1
|
Qin Y, Hu C, Jin J, Chao Y, Wang D, Xia F, Ruan C, Jiang C, Guan M, Zou C. Bilobalide ameliorates osteoporosis by influencing the SIRT3/NF-κB axis in osteoclasts and promoting M2 polarization in macrophages. Int J Biol Macromol 2024; 281:136504. [PMID: 39395513 DOI: 10.1016/j.ijbiomac.2024.136504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/30/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
Osteoporosis is a systemic disease with complex etiology and high prevalence, resulting in a huge economic burden. For a long time, the search for new therapeutic pharmaceuticals has never stopped. Bone loss is related to the imbalance between bone resorption by osteoclasts and bone formation by osteoblasts. In recent years, the role of immunity and inflammation in the development of osteoporosis has studied well. For example, various cytokines, chemokines and endocrine factors regulate osteoclastogenesis via activating different macrophage subtypes, including pro-inflammatory M1 and anti-inflammatory M2. Bilobalide (Bil), an active Ginkgo biloba ingredient, has garnered great interest because of its anti-oxidant and anti-inflammatory activities. In this study, we found that Bil can attenuate osteoclast generation induced by receptor activator of nuclear factor- kappa B ligand (RANKL) through upregulating the sirtuin 3 (SIRT3) and negatively regulating NF-κB signaling. Furthermore, Bil promotes M2 polarization of macrophages in a dose-dependent manner. In vivo studies provided evidence that Bil improves bone density in osteoporosis mice models. Based on the above results, we have reason to believe that Bil has potential therapeutic value in osteoclast-mediated bone loss and offers an effective option for long-term osteoporosis management.
Collapse
Affiliation(s)
- YiFang Qin
- Department of Endocrinology, Children's Hospital,Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou 310052, China
| | - ChenXi Hu
- Department of Endocrinology, Children's Hospital,Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou 310052, China
| | - JiaLe Jin
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - YunQi Chao
- Department of Endocrinology, Children's Hospital,Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou 310052, China
| | - DongYu Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - FangLing Xia
- Department of Endocrinology, Children's Hospital,Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou 310052, China
| | - ChenXin Ruan
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Chao Jiang
- Department of Orthopedics, Taizhou Hospital of Zhejiang Province, Affiliated to Wenzhou Medical University, Linhai 317000, China.
| | - Ming Guan
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, United States; Joslin-Beth Israel Deaconess Foot Center and the Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, United States; Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - ChaoChun Zou
- Department of Endocrinology, Children's Hospital,Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou 310052, China.
| |
Collapse
|
2
|
Zhang J, Cao J, Liu Y, Zhao H. Advances in the Pathogenesis of Steroid-Associated Osteonecrosis of the Femoral Head. Biomolecules 2024; 14:667. [PMID: 38927070 PMCID: PMC11202272 DOI: 10.3390/biom14060667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Osteonecrosis of the femoral head (ONFH) is a refractory orthopedic condition characterized by bone cell ischemia, necrosis, bone trabecular fracture, and clinical symptoms such as pain, femoral head collapse, and joint dysfunction that can lead to disability. The disability rate of ONFH is very high, which imposes a significant economic burden on both families and society. Steroid-associated osteonecrosis of the femoral head (SANFH) is the most common type of ONFH. However, the pathogenesis of SANFH remains unclear, and it is an urgent challenge for orthopedic surgeons to explore it. In this paper, the pathogenesis of SANFH and its related signaling pathways were briefly reviewed to enhance comprehension of the pathogenesis and prevention of SANFH.
Collapse
Affiliation(s)
- Jie Zhang
- The First Clinical College of Medicine, Lanzhou University, Lanzhou 730000, China; (J.Z.); (J.C.); (Y.L.)
| | - Jianze Cao
- The First Clinical College of Medicine, Lanzhou University, Lanzhou 730000, China; (J.Z.); (J.C.); (Y.L.)
| | - Yongfei Liu
- The First Clinical College of Medicine, Lanzhou University, Lanzhou 730000, China; (J.Z.); (J.C.); (Y.L.)
| | - Haiyan Zhao
- Department of Orthopedics, The First Hospital of Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
3
|
Pan B, Chen C, Zhao Y, Cai J, Fu S, Liu J. SIRT3: A Potential Target of Different Types of Osteoporosis. Cell Biochem Biophys 2024; 82:489-500. [PMID: 38512537 DOI: 10.1007/s12013-024-01254-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 03/13/2024] [Indexed: 03/23/2024]
Abstract
Osteoporosis (OP) is a common age-related disease. OP is mainly a decrease in bone density and mass caused by the destruction of bone microstructure, which leads to an increase in bone fragility. SIRT3 is a mitochondrial deacetylase that plays critical roles in mitochondrial homeostasis, metabolic regulation, gene transcription, stress response, and gene stability. Studies have shown that the higher expression levels of SIRT3 are associated with decreased levels of oxidative stress in the body and may play important roles in the prevention of age-related diseases. SIRTs can enhance the osteogenic potential and osteoblastic activity of bone marrow mesenchymal stromal cells not only by enhancing PGC-1α, FOXO3, SOD2, and oxidative phosphorylation, but also by anti-aging and reducing mitochondrial autophagy. SIRT3 is able to upregulate antioxidant enzymes to exert an inhibitory effect on osteoclasts, however, it has been shown that the inflammatory cascade response can in turn increase SIRT3 and inhibit osteoclast differentiation through the AMPK-PGC-1β pathway. SIRT3 plays an important role in different types of osteoporosis by affecting osteoblasts, osteoclasts, and bone marrow mesenchymal cells. In this review, we discuss the classification and physiological functions of SIRTs, the effects of SIRT3 on OCs osteoblasts, and BMSCs, and the roles and mechanisms of SIRT3 in different types of OP, such as diabetic OP, glucocorticoid-induced OP, postmenopausal OP, and senile OP.
Collapse
Affiliation(s)
- Binjing Pan
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Chongyang Chen
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Yangting Zhao
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Jing Cai
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Songbo Fu
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Jingfang Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China.
