VRAC blockade (carbenoxolone, CBX, 100 μM, 20 min) enhanced dilation of control rings and restored impaired dilation following TNFα exposure. Myogenic tone was absent in KO rings. LRRC8A immunoprecipitation followed by mass spectroscopy identified 35 proteins that interacted with LRRC8A. Pathway analysis revealed actin cytoskeletal regulation as the most closely associated function of these proteins. Among these proteins, the Myosin Phosphatase Rho-Interacting protein (MPRIP) links RhoA, MYPT1 and actin. LRRC8A-MPRIP co-localization was confirmed by confocal imaging of tagged proteins, Proximity Ligation Assays, and IP/western blots which revealed LRRC8A binding at the second Pleckstrin Homology domain of MPRIP. siLRRC8A or CBX treatment decreased RhoA activity in cultured VSMCs, and MYPT1 phosphorylation at T853 was reduced in KO mesenteries suggesting that reduced ROCK activity contributes to enhanced relaxation. MPRIP was a target of redox modification, becoming oxidized (sulfenylated) after TNFα exposure. CONCLUSIONS Interaction of Nox1/LRRC8A with MPRIP/RhoA/MYPT1/actin may allow redox regulation of the cytoskeleton and link Nox1 activation to both inflammation and vascular contractility.
Collapse
|
8
|
Calpain Regulates Reactive Oxygen Species Production during Capacitation through the Activation of NOX2 and NOX4. Int J Mol Sci 2023; 24:ijms24043980. [PMID: 36835392 PMCID: PMC9967964 DOI: 10.3390/ijms24043980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/05/2023] [Accepted: 02/09/2023] [Indexed: 02/18/2023] Open
Abstract
Capacitation is a series of physiological, biochemical, and metabolic changes experienced by mammalian spermatozoa. These changes enable them to fertilize eggs. The capacitation prepares the spermatozoa to undergo the acrosomal reaction and hyperactivated motility. Several mechanisms that regulate capacitation are known, although they have not been fully disclosed; among them, reactive oxygen species (ROS) play an essential role in the normal development of capacitation. NADPH oxidases (NOXs) are a family of enzymes responsible for ROS production. Although their presence in mammalian sperm is known, little is known about their participation in sperm physiology. This work aimed to identify the NOXs related to the production of ROS in guinea pig and mouse spermatozoa and define their participation in capacitation, acrosomal reaction, and motility. Additionally, a mechanism for NOXs' activation during capacitation was established. The results show that guinea pig and mouse spermatozoa express NOX2 and NOX4, which initiate ROS production during capacitation. NOXs inhibition by VAS2870 led to an early increase in the capacitation and intracellular concentration of Ca2+ in such a way that the spermatozoa also presented an early acrosome reaction. In addition, the inhibition of NOX2 and NOX4 reduced progressive motility and hyperactive motility. NOX2 and NOX4 were found to interact with each other prior to capacitation. This interaction was interrupted during capacitation and correlated with the increase in ROS. Interestingly, the association between NOX2-NOX4 and their activation depends on calpain activation, since the inhibition of this Ca2+-dependent protease prevents NOX2-NOX4 from dissociating and ROS production. The results indicate that NOX2 and NOX4 could be the most important ROS producers during guinea pig and mouse sperm capacitation and that their activation depends on calpain.
Collapse
|
9
|
LRRC8A Is a Promising Prognostic Biomarker and Therapeutic Target for Pancreatic Adenocarcinoma. Cancers (Basel) 2022; 14:cancers14225526. [PMID: 36428619 PMCID: PMC9688930 DOI: 10.3390/cancers14225526] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/18/2022] [Accepted: 11/03/2022] [Indexed: 11/12/2022] Open
Abstract
Pancreatic adenocarcinoma (PAAD) is a highly malignant tumor of the digestive system with increasing morbidity and mortality. The lack of sensitive and reliable biomarkers is one of the main reasons for the poor prognosis. Volume-regulated anion channels (VRAC), which are ubiquitously expressed in the vertebrate cell membrane, are composed of leucine-rich repeat-containing 8A (LRRC8A) and four other homologous family members (LRRC8B-E). VRAC heterogeneous complex is implicated in each of the six "hallmarks of cancer" and represents a novel therapeutic target for cancer. In this study, LRRC8A was speculated to be a promising prognostic biomarker and therapeutic target for PAAD based on a series of bioinformatics analyses. Additional cell experiments and immunohistochemical assays demonstrated that LRRC8A can affect the prognosis of PAAD and is correlated to cell proliferation, cell migration, drug resistance, and immune infiltration. Functional analysis indicated that LRRC8A influences the progression and prognosis of patients with PAAD by the regulation of CD8+ T cells immune infiltration. Taken together, these results can help in the design of new therapeutic drugs for patients with PAAD.
