1
|
Di Florio DN, Weigel GJ, Gorelov DJ, McCabe EJ, Beetler DJ, Shapiro KA, Bruno KA, Chekuri I, Jain A, Whelan ER, Salomon GR, Khatib S, Bonvie-Hill NE, Fliess JJ, Giresi PG, Hamilton C, Hartmoyer CJ, Balamurugan V, Darakjian AA, Edenfield BH, Kocsis SC, McLeod CJ, Cooper LT, Audet-Walsh É, Coronado MJ, Sin J, Fairweather D. Sex differences in mitochondrial gene expression during viral myocarditis. Biol Sex Differ 2024; 15:104. [PMID: 39696682 DOI: 10.1186/s13293-024-00678-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 11/20/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Myocarditis is an inflammation of the heart muscle most often caused by viral infections. Sex differences in the immune response during myocarditis have been well described but upstream mechanisms in the heart that might influence sex differences in disease are not completely understood. METHODS Male and female BALB/c wild type mice received an intraperitoneal injection of heart-passaged coxsackievirus B3 (CVB3) or vehicle control. Bulk-tissue RNA-sequencing was conducted to better understand sex differences in CVB3 myocarditis. We performed enrichment analysis and functional validation to understand sex differences in the transcriptional landscape of myocarditis and identify factors that might drive sex differences in myocarditis. RESULTS As expected, the hearts of male and female mice with myocarditis were significantly enriched for pathways related to an innate and adaptive immune response compared to uninfected controls. Unique to this study, we found that males were enriched for inflammatory pathways and gene changes that suggested worse mitochondrial electron transport function while females were enriched for pathways related to mitochondrial homeostasis. Mitochondria isolated from the heart of males were confirmed to have worse mitochondrial respiration than females during myocarditis. Unbiased TRANSFAC analysis identified estrogen-related receptor alpha (ERRα) as a transcription factor that may mediate sex differences in mitochondrial function during myocarditis. Transcript and protein levels of ERRα were confirmed as elevated in females with myocarditis compared to males. Differential binding analysis from chromatin immunoprecipitation (ChIP) sequencing confirmed that ERRα bound highly to select predicted respiratory chain genes in females more than males during myocarditis. CONCLUSIONS Females with viral myocarditis regulate mitochondrial homeostasis by upregulating master regulators of mitochondrial transcription including ERRα.
Collapse
Affiliation(s)
- Damian N Di Florio
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Gabriel J Weigel
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - David J Gorelov
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Elizabeth J McCabe
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Danielle J Beetler
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Katie A Shapiro
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Katelyn A Bruno
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
- Division of Cardiovascular Medicine, Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Isha Chekuri
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Angita Jain
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Emily R Whelan
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Gary R Salomon
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Sami Khatib
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
| | | | - Jessica J Fliess
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Presley G Giresi
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Charwan Hamilton
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
| | | | | | - Ashley A Darakjian
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Brandy H Edenfield
- Department of Cancer Biology, Mayo Clinic Jacksonville, Jacksonville, FL, USA
| | - S Christian Kocsis
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
| | | | - Leslie T Cooper
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Étienne Audet-Walsh
- Endocrinology - Nephrology Research Division, CHU de Québec - Université Laval Research Center, Québec, QC, Canada
| | | | - Jon Sin
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, USA
| | - DeLisa Fairweather
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA.
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, USA.
- Department of Immunology, Mayo Clinic, Jacksonville, FL, USA.
- Department of Medicine, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
2
|
Zhang Z, Du H, Gao W, Zhang D. Engineered macrophages: an "Intelligent Repair" cellular machine for heart injury. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:25. [PMID: 39592532 PMCID: PMC11599506 DOI: 10.1186/s13619-024-00209-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/22/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024]
Abstract
Macrophages are crucial in the heart's development, function, and injury. As part of the innate immune system, they act as the first line of defense during cardiac injury and repair. After events such as myocardial infarction or myocarditis, numerous macrophages are recruited to the affected areas of the heart to clear dead cells and facilitate tissue repair. This review summarizes the roles of resident and recruited macrophages in developing cardiovascular diseases. We also describe how macrophage phenotypes dynamically change within the cardiovascular disease microenvironment, exhibiting distinct pro-inflammatory and anti-inflammatory functions. Recent studies reveal the values of targeting macrophages in cardiovascular diseases treatment and the novel bioengineering technologies facilitate engineered macrophages as a promising therapeutic strategy. Engineered macrophages have strong natural tropism and infiltration for cardiovascular diseases aiming to reduce inflammatory response, inhibit excessive fibrosis, restore heart function and promote heart regeneration. We also discuss recent studies highlighting therapeutic strategies and new approaches targeting engineered macrophages, which can aid in heart injury recovery.
