1
|
Du X, Zhao Y, Li J, Xie W, Lyu L, Chen S, Jia C, Yan J, Li P. Expression Patterns of TGF-β1, TβR-I, TβR-II, and Smad2 Reveal Insights into Heterosis for Growth of Hybrid Offspring between Acanthopagrus schlegelii and Pagrus major. Genes (Basel) 2024; 15:945. [PMID: 39062724 PMCID: PMC11276220 DOI: 10.3390/genes15070945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
TGF-β1/Smads is a classic signaling pathway, which plays important roles in the development process of organisms. Black porgy Acanthopagrus schlegelii and red porgy Pagrus major are valuable economic fishes, and their hybrid offspring show excellent heterosis traits. Yet the molecular regulation mechanism of the heterosis traits is less clear. Here, we explored the TGF-β1/Smads pathway's molecular genetic information for heterosis in A. schlegelii ♂ × P. major ♀ (AP) and A. schlegelii ♀ × P. major ♂ (PA) in terms of growth and development. The mRNA expression levels of TGF-β1, TβR-I, TβR-II, and Smad2 genes in different developmental stages of A. schlegelii were detected. Furthermore, the expression levels of TGF-β1, TβR-I, TβR-II, and Smad2 genes in different tissues of adult (mRNA level) and larva (mRNA and protein level) of A. schlegelii, P. major, and their hybrids were determined by both real-time quantitative PCR and Western blot techniques. The results indicated the ubiquitous expression of these genes in all developmental stages of A. schlegelii and in all tested tissues of A. schlegelii, P. major, and its hybrids. Among them, the mRNA of TGF-β1, TβR-I, and TβR-II genes is highly expressed in the liver, gill, kidney, and muscle of black porgy, red porgy, and their hybrid offspring. There are significant changes in gene and protein expression levels in hybrid offspring, which indirectly reflect hybrid advantage. In addition, there was no correlation between protein and mRNA expression levels of Smad2 protein. The results provide novel data for the differential expression of growth and development genes between the reciprocal hybridization generation of black porgy and red porgy and its parents, which is conducive to further explaining the molecular regulation mechanism of heterosis in the growth and development of hybrid porgy.
Collapse
Affiliation(s)
- Xinran Du
- Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (X.D.); (Y.Z.); (J.L.); (W.X.); (L.L.); (J.Y.)
| | - Yue Zhao
- Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (X.D.); (Y.Z.); (J.L.); (W.X.); (L.L.); (J.Y.)
| | - Jingbo Li
- Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (X.D.); (Y.Z.); (J.L.); (W.X.); (L.L.); (J.Y.)
| | - Wenli Xie
- Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (X.D.); (Y.Z.); (J.L.); (W.X.); (L.L.); (J.Y.)
| | - Linna Lyu
- Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (X.D.); (Y.Z.); (J.L.); (W.X.); (L.L.); (J.Y.)
| | - Shuyin Chen
- Jiangsu Institute of Oceanology & Marine Fisheries, Nantong 226007, China; (S.C.); (C.J.)
| | - Chaofeng Jia
- Jiangsu Institute of Oceanology & Marine Fisheries, Nantong 226007, China; (S.C.); (C.J.)
| | - Jie Yan
- Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (X.D.); (Y.Z.); (J.L.); (W.X.); (L.L.); (J.Y.)
| | - Peng Li
- Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (X.D.); (Y.Z.); (J.L.); (W.X.); (L.L.); (J.Y.)
| |
Collapse
|
2
|
Das S, Pradhan C, Pillai D. Dietary coriander (Coriandrum sativum L) oil improves antioxidant and anti-inflammatory activity, innate immune responses and resistance to Aeromonas hydrophila in Nile tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2023; 132:108486. [PMID: 36513321 DOI: 10.1016/j.fsi.2022.108486] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/23/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
The use of essential oils (EOs) as a natural alternative to antibiotics for disease prevention strategies is gaining much interest in recent decade. Coriander (Coriandrum sativum L.) essential oil is rich in bioactive compounds like linalool and geranyl acetate which have antioxidant, anti-inflammatory and antimicrobial activities. The present work was proposed to evaluate the inclusion levels of coriander oil in tilapia feed to enhance tilapia health and resistance to bacterial infection. Five iso-nitrogenous and iso-lipidic feeds were prepared with graded levels of coriander oil (0, 0.5, 1, 1.5 and 2%). The fish were then fed with the five experimental diet twice daily for a period of 60 days in triplicate. Haemoglobin, mean corpuscular volume, mean cell haemoglobin increased significantly in the coriander oil treated groups. The thrombocyte count was more in 2% inclusion level. The superoxide dismutase activity increased significantly in all the treated groups. The feeds with 1.5 and 2% coriander oil showed increased respiratory burst and myeloperoxidase activities while lysozyme and antiprotease activities were significantly higher in 1, 1.5 and 2% dietary treatments compared to control. The survival increased in dose dependent manner post challenge with an intraperitoneal injection of Aeromonas hydrophila at a LD50 dose of 5 × 106 cfu mL-1. The feed containing 1, 1.5 and 2% of coriander oil showed 89, 100 and 100% survival respectively compared to 39% in control diet. The expression level of IgM and IL-8 increased significantly post challenge with A. hydrophila in coriander oil fed groups. The expressions of TNFα, IL-1β, TGFβ and HSP 70 genes, however, decreased significantly in the treated groups compared to control. Histopathological examination of spleen showed large melano-macrophage centers in control and 0.5% coriander fed group with signs of necrosis and vacuolation post A. hydrophila infection, whereas 1, 1.5 and 2% treated groups showed normal architecture of spleen. From the above observations it can be concluded that coriander oil with 1% incorporation in feed improves tilapia health and resistance to bacterial infection.