Collapse
|
10
|
Stark RJ, Nguyen HN, Bacon MK, Rohrbough JC, Choi H, Lamb FS. Chloride Channel-3 (ClC-3) Modifies the Trafficking of Leucine-Rich Repeat-Containing 8A (LRRC8A) Anion Channels. J Membr Biol 2022; 256:125-135. [PMID: 36322172 PMCID: PMC10085862 DOI: 10.1007/s00232-022-00271-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/16/2022] [Indexed: 11/07/2022]
Abstract
Chloride channel-3 (ClC-3) Cl-/H+ antiporters and leucine-rich repeat-containing 8 (LRRC8) family anion channels have both been associated with volume-regulated anion currents (VRACs). VRACs are often altered in ClC-3 null cells but are absent in LRRC8A null cells. To explore the relationship between ClC-3, LRRC8A, and VRAC we localized tagged proteins in human epithelial kidney (HEK293) cells using multimodal microscopy. Expression of ClC-3-GFP induced large multivesicular bodies (MVBs) with ClC-3 in the delimiting membrane. LRRC8A-RFP localized to the plasma membrane and to small cytoplasmic vesicles. Co-expression demonstrated co-localization in small, highly mobile cytoplasmic vesicles that associated with the early endosomal marker Rab5A. However, most of the small LRRC8A-positive vesicles were constrained within large MVBs with abundant ClC-3 in the delimiting membrane. Dominant negative (S34A) Rab5A prevented ClC-3 overexpression from creating enlarged MVBs, while constitutively active (Q79L) Rab5A enhanced this phenotype. Thus, ClC-3 and LRRC8A are endocytosed together but independently sorted in Rab5A MVBs. Subsequently, LRRC8A-labeled vesicles were sorted to MVBs labeled by Rab27A and B exosomal compartment markers, but not to Rab11 recycling endosomes. VRAC currents were significantly larger in ClC-3 null HEK293 cells. This work demonstrates dependence of LRRC8A trafficking on ClC-3 which may explain the association between ClC-3 and VRACs.
Collapse
Affiliation(s)
- Ryan J Stark
- Department of Pediatrics, Vanderbilt University Medical Center, 2215 Garland Avenue, Light Hall-1055D, Nashville, TN, 37232-3122v, USA
| | - Hong N Nguyen
- Department of Pediatrics, Vanderbilt University Medical Center, 2215 Garland Avenue, Light Hall-1055D, Nashville, TN, 37232-3122v, USA
| | - Matthew K Bacon
- Department of Pediatrics, University of Kentucky, Lexington, KY, 40536, USA
| | - Jeffrey C Rohrbough
- Department of Pediatrics, Vanderbilt University Medical Center, 2215 Garland Avenue, Light Hall-1055D, Nashville, TN, 37232-3122v, USA
| | - Hyehun Choi
- Department of Pediatrics, Vanderbilt University Medical Center, 2215 Garland Avenue, Light Hall-1055D, Nashville, TN, 37232-3122v, USA
| | - Fred S Lamb
- Department of Pediatrics, Vanderbilt University Medical Center, 2215 Garland Avenue, Light Hall-1055D, Nashville, TN, 37232-3122v, USA.