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China.
| |
Collapse
|
4
|
Chen M, Tan J, Jin Z, Jiang T, Wu J, Yu X. Research progress on Sirtuins (SIRTs) family modulators. Biomed Pharmacother 2024; 174:116481. [PMID: 38522239 DOI: 10.1016/j.biopha.2024.116481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024] Open
Abstract
Sirtuins (SIRTs) represent a class of nicotinamide adenine dinucleotide (NAD+)-dependent protein deacetylases that exert a crucial role in cellular signal transduction and various biological processes. The mammalian sirtuins family encompasses SIRT1 to SIRT7, exhibiting therapeutic potential in counteracting cellular aging, modulating metabolism, responding to oxidative stress, inhibiting tumors, and improving cellular microenvironment. These enzymes are intricately linked to the occurrence and treatment of diverse pathological conditions, including cancer, autoimmune diseases, and cardiovascular disorders. Given the significance of histone modification in gene expression and chromatin structure, maintaining the equilibrium of the sirtuins family is imperative for disease prevention and health restoration. Mounting evidence suggests that modulators of SIRTs play a crucial role in treating various diseases and maintaining physiological balance. This review delves into the molecular structure and regulatory functions of the sirtuins family, reviews the classification and historical evolution of SIRTs modulators, offers a systematic overview of existing SIRTs modulation strategies, and elucidates the regulatory mechanisms of SIRTs modulators (agonists and inhibitors) and their clinical applications. The article concludes by summarizing the challenges encountered in SIRTs modulator research and offering insights into future research directions.
Collapse
Affiliation(s)
- Mingkai Chen
- Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China; School of Medicine Jiangsu University, Zhenjiang, Jiangsu, China
| | - Junfei Tan
- School of Medicine Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zihan Jin
- Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou City, China
| | - Tingting Jiang
- Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
| | - Jiabiao Wu
- Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
| | - Xiaolong Yu
- Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China; The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China.
| |
Collapse
|
5
|
Shang P, Liu Y, Ren J, Liu Q, Song H, Jia J, Liu Q. Overexpression of miR-532-5p restrains oxidative stress response of chondrocytes in nontraumatic osteonecrosis of the femoral head by inhibiting ABL1. Open Med (Wars) 2024; 19:20240943. [PMID: 38584839 PMCID: PMC10997031 DOI: 10.1515/med-2024-0943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 04/09/2024] Open
Abstract
This study is to probe into the meaning of serum miR-532-5p in nontraumatic osteonecrosis of the femoral head (ONFH), and a molecular mechanism of miR-532-5p in the development of nontraumatic ONFH. This study enrolled 96 patients diagnosed with nontraumatic ONFH and 96 patients with femoral neck fracture. The levels of miR-532-5p, ABL1, MMP-3, MMP-13, and cleaved-caspase3 were determined. Radiographic progression was assessed by ARCO staging system. Visual analog scale (VAS) and Harris hip score (HHS) were employed for evaluation of the symptomatic severity of nontraumatic ONFH. Cell viability and apoptosis in chondrocytes isolated from clinical samples were investigated with CCK-8 and flow cytometry. The levels of lactic dehydrogenase (LDH), superoxide dismutase (SOD), and malondialdehyde (MDA), mitochondrial membrane potential (ΔΨm), and reactive oxygen species (ROS) were determined. miR-532-5p was downregulated in tissues and serum of patients with nontraumatic ONFH, negatively related with ARCO staging and VAS, and positively correlated with HHS. Cell apoptosis, LDH, MDA, and ROS strengthened, while cell viability, ΔΨm, and SOD reduced in chondrocytes of nontraumatic ONFH patients. ABL1 was upregulated in cartilage tissues from nontraumatic ONFH patients. miR-532-5p targeted ABL1, and overexpressed miR-532-5p alleviated nontraumatic ONFH-induced oxidative stress damage of chondrocytes by restraining ABL1. miR-532-5p ameliorated oxidative stress injury in nontraumatic ONFH by inhibiting ABL1.
Collapse
Affiliation(s)
- Peng Shang
- Department of Orthopedics, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Shanxi, 030032, P.R. China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P.R. China
| | - Ying Liu
- Department of Oncology, Second Hospital of Shanxi Medial University, Taiyuan, Shanxi, 030001, P.R. China
| | - Jie Ren
- Department of Orthopedics, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Shanxi, 030032, P.R. China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P.R. China
| | - Qingqing Liu
- Department of Orthopedics, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Shanxi, 030032, P.R. China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P.R. China
| | - Haobo Song
- Department of Orthopedics, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Shanxi, 030032, P.R. China
| | - Junqing Jia
- Department of Orthopedics, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, No. 99, Longcheng Street, Taiyuan, Shanxi, 030032, P.R. China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan, Hubei, 430030, P.R. China
| | - Qiang Liu
- Department of Orthopedics, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, No. 99, Longcheng Street, Taiyuan, Shanxi, 030032, P.R. China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan, Hubei, 430030, P.R. China
| |
Collapse
|
6
|
Fang S, He T, You M, Zhu H, Chen P. Glucocorticoids promote steroid-induced osteonecrosis of the femoral head by down-regulating serum alpha-2-macroglobulin to induce oxidative stress and facilitate SIRT2-mediated BMP2 deacetylation. Free Radic Biol Med 2024; 213:208-221. [PMID: 38142952 DOI: 10.1016/j.freeradbiomed.2023.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/07/2023] [Accepted: 12/17/2023] [Indexed: 12/26/2023]
Abstract
Our study investigated the possible molecular mechanism of glucocorticoid in steroid-induced osteonecrosis of the femoral head (SINFH) through regulating serum alpha-2-macroglobulin and SIRT2-mediated BMP2 deacetylation. Essential genes involved in glucocorticoid-induced SINFH were screened by transcriptome sequencing and analyzed by bioinformatics, followed by identifying downstream regulatory targets. Rat bone marrow mesenchymal stem cells were isolated and treated with methylprednisolone (MP) for in vitro cell experiments. Besides, a glucocorticoid-induced rat ONFH was established using the treatment of MP and LPS. ChIP-PCR detected the enrichment of SIRT2 in the promoter region of BMP2, and the deacetylation modification of SIRT2 on BMP2 was determined. Bioinformatics analysis revealed that glucocorticoids may induce ONFH through the SIRT2/BMP2 axis. In vitro cell experiments showed that glucocorticoids up-regulated SIRT2 expression in BMSCs by inducing oxidative stress, thereby promoting cell apoptosis. The up-regulation of SIRT2 expression may be due to the decreased ability of α2 macroglobulin to inhibit oxidative stress, and the addition of NOX protein inhibitor DPI could significantly inhibit SIRT2 expression. SIRT2 could promote histone deacetylation of the BMP2 promoter and inhibit its expression. In vitro cell experiments further indicated that knocking down SIRT2 could protect BMSC from oxidative stress and cell apoptosis induced by glucocorticoids by promoting BMP2 expression. In addition, animal experiments conducted also demonstrated that the knockdown of SIRT2 could improve glucocorticoid-induced ONFH through up-regulating BMP2 expression. Glucocorticoids could induce oxidative stress by down-regulating serum α2M to promote SIRT2-mediated BMP2 deacetylation, leading to ONFH.