Collapse
Affiliation(s)
- Zhuo Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
- Stem Cells and Tissue Engineering Manufacture Center, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Hetian Du
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
- Stem Cells and Tissue Engineering Manufacture Center, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Weijie Gao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
- Stem Cells and Tissue Engineering Manufacture Center, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
- Stem Cells and Tissue Engineering Manufacture Center, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
3
|
Li W, Liu J, Jiao R, Liu Z, Zhang T, Chai D, Meng L, Yang Z, Liu Y, Gu X, Li X, Yang C. Baricitinib alleviates cardiac fibrosis and inflammation induced by chronic sympathetic activation. Int Immunopharmacol 2024; 140:112894. [PMID: 39126736 DOI: 10.1016/j.intimp.2024.112894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Cardiac fibrosis is characterized by the over-proliferation, over-transdifferentiation and over-deposition of extracellular matrix (ECM) of cardiac fibroblasts (CFs). Cardiac sympathetic activation is one of the leading causes of myocardial fibrosis. Meanwhile, cardiac fibrosis is often together with cardiac inflammation, which accelerates fibrosis by mediating inflammatory cytokines secretion. Recently, the Janus kinase/signal transducer and activator of transcription (JAK/STAT3) signaling pathway has been confirmed by its vital role during the progression of cardiac fibrosis. Thus, JAK/STAT3 signaling pathway is thought to be a potential therapeutic target for cardiac fibrosis. Baricitinib (BR), a novel JAK1/2 inhibitor, has been reported excellent effects of anti-fibrosis in multiple fibrotic diseases. However, little is known about whether and how BR ameliorates cardiac fibrosis caused by chronic sympathetic activation. Isoproterenol (ISO), a β-Adrenergic receptor (β-AR) nonselective agonist, was used to modulate chronic sympathetic activation in mice. As expected, our results proved that BR ameliorated ISO-induced cardiac dysfunction. Meanwhile, BR attenuated ISO-induced cardiac fibrosis and cardiac inflammation in mice. Moreover, BR also inhibited ISO-induced cardiac fibroblasts activation and macrophages pro-inflammatory secretion. As for mechanism studies, BR reduced ISO-induced cardiac fibroblasts by JAK2/STAT3 and PI3K/Akt signaling, while reduced ISO-induced macrophages pro-inflammatory secretion by JAK1/STAT3 and NF-κB signaling. In summary, BR alleviates cardiac fibrosis and inflammation caused by chronic sympathetic activation. The underlying mechanism involves BR-mediated suppression of JAK1/2/STAT3, PI3K/Akt and NF-κB signaling.
Collapse
Affiliation(s)
- Wenqi Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China
| | - Jing Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China
| | - Ran Jiao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China
| | - Zhigang Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China
| | - Tiantian Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China
| | - Dan Chai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China
| | - Lingxin Meng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China
| | - Zhongyi Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China
| | - Yuming Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China
| | - Xiaoting Gu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China; Tianjin Key Laboratory of Molecular Drug Research, International Joint Academy of Biomedicine, Tianjin 300457, China.
| | - Xiaohe Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China; Tianjin Key Laboratory of Molecular Drug Research, International Joint Academy of Biomedicine, Tianjin 300457, China.
| | - Cheng Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China; Tianjin Key Laboratory of Molecular Drug Research, International Joint Academy of Biomedicine, Tianjin 300457, China.
