1
|
Wang L, Zhao D, Han R, Wang Y, Hu J, Bao Z, Wang M. A preliminary report of exploration of the exosomal shuttle protein in marine invertebrate Chlamys farreri. FISH & SHELLFISH IMMUNOLOGY 2022; 131:498-504. [PMID: 36280128 DOI: 10.1016/j.fsi.2022.10.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Exosomes are extracellular vesicles secreted by diverse cell under normal or abnormal physiological conditions, which could carry a range of bioactive molecules and play significant roles in biological processes, such as intercellular communication and immune response. In the current study, a preliminary study was performed to investigate the exosomal shuttle protein in Chlamys farreri (designated as CfesPro) and to predict the potential function of exosomes in scallop innate immunity. The serum derived exosomes (designated as CfEVs) were obtained from lipopolysaccharide (LPS)-stimulated C. farreri and untreated ones. After confirmation and characterization by transmission electron microscopy (TEM), nano-HPLC-MS/MS spectrometry was performed on CfEVs using a label-free quantitative method. Totally 2481 exosomal shuttle proteins were identified in CfEVs proteomic data, which included many innate immune related proteins. GO and KOG functional annotation showed that CfesPro participated in cellular processes, metabolism reactions, signaling transductions, immune responses and so on. Moreover, 1421 proteins in CfesPro were enriched to 324 pathways by KEGG analysis, including several immune-related pathways, such as autophagy, apoptosis and lysosome pathway. Meanwhile, eight autophagy-related proteins were initially identified in CfesPro, indicating that CfEVs had a potential role with autophagy. All these findings showed that CfEVs were involved in C. farreri innate immune defenses. This research would enrich the protein database of marine exosomes and provide a basis for the exploration of immune defense systems in marine invertebrates.
Collapse
Affiliation(s)
- Lihan Wang
- MOE Key Laboratory of Marine Genetics and Breeding, and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province of Sanya Oceanographic Institution, Ocean University of China, Qingdao 266003, Sanya, 572024, China.
| | - Dianli Zhao
- Laboratory for Marine Fisheries Science and Food Production Processes, and Center for Marine Molecular Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Renmin Han
- MOE Key Laboratory of Marine Genetics and Breeding, and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province of Sanya Oceanographic Institution, Ocean University of China, Qingdao 266003, Sanya, 572024, China
| | - Yan Wang
- MOE Key Laboratory of Marine Genetics and Breeding, and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province of Sanya Oceanographic Institution, Ocean University of China, Qingdao 266003, Sanya, 572024, China; Hainan Yazhou Bay Seed Laboratory, Sanya, 572024, China.
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province of Sanya Oceanographic Institution, Ocean University of China, Qingdao 266003, Sanya, 572024, China; Laboratory for Marine Fisheries Science and Food Production Processes, and Center for Marine Molecular Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Hainan Yazhou Bay Seed Laboratory, Sanya, 572024, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province of Sanya Oceanographic Institution, Ocean University of China, Qingdao 266003, Sanya, 572024, China; Laboratory for Marine Fisheries Science and Food Production Processes, and Center for Marine Molecular Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Hainan Yazhou Bay Seed Laboratory, Sanya, 572024, China
| | - Mengqiang Wang
- MOE Key Laboratory of Marine Genetics and Breeding, and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province of Sanya Oceanographic Institution, Ocean University of China, Qingdao 266003, Sanya, 572024, China; Laboratory for Marine Fisheries Science and Food Production Processes, and Center for Marine Molecular Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Hainan Yazhou Bay Seed Laboratory, Sanya, 572024, China.
| |
Collapse
|
2
|
Gomes AS, Passos LS, Rocha Aride PH, Chisté B, Gomes LC, Boldrini-França J. Gene expression changes in Epinephelus marginatus (Teleostei, Serranidae) liver reveals candidate molecular biomarker of iron ore contamination. CHEMOSPHERE 2022; 303:134899. [PMID: 35561782 DOI: 10.1016/j.chemosphere.2022.134899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Wastes from iron ore mining activities are potentially damaging to adjacent aquatic ecosystems. We aimed to determine biomarkers of environmental exposure to this xenobiotic in the dusky grouper Epinephelus marginatus by differential gene expression analysis. For this, fish were exposed to iron ore (15.2 mg/L) and gene expression in liver was assessed by RNA-Seq and compared to the control group. A total of 124 differentially expressed genes were identified, from which 52 were upregulated and 72 were downregulated in response to iron ore. From these, ferritin (medium subunit), cytochrome b reductase and epoxide hydrolase genes were selected for validation by RT-qPCR that confirmed the upregulation of epoxide hydrolase in fish exposed to iron ore.