Collapse
Affiliation(s)
- Shanhong Fang
- Department of Sports Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, PR China; Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, PR China; Fujian Orthopaedics Research Institute, Fuzhou, 350000, PR China; Fujian Orthopedic Bone and Joint Disease and Sports Rehabilitation Clinical Medical Research Center, Fuzhou, 350000, PR China
| | - Tianmin He
- Department of Vascular Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, PR China
| | - Mengqiang You
- Department of Sports Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, PR China; Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, PR China
| | - Huixin Zhu
- Nursing Department, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, PR China; Nursing Department, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, PR China
| | - Peng Chen
- Department of Sports Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, PR China; Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, PR China; Fujian Orthopaedics Research Institute, Fuzhou, 350000, PR China; Fujian Orthopedic Bone and Joint Disease and Sports Rehabilitation Clinical Medical Research Center, Fuzhou, 350000, PR China.
| |
Collapse
|
7
|
Gao Y, You Y, Zhang P, Yu Y, Xu Z, Wei H, Liu Z, Yu R, Jin G, Wang H, Zhang S, Li Y, Li W. Cortistatin prevents glucocorticoid-associated osteonecrosis of the femoral head via the GHSR1a/Akt pathway. Commun Biol 2024; 7:132. [PMID: 38278996 PMCID: PMC10817896 DOI: 10.1038/s42003-024-05795-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 01/09/2024] [Indexed: 01/28/2024] Open
Abstract
Long-term use of glucocorticoids (GCs) is known to be a predominant cause of osteonecrosis of the femoral head (ONFH). Moreover, GCs can mediate apoptosis of various cell types by exaggerating oxidative stress. We have previously found that Cortistatin (CST) antagonizes oxidative stress and improves cell apoptosis in several conditions. In this study, we detected that the CST expression levels were diminished in patients with ONFH compared with femoral neck fracture (FNF). In addition, a GC-induced rat ONFH model was established, which impaired bone quality in the femoral head. Then, administration of CST attenuated these ONFH phenotypes. Furthermore, osteoblast and endothelial cells were cultured and stimulated with dexamethasone (Dex) in the presence or absence of recombinant CST. As a result, Dex induced impaired anabolic metabolism of osteoblasts and suppressed tube formation in endothelial cells, while additional treatment with CST reversed this damage to the cells. Moreover, blocking GHSR1a, a well-accepted receptor of CST, or blocking the AKT signaling pathway largely abolished the protective function of CST in Dex-induced disorder of the cells. Taken together, we indicate that CST has the capability to prevent GC-induced apoptosis and metabolic disorder of osteoblasts in the pathogenesis of ONFH via the GHSR1a/AKT signaling pathway.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, China
| | - Yunhao You
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, China
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Pengfei Zhang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, China
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yang Yu
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, China
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhaoning Xu
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hui Wei
- Department of Rehabilitation, Qilu Hospital of Shandong University, Jinan, China
| | - Zhicheng Liu
- Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, China
| | - Ruixuan Yu
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, China
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Gaoxin Jin
- Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, China
| | - Hao Wang
- Department of Trauma Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
| | - Shuai Zhang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, China.
| | - Yuhua Li
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, China.
| | - Weiwei Li
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
8
|
Xu K, Li J, Wen R, Chang B, Cheng Y, Yi X. Role of SIRT3 in bone homeostasis and its application in preventing and treating bone diseases. Front Pharmacol 2023; 14:1248507. [PMID: 38192409 PMCID: PMC10773770 DOI: 10.3389/fphar.2023.1248507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/11/2023] [Indexed: 01/10/2024] Open
Abstract
Bone homeostasis refers to the balance between osteoblast-mediated bone formation and osteoclast-mediated bone resorption and the maintenance of stable bone mass. SIRT3 is a class of mitochondrial protein deacetylase that influences various mitochondrial functions and is involved in the mechanisms underlying resistance to aging; regulation of bone marrow mesenchymal stem cells, osteoblasts, and osteoclasts; and development of osteoporosis, osteoarthritis, and other bone diseases. Moreover, exercise affects bones through SIRT3. Thus, studies on SIRT3 may provide insights for the treatment of bone diseases. Although SIRT3 can exert multiple effects on bone, the specific mechanism by which it regulates bone homeostasis remains unclear. By evaluating the relevant literature, this review discusses the structure and function of SIRT3, reveals the role and associated mechanisms of SIRT3 in regulating bone homeostasis and mediating bone health during exercise, and highlights the potential pharmacological value of SIRT3 in treating bone diseases.
Collapse
Affiliation(s)
- Ke Xu
- School of Sports Health, Shenyang Sport University, Shenyang, China
| | - Jing Li
- School of Physical Education, Liaoning Normal University, Dalian, China
| | - Ruiming Wen
- School of Sports Health, Shenyang Sport University, Shenyang, China
| | - Bo Chang
- School of Sports Health, Shenyang Sport University, Shenyang, China
| | - Yang Cheng
- School of Sports Health, Shenyang Sport University, Shenyang, China
| | - Xuejie Yi
- School of Sports Health, Shenyang Sport University, Shenyang, China
| |
Collapse
|
9
|
Liu Q, Wu Y, Li S, Yoon S, Zhang J, Wang X, Hu L, Su C, Zhang C, Wu Y. Ursolic acid alleviates steroid-induced avascular necrosis of the femoral head in mouse by inhibiting apoptosis and rescuing osteogenic differentiation. Toxicol Appl Pharmacol 2023; 475:116649. [PMID: 37536651 DOI: 10.1016/j.taap.2023.116649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/19/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Steroid-induced avascular necrosis of femoral head (SANFH) is a common disorder worldwide with high disability. Overdose of glucocorticoid (GC) is the most common non-traumatic cause of SANFH. Up until now, there are limited therapeutic strategies for curing SANFH, and the mechanisms underlying SANFH progression remain unclear. Nevertheless, Osteogenic dysfunction is considered to be one of the crucial pathobiological mechanisms in the development of SANFH, which involves mouse bone marrow mesenchymal stem cells (BMSCs) apoptosis and osteogenic differentiation disorder. Ursolic acid (UA), an important component of the Chinese medicine formula Yougui Yin, has a wide range of pharmacological properties such as anti-tumor, anti-inflammatory and bone remodeling. Due to the positive effect of Yougui Yin on bone remodeling, the purpose of this study was to investigate the effects of UA on dexamethasone (DEX)-induced SANFH in vitro and vivo. In vitro, we demonstrated that UA can promote mouse BMSCs proliferation and resist DEX-induced apoptosis by CCK8, Western blotting, TUNEL and so on. In addition, vitro experiments such as ALP and Alizarin red staining assay showed that UA had a beneficial effect on the osteogenic differentiation of mouse BMSCs. In vivo, the results of H&E staining, immunohistochemistry staining, Elisa and micro-CT analysis showed that UA had a bone repair-promoting effect in SANFH model. Moreover, the results of Western blot and TUNEL experiments showed that UA could delay the disease progression of SANFH in mice by inhibiting apoptosis. Overall, our study suggests that UA is a potential compound for the treatment of SANFH.