| |
Collapse
|
4
|
Zhou P, Yang L, Li R, Yin Y, Xie G, Liu X, Shi L, Tao K, Zhang P. IRG1/itaconate alleviates acute liver injury in septic mice by suppressing NLRP3 expression and its mediated macrophage pyroptosis via regulation of the Nrf2 pathway. Int Immunopharmacol 2024; 135:112277. [PMID: 38788445 DOI: 10.1016/j.intimp.2024.112277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
Sepsis, a systemic inflammatory response triggered by infection, has a considerably high mortality rate. However, effective prevention and intervention measures against sepsis remain insufficient. Therefore, this study aimed to investigate the mechanisms underlying the protective properties of immune response gene-1 (IRG1) and 4-Octyl itaconate (OI) during acute liver damage in mice with sepsis. A sepsis mouse model was established to compare wild-type and IRG1-/- groups. The impact of IRG1/Itaconate on pro- and anti-inflammatory cytokines was evaluated using J774A.1 cells. IRG1/Itaconate substantially reduced pro-inflammatory cytokines and increased the release of anti-inflammatory cytokines. It reduced pathological damage to liver tissues, preserved normal liver function, decreased the release of reactive oxygen species (ROS) and LDH, and enhanced the GSH/GSSG ratio. Moreover, IRG1 and itaconic acid activated the Nrf2 signaling pathway, regulating the expression of its downstream antioxidative stress-related proteins. Additionally, they inhibited the activity of NLRP3 inflammatory vesicles to suppress the expression of macrophage-associated pyroptosis signaling molecules. Our findings demonstrate that IRG1/OI inhibits NLRP3 inflammatory vesicle activation and macrophage pyroptosis by modulating the Nrf2 signaling pathway, thereby attenuating acute liver injury in mice with sepsis. These findings could facilitate the clinical application of IRG1/Itaconate to prevent sepsis-induced acute liver injury.
Collapse
Affiliation(s)
- Pei Zhou
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022,China
| | - Lei Yang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022,China
| | - Ruidong Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022,China
| | - Yuping Yin
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022,China
| | - Gengchen Xie
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022,China
| | - Xinghua Liu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022,China
| | - Liang Shi
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022,China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022,China.
| | - Peng Zhang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022,China.
| |
Collapse
|
5
|
Li Z, Cheng W, Gao K, Liang S, Ke L, Wang M, Fan J, Li D, Zhang P, Xu Z, Li N. Pyroptosis: A spoiler of peaceful coexistence between cells in degenerative bone and joint diseases. J Adv Res 2024:S2090-1232(24)00247-9. [PMID: 38876191 DOI: 10.1016/j.jare.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/23/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND As people age, degenerative bone and joint diseases (DBJDs) become more prevalent. When middle-aged and elderly people are diagnosed with one or more disorders such as osteoporosis (OP), osteoarthritis (OA), and intervertebral disc degeneration (IVDD), it often signals the onset of prolonged pain and reduced functionality. Chronic inflammation has been identified as the underlying cause of various degenerative diseases, including DBJDs. Recently, excessive activation of pyroptosis, a form of programed cell death (PCD) mediated by inflammasomes, has emerged as a primary driver of harmful chronic inflammation. Consequently, pyroptosis has become a potential target for preventing and treating DBJDs. AIM OF REVIEW This review explored the physiological and pathological roles of the pyroptosis pathway in bone and joint development and its relation to DBJDs. Meanwhile, it elaborated the molecular mechanisms of pyroptosis within individual cell types in the bone marrow and joints, as well as the interplay among different cell types in the context of DBJDs. Furthermore, this review presented the latest compelling evidence supporting the idea of regulating the pyroptosis pathway for DBJDs treatment, and discussed the potential, limitations, and challenges of various therapeutic strategies involving pyroptosis regulation. KEY SCIENTIFIC CONCEPTS OF REVIEW In summary, an interesting identity for the unregulated pyroptosis pathway in the context of DBJDs was proposed in this review, which was undertaken as a spoiler of peaceful coexistence between cells in a degenerative environment. Over the extended course of DBJDs, pyroptosis pathway perpetuated its activity through crosstalk among pyroptosis cascades in different cell types, thus exacerbating the inflammatory environment throughout the entire bone marrow and joint degeneration environment. Correspondingly, pyroptosis regulation therapy emerged as a promising option for clinical treatment of DBJDs.
Collapse
Affiliation(s)
- Zhichao Li
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wenxiang Cheng
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Kuanhui Gao
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Songlin Liang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Liqing Ke
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Mengjie Wang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Jilin Fan
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Dandan Li
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050011, China
| | - Peng Zhang
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Faculty of Biomedical Engineering, Shenzhen University of Advanced Technology, Shenzhen 518000, China; Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, 518000 China; Shandong Zhongke Advanced Technology Co., Ltd., Jinan, 250300 China.
