1
|
Tsahnang Fofack HM, Mbah Bake M, Petry S, Ateba BA, Amoa Onguéné P, Mohammad-Salim H, Ntie-Kang F, Mbaze LM, Vakal S, Kenfack CA. Identification of potential dipeptidyl peptidase IV inhibitors from the ConMedNP library by virtual screening, and molecular dynamics methods. Heliyon 2024; 10:e35191. [PMID: 39165954 PMCID: PMC11334638 DOI: 10.1016/j.heliyon.2024.e35191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/06/2024] [Accepted: 07/24/2024] [Indexed: 08/22/2024] Open
Abstract
In this study, we screened novel dipeptidyl peptidase IV (DPP4) inhibitors from the ConMedNP library consisting of 3507 molecules. Interestingly, molecular docking, ADMET, and the anti-diabetic activity predictions suggest that three molecules, namely OTH_UD_XX06_1, GB19, and BMC_000104, have a high binding affinity toward DPP4. The molecular dynamics (MD) simulation results suggest that these hit molecules have a stable binding pose and occupy the binding pockets throughout the 200 ns simulation. The presence of intermolecular H-bonding between the ligands and DPP4 was observed throughout the simulation period. Thus, docking and MD results, predicted that the three compounds were the most potent DPP4 inhibitors that could putatively bind to the DPP4 active site via both conventional H-bonding and hydrophobic interactions. These results could aid the discovery of new drugs to treat type 2 diabetes.
Collapse
Affiliation(s)
- Hans Merlin Tsahnang Fofack
- Laboratoire Optique et Applications, Centre de Physique Atomique Moleculaire et Optique Quantique, Faculte des Sciences, Université de Douala, B.P. 8580, Douala, Cameroon
- Analytical, Structural and Materials Chemistry Laboratory, Department of Chemistry, Faculty of Science, University of Douala, B.P. 24157, Douala, Cameroon
| | - Maraf Mbah Bake
- Physical and Theoretical Chemistry Unit, Laboratory of applied Physical and Analytical Chemistry, Faculty of Science, University of Yaoundé I, P.O. BOX 812, Yaoundé, Cameroon
- Computational Chemistry Laboratory, Department of Chemistry, Higher Teacher Training College, University of Yaoundé I, P. O. Box 47, Yaoundé, Cameroon
| | - Simon Petry
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 3, 14195, Berlin, Germany
| | - Baruch A. Ateba
- Laboratoire Optique et Applications, Centre de Physique Atomique Moleculaire et Optique Quantique, Faculte des Sciences, Université de Douala, B.P. 8580, Douala, Cameroon
- Analytical, Structural and Materials Chemistry Laboratory, Department of Chemistry, Faculty of Science, University of Douala, B.P. 24157, Douala, Cameroon
| | | | - Haydar Mohammad-Salim
- Department of Chemistry, Faculty of Science, University of Zakho, Zakho, Duhok, 42001, Kurdistan Region, Iraq
- Molecular Topology and Drug Design Research Unit, Department of Physical Chemistry, Pharmacy Faculty, University of Valencia, 46100, Valencia, Spain
| | - Fidele Ntie-Kang
- Center for Drug Discovery, Faculty of Science, University of Buea, P. O. Box 63, Buea, Cameroon
- Department of Chemistry, Faculty of Science, University of Buea, P. O. Box 63, Buea, Cameroon
- Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, Kurt-Mothes Strasse 3, 06120, Halle (Saale), Germany
| | - Luc Meva'a Mbaze
- Physical and Theoretical Chemistry Laboratory, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Serhii Vakal
- Structural Bioinformatics Lab, Faculty of Science and Engineering, Åbo Akademi University, Tuomiokirkontori 3, 20500, Turku, Finland
| | - Cyril A Kenfack
- Laboratoire Optique et Applications, Centre de Physique Atomique Moleculaire et Optique Quantique, Faculte des Sciences, Université de Douala, B.P. 8580, Douala, Cameroon
| |
Collapse
|
2
|
Chuanboding, Wang N, He H, Sun X, Bi X, Li A, Sun P, Li J, Yan L, Gao Y, Shen L, Ting Z, Zhang S. Advances in the treatment of type 2 diabetes mellitus by natural plant polysaccharides through regulation of gut microbiota and metabolism: A review. Int J Biol Macromol 2024; 274:133466. [PMID: 38942411 DOI: 10.1016/j.ijbiomac.2024.133466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/18/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
The prevalence and impact of type 2 diabetes mellitus (T2DM) is a major global health problem. The treatment process of T2DM is long and difficult to cure. Therefore, it is necessary to explore alternative or complementary methods to deal with the various challenges brought by T2DM. Natural plant polysaccharides (NPPs) have certain potential in the treatment of T2DM. However, many studies have not considered the relationship between the structure of NPPs and their anti-T2DM activity. This paper reviews the relevant anti-T2DM mechanisms of NPPs, including modulation of insulin action, promotion of glucose metabolism and modulation of postprandial glucose levels, anti-inflammation and modulation of gut microbiota (GM) and metabolism. This paper provides an in-depth study of the conformational relationships of NPPs and facilitates the development of anti-T2DM drugs or dietary supplements with NPPs.