Collapse
Affiliation(s)
- Qian Liu
- Department of the Orthopedics of Traditional Chinese Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yuyang Wu
- School of the 1st Clinical Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Sisi Li
- Department of Otolaryngology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Somy Yoon
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
| | - Jiaxin Zhang
- Department of the Orthopedics of Traditional Chinese Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoyi Wang
- Department of the Orthopedics of Traditional Chinese Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Luoshuang Hu
- Department of the Orthopedics of Traditional Chinese Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chenying Su
- Department of the Orthopedics of Traditional Chinese Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chunwu Zhang
- Department of the Orthopedics of Traditional Chinese Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Yungang Wu
- Department of the Orthopedics of Traditional Chinese Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
10
|
Ungurianu A, Zanfirescu A, Margină D. Sirtuins, resveratrol and the intertwining cellular pathways connecting them. Ageing Res Rev 2023; 88:101936. [PMID: 37116286 DOI: 10.1016/j.arr.2023.101936] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/06/2023] [Accepted: 04/17/2023] [Indexed: 04/30/2023]
Abstract
Sirtuins are a family of NAD+-dependent deacylases with numerous physiological and pathological implications, which lately became an attractive therapeutic target. Sirtuin-activating compounds (STACs) could be useful in disease prevention and treatment. Despite its bioavailability issues, resveratrol exerts a myriad of beneficial effects, known as the "resveratrol paradox". Modulation of sirtuins' expression and activity may, in fact, underlie many of resveratrol revered actions; however, the cellular pathways affected by modulating the activity of each sirtuin isoform, in different physio-pathological conditions, are not fully known. The purpose of this review was to summarize recent reports concerning the effects of resveratrol on the activity of sirtuins in different experimental settings, focusing on in vitro and in vivo preclinical studies. Most reports concern SIRT1, however recent studies dive into the effects initiated via other isoforms. Numerous cellular signaling pathways were reported to be modulated by resveratrol in a sirtuin-dependent manner (increased phosphorylation of MAPKs, AKT, AMPK, RhoA, BDNF, decreased activation of NLRP3 inflammasome, NF-κB, STAT3, upregulation of SIRT1/SREBP1c pathway, reduced β-amyloid via SIRT1-NF-κB-BACE1 signaling and counteracting mitochondrial damage by deacetylating PGC-1α). Thus, resveratrol may be the ideal candidate in the search for STACs as a tool for preventing and treating inflammatory and neurodegenerative diseases.
Collapse
Affiliation(s)
- Anca Ungurianu
- Carol Davila University of Medicine and Pharmacy, Faculty of Pharmacy, Department of Biochemistry, Traian Vuia 6, 020956 Bucharest, Romania
| | - Anca Zanfirescu
- Carol Davila University of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmacology, Traian Vuia 6, 020956 Bucharest, Romania.
| | - Denisa Margină
- Carol Davila University of Medicine and Pharmacy, Faculty of Pharmacy, Department of Biochemistry, Traian Vuia 6, 020956 Bucharest, Romania
| |
Collapse
|
11
|
Li G, Qin H, Zhou M, Zhang T, Zhang Y, Ding H, Xu L, Song J. Knockdown of SIRT3 perturbs protective effects of irisin against bone loss in diabetes and periodontitis. Free Radic Biol Med 2023; 200:11-25. [PMID: 36863620 DOI: 10.1016/j.freeradbiomed.2023.02.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/19/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023]
Abstract
A well-recognized risk factor for periodontitis, diabetes mellitus (DM) aggravates periodontal disease with increasing alveolar bone loss. As a novel myokine, irisin is closely linked with bone metabolism. Nonetheless, the effects of irisin on periodontitis under diabetic conditions and the underlying mechanisms remain poorly understood. Here, we showed that local irisin treatment ameliorates alveolar bone loss and oxidative stress, increases SIRT3 expression within periodontal tissues of our experimentally-induced diabetes and periodontitis (DP) rat models. By culturing the periodontal ligament cells (PDLCs) in vitro, we found that irisin could partially rescue inhibited cell viability, mitigate accumulated intracellular oxidative stress, ameliorate mitochondrial dysfunctions, and restore disturbed osteogenic and osteoclastogenic capacities of PDLCs when exposed to high glucose and pro-inflammatory stimulation. Furthermore, lentivirus-mediated SIRT3 knockdown was employed to unravel the underlying mechanism by which SIRT3 mediated irisin's beneficial effects on PDLCs. Meanwhile, in SIRT3-deficient mice, irisin treatment did not protect against alveolar bone destruction and oxidative stress accumulation in DP models, which underlined the crucial role of SIRT3 in mediating the positive effects of irisin on DP. Our findings, for the first time, revealed that irisin attenuates alveolar bone loss and oxidative stress via activation of the SIRT3 signaling cascade, and highlighted its therapeutic potential for the treatment of DP.