| | - Zhanwang Xu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Nianhu Li
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| |
Collapse
|
6
|
Wang Y, Zhang Z, Li H, Wang M, Qiu Y, Lu L. miR-29b-3p regulates cardiomyocytes pyroptosis in CVB3-induced myocarditis through targeting DNMT3A. Cell Mol Biol Lett 2024; 29:55. [PMID: 38643118 PMCID: PMC11031889 DOI: 10.1186/s11658-024-00576-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/08/2024] [Indexed: 04/22/2024] Open
Abstract
BACKGROUND Viral myocarditis (VMC) is a disease resulting from viral infection, which manifests as inflammation of myocardial cells. Until now, the treatment of VMC is still a great challenge for clinicians. Increasing studies indicate the participation of miR-29b-3p in various diseases. According to the transcriptome sequencing analysis, miR-29b-3p was markedly upregulated in the viral myocarditis model. The purpose of this study was to investigate the role of miR-29b-3p in the progression of VMC. METHODS We used CVB3 to induce primary cardiomyocytes and mice to establish a model of viral myocarditis. The purity of primary cardiomyocytes was identified by immunofluorescence. The cardiac function of mice was detected by Vevo770 imaging system. The area of inflammatory infiltration in heart tissue was shown by hematoxylin and eosin (H&E) staining. The expression of miR-29b-3p and DNMT3A was detected by quantitative real time polymerase chain reaction (qRT-PCR). The expression of a series of pyroptosis-related proteins was detected by western blot. The role of miR-29b-3p/DNMT3A in CVB3-induced pyroptosis of cardiomyocytes was studied in this research. RESULTS Our data showed that the expression of miR-29b-3p was upregulated in CVB3-induced cardiomyocytes and heart tissues in mice. To explore the function of miR-29b-3p in CVB3-induced VMC, we conducted in vivo experiments by knocking down the expression of miR-29b-3p using antagomir. We then assessed the effects on mice body weight, histopathology changes, myocardial function, and cell pyroptosis in heart tissues. Additionally, we performed gain/loss-of-function experiments in vitro to measure the levels of pyroptosis in primary cardiomyocytes. Through bioinformatic analysis, we identified DNA methyltransferases 3A (DNMT3A) as a potential target gene of miR-29b-3p. Furthermore, we found that the expression of DNMT3A can be modulated by miR-29b-3p during CVB3 infection. CONCLUSIONS Our results demonstrate a correlation between the expression of DNMT3A and CVB3-induced pyroptosis in cardiomyocytes. These findings unveil a previously unidentified mechanism by which CVB3 induces cardiac injury through the regulation of miR-29b-3p/DNMT3A-mediated pyroptosis.
Collapse
Affiliation(s)
- Ya Wang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, College of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, Hubei, People's Republic of China
| | - Zhengyang Zhang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, College of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, Hubei, People's Republic of China
| | - Hui Li
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, College of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, Hubei, People's Republic of China
| | - Min Wang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, College of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, Hubei, People's Republic of China
| | - Yuting Qiu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, College of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, Hubei, People's Republic of China
| | - Lili Lu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, College of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, Hubei, People's Republic of China.
| |
Collapse
|
7
|
Jiang H, Yang J, Li T, Wang X, Fan Z, Ye Q, Du Y. JAK/STAT3 signaling in cardiac fibrosis: a promising therapeutic target. Front Pharmacol 2024; 15:1336102. [PMID: 38495094 PMCID: PMC10940489 DOI: 10.3389/fphar.2024.1336102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/18/2024] [Indexed: 03/19/2024] Open
Abstract
Cardiac fibrosis is a serious health problem because it is a common pathological change in almost all forms of cardiovascular diseases. Cardiac fibrosis is characterized by the transdifferentiation of cardiac fibroblasts (CFs) into cardiac myofibroblasts and the excessive deposition of extracellular matrix (ECM) components produced by activated myofibroblasts, which leads to fibrotic scar formation and subsequent cardiac dysfunction. However, there are currently few effective therapeutic strategies protecting against fibrogenesis. This lack is largely because the molecular mechanisms of cardiac fibrosis remain unclear despite extensive research. The Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling cascade is an extensively present intracellular signal transduction pathway and can regulate a wide range of biological processes, including cell proliferation, migration, differentiation, apoptosis, and immune response. Various upstream mediators such as cytokines, growth factors and hormones can initiate signal transmission via this pathway and play corresponding regulatory roles. STAT3 is a crucial player of the JAK/STAT pathway and its activation is related to inflammation, malignant tumors and autoimmune illnesses. Recently, the JAK/STAT3 signaling has been in the spotlight for its role in the occurrence and development of cardiac fibrosis and its activation can promote the proliferation and activation of CFs and the production of ECM proteins, thus leading to cardiac fibrosis. In this manuscript, we discuss the structure, transactivation and regulation of the JAK/STAT3 signaling pathway and review recent progress on the role of this pathway in cardiac fibrosis. Moreover, we summarize the current challenges and opportunities of targeting the JAK/STAT3 signaling for the treatment of fibrosis. In summary, the information presented in this article is critical for comprehending the role of the JAK/STAT3 pathway in cardiac fibrosis, and will also contribute to future research aimed at the development of effective anti-fibrotic therapeutic strategies targeting the JAK/STAT3 signaling.