Collapse
Affiliation(s)
- Aline Silva Gomes
- Universidade Vila Velha, Rua Comissário José Dantas Melo, 21, 29102-770, Vila Velha ES, Brazil
| | - Larissa Souza Passos
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Av. Professor Lineu Prestes, 580, 05508-000, São Paulo SP, Brazil
| | | | - Bárbara Chisté
- Universidade Vila Velha, Rua Comissário José Dantas Melo, 21, 29102-770, Vila Velha ES, Brazil
| | - Levy Carvalho Gomes
- Universidade Vila Velha, Rua Comissário José Dantas Melo, 21, 29102-770, Vila Velha ES, Brazil
| | - Johara Boldrini-França
- Universidade Vila Velha, Rua Comissário José Dantas Melo, 21, 29102-770, Vila Velha ES, Brazil; School of Biochemistry, Biomedical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom.
| |
Collapse
|
3
|
Simão M, Leite RB, Cancela ML. Expression of four new ferritins from grooved carpet shell clam Ruditapes decussatus challenged with Perkinsus olseni and metals (Cd, Cu and Zn). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 229:105675. [PMID: 33197689 DOI: 10.1016/j.aquatox.2020.105675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 06/11/2023]
Abstract
Iron has a fundamental role in life and in its biochemical reactions but, when in excess, it can promote the formation of free radicals which can lead to cell death. Therefore, managing the levels of iron is essential to regulate the production of oxidative stress related to iron, and ferritins are one of the main protein families involved in this process. Ferritins are ≈480 kDa multimeric proteins composed by 24 subunits, each with 19-26 kDa, which can accumulate up to 4500 iron atoms. Besides their role in managing iron bioavailability, they have also developed a role in organism immunity and defence present throughout evolution. In this work, we identified and characterized, for the first time, four different ferritin subunits in the clam Ruditapes decussatus, a bivalve commercially and ecologically important along the south Atlantic coast and in the Mediterranean basin, which is a major target of the parasitic protozoa Perkinsus olseni, considered one of the main causes of high levels of clam mortality. Following phylogenetic annotation, the four ferritins subunits identified were subdivided into two cytosolic and two secreted forms. All four subunits maintain the canonical ferritin structure with four main helices α (A-D) and a small helix (E), but the secreted ferritins present an additional helix in their N-terminal region (F), located after the signal peptide and with possible antimicrobial properties. Additionally, we identified in ferritin 4 an extra helix α (G) located between helices B and C. These alpha helix domains revealed high degree of similarity with antimicrobial peptides associated with antibacterial and antifungal activities. Analysis of the expression of these subunits showed that ferritins 1 and 2 are ubiquitously expressed while ferritins 3 and 4 are present mainly in visceral mass. Ferritin 1 lacked a putative functional iron response element (IRE) and appeared to be under a tight regulation. Ferritins 2 and 3 showed a strong response to infection by parasite Perkinsus olseni in contrast to ferritin 4, whose main response was related to exposure to a combination of metals. The synergistic effect between metals and infection promoted a general upregulation of the four ferritins. In conclusion, our results suggest that ferritins, besides their function in iron and metals detoxification, may play a determinant role in clam immune response.