Collapse
Affiliation(s)
- Guangyue Li
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China; College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Han Qin
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China; College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Mengjiao Zhou
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China; College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Tingwei Zhang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China; College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Yang Zhang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China; College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Huifen Ding
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China; College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Ling Xu
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China; College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Jinlin Song
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China; College of Stomatology, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
12
|
Jin C, Tan K, Yao Z, Lin BH, Zhang DP, Chen WK, Mao SM, Zhang W, Chen L, Lin Z, Weng SJ, Bai BL, Zheng WH, Zheng G, Wu ZY, Yang L. A Novel Anti-Osteoporosis Mechanism of VK2: Interfering with Ferroptosis via AMPK/SIRT1 Pathway in Type 2 Diabetic Osteoporosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2745-2761. [PMID: 36719855 DOI: 10.1021/acs.jafc.2c05632] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Type 2 diabetic osteoporosis (T2DOP) is a chronic bone metabolic disease. Compared with traditional menopausal osteoporosis, the long-term high glucose (HG) microenvironment increases patients' risk of fracture and osteonecrosis. We were accumulating evidence that implicated ferroptosis as a pivotal mechanism of glucolipotoxicity-mediated death of osteocytes and osteoblast, a novel form of programmed cell death resulting from uncontrolled lipid peroxidation depending on iron. Vitamin K2 (VK2), a fat-soluble vitamin, is clinically applied to prevent osteoporosis and improve coagulation. This study aimed to clarify the role and mechanism of VK2 in HG-mediated ferroptosis. We established the mouse T2DOP model by intraperitoneal injection of streptozotocin solution and a high-fat and high-sugar diet. We also cultured bone marrow mesenchymal stem cells (BMSCs) in HG to simulate the diabetic environment in vitro. Based on our data, VK2 inhibited HG-mediated bone loss and ferroptosis, the latter manifested by decreased levels of mitochondrial reactive oxygen species, lipid peroxidation, and malondialdehyde and increased glutathione in vitro. In addition, VK2 treatment was capable of restoring bone mass and strengthening the expression of SIRT1, GPX4, and osteogenic markers in the distal femurs. As for further mechanism exploration, we found that VK2 could activate AMPK/SIRT1 signaling, and knockdown of SIRT1 by siRNA prevented the VK2-mediated positive effect in HG-cultured BMSCs. Summarily, VK2 could ameliorate T2DOP through the activation of the AMPK/SIRT1 signaling pathway to inhibit ferroptosis.
Collapse
Affiliation(s)
- Chen Jin
- Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou 325000, China
| | - Kai Tan
- Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou 325000, China
| | - Zhe Yao
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou 325000, China
- Department of Burn and Wound Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Bing-Hao Lin
- Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou 325000, China
| | - Du-Piao Zhang
- Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou 325000, China
| | - Wei-Kai Chen
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Shu-Ming Mao
- Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou 325000, China
| | - Wei Zhang
- Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou 325000, China
| | - Liang Chen
- Orthopaedic Oncology Services, Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Zhen Lin
- Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou 325000, China
| | - She-Ji Weng
- Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou 325000, China
| | - Bing-Li Bai
- Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou 325000, China
| | - Wen-Hao Zheng
- Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou 325000, China
| | - Gang Zheng
- Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou 325000, China
| | - Zong-Yi Wu
- Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou 325000, China
| | - Lei Yang
- Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou 325000, China
- School of Medicine, Shanghai University, Shanghai 200444, China
| |
Collapse
|
13
|
Macrophage/Microglia Sirt3 Contributes to the Anti-inflammatory Effects of Resveratrol Against Experimental Intracerebral Hemorrhage in Mice. Cell Mol Neurobiol 2023:10.1007/s10571-023-01325-9. [PMID: 36786945 DOI: 10.1007/s10571-023-01325-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/28/2023] [Indexed: 02/15/2023]
Abstract
Intracerebral hemorrhage (ICH) is a devastating stroke type with high mortality and disability. Inflammatory response induced by macrophages/microglia (M/Ms) activation is one of the leading causes of brain damage after ICH. The anti-inflammatory effects of resveratrol (RSV) have already been evaluated in several models of central nervous system disease. Therefore, we designed the current study to assess the role of RSV in ICH and explore its downstream mechanism related to Sirt3. The autologous artery blood injection was administrated to create an ICH mouse model. M/Ms-specific Sirt3 knockout Sirt3f/f; CX3CR1-Cre (Sirt3 cKO) mouse was used to evaluate the role of Sirt3 on RSV treatment. Neuronal function and hematoma volume were assessed to indicate brain damage. The pro-inflammatory marker (CD16) and cytokine (TNF) were measured to evaluate the inflammatory effects. Our results showed that RSV treatment alleviates neurological deficits, reduces cell death, and increases hematoma clearance on day 7 after ICH. In addition, RSV effectively suppressed CD16+ M/Ms activation and decreased TNF release. In Sirt3 cKO mice, the protective effects of RSV were abolished, indicating the potential mechanism of RSV was partially due to Sirt3 signaling activation. Therefore, RSV could be a promising candidate and therapeutic agent for ICH and Sirt3 could be a potential target to inhibit inflammation.
Collapse
|
14
|
Zhang K, Li T, Li Q, Nie C, Sun Y, Xue L, Wang Y, Fan M, Qian H, Li Y, Wang L. 5-Heptadecylresorcinol Regulates the Metabolism of Thermogenic Fat and Improves the Thermogenic Capacity of Aging Mice via a Sirtuin 3-Adenosine Monophosphate-Activated Protein Kinase Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:557-568. [PMID: 36535764 DOI: 10.1021/acs.jafc.2c07073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
5-Heptadecylresorcinol (AR-C17), a well-known biomarker for whole grain rye consumption, is a primary homolog of alkylresorcinols. In this study, the effects of AR-C17 on the thermogenesis of brown adipocytes and 3T3-L1 adipocytes were investigated. The results showed that AR-C17 increased sirtuin 3 (Sirt3) expression, and the expressions of specific thermogenic genes in adipocytes were increased. Furthermore, AR-C17 increased the mitochondrial functions during the thermogenic activation of adipocytes. In in vivo study, AR-C17 increased the cold tolerance and thermogenic capacity of adipose tissues in aging mice. In addition, Sirt3 activity was required for AR-C17-induced thermogenesis. Meanwhile, AR-C17 increased adenosine monophosphate-activated protein kinase (AMPK) phosphorylation, and AMPK was involved in the regulation of AR-C17 on thermogenic adipocytes. Mechanically, AR-C17 upregulated a Sirt3-AMPK positive-feedback loop in adipocytes and further increased the expression of uncoupling protein 1 to activate thermogenesis. This study indicated that AR-C17 could be a promising thermogenic activator of adipocytes to alleviate obesity and aging-associated metabolic diseases.
