1
|
Zhang B, Xu J, Wang M, Yu C. Involvement of mitochondrial dysfunction and oxidative stress in the nephrotoxicity induced by high-fat diet in Sprague-Dawley rats. Toxicol Lett 2025; 404:28-36. [PMID: 39828067 DOI: 10.1016/j.toxlet.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 12/13/2024] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
The prevalence of obesity-associated kidney injury has increased, yet the precise extent of the injury and its underlying mechanisms remain unclear. This study used a Sprague-Dawley (SD) rat model to simulate human exposure scenarios, with the objective of investigating the involvement of mitochondria in obesity-induced renal toxicity. Biochemical analysis revealed significant increases in serum creatinine, cystatin C, urinary protein, urinary microalbumin, and urinary α1-microglobulin levels in rats fed a high-fat diet, indicating a notable decline in glomerular filtration function. Histopathological examination showed mild to moderate degeneration in renal tubular epithelial cells, slight glomerular enlargement, fusion and disappearance of pedunculated cell, and decreased electron density of mitochondrial matrix and cristae, indicating the impaired filtration function of kidney. Furthermore, the study found reduced mitochondrial membrane potential and superoxide dismutase (SOD) levels, along with increased malondialdehyde (MDA) levels, signifying elevated mitochondrial oxidative stress in the kidneys of high-fat diet-fed rats. Additionally, a decrease in the number of mitochondrial uncoupling protein-2 (UCP-2) and proliferator-activated receptor gamma coactivator 1-alpha (PGC1α)-positive cells, as well as reduced protein expression levels in the mitochondria, suggests a reduced renal mitochondrial resistance to oxidative stress. Collectively, these findings indicate that a high-fat diet triggers abnormalities in both renal filtration and structural functionality in SD rats. The observed reduction in renal mitochondrial density and the elevation in oxidative stress levels could potentially serve as underlying mechanisms.
Collapse
Affiliation(s)
- Bin Zhang
- China Institute of Sport Science, 11 Tiyuguan Road, Dongcheng District, Beijing 100061, PR China.
| | - Jianfang Xu
- China Institute of Sport Science, 11 Tiyuguan Road, Dongcheng District, Beijing 100061, PR China
| | - Mengdie Wang
- China Institute of Sport Science, 11 Tiyuguan Road, Dongcheng District, Beijing 100061, PR China
| | - Chang Yu
- China Institute of Sport Science, 11 Tiyuguan Road, Dongcheng District, Beijing 100061, PR China
| |
Collapse
|
2
|
Chen J, He J, Wang X, Bai L, Yang X, Chen J, He Y, Chen K. Glis1 inhibits RTEC cellular senescence and renal fibrosis by downregulating histone lactylation in DKD. Life Sci 2025; 361:123293. [PMID: 39643036 DOI: 10.1016/j.lfs.2024.123293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/17/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Accelerated senescence of renal tubular epithelial cells (RTEC) is critical in the progression of diabetic kidney disease (DKD). GLIS family zinc finger 1 (Glis1) alleviates age-related renal fibrosis in naturally aged mice. However, the role and associated mechanism of Glis1 in accelerated senescence of RTEC and the development of DKD remain unclear. METHODS Glis1 expression was examined in the renal tubules of patients with DKD and STZ-induced DKD mice. Glis1-CKO and Glis1-overexpression mice were generated to assess the effect of Glis1 on renal dysfunction and senescence in RTEC. The interplay between Glis1 and histone lactylation during cellular senescence was elucidated in vivo and in vitro. RESULTS Glis1 expression was significantly decreased in RTEC of DKD and DKD mice. Glis1 overexpression alleviated renal dysfunction and accelerated RTEC senescence in DKD mice. Histone lactylation levels significantly increased in the kidneys of mice with DKD. Lactylation enhancers, including rotenone and nala, diminished the protective effects of Glis1 against cellular senescence, whereas treatment with sodium dichloroacetate, a lactylation inhibitor, enhanced Glis1's anti-senescence capabilities. Protein-protein interaction tools, AlphaFold2 and AutoDock, indicated that Glis1 might directly bind to the lactyltransferase KAT5 with multiple interaction sites. In vitro, the interaction between KAT5 and histone H3 was enhanced under high glucose conditions. However, Glis1 overexpression led to a significant reduction in the binding affinity between histones and KAT5, which could decrease lactylation levels. CONCLUSIONS Glis1 inhibits tubular accelerated senescence by downregulating histone lactylation and alleviating kidney fibrosis during DKD progression.