Collapse
Affiliation(s)
- Chuanboding
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China; Jilin Aodong Yanbian Pharmaceutical Co., Ltd, Yanbian Korean Autonomous Prefecture 133000, China
| | - Ning Wang
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, China
| | - Huiying He
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, China
| | - Xiaohang Sun
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Xiaoyu Bi
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Anning Li
- Jilin Aodong Yanbian Pharmaceutical Co., Ltd, Yanbian Korean Autonomous Prefecture 133000, China
| | - Pingping Sun
- Jilin Aodong Yanbian Pharmaceutical Co., Ltd, Yanbian Korean Autonomous Prefecture 133000, China
| | - Jianguo Li
- Jilin Aodong Yanbian Pharmaceutical Co., Ltd, Yanbian Korean Autonomous Prefecture 133000, China
| | - Li Yan
- Jilin Aodong Yanbian Pharmaceutical Co., Ltd, Yanbian Korean Autonomous Prefecture 133000, China
| | - Yang Gao
- Jilin Jianwei Natural Biotechnology Co., Baishan 134600, China
| | - Liqian Shen
- Jilin Jianwei Natural Biotechnology Co., Baishan 134600, China
| | - Zhao Ting
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China.
| | - Shuai Zhang
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China; College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
3
|
Gone GB, Go G, Nam G, Jeong W, Kim H, Lee S, Chung SJ. Exploring the Anti-Diabetic Potential of Quercetagitrin through Dual Inhibition of PTPN6 and PTPN9. Nutrients 2024; 16:647. [PMID: 38474775 DOI: 10.3390/nu16050647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Protein tyrosine phosphatases (PTPs) are pivotal contributors to the development of type 2 diabetes (T2DM). Hence, directing interventions towards PTPs emerges as a valuable therapeutic approach for managing type 2 diabetes. In particular, PTPN6 and PTPN9 are targets for anti-diabetic effects. Through high-throughput drug screening, quercetagitrin (QG) was recognized as a dual-target inhibitor of PTPN6 and PTPN9. We observed that QG suppressed the catalytic activity of PTPN6 (IC50 = 1 μM) and PTPN9 (IC50 = 1.7 μM) in vitro and enhanced glucose uptake by mature C2C12 myoblasts. Additionally, QG increased the phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) and insulin-dependent phosphorylation of Akt in mature C2C12 myoblasts. It further promoted the phosphorylation of Akt in the presence of palmitic acid, suggesting the attenuation of insulin resistance. In summary, our results indicate QG's role as a potent inhibitor targeting both PTPN6 and PTPN9, showcasing its potential as a promising treatment avenue for T2DM.