Collapse
Affiliation(s)
- Kuiliang Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Tingting Li
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Qiang Li
- China National Institute of Standardization, Beijing 100015, China
| | - Chenzhipeng Nie
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yujie Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Lamei Xue
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yu Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Mingcong Fan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Haifeng Qian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Li Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
15
|
Feng G, Zhang P, Huang J, Yu Y, Yang F, Zhao X, Wang W, Li D, Sun S, Niu X, Chai L, Li J. Sequential Release of Panax Notoginseng Saponins and Osteopractic Total Flavone from Poly ( L-Lactic Acid) Scaffold for Treating Glucocorticoid-Associated Osteonecrosis of Femoral Head. J Funct Biomater 2023; 14:jfb14010031. [PMID: 36662078 PMCID: PMC9863477 DOI: 10.3390/jfb14010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 01/06/2023] Open
Abstract
Glucocorticoids inhibit angiogenesis in the femoral head, which fails to nourish the bone tissue and leads to osteonecrosis. Restoring angiogenesis is not only essential for vessel formation, but also crucial for osteogenesis. Poly (L-lactic acid) (PLLA) is commonly used in the bone tissue engineering field. Panax notoginseng saponins (PNS) and osteopractic total flavone (OTF) promote angiogenesis and osteogenesis, respectively. We designed a sequentially releasing PLLA scaffold including PLLA loaded with OTF (inner layer) and PLLA loaded with PNS (outer layer). We assessed the osteogenic effect of angiogenesis in this scaffold by comparing it with the one-layered scaffold (PLLA embedded with OTF and PNS) in vivo. Results from the micro-CT showed that the data of bone mineral density (BMD), bone volume (BV), and percent bone volume (BV/TV) in the PO-PP group were significantly higher than those in the POP group (p < 0.01). Histological analyses show that the PO-PP scaffold exhibits better angiogenic and osteogenic effects compared with the one-layered scaffold. These might result from the different structures between them, where the sequential release of a bi-layer scaffold achieves the osteogenic effect of vascularization by initially releasing PNS in the outer layer. We further explored the possible mechanism by an immunohistochemistry analysis and an immunofluorescence assay. The results showed that the protein expressions of vascular endothelial growth factor (VEGF) and platelet endothelial cell adhesion molecule-1(CD31) in the PO-PP scaffold were significantly higher than those in the POP scaffold (p < 0.01); the protein expressions of osteocalcin (OCN), osteopontin (OPN), and alkaline phosphatase (ALP) in the PO-PP scaffold were significantly higher than those in the POP scaffold (p < 0.05). Upregulating the expressions of angiogenic and osteogenic proteins might be the possible mechanism.
Collapse
Affiliation(s)
- Guiyu Feng
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Pingxin Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Jian Huang
- Department of Orthopedic, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Yao Yu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Fenghe Yang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Xueqian Zhao
- Yuquan Hospital Affiliated to Tsinghua University, Beijing 100040, China
| | - Wei Wang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Dongyang Li
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Song Sun
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Xufeng Niu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
- Correspondence: (X.N.); (L.C.); (J.L.)
| | - Limin Chai
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
- Correspondence: (X.N.); (L.C.); (J.L.)
| | - Jinyu Li
- Department of Orthopedic, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
- Correspondence: (X.N.); (L.C.); (J.L.)
| |
Collapse
|
16
|
SIRT6 Prevents Glucocorticoid-Induced Osteonecrosis of the Femoral Head in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6360133. [PMID: 36275897 PMCID: PMC9584736 DOI: 10.1155/2022/6360133] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/27/2022] [Indexed: 12/03/2022]
Abstract
Objective Glucocorticoid-induced osteonecrosis of the femoral head is one of the most common causes of nontraumatic osteonecrosis of the femoral head, but its exact pathogenesis remains unclear. The aim of this study was to investigate the role of SIRT6 in the maintenance of bone tissue morphology and structure, intravascular lipid metabolism, and its potential molecular mechanism in glucocorticoid-induced osteonecrosis of the femoral head. Methods SIRT6 adenovirus was transfected into GIONFH in rats. The microstructure of rat bone was observed by micro-CT and histological staining, and the expression of bone formation-related proteins and angiogenesis-related factors was determined through western blot and immunohistochemistry. Alkaline phosphatase activity, alizarin red staining, and the expression levels of Runx2 and osteocalcin were used to evaluate the osteogenic potential. And in vitro tube formation assay and immunofluorescence were used to detect the ability of endothelial cell angiogenesis. Results Dexamethasone significantly inhibited osteoblast differentiation, affected bone formation, and destroyed microvessel formation, increased the intracellular Fe2+ and ROS levels and induced the occurrence of ferroptosis. SIRT6 can inhibit ferroptosis and restore the ability of bone formation and angiogenesis. Conclusion SIRT6 can inhibit the occurrence of ferroptosis, reduce the damage of vascular endothelium, and promote osteogenic differentiation, so as to prevent the occurrence of osteonecrosis of the femoral head.
Collapse
|
17
|
Irisin Promotes Osteogenesis by Modulating Oxidative Stress and Mitophagy through SIRT3 Signaling under Diabetic Conditions. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3319056. [PMID: 36262283 PMCID: PMC9576424 DOI: 10.1155/2022/3319056] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022]
Abstract
Advanced glycation end products (AGEs) accumulate in the bone tissue of patients with diabetes mellitus, resulting in oxidative stress, poor bone healing, or regeneration. Irisin, a novel exercise-induced myokine, is involved in the regulation of bone metabolism. However, the effects of irisin on adipose-derived stem cell (ASC) osteogenic differentiation and bone healing under diabetic conditions remain poorly understood. ASCs were obtained from inguinal fat of Sprague-Dawley rats and treated with different concentrations of AGEs and irisin. Cell proliferation, apoptosis, and osteogenic differentiation abilities of ASCs were detected. To explore the regulatory role of sirtuin 3 (SIRT3), ASCs were transfected with lentivirus-mediated SIRT3 overexpression or knockdown vectors. Next, we investigated mitochondrial functions, mitophagy, and mitochondrial biogenesis in different groups. Moreover, SOD2 acetylation and potential signaling pathways were assessed. Additionally, a diabetic rat model was used to evaluate the effect of irisin on bone healing in calvarial critical-sized defects (CSDs) in vivo. Our results showed that irisin incubation mitigated the inhibitory effects of AGEs on ASCs by increasing cell viability and promoting osteogenesis. Moreover, irisin modulated mitochondrial membrane potential, intracellular ROS levels, mitochondrial O2·− status, ATP generation, complex I and IV activities, mitophagy, and mitochondrial biogenesis via a SIRT3-mediated pathway under AGEs exposure. Furthermore, in calvarial CSDs of diabetic rats, transplantation of gels encapsulating irisin-pretreated ASCs along with irisin largely enhanced bone healing. These findings suggest that irisin attenuates AGE-induced ASC dysfunction through SIRT3-mediated maintenance of oxidative stress homeostasis and regulation of mitophagy and mitochondrial biogenesis. Thus, our studies shed new light on the role of irisin in promoting the ASC osteogenesis and targeting SIRT3 as a novel therapeutic intervention strategy for bone regeneration under diabetic conditions.