Collapse
Affiliation(s)
- Juan Chen
- Department of Nephrology, Daping Hospital, Army Medical University, Chongqing 400042, China; Chongqing Key Laboratory of Precision Diagnosis and Treatment for Kidney Diseases
| | - Junling He
- Department of Nephrology, Daping Hospital, Army Medical University, Chongqing 400042, China; Chongqing Key Laboratory of Precision Diagnosis and Treatment for Kidney Diseases
| | - Xiaoyue Wang
- Department of Nephrology, Daping Hospital, Army Medical University, Chongqing 400042, China; Chongqing Key Laboratory of Precision Diagnosis and Treatment for Kidney Diseases
| | - Lihua Bai
- Department of Nephrology, Daping Hospital, Army Medical University, Chongqing 400042, China; Chongqing Key Laboratory of Precision Diagnosis and Treatment for Kidney Diseases
| | - Xin Yang
- Department of Nephrology, Daping Hospital, Army Medical University, Chongqing 400042, China; Chongqing Key Laboratory of Precision Diagnosis and Treatment for Kidney Diseases
| | - Jia Chen
- Department of Nephrology, Daping Hospital, Army Medical University, Chongqing 400042, China; Chongqing Key Laboratory of Precision Diagnosis and Treatment for Kidney Diseases
| | - Yani He
- Department of Nephrology, Daping Hospital, Army Medical University, Chongqing 400042, China; Chongqing Key Laboratory of Precision Diagnosis and Treatment for Kidney Diseases; State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, China
| | - Kehong Chen
- Department of Nephrology, Daping Hospital, Army Medical University, Chongqing 400042, China; Chongqing Key Laboratory of Precision Diagnosis and Treatment for Kidney Diseases; State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, China.
| |
Collapse
|
3
|
Zhuang K, Wang W, Zheng X, Guo X, Xu C, Ren X, Shen W, Han Q, Feng Z, Chen X, Cai G. MSCs-derived HGF alleviates senescence by inhibiting unopposed mitochondrial fusion-based elongation in post-acute kidney injury. Stem Cell Res Ther 2024; 15:438. [PMID: 39563422 PMCID: PMC11575204 DOI: 10.1186/s13287-024-04041-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 11/02/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND The underlying mechanism of human umbilical-derived mesenchymal stem cells (hUC-MSCs) therapy for renal senescence in post-acute kidney injury (post-AKI) remains unclear. Unopposed mitochondrial fusion-based mitochondrial elongation is required for cellular senescence. This study attempted to dissect the role of hUC-MSCs therapy in modulating mitochondrial elongation-related senescence by hUC-MSCs therapy in post-AKI. METHODS Initially, a unilateral renal ischemia-reperfusion (uIRI) model was established in C57 mice. Subsequently, lentivirus-transfected hUC-MSCs were given by subcapsular injection. Two weeks after transplantation, histochemical staining, and transmission electron microscopy were used to assess the efficacy of hUC-MSCs in treating renal senescence, fibrosis, and mitochondrial function. To further investigate the mitochondrial regulation of hUC-MSCs secretion, hypoxic HK-2 cells were built. Finally, antibodies of HGF and its receptor were used within the hUC-MSCs supernatant. RESULTS Unopposed mitochondrial fusion, renal senescence, and renal interstitial fibrosis were successively identified after uIRI in mice. Then, the efficacy of hUC-MSCs after uIRI was confirmed. Subsequently, inhibiting hUC-MSCs-derived HGF significantly compromises the efficacy of hUC-MSCs and leads to ineffectively curbing mitochondrial elongation, accompanying insufficient control of elevated PKA and inhibitory phosphorylation of drp1 (Drp1pSer637). As a result, the treatment efficacy of renal senescence and fibrosis alleviation was also weakened. Furthermore, similar results were obtained with antibodies blocking HGF or cMet in hypoxic HK-2 cells treated with hUC-MSCs-condition medium for further proving. Uncurbed mitochondrial elongation induced by PKA and Drp1pSer637 was inhibited by hUC-MSCs derived HGF but reversed in the activation or overexpression of PKA. CONCLUSIONS The research concluded that hUC-MSCs-derived HGF can inhibit PKA-Drp1pSer637-mitochondrial elongation via its receptor cMet to alleviate renal senescence and fibrosis in post-AKI.