Collapse
Affiliation(s)
- Sweta Das
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India
| | - Chiranjiv Pradhan
- Department of Aquaculture, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India
| | - Devika Pillai
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India.
| |
Collapse
|
3
|
Liu S, Guo J, Cheng X, Li W, Lyu S, Chen X, Li Q, Wang H. Molecular Evolution of Transforming Growth Factor-β (TGF-β) Gene Family and the Functional Characterization of Lamprey TGF-β2. Front Immunol 2022; 13:836226. [PMID: 35309318 PMCID: PMC8931421 DOI: 10.3389/fimmu.2022.836226] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/11/2022] [Indexed: 11/13/2022] Open
Abstract
The transforming growth factor-βs (TGF-βs) are multifunctional cytokines capable of regulating a wide range of cellular behaviors and play a key role in maintaining the homeostasis of the immune system. The TGF-β subfamily, which is only present in deuterostomes, expands from a single gene in invertebrates to multiple members in jawed vertebrates. However, the evolutionary processes of the TGF-β subfamily in vertebrates still lack sufficient elucidation. In this study, the TGF-β homologs are identified at the genome-wide level in the reissner lamprey (Lethenteron reissneri), the sea lamprey (Petromyzon marinus), and the Japanese lamprey (Lampetra japonica), which are the extant representatives of jawless vertebrates with a history of more than 350 million years. The molecular evolutionary analyses reveal that the lamprey TGF-β subfamily contains two members representing ancestors of TGF-β2 and 3 in vertebrates, respectively, but TGF-β1 is absent. The transcriptional expression patterns show that the lamprey TGF-β2 may play a central regulatory role in the innate immune response of the lamprey since it exhibits a more rapid and significant upregulation of expression than TGF-β3 during lipopolysaccharide stimuli. The incorporation of BrdU assay reveals that the lamprey TGF-β2 recombinant protein exerts the bipolar regulation on the proliferation of the supraneural myeloid body cells (SMB cells) in the quiescent and LPS-activated state, while plays an inhibitory role in the proliferation of quiescent and activated leukocytes in lampreys. Furthermore, caspase-3/7 activity analysis indicates that the lamprey TGF-β2 protects SMB cells from apoptosis after serum deprivation, in contrast to promoting apoptosis of leukocytes. Our composite results offer valuable clues to the origin and evolution of the TGF-β subfamily and imply that TGF-βs are among the most ancestral immune regulators in vertebrates.
Collapse
Affiliation(s)
- Siqi Liu
- College of Life Sciences, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Junfu Guo
- College of Life Sciences, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Xianda Cheng
- College of Life Sciences, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Wenna Li
- College of Life Sciences, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Shuangyu Lyu
- College of Life Sciences, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Xuanyi Chen
- College of Life Sciences, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Qingwei Li
- College of Life Sciences, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
- *Correspondence: Hao Wang, ; Qingwei Li,
| | - Hao Wang
- College of Life Sciences, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
- *Correspondence: Hao Wang, ; Qingwei Li,
| |
Collapse
|
4
|
Ma X, Bi Q, Kong Y, Xu H, Liang M, Mai K, Zhang Y. Dietary lipid levels affected antioxidative status, inflammation response, apoptosis and microbial community in the intestine of juvenile turbot (Scophthalmus maximus L.). Comp Biochem Physiol A Mol Integr Physiol 2021; 264:111118. [PMID: 34793954 DOI: 10.1016/j.cbpa.2021.111118] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 02/08/2023]
Abstract
A nine-week feeding trial was conducted to comprehensively investigate the effects of different levels of dietary lipid on intestinal physiology of juvenile turbot. Three diets with different lipid levels (8%, 12% and 16%) were formulated, which were designated as the low-lipid group (LL), medium-lipid group (ML) and high-lipid group (HL), respectively. Each diet was fed to six replicate tanks, and each tank was stocked with 35 fish. The results revealed that medium dietary lipid (12%) increased the activities of intestinal digestive enzymes and brush border enzymes. Excessive dietary lipid (16%) decreased the intestinal antioxidative enzyme levels and increased the lipid peroxidation pressure. In addition, HL stimulated the occurrence of intestinal inflammation and significantly up-regulated the mRNA expression level of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interferon-γ (IFN-γ) and transforming growth factor-β (TGF-β). Dietary LL and HL induced the apoptosis of intestinal epithelial cells. Sequencing of bacterial 16 s rRNA V4 region indicated that the abundance and diversity of intestinal microflora in fish fed with medium lipid diet (12%) were significantly higher than those in other groups, indicating the intestinal microflora ecology in group ML was more balanced. MetaStat analysis indicated that both low- and high-lipid diets significantly reduced the relative abundance of intestinal beneficial bacteria. In conclusion, results of this study demonstrated the sensitivity of intestinal health and microbiota to dietary lipid levels. From the perspective of microecological balance, medium dietary lipid (12%) was more conducive to maintaining the intestinal microflora stability of turbot.