Collapse
|
18
|
Li S, Wang Y, Yu D, Zhang Y, Wang X, Shi M, Xiao Y, Li X, Xiao H, Chen L, Xiong X. Triclocarban evoked neutrophil extracellular trap formation in common carp (Cyprinus carpio L.) by modulating SIRT3-mediated ROS crosstalk with ERK1/2/p38 signaling. FISH & SHELLFISH IMMUNOLOGY 2022; 129:85-95. [PMID: 36057428 DOI: 10.1016/j.fsi.2022.08.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Triclocarban (TCC), an antimicrobial ingredient in personal care products, is associated with immunosuppression and physiological dysfunctions of aquatic organisms. The aim of this study was to investigate whether TCC can induce common carp NETosis (neutrophil death by neutrophil extracellular trap (NET) release) and then to attempt to identify the potential molecular mechanisms. Herein, scanning electron microscopy and flow cytometric assays showed that revealed that TCC triggers DNA-containing web-like structures and increases extracellular DNA content. In the proteomic analysis, we observed that NET-related proteins, extracellular regulated protein kinase (Mapk1, Mapk14, Jak2) and apoptotic protein (caspase3) were significantly increased, and defender against cell death 1 (Dad1) was significantly decreased after TCC treatments. Meanwhile, we confirmed that TCC stress can trigger NETosis in common carp by activating the reactive oxygen species (ROS)/ERK1/2/p38 signaling. We think that the upregulated NDUFS1 expression is closely related to oxidative stress induced by TCC. Importantly, we discovered that SIRT3 expression was significantly decreased in the process of TCC-induced NETs. Importantly, pretreatment with the SIRT3 agonist honokiol (HKL) effectively suppressed TCC-induced NET release. In contrast, the SIRT3 antagonist 3-TYP escalated TCC-induced NET formation. Mechanistically, SIRT3 degradation serves as a potential mediator for regulating oxidative stress crosstalk between ERK1/2/p38 signals in the process of TCC-induced NET formation. These findings unveil new insights into the TCC-evoked health risk of fish and other aquatic organisms and suggest that SIRT3 is a potential pharmacological intervention target to alleviate TCC-induced common carp NETosis.
Collapse
Affiliation(s)
- Siwen Li
- Xiangya School of Public Health, Central South University, Changsha, 410078, Hunan Province, PR China
| | - Yanling Wang
- College of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan Province, PR China
| | - Dongke Yu
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan Province, PR China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan Province, PR China
| | - Yuan Zhang
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan Province, PR China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan Province, PR China
| | - Xiali Wang
- College of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan Province, PR China; Department of Child Healthcare, Luzhou Longmatan District Maternal and Child Health Care Hospital, Luzhou, 646000, Sichuan Province, PR China
| | - Mei Shi
- College of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan Province, PR China
| | - Yanxin Xiao
- College of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan Province, PR China
| | - Xinlian Li
- College of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan Province, PR China
| | - Hongtao Xiao
- Department of Pharmacy, Sichuan Cancer Hospital & Institute, The Affiliated Cancer Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610089, Sichuan Province, PR China.
| | - Lu Chen
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan Province, PR China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan Province, PR China.
| | - Xuan Xiong
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan Province, PR China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan Province, PR China.
| |
Collapse
|
19
|
CORM-3 Attenuates Oxidative Stress-Induced Bone Loss via the Nrf2/HO-1 Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5098358. [PMID: 36035220 PMCID: PMC9402314 DOI: 10.1155/2022/5098358] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 08/05/2022] [Indexed: 12/01/2022]
Abstract
Bone metabolism occurs in the entire life of an individual and is required for maintaining skeletal homeostasis. The imbalance between osteogenesis and osteoclastogenesis eventually leads to osteoporosis. Oxidative stress is considered a major cause of bone homeostasis disorder, and relieving excessive oxidative stress in bone mesenchymal stem cells (BMSCs) is a potential treatment strategy for osteoporosis. Carbon monoxide releasing molecule-3 (CORM-3), the classical donor of carbon monoxide (CO), possesses antioxidation, antiapoptosis, and anti-inflammatory properties. In our study, we found that CORM-3 could reduce reactive oxygen species (ROS) accumulation and prevent mitochondrial dysfunction thereby restoring the osteogenic potential of the BMSCs disrupted by hydrogen peroxide (H2O2) exposure. The action of CORM-3 was preliminarily considered the consequence of Nrf2/HO-1 axis activation. In addition, CORM-3 inhibited osteoclast formation in mouse primary bone marrow monocytes (BMMs) by inhibiting H2O2-induced polarization of M1 macrophages and endowing macrophages with M2 polarizating ability. Rat models further demonstrated that CORM-3 treatment could restore bone mass and enhance the expression of Nrf2 and osteogenic markers in the distal femurs. In summary, CORM-3 is a potential therapeutic agent for the treatment of osteoporosis.
Collapse
|
20
|
Cao M, Zhao Q, Sun X, Qian H, Lyu S, Chen R, Xia H, Yuan W. Sirtuin 3: Emerging therapeutic target for cardiovascular diseases. Free Radic Biol Med 2022; 180:63-74. [PMID: 35031448 DOI: 10.1016/j.freeradbiomed.2022.01.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/04/2022] [Accepted: 01/08/2022] [Indexed: 12/26/2022]
Abstract
Acetylation is one of the most important methods of modification that lead to a change in the function of proteins. In humans, metabolic enzymes commonly undergo acetylation, which regulates the activities of metabolic enzymes and metabolic pathways. Sirtuin 3 (SIRT3) is a prominent deacetylase that participates in mitochondrial metabolism, redox balance, and mitochondrial dynamics by regulating mitochondrial protein acetylation, thereby protecting mitochondria from damage. Normal mitochondrial function is essential for maintaining the metabolism and function of the heart. Therefore, mitochondrial dysfunction caused by SIRT3 consumption and defects leads to the development of a variety of cardiovascular diseases. A comprehensive understanding of the role of SIRT3 in cardiovascular disease is critical for developing new therapeutic strategies. Herein, we summarize the function of SIRT3 in mitochondria, the complex mechanisms mediating cardiovascular diseases, and the potential value of SIRT3 small-molecule agonists in future clinical treatments.