Collapse
Affiliation(s)
- Kaiting Zhuang
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, National Clinical Research Center for Kidney Diseases, Beijing, 100853, China
| | - Wenjuan Wang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, National Clinical Research Center for Kidney Diseases, Beijing, 100853, China
| | - Xumin Zheng
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, National Clinical Research Center for Kidney Diseases, Beijing, 100853, China
| | - Xinru Guo
- School of Medicine, Nankai University, Tianjin, China
| | - Cheng Xu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, National Clinical Research Center for Kidney Diseases, Beijing, 100853, China
| | - Xuejing Ren
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, National Clinical Research Center for Kidney Diseases, Beijing, 100853, China
| | - Wanjun Shen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, National Clinical Research Center for Kidney Diseases, Beijing, 100853, China
| | - Qiuxia Han
- Department of Nephrology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Zhe Feng
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, National Clinical Research Center for Kidney Diseases, Beijing, 100853, China
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, National Clinical Research Center for Kidney Diseases, Beijing, 100853, China
| | - Guangyan Cai
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, National Clinical Research Center for Kidney Diseases, Beijing, 100853, China.
| |
Collapse
|
4
|
Zhang C, Shen S, Xu L, Li M, Tian B, Yao L, Zhu X. LONP1 alleviates ageing-related renal fibrosis by maintaining mitochondrial homeostasis. J Cell Mol Med 2024; 28:e70090. [PMID: 39261902 PMCID: PMC11390342 DOI: 10.1111/jcmm.70090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/08/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024] Open
Abstract
Mitochondrial dysfunction is a pivotal event contributing to the development of ageing-related kidney disorders. Lon protease 1 (LONP1) has been reported to be responsible for ageing-related renal fibrosis; however, the underlying mechanism(s) of LONP1-driven kidney ageing with respect to mitochondrial disturbances remains to be further explored. The level of LONP1 was tested in the kidneys of aged humans and mice. Renal fibrosis and mitochondrial quality control were confirmed in the kidneys of aged mice. Effects of LONP1 silencing or overexpression on renal fibrosis and mitochondrial quality control were explored. In addition, N6-methyladenosine (m6A) modification and methyltransferase like 3 (METTL3) levels, the relationship between LONP1 and METTL3, and the impacts of METTL3 overexpression on mitochondrial functions were confirmed. Furthermore, the expression of insulin-like growth factor 2 mRNA binding protein 2 (IGF2BP2) and the regulatory effects of IGF2BP2 on LONP1 were confirmed in vitro. LONP1 expression was reduced in the kidneys of aged humans and mice, accompanied by renal fibrosis and mitochondrial dysregulation. Overexpression of LONP1 alleviated renal fibrosis and maintained mitochondrial homeostasis, while silencing of LONP1 had the opposite effect. Impaired METTL3-m6A signalling contributed at least in part to ageing-induced LONP1 modification, reducing subsequent degradation in an IGF2BP2-dependent manner. Moreover, METTL3 overexpression alleviated proximal tubule cell injury, preserved mitochondrial stability, inhibited LONP1 degradation, and protected mitochondrial functions. LONP1 mediates mitochondrial function in kidney ageing and that targeting LONP1 may be a potential therapeutic strategy for improving ageing-related renal fibrosis.