Collapse
Affiliation(s)
- Xiuhua Ma
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5, Yushan Road, Qingdao 266003, China
| | - Qingzhu Bi
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106, Nanjing Road, Qingdao 266071, China
| | - Yaoyao Kong
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5, Yushan Road, Qingdao 266003, China
| | - Houguo Xu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106, Nanjing Road, Qingdao 266071, China
| | - Mengqing Liang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106, Nanjing Road, Qingdao 266071, China; Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China.
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5, Yushan Road, Qingdao 266003, China; Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China
| | - Yanjiao Zhang
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5, Yushan Road, Qingdao 266003, China; Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China.
| |
Collapse
|
5
|
Qu B, Zhang S, Ma Z, Gao Z. Hepatic cecum: a key integrator of immunity in amphioxus. MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:279-292. [PMID: 37073295 PMCID: PMC10077268 DOI: 10.1007/s42995-020-00080-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/21/2020] [Indexed: 05/03/2023]
Abstract
The vertebrate liver is regarded as an organ essential to the regulation of immunity and inflammation as well as being central to the metabolism of nutrients. Here, we discuss the functions that the hepatic cecum of amphioxus plays in the regulation of immunity and inflammation, and the molecular basis of this. It is apparent that the hepatic cecum performs important roles in the immunity of amphioxus including immune surveillance, clearance of pathogens and acute phase response. Therefore, the hepatic cecum, like the vertebrate liver, is an organ functioning as a key integrator of immunity in amphioxus.
Collapse
Affiliation(s)
- Baozhen Qu
- Department of Marine Biology, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
| | - Shicui Zhang
- Department of Marine Biology, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237 China
| | - Zengyu Ma
- Department of Marine Biology, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
| | - Zhan Gao
- Department of Marine Biology, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
| |
Collapse
|
6
|
Wu X, Teame T, Hao Q, Ding Q, Liu H, Ran C, Yang Y, Zhang Y, Zhou Z, Duan M, Zhang Z. Use of a paraprobiotic and postbiotic feed supplement (HWF™) improves the growth performance, composition and function of gut microbiota in hybrid sturgeon (Acipenser baerii x Acipenser schrenckii). FISH & SHELLFISH IMMUNOLOGY 2020; 104:36-45. [PMID: 32473360 DOI: 10.1016/j.fsi.2020.05.054] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/18/2020] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
The contribution of cold water aquaculture for the world fish production is significant. Although sturgeon farming is an important part of China's cold water aquaculture industry, its production is less compared with the current potentiality of the country. There are many reasons for the lower production of cold water fish farming including feed and disease. The aim of the present study was to investigate the effect of a paraprobiotic and postbiotic feed supplement (Herpes Worry Free or HWF™) on the growth, feeding efficiency and gut microbiota balance of hybrid sturgeon. Besides, the effect of sturgeon gut microbiota fed on the diet supplemented with HWF™ on the expression of growth promoter, and immune regulatory genes of germ free (GF) zebrafish was evaluated. Sturgeon were fed for three weeks with HWF™ supplemented or basal diet. At the end of the experiment gut content of sturgeon, fed on either experimental diet was transferred and colonized to GF zebrafish. Sturgeon fed with HWF™ supplemented diet showed significantly higher weight gain rate and lower feed conversion ratio (FCR) as compared with the control (P < 0.05). Compared with the control group, the relative abundance of Firmicutes, were significantly higher in the HWF™ group (P < 0.05), whereas Proteobacteria, Actinobacteria and Chlamydiae were significantly higher in the control group (P < 0.05). Furthermore, at the genus level Clostridium (64.50 ± 5.99%) and Lactococcus (29.5 ± 3.05%) were the most dominant gut bacteria in the HWF™ group and the control group of sturgeon, respectively. The expression of genes related to growth, inflammation and non-specific immunity was significantly upregulated in GF zebrafish colonized with gut microbiota of HWF™ sturgeon group. In conclusion, HWF™ played significant role in growth, feed efficiency and modulation of gut microbiota of sturgeon. The gut microbiota of sturgeon fed on the diet supplemented with HWF™ upregulated the expression of genes related to growth, inflammation and non-specific immunity in GF zebrafish model.