Collapse
Affiliation(s)
- Mengfei Cao
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212000, China
| | - Qianru Zhao
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212000, China
| | - Xia Sun
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212000, China
| | - Han Qian
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212000, China
| | - Shumei Lyu
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212000, China
| | - Rui Chen
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212000, China
| | - Hao Xia
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212000, China
| | - Wei Yuan
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212000, China.
| |
Collapse
|
21
|
Ning K, Liu S, Yang B, Wang R, Man G, Wang DE, Xu H. Update on the Effects of Energy Metabolism in Bone Marrow Mesenchymal Stem Cells Differentiation. Mol Metab 2022; 58:101450. [PMID: 35121170 PMCID: PMC8888956 DOI: 10.1016/j.molmet.2022.101450] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/16/2022] [Accepted: 01/27/2022] [Indexed: 11/29/2022] Open
Abstract
Background As common progenitor cells of osteoblasts and adipocytes, bone marrow mesenchymal (stromal) stem cells (BMSCs) play key roles in bone homeostasis, tissue regeneration, and global energy homeostasis; however, the intrinsic mechanism of BMSC differentiation is not well understood. Plasticity in energy metabolism allows BMSCs to match the divergent demands of osteo-adipogenic differentiation. Targeting BMSC metabolic pathways may provide a novel therapeutic perspective for BMSC differentiation unbalance related diseases. Scope of review This review covers the recent studies of glucose, fatty acids, and amino acids metabolism fuel the BMSC differentiation. We also discuss recent findings about energy metabolism in BMSC differentiation. Major conclusions Glucose, fatty acids, and amino acids metabolism provide energy to fuel BMSC differentiation. Moreover, some well-known regulators including environmental stress, hormone drugs, and biological and pathological factors may also influence BMSC differentiation by altering metabolism. This offers insight to the significance of metabolism on BMSC fate determination and provides the possibility of treating diseases related to BMSC differentiation, such as obesity and osteoporosis, from a metabolic perspective.
Collapse
|
22
|
Sonkar C, Hase V, Banerjee D, Kumar A, Kumar R, Jha HC. Post COVID-19 Complications, Adjunct Therapy Explored, And Steroidal After Effects. CAN J CHEM 2022. [DOI: 10.1139/cjc-2021-0247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
For survivors of the COVID-19 disease, defeating the virus is just the beginning of a long road to recovery. The virus’s inducibility and catastrophic effects are distributed in multiple organs. The induction of cytokine storms in COVID-19 patients is due to the interaction of the SARS-CoV-2 virus and the host receptor, leading to various immunopathological consequences that might eventually lead to death. So far, it has hit tons of people across the world, but there is still no effective treatment. Patients facing the complications of COVID-19 after recovering have shown extensive clinical symptoms similar to previously circulating coronaviruses. Previous knowledge, and literature have opened up ways to treat this disease and manage post-COVID-19 complications, which poses a severe challenge to health system globally and may exacerbate the fragmentation of diseases. The use of steroids, as a treatment, showed various health problems and side-effects in COVID-19 patients. This review substantially discusses various post-COVID-19 complications observed, adjunctive therapies used along with common COVID-19treatment and spotlighted their side effects and consequences. This review provides latest literature on COVID-19 which emphasizes the subsequent complications in various organs, side-effects of drug, and alternative regimes that were used to treat COVID-19.
Collapse
Affiliation(s)
- Charu Sonkar
- Indian Institute of Technology Indore, 226957, Department of Biosciences and Biomedical Engineering, Indore, India, 452017
| | - Vaishnavi Hase
- Indian Institute of Technology Indore, 226957, Department of Biosciences and Biomedical Engineering, Indore, India
| | - Durba Banerjee
- School of Biotechnology (SOB), Greater Noida, Uttar Pradesh, India
| | - Awanish Kumar
- National Institute of Technology, 54702, Department of Biotechnology, Raipur, India
| | - Rajesh Kumar
- Indian Institute of Technology, 28692, Department of Physics, Dhanbad, India, 826004
| | - Hem C. Jha
- Indian Institute of Technology Indore, 226957, Department of Biosciences & Biomedical Engineering, Simrol-453552, Indore, India, 452017
| |
Collapse
|
23
|
Biophysical Modulation of the Mitochondrial Metabolism and Redox in Bone Homeostasis and Osteoporosis: How Biophysics Converts into Bioenergetics. Antioxidants (Basel) 2021; 10:antiox10091394. [PMID: 34573026 PMCID: PMC8466850 DOI: 10.3390/antiox10091394] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 01/11/2023] Open
Abstract
Bone-forming cells build mineralized microstructure and couple with bone-resorbing cells, harmonizing bone mineral acquisition, and remodeling to maintain bone mass homeostasis. Mitochondrial glycolysis and oxidative phosphorylation pathways together with ROS generation meet the energy requirement for bone-forming cell growth and differentiation, respectively. Moderate mechanical stimulations, such as weight loading, physical activity, ultrasound, vibration, and electromagnetic field stimulation, etc., are advantageous to bone-forming cell activity, promoting bone anabolism to compromise osteoporosis development. A plethora of molecules, including ion channels, integrins, focal adhesion kinases, and myokines, are mechanosensitive and transduce mechanical stimuli into intercellular signaling, regulating growth, mineralized extracellular matrix biosynthesis, and resorption. Mechanical stimulation changes mitochondrial respiration, biogenesis, dynamics, calcium influx, and redox, whereas mechanical disuse induces mitochondrial dysfunction and oxidative stress, which aggravates bone-forming cell apoptosis, senescence, and dysfunction. The control of the mitochondrial biogenesis activator PGC-1α by NAD+-dependent deacetylase sirtuins or myokine FNDC/irisin or repression of oxidative stress by mitochondrial antioxidant Nrf2 modulates the biophysical stimulation for the promotion of bone integrity. This review sheds light onto the roles of mechanosensitive signaling, mitochondrial dynamics, and antioxidants in mediating the anabolic effects of biophysical stimulation to bone tissue and highlights the remedial potential of mitochondrial biogenesis regulators for osteoporosis.
Collapse
|