Collapse
Affiliation(s)
- Congxiao Zhang
- Blood Purification CenterThe Fourth People's Hospital of Shenyang, China Medical UniversityShenyangLiaoningP. R. China
| | - Siman Shen
- Department of AnesthesiologyThe Second Affiliated Hospital of Guangdong Medical UniversityZhanjiangGuangdongP. R. China
| | - Li Xu
- Department of Laboratory MedicineThe Second Affiliated Hospital of Guangdong Medical UniversityZhanjiangGuangdongP. R. China
| | - Man Li
- Blood Purification CenterThe Fourth People's Hospital of Shenyang, China Medical UniversityShenyangLiaoningP. R. China
| | - Binyao Tian
- Department of NephrologyThe First Affiliated Hospital of China Medical UniversityShenyangLiaoningP. R. China
| | - Li Yao
- Department of NephrologyThe First Affiliated Hospital of China Medical UniversityShenyangLiaoningP. R. China
| | - Xinwang Zhu
- Department of NephrologyThe First Affiliated Hospital of China Medical UniversityShenyangLiaoningP. R. China
| |
Collapse
|
5
|
Guo X, Wen S, Wang J, Zeng X, Yu H, Chen Y, Zhu X, Xu L. Senolytic combination of dasatinib and quercetin attenuates renal damage in diabetic kidney disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155705. [PMID: 38761776 DOI: 10.1016/j.phymed.2024.155705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/19/2024] [Accepted: 05/01/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND Senolytic combination of dasatinib and quercetin (DQ) is the most studied senolytics drugs used to treat various age-related diseases. However, its protective activity against diabetic kidney disease (DKD) and underlying mechanisms are uncertain. PURPOSE To investigate the functions and potential mechanisms of the senolytics DQ on DKD. METHODS Diabetic db/db mice were administrated DQ or transfected with over-expressed PPARα or shPPARα vector. The positive control group was administered irbesartan. Renal function and fibrotic changes in kidney tissue were tested. Single-cell RNA-seq (scRNA-seq) was conducted to analyze the differential transcriptome between the diabetic and control mice. Molecular docking simulation was used to assess the combination of DQ and potential factors. Moreover, tubular epithelial cells under high-glucose (HG) conditions were incubated with DQ and transfected with or without over-expressed PPARα/siPPARα vector. RESULTS DQ significantly improved renal function, histopathological and fibrotic changes, alleviated lipid deposition, and increased ATP levels in mice with DKD. DQ reduced multiple fatty acid oxidation (FAO) pathway-related proteins and up-regulated PPARα in db/db mice. Overexpression of PPARα upregulated the expression of PPARα-targeting downstream FAO pathway-related proteins, restored renal function, and inhibited renal fibrosis in vitro and in vivo. Moreover, molecular docking and dynamics simulation analyses indicated the nephroprotective effect of DQ via binding to PPARα. Knockdown of PPARα reversed the effect of DQ on the FAO pathway and impaired the protective effect of DQ during DKD. CONCLUSION For the first time, DQ was found to exert a renal protective effect by binding to PPARα and attenuating renal damage through the promotion of FAO in DKD.