Collapse
Affiliation(s)
- Xuexiang Wu
- Guizhou University, Guiyang, 550025, China; State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Tsegay Teame
- China-Norway Joint Lab on Fish Gastrointestinal Microbiota, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Tigray Agricultural Research Institute, Mekelle, Tigray, Ethiopia
| | - Qiang Hao
- China-Norway Joint Lab on Fish Gastrointestinal Microbiota, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qianwen Ding
- Norway-China Joint Lab on Fish Gastrointestinal Microbiota, Institute of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Hongliang Liu
- China-Norway Joint Lab on Fish Gastrointestinal Microbiota, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chao Ran
- China-Norway Joint Lab on Fish Gastrointestinal Microbiota, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yalin Yang
- China-Norway Joint Lab on Fish Gastrointestinal Microbiota, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Youming Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China; Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, China
| | - Zhigang Zhou
- China-Norway Joint Lab on Fish Gastrointestinal Microbiota, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ming Duan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China.
| | - Zhen Zhang
- China-Norway Joint Lab on Fish Gastrointestinal Microbiota, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
7
|
Wang Q, Wang X, Wang X, Feng R, Luo Q, Huang J. Generation of a novel Streptococcus agalactiae ghost vaccine and examination of its immunogenicity against virulent challenge in tilapia. FISH & SHELLFISH IMMUNOLOGY 2018; 81:49-56. [PMID: 29969706 DOI: 10.1016/j.fsi.2018.06.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/20/2018] [Accepted: 06/30/2018] [Indexed: 06/08/2023]
Abstract
Streptococcus agalactiae (S. agalactiae) is a gram-positive pathogen that causes a wide range of infections in fish and other animals including humans. Bacterial ghosts (BGs) are nonliving, empty cell envelopes and are well represented as novel vaccine candidates. In this study, we examined the immunogenicity and protective efficacy of S. agalactiae ghosts (SAG) against a virulent challenge in tilapia. Nonliving SAG was generated by a culture with Penicillin and Streptolysin, and then treated with the MIC of sodium hydroxide. The formation of a transmembrane lysis tunnel structure in SAG was visualized by electron microscopy. To investigate the SAG as a vaccine candidate, fish were divided into three groups, A (SAG immunized), B [Formalin-inactivated S. agalactiae (FSA) immunized] and C (phosphate-buffered saline, PBS-immunized control). The IgM antibody responses were significantly stronger in the SAG-immunized group than in FSA-immunized group, which was higher than in the non-immunized control group (P < 0.05). Moreover, phagocytic activity (percent phagocytes, PP) was significantly higher (p < 0.05) in the SAG-immunized group than in FSA-immunized group, which was higher than in the non-immunized control group (P < 0.05). In addition, non-specific immune immunity, such as lysozyme and superoxide dismutase activities, in the SAG-immunized fish showed significantly higher activities than FSA-immunized fish and the control group fish (P < 0.05). Also, fish immunized with SAG and FSA showed significantly higher (p < 0.05) gene expression of IL-1β, TNF-α, IFN-γ and TGF-β in the head kidney and spleen than fish treated with PBS during the whole observed period. In addition, fish immunized with SAG showed significantly higher gene expression of L-1β, TNF-α, and TGF-β in the spleen than in the FSA-immunized fish. Although there was no significant (P > 0.05) difference of survival rate (SR) or relative percent survival (RPS) between SAG and FSA immunized groups, they were all significantly more protected against the S. agalactiae challenge (SR: 86.67%, RPS: 76.395) and (SR: 80.00%, RPS: 67.50%) respectively, compared to the PBS-treated group (SR: 33.33%). These results suggest that immunization with SAG induces immune responses and provides protection against a virulent S. agalactiae challenge.