Collapse
Affiliation(s)
- Geetanjali B Gone
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Geonhui Go
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Gibeom Nam
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Woojoo Jeong
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyemin Kim
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Soah Lee
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sang J Chung
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
4
|
Song W, Xing R, Yang H, Liu S, Yu H, Li P. Therapeutic potential of enzymatically extracted eumelanin from squid ink in type 2 diabetes mellitus ICR mice: Multifaceted intervention against hyperglycemia, oxidative stress and depression. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:993-1007. [PMID: 37715565 DOI: 10.1002/jsfa.12986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/03/2023] [Accepted: 09/13/2023] [Indexed: 09/17/2023]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is a prevalent metabolic disease that poses significant health risks due to its numerous complications. However, the effects of eumelanin on oxidative stress, hyperglycemia and depression in diabetic mice have not been extensively studied. RESULTS Our study employed an enzymatic approach to extract eumelanin from squid ink and characterized it using spectroscopic techniques. Remarkably, eumelanin extracted with alkaline-neutral-flavor protease (ANF) displayed superior inhibitory activity against α-glucosidase and α-amylase, while enhancing glucose utilization and hepatic glycogen synthesis in human hepatocellular carcinoma cell line (HepG2) insulin resistance model. Further evaluation of ANF in a T2DM ICR mouse model demonstrated its significant potential in alleviating hyperglycemia, reducing glycosylated serum protein levels, improving glucose tolerance and modulating total cholesterol and low-density lipoprotein levels, as well as antioxidant indices at a dosage of 0.04 g kg-1 . Additionally, ANF exhibited positive effects on energy levels and reduced immobility time in antidepressant behavioral experiments. Moreover, ANF positively influenced the density and infiltration state of renal cells, while mitigating inflammatory enlargement and deformation of liver cells, without inducing any adverse effects in mice. CONCLUSION Overall, these findings underscore the significant therapeutic potential of ANF in the treatment of T2DM and its associated complications. By augmenting lipid and glucose metabolism, mitigating oxidative stress and alleviating depression, ANF emerges as a promising candidate for multifaceted intervention. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wen Song
- CAS and Shandong Province Key laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ronge Xing
- CAS and Shandong Province Key laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Haoyue Yang
- CAS and Shandong Province Key laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Song Liu
- CAS and Shandong Province Key laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Huahua Yu
- CAS and Shandong Province Key laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Pengcheng Li
- CAS and Shandong Province Key laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| |
Collapse
|
5
|
Su W, Li Y, Chang AK, Sheng T, Pei Y, Li J, Li H, Liu K, Xu L, Liu W, Ai J, Zhang Z, Wang Y, Jiang Z, Liang X. Identification of Novel Alkaloids from Portulaca oleracea L. and Characterization of Their Pharmacokinetics and GLP-1 Secretion-Promoting Activity in STC-1 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19804-19816. [PMID: 38038649 DOI: 10.1021/acs.jafc.3c05191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Six new alkaloids (compounds 1-6) were isolated from Portulaca oleracea L. The compounds were triple pair (1 and 2, 3 and 4, and 5 and 6) enantiomers, with 1, 3, and 5 in the R-configuration and 2, 4, and 6 in the S-configuration, and all could bind to SUR1 according to molecular docking analysis. Treatment of STC-1 cells with each compound led to an influx of intracellular Ca2+, eventually leading to the secretion of glucagon-like peptide-1 (GLP-1), with compound 3 giving the highest secretion, resulting in 24.3 ± 7.03% more GLP-1 than nateglinide-treated cells, suggesting that these alkaloids may be able to reduce blood glucose based on their ability to stimulate the release of GLP-1. Furthermore, compound 3 also exhibited slightly faster absorption than nateglinide, as shown by pharmacokinetic analysis conducted in rats. Therefore, the results showed that some purslane alkaloids (such as compound 3) had good pharmacological activity in vivo and may have preventive and therapeutic effects on diabetes.
Collapse
Affiliation(s)
- Weiping Su
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang, Liaoning Province 110036, P.R. China
| | - Yanan Li
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang, Liaoning Province 110036, P.R. China
| | - Alan Kueichieh Chang
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang Province 325035, P.R. China
| | - Tongling Sheng
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang, Liaoning Province 110036, P.R. China
| | - Ying Pei
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang, Liaoning Province 110036, P.R. China
| | - Jianxin Li
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang, Liaoning Province 110036, P.R. China
| | - Haoran Li
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang, Liaoning Province 110036, P.R. China
| | - Kai Liu
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang, Liaoning Province 110036, P.R. China
| | - Liuping Xu
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang, Liaoning Province 110036, P.R. China
| | - Wenbao Liu
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang, Liaoning Province 110036, P.R. China
| | - Jiao Ai
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang, Liaoning Province 110036, P.R. China
| | - Zhicheng Zhang
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang, Liaoning Province 110036, P.R. China
| | - Yimeng Wang
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang, Liaoning Province 110036, P.R. China
| | - Zhen Jiang
- Department of Analytical Chemistry, College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, P.R. China
| | - Xiao Liang
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang, Liaoning Province 110036, P.R. China
| |
Collapse
|
6
|
Zhang L, Ai Y, Chen Y, Li C, Li P, Chen J, Jiang L, Pan Y, Sun A, Yang Y, Liu Q. Elucidation of Geniposide and Crocin Accumulation and Their Biosysnthsis-Related Key Enzymes during Gardenia jasminoides Fruit Growth. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112209. [PMID: 37299188 DOI: 10.3390/plants12112209] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
Gardenia jasminoides fruits are extensively grown worldwide, with a large harvest, and its major medicinal ingredients are geniposide and crocins. Research on their accumulation and biosynthsis-related enzymes is rare. In this study, the accumulation of geniposide and crocin of G. jasminoides fruits at different developmental stages were clarified by HPLC. The highest cumulative amount of geniposide was 2.035% during the unripe-fruit period, and the highest content of crocin was 1.098% during the mature-fruit period. Furthermore, transcriptome sequencing was performed. A total of 50 unigenes encoding 4 key enzymes related in geniposide biosynthsis pathways were screened, and 41 unigenes encoding 7 key enzymes in the pathways of crocin were elucidated. It was found that the expression levels of differentially expressed genes of DN67890_c0_g1_i2-encoding GGPS, which is highly related to geniposide biosynthesis, and DN81253_c0_g1_i1-encoding lcyB, DN79477_c0_g1_i2-encoding lcyE, and DN84975_c1_g7_i11-encoding CCD, which are highly related to crocin biosynthesis, were consistent with the accumulation of geniposide and crocin content, respectively. The qRT-PCR results showed that the trends of relative expression were consistent with transcribed genes. This study provides insights for understanding the geniposide and crocin accumulation and biosynthsis during fruit development in G. jasminoides.