Collapse
Affiliation(s)
- Xiuli Guo
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524003, PR China; Department of Laboratory Medicine, The First Hospital of China Medical University, Shenyang, 110001, PR China
| | - Si Wen
- Department of Nephrology, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, PR China
| | - Jiao Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, PR China
| | - Xiaobian Zeng
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524003, PR China
| | - Hongyuan Yu
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001, PR China
| | - Ying Chen
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, 110001, PR China.
| | - Xinwang Zhu
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, 110001, PR China.
| | - Li Xu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524003, PR China.
| |
Collapse
|
6
|
Yin Q, Tang TT, Lu XY, Ni WJ, Yin D, Zhang YL, Jiang W, Zhang Y, Li ZL, Wen Y, Gan WH, Zhang AQ, Lv LL, Wang B, Liu BC. Macrophage-derived exosomes promote telomere fragility and senescence in tubular epithelial cells by delivering miR-155. Cell Commun Signal 2024; 22:357. [PMID: 38987851 PMCID: PMC11238407 DOI: 10.1186/s12964-024-01708-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/08/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) is highly prevalent worldwide, and its global burden is substantial and growing. CKD displays a number of features of accelerated senescence. Tubular cell senescence is a common biological process that contributes to CKD progression. Tubulointerstitial inflammation is a driver of tubular cell senescence and a common characteristic of CKD. However, the mechanism by which the interstitial inflammation drives tubular cell senescence remains unclear. This paper aims to explore the role of exosomal miRNAs derived from macrophages in the development of tubular cell senescence. METHODS Among the identified inflammation-related miRNAs, miR-155 is considered to be one of the most important miRNAs involved in the inflammatory response. Macrophages, the primary immune cells that mediate inflammatory processes, contain a high abundance of miR-155 in their released exosomes. We assessed the potential role of miR-155 in tubular cell senescence and renal fibrosis. We subjected miR-155-/- mice and wild-type controls, as well as tubular epithelial cells (TECs), to angiotensin II (AngII)-induced kidney injury. We assessed kidney function and injury using standard techniques. TECs were evaluated for cell senescence and telomere dysfunction in vivo and in vitro. Telomeres were measured by the fluorescence in situ hybridization. RESULTS Compared with normal controls, miR-155 was up-regulated in proximal renal tubule cells in CKD patients and mouse models of CKD. Moreover, the expression of miR-155 was positively correlated with the extent of renal fibrosis, eGFR decline and p16INK4A expression. The overexpression of miR-155 exacerbated tubular senescence, evidenced by increased detection of p16INK4A/p21expression and senescence-associated β-galactosidase activity. Notably, miR-155 knockout attenuates renal fibrosis and tubule cell senescence in vivo. Interestingly, once released, macrophages-derived exosomal miR-155 was internalized by TECs, leading to telomere shortening and dysfunction through targeting TRF1. A dual-luciferase reporter assay confirmed that TRF1 was the direct target of miR-155. Thus, our study clearly demonstrates that exosomal miR-155 may mediate communication between macrophages and TECs, subsequently inducing telomere dysfunction and senescence in TECs. CONCLUSIONS Our work suggests a new mechanism by which macrophage exosomes are involved in the development of tubule senescence and renal fibrosis, in part by delivering miR-155 to target TRF1 to promote telomere dysfunction. Our study may provide novel strategies for the treatment of AngII-induced kidney injury.
Collapse
Affiliation(s)
- Qing Yin
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, No. 87, Dingjiaqiao Road, Nanjing, Jiangsu, China
| | - Tao-Tao Tang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, No. 87, Dingjiaqiao Road, Nanjing, Jiangsu, China
| | - Xiao-Yu Lu
- Department of Pediatric Nephrology, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, Jiangsu, China
| | - Wei-Jie Ni
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, No. 87, Dingjiaqiao Road, Nanjing, Jiangsu, China
| | - Di Yin
- Department of Nephrology, Taixing People's Hospital, Taixing, Jiangsu, China
| | - Yi-Lin Zhang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, No. 87, Dingjiaqiao Road, Nanjing, Jiangsu, China
| | - Wei Jiang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, No. 87, Dingjiaqiao Road, Nanjing, Jiangsu, China
| | - Yue Zhang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, No. 87, Dingjiaqiao Road, Nanjing, Jiangsu, China
| | - Zuo-Lin Li
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, No. 87, Dingjiaqiao Road, Nanjing, Jiangsu, China
| | - Yi Wen
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, No. 87, Dingjiaqiao Road, Nanjing, Jiangsu, China
| | - Wei-Hua Gan
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ai-Qing Zhang
- Department of Pediatric Nephrology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lin-Li Lv
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, No. 87, Dingjiaqiao Road, Nanjing, Jiangsu, China
| | - Bin Wang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, No. 87, Dingjiaqiao Road, Nanjing, Jiangsu, China.