Collapse
Affiliation(s)
- Qishuo Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention & Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, 271018, PR China; Huaian research center, Institute of Hydrobiology, Chinese Academy of Sciences, Huaian 223000, PR China
| | - Xuepeng Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention & Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, 271018, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 272000, PR China.
| | - Xuemei Wang
- Shandong Yisheng Livestock Veterinary Science Institute, 264000, Yantai, PR China
| | - Ruijuan Feng
- Jiangsu Tianshen Co., Ltd., 223000, Huai'an, PR China
| | - Qian Luo
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention & Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, 271018, PR China
| | - Jinjing Huang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention & Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, 271018, PR China
| |
Collapse
|
8
|
Wu J, Liu G, Sun Y, Wang X, Fang H, Jiang H, Guo Z, Dong J. The role of regulator FucP in Edwardsiella tarda pathogenesis and the inflammatory cytokine response in tilapia. FISH & SHELLFISH IMMUNOLOGY 2018; 80:624-630. [PMID: 29886137 DOI: 10.1016/j.fsi.2018.06.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/30/2018] [Accepted: 06/06/2018] [Indexed: 06/08/2023]
Abstract
The animal intestine provides a competitive environment for the microbiota. Successful colonization by pathogens requires sensing chemical signals to regulate the expression of virulence genes. Some bacteria rely on a two-component chemical signal transduction system, named FusKR, to regulate virulence genes expression by intestinal fucose. Here we construct the fucP gene deletion strain prove FucP regulation of the T3SS in E. tarda. The result showed that the mutant strain had down-regulated significantly the gene expression of FusKR and T3SS compared to the wild-type strain (P < 0.05). This mutant strain significantly increased LD50 in zebrafish compared to the wild-type strain (P < 0.05), and significantly decreased penetration and motility in mucin than the wild-type strain (P < 0.05). Meanwhile, tilapia infected with mutant strain show significantly reduced E. tarda adherence and colonization than those infected with the wild-type strain (P < 0.05). Fish infected with EIB202 and ΔfucP showed significantly higher (P < 0.05) gene expression of IL-1β, TNF-α, IFN-γ, TGF-β and HSP-70 in head kidney than fish treated with PBS in the whole observed period; however CPP-3 did not show significant differences (P > 0.05) in all groups. Fish infected with EIB202 showed significantly higher (P < 0.05) gene expression of TGF-β in head kidney than fish treated with ΔfucP in the whole observed period; however other cytokines did not show significant differences (P > 0.05) in the whole observed period. In addition, Fish infected with EIB202 showed significantly higher (P < 0.05) gene expression of IL-1β, TNF-α and TGF-β in spleen than fish treated with ΔfucP in the whole observed period, however IFN-γ, CPP-3, and HSP-70 did not show significant differences (P > 0.05) in the whole observed period. Although the gene expression of cytokines was induced similarly by both strains, all results indicate that the fucP gene deletion down-regulates the key gene expression of FucKR and T3SS, reduces the pathogenicity of E. tarda in fish, particularly decreases inducing the gene expression of TGF-β in the head kidney and IL-1β, TNF-α and TGF-β in the spleen.
Collapse
Affiliation(s)
- Jiayan Wu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, 271018, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 272000, PR China
| | - Guangbin Liu
- Marine Biology Institute of Shandong Province, Qingdao, 266104, PR China
| | - Yongcan Sun
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, 271018, PR China
| | - Xuepeng Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, 271018, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 272000, PR China.
| | - Hao Fang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, 271018, PR China
| | - Heng Jiang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, 271018, PR China
| | - Zhiming Guo
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, 271018, PR China
| | - Jinggang Dong
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, 271018, PR China
| |
Collapse
|
9
|
Rebl A, Goldammer T. Under control: The innate immunity of fish from the inhibitors' perspective. FISH & SHELLFISH IMMUNOLOGY 2018; 77:328-349. [PMID: 29631025 DOI: 10.1016/j.fsi.2018.04.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 06/08/2023]
Abstract
The innate immune response involves a concerted network of induced gene products, preformed immune effectors, biochemical signalling cascades and specialised cells. However, the multifaceted activation of these defensive measures can derail or overshoot and, if left unchecked, overwhelm the host. A plenty of regulatory devices therefore mediate the fragile equilibrium between pathogen defence and pathophysiological manifestations. Over the past decade in particular, an almost complete set of teleostean sequences orthologous to mammalian immunoregulatory factors has been identified in various fish species, which prove the remarkable conservation of innate immune-control concepts among vertebrates. This review will present the current knowledge on more than 50 teleostean regulatory factors (plus additional fish-specific paralogs) that are of paramount importance for controlling the clotting cascade, the complement system, pattern-recognition pathways and cytokine-signalling networks. A special focus lies on those immunoregulatory features that have emerged as potential biomarker genes in transcriptome-wide research studies. Moreover, we report on the latest progress in elucidating control elements that act directly with immune-gene-encoding nucleic acids, such as transcription factors, hormone receptors and micro- and long noncoding RNAs. Investigations into the function of teleostean inhibitory factors are still mainly based on gene-expression profiling or overexpression studies. However, in support of structural and in-vitro analyses, evidence from in-vivo trials is also available and revealed many biochemical details on piscine immune regulation. The presence of multiple gene copies in fish adds a degree of complexity, as it is so far hardly understood if they might play distinct roles during inflammation. The present review addresses this and other open questions that should be tackled by fish immunologists in future.