Collapse
Affiliation(s)
- Luhong Zhang
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, China
| | - Yang Ai
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, China
| | - Yunzhu Chen
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, China
| | - Changzhu Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, China
| | - Peiwang Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, China
| | - Jingzhen Chen
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, China
| | - Lijuan Jiang
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yuhong Pan
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, China
| | - An Sun
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yan Yang
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, China
| | - Qiang Liu
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
7
|
Zheng S, Zhou B, Yang L, Hou A, Zhang J, Yu H, Kuang H, Jiang H, Yang L. System pharmacology analysis to decipher the effect and mechanism of active ingredients combination from Duhuo Jisheng decoction on osteoarthritis in rats. JOURNAL OF ETHNOPHARMACOLOGY 2023:116679. [PMID: 37257711 DOI: 10.1016/j.jep.2023.116679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/18/2023] [Accepted: 05/21/2023] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Duhuo Jisheng decoction is a traditional Chinese formula that has been widely used in clinical practice to treat osteoarthritis, which has the effects of removing invaded cold and dampness, relieving joint pain. However, it is difficult to determine the effective substances and mechanisms due to assorted herbs and components, and further research is needed. AIM OF THE STUDY This study was designed to explore and verify the mechanism and targets of DHJSD in the treatment of OA via network analysis and experiments. METHOD In this study, the active ingredients of DHJSD were qualitatively analyzed by UPLC-QDA. Network analysis was used to identify common targets and pathways. Next, we explored the therapeutic mechanism of DHJSD through a rat model of knee osteoarthritis. HE staining was used to judge the establishment of the animal model. ELISA and Western blotting were used to verify the expression of key pathway proteins. CONCLUSION In this study, seventeen chemical constituents in DHJSD were identified. According to the network analysis, we obtained the potential associated pathways of action. Then, molecular docking and SPR experiments showed that the sixteen identified components had high binding energies to IL-6. HE staining showed that the high-dose group of DHJSD had an obvious therapeutic effect on model rats. Compared with the model group, the levels of IL-1β, TNF-α, IL-6, MMP3, MMP13, ADAMTS4 and ADAMTS5 in serum and the expression of STAT3 and p-STAT3 protein in administration groups were significantly decreased. This result indicated that the IL-6/STAT3 signaling pathway was one of the important pathways regulated by DHJSD to improve OA.
Collapse
Affiliation(s)
- Senwang Zheng
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, 150040, PR China
| | - Bo Zhou
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, 150040, PR China
| | - Lin Yang
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, 150040, PR China; Higher College, Jiangxi University of Traditional Chinese Medicine, NanChang, 330000, PR China
| | - Ajiao Hou
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, 150040, PR China
| | - Jiaxu Zhang
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, 150040, PR China
| | - Huan Yu
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, 150040, PR China
| | - Haixue Kuang
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, 150040, PR China
| | - Hai Jiang
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, 150040, PR China.
| | - Liu Yang
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, 150040, PR China.