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, No. 87, Dingjiaqiao Road, Nanjing, Jiangsu, China.
| |
Collapse
|
7
|
Zhang Y, Yu C, Li X. Kidney Aging and Chronic Kidney Disease. Int J Mol Sci 2024; 25:6585. [PMID: 38928291 PMCID: PMC11204319 DOI: 10.3390/ijms25126585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
The process of aging inevitably leads to an increase in age-related comorbidities, including chronic kidney disease (CKD). In many aspects, CKD can be considered a state of accelerated and premature aging. Aging kidney and CKD have numerous common characteristic features, ranging from pathological presentation and clinical manifestation to underlying mechanisms. The shared mechanisms underlying the process of kidney aging and the development of CKD include the increase in cellular senescence, the decrease in autophagy, mitochondrial dysfunction, and the alterations of epigenetic regulation, suggesting the existence of potential therapeutic targets that are applicable to both conditions. In this review, we provide a comprehensive overview of the common characteristics between aging kidney and CKD, encompassing morphological changes, functional alterations, and recent advancements in understanding the underlying mechanisms. Moreover, we discuss potential therapeutic strategies for targeting senescent cells in both the aging process and CKD.
Collapse
Affiliation(s)
- Yingying Zhang
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Chen Yu
- Department of Nephrology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai 200092, China;
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
8
|
Vue Z, Prasad P, Le H, Neikirk K, Harris C, Garza-Lopez E, Wang E, Murphy A, Jenkins B, Vang L, Scudese E, Shao B, Kadam A, Shao J, Marshall AG, Crabtree A, Kirk B, Koh A, Wilson G, Oliver A, Rodman T, Kabugi K, Koh HJ, Smith Q, Zaganjor E, Wanjalla CN, Dash C, Evans C, Phillips MA, Hubert D, Ajijola O, Whiteside A, Do Koo Y, Kinder A, Demirci M, Albritton CF, Wandira N, Jamison S, Ahmed T, Saleem M, Tomar D, Williams CR, Sweetwyne MT, Murray SA, Cooper A, Kirabo A, Jadiya P, Quintana A, Katti P, Fu Dai D, McReynolds MR, Hinton A. The MICOS Complex Regulates Mitochondrial Structure and Oxidative Stress During Age-Dependent Structural Deficits in the Kidney. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.09.598108. [PMID: 38915644 PMCID: PMC11195114 DOI: 10.1101/2024.06.09.598108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The kidney filters nutrient waste and bodily fluids from the bloodstream, in addition to secondary functions of metabolism and hormone secretion, requiring an astonishing amount of energy to maintain its functions. In kidney cells, mitochondria produce adenosine triphosphate (ATP) and help maintain kidney function. Due to aging, the efficiency of kidney functions begins to decrease. Dysfunction in mitochondria and cristae, the inner folds of mitochondria, is a hallmark of aging. Therefore, age-related kidney function decline could be due to changes in mitochondrial ultrastructure, increased reactive oxygen species (ROS), and subsequent alterations in metabolism and lipid composition. We sought to understand if there is altered mitochondrial ultrastructure, as marked by 3D morphological changes, across time in tubular kidney cells. Serial block facing-scanning electron microscope (SBF-SEM) and manual segmentation using the Amira software were used to visualize murine kidney samples during the aging process at 3 months (young) and 2 years (old). We found that 2-year mitochondria are more fragmented, compared to the 3-month, with many uniquely shaped mitochondria observed across aging, concomitant with shifts in ROS, metabolomics, and lipid homeostasis. Furthermore, we show that the mitochondrial contact site and cristae organizing system (MICOS) complex is impaired in the kidney due to aging. Disruption of the MICOS complex shows altered mitochondrial calcium uptake and calcium retention capacity, as well as generation of oxidative stress. We found significant, detrimental structural changes to aged kidney tubule mitochondria suggesting a potential mechanism underlying why kidney diseases occur more readily with age. We hypothesize that disruption in the MICOS complex further exacerbates mitochondrial dysfunction, creating a vicious cycle of mitochondrial degradation and oxidative stress, thus impacting kidney health.