Collapse
Affiliation(s)
- Alexander Rebl
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Fish Genetics Unit, Dummerstorf, Germany.
| | - Tom Goldammer
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Fish Genetics Unit, Dummerstorf, Germany
| |
Collapse
|
10
|
Dissecting the role of transforming growth factor-β1 in topmouth culter immunobiological activity: a fundamental functional analysis. Sci Rep 2016; 6:27179. [PMID: 27251472 PMCID: PMC4890032 DOI: 10.1038/srep27179] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/13/2016] [Indexed: 11/24/2022] Open
Abstract
Transforming growth factor-β1 (TGF-β1) has been proven to function primarily in mammalian immunobiological activity, but information regarding the immune role of TGF-β1 in teleosts is limited. In the present study, we describe the cDNA cloning and characterization of the TGF-β1 molecule in the topmouth culter. TGF-β1 is highly expressed in immune-related tissues of the culter, including the thymus, head kidney, and spleen. The recombinant culter TGF-β1 (cTGF-β1) was successfully expressed and purified in vitro, and the effects of cTGF-β1 on the mRNA expression of pro-inflammatory cytokines, such as TNF-α and IL-1β, in the absence or presence of LPS was determined in culter peripheral blood leukocytes. cTGF-β1 was found to have bipolar properties in inflammatory reactions. Additionally, to assess the immune role of teleost TGF-β1 in vivo, the expression of TGF-β1 in the culter thymus and spleen tissues induced by poly I:C were also examined. The expression of TGF-β1 was obviously up-regulated, as shown in the cell lines. However, the peak time of cTGF-β1 expression in the cell lines occurred significantly earlier than in the organic tissues under the same inducer, suggesting that the response of the teleost TGF-β1 molecule to exogenous infection depends on a more complicated signalling pathway in vivo than in vitro.
Collapse
|
11
|
Zhan XL, Ma TY, Wu JY, Yi LY, Wang JY, Gao XK, Li WS. Cloning and primary immunological study of TGF-β1 and its receptors TβR I /TβR II in tilapia(Oreochromis niloticus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 51:134-140. [PMID: 25819083 DOI: 10.1016/j.dci.2015.03.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 03/18/2015] [Accepted: 03/18/2015] [Indexed: 06/04/2023]
Abstract
The transforming growth factor β (TGF-β) superfamily plays critical roles in tumor suppression, cell proliferation and differentiation, tissue morphogenesis, lineage determination, cell migration and apoptosis. Recently, TGF-β1, one important member of TGF-β superfamily, is suggested as an immune regulator in the teleost. In this study, we cloned the cDNAs of TGF-β1 and its receptors, TβR I and TβR II (including three isoforms) from tilapia (Genbank accession numbers: KP754231- KP754235). A tissue distribution profile analysis indicated that TGF-β1 was highly expressed in the head kidney, gill, spleen, kidney and PBLs (peripheral blood leukocytes); TβR I only showed considerable expression in the liver; and TβR II-2 was highly expressed in the kidney, gill, liver, head kidney and heart. We determined that the mRNA expressions of TGF-β and TβR I /TβR II-2 were significantly increased in tilapia head kidney and spleen leukocytes by the stimulation of Lipopolysaccharide (LPS) or Poly I: C. We also examined their expressions in the spleen and head kidney of tilapia after IP injection of streptococcus agalactiae. The results showed that the mRNA expressions of these three genes all increased in the head kidney as early as 6 h post infection, and in the spleen 3 d post infection. In addition, the protein level of TGF-β1 was also up-regulated in the head kidney and the spleen after infection. Taken together, our data indicate that the TGF-β1-TβR I /TβR II-2 system functions potentially in tilapia immune system.