Collapse
Affiliation(s)
- Heng Jiang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Junjie Yang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Tao Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Xinyu Wang
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Zhongcai Fan
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Qiang Ye
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yanfei Du
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| |
Collapse
|
8
|
Liu K, Han B. Role of immune cells in the pathogenesis of myocarditis. J Leukoc Biol 2024; 115:253-275. [PMID: 37949833 DOI: 10.1093/jleuko/qiad143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/15/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023] Open
Abstract
Myocarditis is an inflammatory heart disease that mostly affects young people. Myocarditis involves a complex immune network; however, its detailed pathogenesis is currently unclear. The diversity and plasticity of immune cells, either in the peripheral blood or in the heart, have been partially revealed in a number of previous studies involving patients and several kinds of animal models with myocarditis. It is the complexity of immune cells, rather than one cell type that is the culprit. Thus, recognizing the individual intricacies within immune cells in the context of myocarditis pathogenesis and finding the key intersection of the immune network may help in the diagnosis and treatment of this condition. With the vast amount of cell data gained on myocarditis and the recent application of single-cell sequencing, we summarize the multiple functions of currently recognized key immune cells in the pathogenesis of myocarditis to provide an immune background for subsequent investigations.
Collapse
Affiliation(s)
- Keyu Liu
- Department of Pediatric Cardiology, Shandong Provincial Hospital, Shandong University, Cheeloo Colledge of Medicine, No. 324 Jingwu Road, 250021, Jinan, China
| | - Bo Han
- Department of Pediatric Cardiology, Shandong Provincial Hospital, Shandong University, Cheeloo Colledge of Medicine, No. 324 Jingwu Road, 250021, Jinan, China
- Department of Pediatric Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324 Jingwu Road, 250021, Jinan, China
- Shandong Provincial Hospital, Shandong Provincial Clinical Research Center for Children' s Health and Disease office, No. 324 Jingwu Road, 250021, Jinan, China
| |
Collapse
|
9
|
Di Florio D, Gorelov D, McCabe E, Beetler D, Shapiro K, Bruno K, Chekuri I, Jain A, Whelan E, Salomon G, Khatib S, Bonvie-Hill N, Giresi P, Balamurugan V, Weigel G, Fliess J, Darakjian A, Edenfield B, Kocsis C, McLeod C, Cooper L, Audet-Walsh E, Coronado M, Sin J, Fairweather D. Sex differences in mitochondrial gene expression during viral myocarditis. RESEARCH SQUARE 2023:rs.3.rs-3716881. [PMID: 38196574 PMCID: PMC10775395 DOI: 10.21203/rs.3.rs-3716881/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Background Myocarditis is an inflammation of the heart muscle most often caused by an immune response to viral infections. Sex differences in the immune response during myocarditis have been well described but upstream mechanisms in the heart that might influence sex differences in disease are not completely understood. Methods Male and female BALB/c wild type mice received an intraperitoneal injection of heart-passaged coxsackievirus B3 (CVB3) or vehicle control. Bulk-tissue RNA-sequencing was conducted to better understand sex differences in CVB3 myocarditis. We performed enrichment analysis to understand sex differences in the transcriptional landscape of myocarditis and identify candidate transcription factors that might drive sex differences in myocarditis. Results The hearts of male and female mice with myocarditis were significantly enriched for pathways related to an innate and adaptive immune response compared to uninfected controls. When comparing females to males with myocarditis, males were enriched for inflammatory pathways and gene changes that suggested worse mitochondrial transcriptional support (e.g., mitochondrial electron transport genes). In contrast, females were enriched for pathways related to mitochondrial respiration and bioenergetics, which were confirmed by higher transcript levels of master regulators of mitochondrial function including peroxisome proliferator-activated receptor gamma coactivator 1 (PGC1α), nuclear respiratory factor 1 (NRF1) and estrogen-related receptor alpha (ERRα). TRANSFAC analysis identified ERRa as a transcription factor that may mediate sex differences in mitochondrial function during myocarditis. Conclusions Master regulators of mitochondrial function were elevated in females with myocarditis compared to males and may promote sex differences in mitochondrial respiratory transcript expression during viral myocarditis resulting in less severe myocarditis in females following viral infection.
Collapse
|