Collapse
Affiliation(s)
- Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Praveena Prasad
- Department of Biochemistry and Molecular Biology, The Huck Institute of the Life Sciences, Pennsylvania State University, State College, PA 16801
| | - Han Le
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Chanel Harris
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Edgar Garza-Lopez
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Eric Wang
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, 92697, USA
| | - Alexandria Murphy
- Department of Biochemistry and Molecular Biology, The Huck Institute of the Life Sciences, Pennsylvania State University, State College, PA 16801
| | - Brenita Jenkins
- Department of Biochemistry and Molecular Biology, The Huck Institute of the Life Sciences, Pennsylvania State University, State College, PA 16801
| | - Larry Vang
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Estevão Scudese
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Bryanna Shao
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Ashlesha Kadam
- Department of Internal Medicine, Section of Cardiovascular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157 USA
| | - Jianqiang Shao
- Central Microscopy Research Facility, University of Iowa, Iowa City, IA, 52242, USA
| | - Andrea G. Marshall
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Amber Crabtree
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Benjamin Kirk
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Alice Koh
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Genesis Wilson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Ashton Oliver
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Taylor Rodman
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Kinuthia Kabugi
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Ho-Jin Koh
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA
| | - Quinton Smith
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, 92697, USA
| | - Elma Zaganjor
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | | | - Chandravanu Dash
- Department of Biochemistry, Cancer Biology, Pharmacology and Neuroscience, Meharry Medical College, Nashville, TN, United States
| | - Chantell Evans
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27708, USA
| | - Mark A. Phillips
- Department of Integrative Biology, Oregon State University, Corvallis, OR, 97331, USA
| | - David Hubert
- Department of Integrative Biology, Oregon State University, Corvallis, OR, 97331, USA
| | - Olujimi Ajijola
- UCLA Cardiac Arrhythmia Center, University of California, Los Angeles, CA, USA
| | - Aaron Whiteside
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH 45435 USA
| | - Young Do Koo
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, Iowa City, Iowa, USA
| | - André Kinder
- Artur Sá Earp Neto University Center - UNIFASE-FMP, Petrópolis Medical School, Brazil
| | - Mert Demirci
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Claude F. Albritton
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, TN 37208-3501, USA
| | - Nelson Wandira
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Sydney Jamison
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Taseer Ahmed
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Mohammad Saleem
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Dhanendra Tomar
- Department of Internal Medicine, Section of Cardiovascular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157 USA
| | - Clintoria R. Williams
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH 45435 USA
| | - Mariya T. Sweetwyne
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Sandra A. Murray
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Anthonya Cooper
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
- Vanderbilt Center for Immunobiology, Vanderbilt University, Nashville, TN, 37232, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University, Nashville, TN, 37232, USA
- Vanderbilt Institute for Global Health, Vanderbilt University, Nashville, TN, 37232, USA
| | - Pooja Jadiya
- Department of Internal Medicine, Section of Gerontology and Geriatric Medicine, Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Anita Quintana
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, Texas, USA
| | - Prasanna Katti
- National Heart, Lung and Blood Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, AP, 517619, India