Collapse
Affiliation(s)
- Xu-liang Zhan
- State Key Laboratory Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Tai-yang Ma
- State Key Laboratory Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jin-ying Wu
- State Key Laboratory Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| | - Li-yuan Yi
- State Key Laboratory Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jing-yuan Wang
- State Key Laboratory Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiao-ke Gao
- State Key Laboratory Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Wen-sheng Li
- State Key Laboratory Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
12
|
Wang S, Li F, Hu L, Liu S, Li H, Zhang S. Structural and functional characterization of a TGFβ molecule from amphioxus reveals an ancient origin of both immune-enhancing and -inhibitory functions. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 45:219-226. [PMID: 24657208 DOI: 10.1016/j.dci.2014.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 03/08/2014] [Accepted: 03/10/2014] [Indexed: 06/03/2023]
Abstract
Transforming growth factor beta (TGFβ) is a pleiotropic cytokine with important roles in mediating inflammatory response. TGFβ has been shown to be widely present in invertebrates, but little is known about its functions in immune and inflammatory responses. Moreover, structural and functional insights into TGFβ molecules in invertebrates remain completely lacking. Here we demonstrate the presence of a single TGFβ-like gene in the amphioxus Branchiostoma japonicum, Bjtgfβ, which represents the archetype of vertebrate TGFβ proteins, and displays a higher expression in the hind-gut, hepatic caecum, ovary, and gill. We also show that amphioxus TGFβ exerts both enhancing and suppressing effects on the migration of macrophages like RAW264.7, and the motif WSTD is important for TGFβ in inducing or inhibiting the migration of macrophages. Altogether, these data suggest that amphioxus TGFβ is phylogenetically and functionally similar to vertebrate TGFβ, suggesting an ancient origin of bipolar function of TGFβ proteins.
Collapse
Affiliation(s)
- Shengnan Wang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Fengzhen Li
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Lili Hu
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Shousheng Liu
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Hongyan Li
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Shicui Zhang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Department of Marine Biology, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
13
|
Schmidt JG, Nielsen ME. Expression of immune system-related genes during ontogeny in experimentally wounded common carp (Cyprinus carpio) larvae and juveniles. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 42:186-196. [PMID: 24064235 DOI: 10.1016/j.dci.2013.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 09/11/2013] [Accepted: 09/12/2013] [Indexed: 06/02/2023]
Abstract
We investigated the effect of full-thickness incisional wounding on expression of genes related to the immune system in larvae and juveniles of common carp (Cyprinus carpio). The wounds were inflicted by needle puncture immediately below the anterior part of the dorsal fin on days 7, 14, 28 and 49 after fertilization. We followed the local gene expression 1, 3 and 7 days after wounding by removing head and viscera before extracting RNA from the remaining part of the fish, including the wound area. In addition, we visually followed wound healing. Overall the wounds had regenerated to a point where they were microscopically indistinguishable from normal tissue by day 3 post-wounding in all but the juvenile carp wounded on day 49 post-fertilization. In these juveniles the wounded area was still visible even 7 days post-wounding. On the transcriptional level a very limited response was observed in the investigated genes as a result of the wounding. HSP70 was downregulated 1 and 3 days post-wounding in the smallest larvae. However, HSP70 was differentially expressed at different time-points in a similar manner in wounded and mock-wounded groups, thus suggesting a stress effect of the handling, which may have overshadowed some transcriptional effects of the wounding. MMP-9, TGF-β1 and IgZ1 were slightly but significantly upregulated at few time-points, while no effect of wounding was detected on the expression of IgM, C3, IL-1β and IL-6 family member M17.
Collapse
Affiliation(s)
- Jacob G Schmidt
- Technical University of Denmark, National Food Institute, Biological Quality Research Group, Division of Toxicology and Risk Assessment, Mørkhøj Bygade 19, Building FG, 2860 Søborg, Denmark
| | | |
Collapse
|
14
|
Gahr SA, Weber GM, Rexroad CE. Identification and expression of Smads associated with TGF-β/activin/nodal signaling pathways in the rainbow trout (Oncorhynchus mykiss). FISH PHYSIOLOGY AND BIOCHEMISTRY 2012; 38:1233-1244. [PMID: 22290475 DOI: 10.1007/s10695-012-9611-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 01/19/2012] [Indexed: 05/31/2023]
Abstract
The Smad proteins are essential components of the TGF-β/activin/nodal family signaling pathway. We report the identification and expression of transcripts representing three receptor Smads (Smad2a, Smad2b, and Smad3), two common Smads (Smad4a and Smad4b), and one inhibitory Smad (Smad7). Phylogenetic analysis suggests this gene family evolved through the combination of ancient and more recent salmonid genome duplication events. Tissue distribution, embryonic expression, and expression in growth hormone (GH) treated fish were assessed by reverse transcription PCR or qPCR. All six Smad transcripts were ubiquitously expressed in adult tissues. We observed the highest expression of the receptor Smads in unfertilized eggs, generally decreasing during early embryonic development and slightly increasing around 11 days post-fertilization (dpf). Smad7 expression was low for most of embryonic development, with a dramatic increase at the onset of muscle development (6 dpf), and at hatch (24 dpf). Smad4 expression was low during early embryonic development and increased after 14 dpf. The increased expression of Smad4 and Smad7 during late embryonic development may indicate modulation of gene expression by GH axis, which initiates activity during late embryonic development. These data were supported by the modulation of these Smads in the gill filament, stomach, and muscle following a GH treatment. Additionally, these changes are concurrent with the modulation of expression of TGF-β family members. Most significantly, the increased expression of Smad7 in the muscle is simultaneous with increased expression of MSTN1A and not MSTN1B during both embryonic development and following GH treatment. These data indicate a promyogenic role for Smad7 as previously identified in other non-fish species.