Collapse
Affiliation(s)
- Márcio Simão
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal; Department of Biomedical Sciences and Medicine (DCBM), Universidade do Algarve, Faro, Portugal.
| | - Ricardo B Leite
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal
| | - M Leonor Cancela
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal; Department of Biomedical Sciences and Medicine (DCBM), Universidade do Algarve, Faro, Portugal; Algarve Biomedical Center (ABC) and Center for Biomedical Research (CBMR), Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| |
Collapse
|
4
|
Sousa H, Hinzmann M. Review: Antibacterial components of the Bivalve's immune system and the potential of freshwater bivalves as a source of new antibacterial compounds. FISH & SHELLFISH IMMUNOLOGY 2020; 98:971-980. [PMID: 31676427 DOI: 10.1016/j.fsi.2019.10.062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/09/2019] [Accepted: 10/28/2019] [Indexed: 06/10/2023]
Abstract
Antibacterial research is reaching new heights due to the increasing demand for the discovery of new substances capable of inhibiting bacteria, especially to respond to the appearance of more and more multi-resistant strains. Bivalves show enormous potential for the finding of new antibacterial compounds, although for that to be further explored, more research needs to be made regarding the immune system of these organisms. Beyond their primary cellular component responsible for bacterial recognition and destruction, the haemocytes, bivalves have various other antibacterial units dissolved in the haemolymph that intervene in the defense against bacterial infections, from the recognition factors that detect different bacteria to the effector molecules carrying destructive properties. Moreover, to better comprehend the immune system, it is important to understand the different survival strategies that bacteria possess in order to stay alive from the host's defenses. This work reviews the current literature regarding the components that intervene in a bacterial infection, as well as discussing the enormous potential that freshwater bivalves have in the discovery of new antibacterial compounds.
Collapse
Affiliation(s)
- Henrique Sousa
- ICBAS - Abel Salazar Institute of Biomedical Sciences, R. Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| | - Mariana Hinzmann
- ICBAS - Abel Salazar Institute of Biomedical Sciences, R. Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal; CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros de Leixões, Av. General Norton de Matos, 4450-208, Matosinhos, Portugal.
| |
Collapse
|
5
|
Lu ZJ, Xie YX, Yu HZ, Toufeeq S, Wang J, Huang YL, Li NY, Ouyang ZG. Identification and functional analysis of an iron-binding protein, ferritin heavy chain subunit, from the swallowtail butterfly, Papilio xuthus. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 102:e21592. [PMID: 31276235 DOI: 10.1002/arch.21592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Ferritin, which is ubiquitous among all living organisms, plays a crucial role in maintaining iron homeostasis, immune response, and detoxification. In the present research, we identified an iron-binding protein, ferritin heavy chain subunit, from Papilio xuthus and named PxFerHCH. The complete complementary DNA of PxFerHCH was 1,252 bp encoding a sequence of 211 amino acids, which includes an iron-responsive element. Phylogenetic analysis showed that PxFerHCH is clustered with Manduca sexta and Galleria mellonella ferritin heavy chain subunits. Expression levels of PxFerHCH in various tissues were analyzed by reverse transcription quantitative polymerase chain reaction, and the results exhibited that PxFerHCH was expressed in all tissues with the highest expression in the fat body. The relative expression level of PxFerHCH in response to bacterial (Escherichia coli and Staphylococcus aureus) challenges sharply increased by about 12 hr postinfection (hpi) and then decreased at 24 hpi. In addition, the iron-binding capacity and antioxidation activity of recombinant PxFerHCH protein were also investigated. These results reveal that PxFerHCH might play an important role in defense against bacterial infection.