| |
Collapse
|
11
|
Xiong Y, Xu J, Cao W, Zhang J, Feng Z, Cao K, Liu J. Hydroxytyrosol improves strenuous exercise-associated cardiac pathological changes via modulation of mitochondrial homeostasis. Food Funct 2022; 13:8676-8684. [PMID: 35904366 DOI: 10.1039/d2fo00839d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Strenuous exercise is reported to provoke deleterious consequences including cardiac impairments, while the detailed mechanisms and effective interventions remain limited. The current study aims to explore the profitable effects of hydroxytyrosol (HT), one of the most abundant polyphenols derived from olive oil, on strenuous exercise-induced pathological changes in the heart and its underlying mechanisms. Sprague-Dawley male rats at the age of 8-week-old were supplemented with 25 mg kg-1 day-1 of HT 45 min before the beginning of strenuous exercise for a total of 8 weeks. HT treatment obviously improved the heart weight and morphology with lowered serum cardiac hypertrophy markers as well as cardiac oxidative stress. Moreover, the down-regulated mitochondrial biogenesis pathway, impaired mitochondrial complex activity, dysregulated expression of mitochondrial dynamics-related proteins and activated apoptotic pathway induced by Exe were all improved by HT. In vitro, 10 μM HT effectively reduced the reactive oxygen species level, promoted mitochondrial biogenesis, and inhibited apoptosis and cardiomyocyte hypertrophy in an angiotensin II-induced cardiomyocyte hypertrophy model. In addition, knockdown of the peroxisome proliferator-activated receptor gamma coactivator-1 alpha, the key regulator of mitochondrial biogenesis, partially abolished the benefits of HT. Our results demonstrate that the disturbance of mitochondrial homeostasis plays a substantial role in strenuous exercise-induced pathological cardiac hypertrophy, and HT presents as an effective intervention strategy targeting mitochondrial homeostasis for cardiac health.
Collapse
Affiliation(s)
- Yue Xiong
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China.
| | - Jie Xu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China.
| | - Wenli Cao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China.
| | - Jiawei Zhang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China.
| | - Zhihui Feng
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266071, Shandong, China
| | - Ke Cao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China.
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China. .,School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266071, Shandong, China
| |
Collapse
|
12
|
Hou L, Liu Y, Sun C, Xu R, Cao G, Wang X. Novel Perspective of Cardiovascular Diseases: Volume-Regulatory Anion Channels in the Cell Membrane. MEMBRANES 2022; 12:membranes12070644. [PMID: 35877847 PMCID: PMC9324040 DOI: 10.3390/membranes12070644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/09/2022] [Accepted: 06/18/2022] [Indexed: 11/16/2022]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality worldwide. Although there are established mechanisms and preventions for CVDs, they are not totally elucidative and effective. Emerging evidence suggests that the dysregulation of ion channels in the cell membranes underpins the dysfunction of the cardiovascular system. To date, a variety of cation channels have been widely recognized as important targets for the treatment of CVDs. As a critical component of the anion channels, the volume-regulated anion channel (VRAC) is involved in a series of cell functions by the volume regulation and maintenance of membrane homeostasis. It has been confirmed to play crucial roles in cell action potential generation, cell proliferation, differentiation and apoptosis, and the VRAC appears to be a major participant in metabolic processes during CVDs. This review summarizes the current evidence and progress concerning the VRAC, to determine the future directions and challenges for CVDs for both preventive and therapeutic purposes.
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW Total ceramide levels in cardiac tissue relate to cardiac dysfunction in animal models. However, emerging evidence suggests that the fatty acyl chain length of ceramides also impacts their relationship to cardiac function. This review explores evidence regarding the relationship between ceramides and left ventricular dysfunction and heart failure. It further explores possible mechanisms underlying these relationships. RECENT FINDINGS In large, community-based cohorts, a higher ratio of specific plasma ceramides, C16 : 0/C24 : 0, related to worse left ventricular dysfunction. Increased left ventricular mass correlated with plasma C16 : 0/C24 : 0, but this relationship became nonsignificant after adjustment for multiple comparisons. Decreased left atrial function and increased left atrial size also related to C16 : 0/C24 : 0. Furthermore, increased incident heart failure, overall cardiovascular disease (CVD) mortality and all-cause mortality were associated with higher C16 : 0/C24 : 0 (or lower C24 : 0/C16 : 0). Finally, a number of possible biological mechanisms are outlined supporting the link between C16 : 0/C24 : 0 ceramides, ceramide signalling and CVD. SUMMARY High cardiac levels of total ceramides are noted in heart failure. In the plasma, C16 : 0/C24 : 0 ceramides may be a valuable biomarker of preclinical left ventricular dysfunction, remodelling, heart failure and mortality. Continued exploration of the mechanisms underlying these profound relationships may help develop specific lipid modulators to combat cardiac dysfunction and heart failure.