Collapse
Affiliation(s)
- Scott A Gahr
- Biology Department, St. Vincent College, 300 Fraser Purchase Rd., Latrobe, PA 15650, USA.
| | | | | |
Collapse
|
15
|
Buchmann K. Fish immune responses against endoparasitic nematodes - experimental models. JOURNAL OF FISH DISEASES 2012; 35:623-635. [PMID: 22671918 DOI: 10.1111/j.1365-2761.2012.01385.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Vertebrates mount a series of immune reactions when invaded by helminths but antihelmintic immune strategies allow, in many cases, the first invaders of the non-immune host to survive for prolonged periods, whereas subsequent larval invaders of the same parasite species face increased host resistance and thereby decreased colonization success. This concomitant immunity may represent a trade-off between adverse side effects (associated with killing of large helminths in the host tissue) and the need for future protection against invasion. Encapsulation and isolation of large live endoparasitic larvae may be associated with less pathology compared to coping with excess dead parasite tissue in host organs. Likewise, live adult nematodes may be accepted in tissues at a certain activity level for the same reasons. Various host cell receptors bind helminth molecules after which signal-transducing events lead to mobilization of specific reaction patterns depending on the combination of receptors and ligands involved. Both innate and adaptive responses (humoral and cellular) are prominent actors, but skewing of the Th1 lymphocyte response towards a Th2 type is a characteristic element of antihelminthic responses in mammalian hosts. Similar patterns may be expected also to occur in at least some fish species, such as salmonids, producing relevant cytokines, MHCII and CD4+ cells required for these lymphocyte subpopulations. Atlantic cod, Gadus morhua L., is without these immunological elements that indicate that alternative reaction pathways exist in at least some fish groups. Recent achievements within teleost immunology have made it possible to track these host responses in fish and the present work outlines the main immune reactions in fish against helminths and suggests three experimental fish models for exploration of these immune pathways in fish infected with nematodes.
Collapse
Affiliation(s)
- K Buchmann
- Department of Veterinary Disease Biology, Section of Biomedicine, Faculty of Life Sciences, University of Copenhagen, Frederiksberg C., Denmark.
| |
Collapse
|
16
|
Yang M, Wang X, Chen D, Wang Y, Zhang A, Zhou H. TGF-β1 exerts opposing effects on grass carp leukocytes: implication in teleost immunity, receptor signaling and potential self-regulatory mechanisms. PLoS One 2012; 7:e35011. [PMID: 22529969 PMCID: PMC3328490 DOI: 10.1371/journal.pone.0035011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 03/08/2012] [Indexed: 11/19/2022] Open
Abstract
In fish immunity, the regulatory role of transforming growth factor-β1 (TGF-β1) has not been fully characterized. Here we examined the immunoregulatory effects of TGF-β1 in grass carp peripheral blood leukocytes (PBL) and head kidney leukocytes (HKL). It is interesting that TGF-β1 consistently stimulated the cell viability and the mRNA levels of pro-inflammatory cytokines (Tnfα and Ifnγ) and T/B cell markers [Cd4-like (Cd4l), Cd8α, Cd8β and Igμ] in PBL, which contrasted with its inhibitory tone in HKL. Further studies showed that grass carp TGF-β1 type I receptor, activin receptor-like kinase 5 (ALK5), was indispensable for the immunoregulatory effects of TGF-β1 in PBL and HKL. Notably, TGF-β1 persistently attenuated ALK5 expression, whereas immunoneutralization of endogenous grass carp TGF-β1 could increase ALK5 mRNA and protein levels. It is consistent with the observation that TGF-β1 decreased the number of ALK5(+) leukocytes in PBL and HKL, revealing a negative regulation of TGF-β1 signaling at the receptor level. Moreover, transient treatment with TGF-β1 for 24 h was sufficient to induce similar cellular responses compared with the continuous treatment. This indicated a possible mechanism by which TGF-β1 triggered the down-regulation of ALK5 mRNA and protein, leading to the desensitization of grass carp leukocytes toward TGF-β1. Accordingly, our data revealed a dual role of TGF-β1 in teleost immunity in which it can serve as a positive or negative control device and provided additional mechanistic insights as to how TGF-β1 controls its signaling in vertebrate leukocytes.
Collapse
Affiliation(s)
| | | | | | | | | | - Hong Zhou
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
- * E-mail:
| |
Collapse
|