| |
Collapse
|
8
|
Liu Z, Meng L, Wang M, Wang L, Liu Y, Hou G, Li S, Kang W. New iridoids from Patrinia scabiosaefolia and their hypoglycemic effects by activating PI3K/Akt signaling pathway. Fitoterapia 2023; 165:105423. [PMID: 36608711 DOI: 10.1016/j.fitote.2022.105423] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/29/2022] [Accepted: 12/29/2022] [Indexed: 01/07/2023]
Abstract
Growing in regions of Asia and North America, Patrinia scabiosaefolia is a wild vegetable and herb that has demonstrated health-promoting properties. Iridoids are one of the most bioactive phytochemicals in P. scabiosaefolia but the in-depth study is scarce. Herein we reported the separation and characterization of nine iridoids (compounds 1-9) from P. scabiosaefolia, and two compounds (2 and 6) were new. All the structures of the nine iridoids were characterized and confirmed with NMR (1D & 2D), HRMS, IR and UV. Compound 2 is a five-member ring iridoid, reminiscent of a broken C-1 and C-2 bond. Compound 6 has a typical monoene valerian iridoid, but the 5-deoxyglucose moiety at C-11 position is uncommon in this genus. The anti-diabetic evaluation of the isolated compounds revealed that compounds 1, 2, and 9 significantly increased the glucose absorption in 3 T3-L1 cells (P < 0.01). Further mechanism investigations have demonstrated that compound 1 promoted glucose uptake in dexamethasone-treated 3 T3-L1 adipocytes by activating PI3K/Akt signaling pathway. The expression of GLUT4 mRNA and protein was also upregulated. These results provide scientific references for the potential use of P. scabiosaefolia as a functional food to manage hyperglycemia.
Collapse
Affiliation(s)
- Zhenhua Liu
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; Shenzhen Research Institute of Henan University, Shenzhen 518000, China
| | - Lijun Meng
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; Functional Food Engineering Technology Research Center, Kaifeng 475004, China
| | - Mengke Wang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; Functional Food Engineering Technology Research Center, Kaifeng 475004, China
| | - Li Wang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; Joint International Research Laboratory of Food & Medicine Resource Function, Kaifeng 475004, China
| | - Yuhang Liu
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; Joint International Research Laboratory of Food & Medicine Resource Function, Kaifeng 475004, China
| | - Gaixia Hou
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; College of Physical Education, Henan University, Kaifeng 475004, China.
| | - Shiming Li
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China.
| | - Wenyi Kang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; Shenzhen Research Institute of Henan University, Shenzhen 518000, China; Functional Food Engineering Technology Research Center, Kaifeng 475004, China.
| |
Collapse
|
9
|
Wang M, Sheng KJ, Fang JC, Zhao H, Lu SM, Liu ZY, Chen BT. Redox signaling in diabetic retinopathy and opportunity for therapeutic intervention through natural products. Eur J Med Chem 2022; 244:114829. [DOI: 10.1016/j.ejmech.2022.114829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/14/2022] [Accepted: 10/01/2022] [Indexed: 11/28/2022]
|
10
|
Xiao M, Jia X, Wang N, Kang J, Hu X, Goff HD, Cui SW, Ding H, Guo Q. Therapeutic potential of non-starch polysaccharides on type 2 diabetes: from hypoglycemic mechanism to clinical trials. Crit Rev Food Sci Nutr 2022; 64:1177-1210. [PMID: 36036965 DOI: 10.1080/10408398.2022.2113366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Non-starch polysaccharides (NSPs) have been reported to exert therapeutic potential on managing type 2 diabetes mellitus (T2DM). Various mechanisms have been proposed; however, several studies have not considered the correlations between the anti-T2DM activity of NSPs and their molecular structure. Moreover, the current understanding of the role of NSPs in T2DM treatment is mainly based on in vitro and in vivo data, and more human clinical trials are required to verify the actual efficacy in treating T2DM. The related anti-T2DM mechanisms of NSPs, including regulating insulin action, promoting glucose metabolism and regulating postprandial blood glucose level, anti-inflammatory and regulating gut microbiota (GM), are reviewed. The structure-function relationships are summarized, and the relationships between NSPs structure and anti-T2DM activity from clinical trials are highlighted. The development of anti-T2DM medication or dietary supplements of NSPs could be promoted with an in-depth understanding of the multiple regulatory effects in the treatment/intervention of T2DM.
Collapse
Affiliation(s)
- Meng Xiao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Xing Jia
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Nifei Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Ji Kang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Xinzhong Hu
- College of Food Engineering & Nutrition Science, Shaanxi Normal University, Shaanxi, China
| | | | - Steve W Cui
- Guelph Research and Development Centre, AAFC, Guelph, Ontario, Canada
| | | | - Qingbin Guo
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|