Collapse
Affiliation(s)
- Lauren K. Park
- Department of Medicine, Division of Cardiology, Washington University School of Medicine, Saint Louis, Missouri
| | - Valene Garr-Barry
- Department of Medicine, Division of Cardiology, Washington University School of Medicine, Saint Louis, Missouri
| | - Juan Hong
- Department of Medicine, Division of Cardiology, Washington University School of Medicine, Saint Louis, Missouri
| | - John Heebink
- Department of Medicine, Division of Cardiology, Washington University School of Medicine, Saint Louis, Missouri
| | - Rajan Sah
- Department of Medicine, Division of Cardiology, Washington University School of Medicine, Saint Louis, Missouri
| | - Linda R. Peterson
- Department of Medicine, Division of Cardiology, Washington University School of Medicine, Saint Louis, Missouri
| |
Collapse
|
14
|
Figueroa EE, Denton JS. Zinc pyrithione activates the volume-regulated anion channel through an antioxidant-sensitive mechanism. Am J Physiol Cell Physiol 2021; 320:C1088-C1098. [PMID: 33826406 PMCID: PMC8285639 DOI: 10.1152/ajpcell.00070.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Leucine-rich repeat-containing 8 (LRRC8) volume-regulated anion channels (VRACs) play important physiological roles in diverse cell types and may represent therapeutic targets for various diseases. To date, however, the pharmacological tools for evaluating the druggability of VRACs have been limited to inhibitors, as no activators of the channel have been reported. We therefore performed a fluorescence-based high-throughput screening (HTS) of 1,184 Food and Drug Administration-approved drugs for compounds that increase VRAC activity. The most potent VRAC potentiator identified was zinc pyrithione (ZPT), which is used commercially as an antifouling agent and for treating dandruff and other skin disorders. In intracellular Yellow Fluorescent Protein YFP(F46L/H148Q/I152L)-quenching assays, ZPT potentiates the rate and extent of swelling-induced iodide influx dose dependently with a half-maximal effective concentration (EC50) of 5.7 µM. Whole cell voltage-clamp experiments revealed that coapplication of hypotonic solution and 30 µM ZPT to human embryonic kidney 293 or human colorectal carcinoma 116 cells increases the rate of swelling-induced VRAC activation by approximately 10-fold. ZPT potentiates swelling-induced VRAC currents after currents have reached a steady state and activates currents in the absence of cell swelling. Neither ZnCl2 nor free pyrithione activated VRAC; however, treating cells with a mixture of ZnCl2 and pyrithione led to robust channel activation. Finally, the effects of ZPT on VRAC were inhibited by reactive oxygen species (ROS) scavenger N-acetylcysteine (NAC) and NAD(P)H oxidase inhibitor diphenyleneiodonium chloride, suggesting the mechanism of action involves ROS generation. The discovery of ZPT as a potentiator/activator of VRAC demonstrates the utility of HTS for identifying small-molecule modulators of VRAC and adds to a growing repertoire of pharmacological tool compounds for probing the molecular physiology and regulation of this important channel.
Collapse
Affiliation(s)
- Eric E. Figueroa
- 1Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
| | - Jerod S. Denton
- 1Department of Pharmacology, Vanderbilt University, Nashville, Tennessee,2Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee,3Vanderbilt Institute of Chemical Biology, Vanderbilt
University, Nashville, Tennessee
| |
Collapse
|
15
|
Mucke HA. Patent highlights December 2020-January 2021. Pharm Pat Anal 2021; 10:103-110. [PMID: 34003025 DOI: 10.4155/ppa-2021-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/23/2021] [Indexed: 11/17/2022]
Abstract
A snapshot of noteworthy recent developments in the patent literature of relevance to pharmaceutical and medical research and development.
Collapse
|