Collapse
Affiliation(s)
- Zhan-Jun Lu
- College of Life Sciences, Gannan Normal University, Ganzhou, People's Republic of China
| | - Yan-Xin Xie
- College of Life Sciences, Gannan Normal University, Ganzhou, People's Republic of China
| | - Hai-Zhong Yu
- College of Life Sciences, Gannan Normal University, Ganzhou, People's Republic of China
| | - Shahzad Toufeeq
- College of Life Science, Anhui Agricultural University, Hefei, People's Republic of China
| | - Jie Wang
- College of Life Science, Anhui Agricultural University, Hefei, People's Republic of China
| | - Yu-Ling Huang
- College of Life Sciences, Gannan Normal University, Ganzhou, People's Republic of China
| | - Ning-Yan Li
- College of Life Sciences, Gannan Normal University, Ganzhou, People's Republic of China
| | - Zhi-Gang Ouyang
- College of Life Sciences, Gannan Normal University, Ganzhou, People's Republic of China
| |
Collapse
|
6
|
Zhang H, Cheng D, Tan K, Liu H, Ye T, Li S, Ma H, Zheng H. Identification of two ferritin genes and their expression profiles in response to bacterial challenge in noble scallop Chlamys nobilis with different carotenoids content. FISH & SHELLFISH IMMUNOLOGY 2019; 88:9-16. [PMID: 30825540 DOI: 10.1016/j.fsi.2019.02.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/19/2019] [Accepted: 02/22/2019] [Indexed: 06/09/2023]
Abstract
As a major intracellular iron storage protein, ferritin plays important roles in iron homeostasis and innate immunity. In this study, two novel ferritin subunits from noble scallop Chlamys nobilis (CnFer1 and CnFer2) were identified and analyzed. The open reading frame of CnFer1 and CnFer2 was 522 and 519bp long, encoding 173 and 172 amino acids, respectively. Both ferritins contained a putative iron-binding region signature (IBRS). Analysis of putative conserved domains showed the two CnFer genes contained three key domains of ferritin subunits, a ferroxidase diiron center (E25, Y32, E59, E60, H63, E105, and Q139), an iron ion channel (H116, D129, E132) and a ferrihydrite nucleation center (D58, E59, and E62) that present in M type subunits. A putative iron response element (IRE) was observed at both CnFer genes in the 5' UTR. Phylogenetic analysis result suggested that the two genes are cytoplasmic ferritins and have the closest evolution relationship with ferritins from Mizuhopecten yessoensis. The two ferritin genes were wildly expressed in examined tissues and the highest level was found in gill. After V. parahaemolyticus challenged, both CnFer genes were significantly up-regulated suggesting that they are important proteins involved in host immune defense. Moreover, under bacterial challenge, the expression levels of both two genes in Golden scallops (rich in carotenoids) were significantly higher than that in Brown scallops (less in carotenoids) which suggesting that carotenoids enhance the immunity in scallops to defense against the bacterial stress.
Collapse
Affiliation(s)
- Hongkuan Zhang
- Key Laboratory of Marine Biotechnology of Guangdong Province, Shantou University, Shantou, 515063, China; Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Dewei Cheng
- Key Laboratory of Marine Biotechnology of Guangdong Province, Shantou University, Shantou, 515063, China; Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Karsoon Tan
- Key Laboratory of Marine Biotechnology of Guangdong Province, Shantou University, Shantou, 515063, China; Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Hongxing Liu
- Key Laboratory of Marine Biotechnology of Guangdong Province, Shantou University, Shantou, 515063, China; Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Ting Ye
- Key Laboratory of Marine Biotechnology of Guangdong Province, Shantou University, Shantou, 515063, China; Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Shengkang Li
- Key Laboratory of Marine Biotechnology of Guangdong Province, Shantou University, Shantou, 515063, China; Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Hongyu Ma
- Key Laboratory of Marine Biotechnology of Guangdong Province, Shantou University, Shantou, 515063, China; Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Huaiping Zheng
- Key Laboratory of Marine Biotechnology of Guangdong Province, Shantou University, Shantou, 515063, China; Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China.
| |
Collapse
|
7
|