| | - Dao Fu Dai
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Melanie R. McReynolds
- Department of Biochemistry and Molecular Biology, The Huck Institute of the Life Sciences, Pennsylvania State University, State College, PA 16801
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| |
Collapse
|
9
|
Guo X, Wang J, Wu Y, Zhu X, Xu L. Renal aging and mitochondrial quality control. Biogerontology 2024; 25:399-414. [PMID: 38349436 DOI: 10.1007/s10522-023-10091-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/29/2023] [Indexed: 06/01/2024]
Abstract
Mitochondria are dynamic organelles that participate in different cellular process that control metabolism, cell division, and survival, and the kidney is one of the most metabolically active organs that contains abundant mitochondria. Perturbations in mitochondrial homeostasis in the kidney can accelerate kidney aging, and maintaining mitochondrial homeostasis can effectively delay aging in the kidney. Kidney aging is a degenerative process linked to detrimental processes. The significance of aberrant mitochondrial homeostasis in renal aging has received increasing attention. However, the contribution of mitochondrial quality control (MQC) to renal aging has not been reviewed in detail. Here, we generalize the current factors contributing to renal aging, review the alterations in MQC during renal injury and aging, and analyze the relationship between mitochondria and intrinsic renal cells. We also introduce MQC in the context of renal aging, and discuss the study of mitochondria in the intrinsic cells of the kidney, which is the innovation of our paper. In addition, during kidney injury and repair, the specific functions and regulatory mechanisms of MQC systems in resident and circulating cell types remain unclear. Currently, most of the studies we reviewed are based on animal and cellular models, the relationship between renal tissue aging and mitochondria has not been adequately investigated in clinical studies, and there is still a long way to go.
Collapse
Affiliation(s)
- Xiuli Guo
- Department of Laboratory, The First Hospital of China Medical University, Shenyang, China
| | - Jiao Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yinjie Wu
- Department of Gynecology, The First Hospital of China Medical University, Shenyang, China
| | - Xinwang Zhu
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, China
| | - Li Xu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524003, Guangdong, People's Republic of China.
| |
Collapse
|
10
|
Wang J, Zheng F, Wang D, Yang Q. Regulation of ULK1 by WTAP/IGF2BP3 axis enhances mitophagy and progression in epithelial ovarian cancer. Cell Death Dis 2024; 15:97. [PMID: 38286802 PMCID: PMC10824720 DOI: 10.1038/s41419-024-06477-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/31/2024]
Abstract
There is a pressing need for innovative therapeutic strategies for patients with epithelial ovarian cancer (EOC). Previous studies have shown that UNC-51-like kinase 1 (ULK1), a serine/threonine kinase, is crucial in regulating cellular autophagy and mitophagy across various tumor types. However, the clinical implications, biological functions, and potential mechanisms of ULK1 in EOC remain poorly understood. This study demonstrates that ULK1 expression is upregulated in EOC tissue samples and EOC cell lines, with increased ULK1 expression correlating with poor prognosis. Functionally, overexpressed ULK1 enhances the proliferation and migration abilities of EOC cells both in vitro and in vivo. Mechanistically, ULK1 was identified as an m6A target of WTAP. WTAP-mediated m6A modification of ULK1 enhanced its mRNA stability in an IGF2BP3-dependent manner, leading to elevated ULK1 expression and enhanced mitophagy in EOC. In summary, our research reveals that the WTAP/IGF2BP3-ULK1 axis significantly influences protective mitophagy in EOC, contributing to its progression. Therefore, the regulatory mechanisms and biological function of ULK1 identify it as a potential molecular target for therapeutic intervention in EOC.
Collapse
Affiliation(s)
- Jiao Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Fei Zheng
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Dandan Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Qing Yang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|