Coba de la Peña T, Cárcamo CB, Díaz MI, Winkler FM, Morales-Lange B, Mercado L, Brokordt KB. Cloning and molecular characterization of two ferritins from red abalone Haliotis rufescens and their expressions in response to bacterial challenge at juvenile and adult life stages. FISH & SHELLFISH IMMUNOLOGY 2018; 82:279-285. [PMID: 30125708 DOI: 10.1016/j.fsi.2018.08.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 08/08/2018] [Accepted: 08/14/2018] [Indexed: 06/08/2023]
Abstract
Ferritins are ubiquitous proteins with a pivotal role in iron storage and homeostasis, and in host defense responses during infection by pathogens in several organisms, including mollusks. In this study, we characterized two ferritin homologues in the red abalone Haliotis rufescens, a species of economic importance for Chile, USA and Mexico. Two ferritin subunits (Hrfer1 and Hrfer2) were cloned. Hrfer1 cDNA is an 807 bp clone containing a 516 bp open reading frame (ORF) that corresponds to a novel ferritin subunit in H. rufescens. Hrfer2 cDNA is an 868 bp clone containing a 516 bp ORF that corresponds to a previously reported ferritin subunit, but in this study 5'- and 3'-UTR sequences were additionally found. We detected a putative Iron Responsive Element (IRE) in the 5'-UTR sequence, suggesting a posttranscriptional regulation of Hrfer2 translation by iron. The deduced protein sequences of both cDNAs possessed the motifs and domains required in functional ferritin subunits. Expression patterns of both ferritins in different tissues, during different developmental stages, and in response to bacterial (Vibrio splendidus) exposure were examined. Both Hrfer1 and Hrfer2 are most expressed in digestive gland and gonad. Hrfer1 mRNA levels increased about 34-fold along with larval developmental process, attaining the highest level in the creeping post-larvae. Exogenous feeding is initiated at the creeping larva stage; thus, the increase of Hrfer1 may suggest and immunity-related role upon exposure to bacteria. Highest Hrfer2 expression levels were detected at trochophore stage; which may be related with early shell formation. Upon challenge with, the bacteria an early mild induction of Hrfer2 (2 h post-challenge), followed by a stronger induction of Hrfer1 at 15 h post-challenge, was observed in haemocytes from adult abalones. While maximal upregulation of both genes in the whole individual occurred at 24 h post-challenge, in juveniles. A significant increase in ferritin protein levels from 6 h to 24 h post-challenge was also detected. Our results suggest an involvement of Hrfer1 and Hrfer2, and of ferritin proteins in the immune response of H. rufescens to bacterial infection.
Collapse
Affiliation(s)
- Teodoro Coba de la Peña
- Laboratorio de Fisiología y Genética Marina (FIGEMA), Centro de Estudios Avanzados en Zonas Áridas (CEAZA) and Universidad Católica del Norte, Larrondo, 1281, Coquimbo, Chile
| | - Claudia B Cárcamo
- Laboratorio de Fisiología y Genética Marina (FIGEMA), Centro de Estudios Avanzados en Zonas Áridas (CEAZA) and Universidad Católica del Norte, Larrondo, 1281, Coquimbo, Chile; Centro de Innovación Acuícola AquaPacífico, Facultad de Ciencias Del Mar, Universidad Católica del Norte, Larrondo, 1281, Coquimbo, Chile
| | - María I Díaz
- Laboratorio de Fisiología y Genética Marina (FIGEMA), Centro de Estudios Avanzados en Zonas Áridas (CEAZA) and Universidad Católica del Norte, Larrondo, 1281, Coquimbo, Chile; Programa de Magíster en Ciencias Del Mar Mención Recursos Costeros, Facultad de Ciencias Del Mar, Universidad Católica del Norte, Larrondo, 1281, Coquimbo, Chile
| | - Federico M Winkler
- Laboratorio de Fisiología y Genética Marina (FIGEMA), Centro de Estudios Avanzados en Zonas Áridas (CEAZA) and Universidad Católica del Norte, Larrondo, 1281, Coquimbo, Chile; Centro de Innovación Acuícola AquaPacífico, Facultad de Ciencias Del Mar, Universidad Católica del Norte, Larrondo, 1281, Coquimbo, Chile; Departamento de Biología Marina, Facultad de Ciencias Del Mar, Universidad Católica del Norte, Larrondo, 1281, Coquimbo, Chile
| | - Byron Morales-Lange
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, 2373223, Valparaíso, Chile
| | - Luis Mercado
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, 2373223, Valparaíso, Chile
| | - Katherina B Brokordt
- Laboratorio de Fisiología y Genética Marina (FIGEMA), Centro de Estudios Avanzados en Zonas Áridas (CEAZA) and Universidad Católica del Norte, Larrondo, 1281, Coquimbo, Chile; Centro de Innovación Acuícola AquaPacífico, Facultad de Ciencias Del Mar, Universidad Católica del Norte, Larrondo, 1281, Coquimbo, Chile.
| |
Collapse
|
8
|
Yaacob EN, De Geest BG, Goethals J, Bajek A, Dierckens K, Bossier P, Vanrompay D. Recombinant ferritin-H induces immunosuppression in European sea bass larvae (Dicentrarchus labrax) rather than immunostimulation and protection against a Vibrio anguillarum infection. Vet Immunol Immunopathol 2018; 204:19-27. [DOI: 10.1016/j.vetimm.2018.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 08/17/2018] [Accepted: 09/04/2018] [Indexed: 11/26/2022]
|
9
|
Coba de la Peña T, Cárcamo CB, Díaz MI, Brokordt KB, Winkler FM. Molecular characterization of two ferritins of the scallop Argopecten purpuratus and gene expressions in association with early development, immune response and growth rate. Comp Biochem Physiol B Biochem Mol Biol 2016; 198:46-56. [DOI: 10.1016/j.cbpb.2016.03.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 03/21/2016] [Accepted: 03/28/2016] [Indexed: 12/16/2022]
|
10
|
Chen G, Zhang C, Wang Y, Guo C, Sang F, Wang C. Identification and characterization of a ferritin gene involved in the immune defense response of scallop Chlamys farreri. FISH & SHELLFISH IMMUNOLOGY 2016; 55:1-9. [PMID: 27134078 DOI: 10.1016/j.fsi.2016.04.128] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 04/24/2016] [Accepted: 04/27/2016] [Indexed: 06/05/2023]
Abstract
Scallop Chlamys farreri is an important aquaculture species in northern China. However, its mass mortality caused by several pathogens can result in great economic loss and negative impacts to the sustainable development of the scallop industry. Thus, improving the overall understanding of immune response mechanisms involved in host-pathogen interactions is necessary. Ferritins are conserved molecules in organisms that are involved in diverse biological processes, such as mediating host-pathogen responses. In this study, we report a novel ferritin gene from C. farreri (denoted as CfFER). The full length of CfFER is 848 bp and contains a 5'-UTR of 113 bp, a 3'-UTR of 219 bp, and a complete open reading frame (ORF) of 516 bp. The ORF encodes a polypeptide of 171 amino acid residues with a molecular weight of approximately 19.95 kDa and an isoelectric point of 5.07. The CfFER protein exhibited typical ferritin structures, namely, a ferroxidase diiron center, a ferrihydrite nucleation center, and an iron-binding response signature. Phylogenetic analysis revealed that CfFER was closely related to other mollusk ferritin proteins. Expression of CfFER in different tissues was analyzed by quantitative real-time PCR, and results showed that CfFER was ubiquitously expressed in all examined tissues. The highest and lowest expression levels of CfFER were measured in the muscle and hemocyte, respectively. The relative mRNA expression of CfFER in response to bacterial (Vibrio anguillarum) and viral (acute viral necrobiotic virus) challenges sharply increased by ca. 5-fold about12 h post-infection (hpi) and then normalized at 48 hpi. Western blot analysis with polyclonal antibodies generated from the recombinant product of CfFER also demonstrated the presence of ferritin protein in hemocytes. These findings strongly suggest that CfFER is involved in the immune response of C. farreri and protection against pathogen challenge.
Collapse
Affiliation(s)
- Guofu Chen
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, PR China
| | - Chunyun Zhang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, PR China.
| | - Yuanyuan Wang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, PR China.
| | - Changlu Guo
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, PR China
| | - Fuming Sang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, PR China
| | - Chongming Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China
| |
Collapse
|
11
|
He J, Jiang J, Gu L, Zhao M, Wang R, Ye L, Yao T, Wang J. Identification and involvement of ferritin in the response to pathogen challenge in the abalone, Haliotis diversicolor. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 60:23-32. [PMID: 26875633 DOI: 10.1016/j.dci.2016.01.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/27/2016] [Accepted: 01/28/2016] [Indexed: 06/05/2023]
Abstract
Accumulating data has demonstrated that ferritin plays an important role in host defense responses against infection by pathogens in many organisms. In this study, ultracentrifugation was used to isolate ferritin from abalone, Haliotis diversicolor, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis revealed that this ferritin consisted of two subunits (designated as HdFer1 and HdFer2). There are no disulfide bonds between the HdFer1 and HdFer2 subunits; however, these subunits co-assemble to form heteropolymers. A novel ferritin subunit (HdFer2) was cloned from H. diversicolor by 5' and 3' RACE (rapid amplification of cDNA ends) approach. The full-length HdFer2 cDNA sequence consists of 878 bp with an open reading frame of 513 bp that encodes a protein that is 170 amino acids in length. Quantitative real-time PCR analysis revealed that HdFer1 and HdFer2 were transcribed in various tissues, such as the mantle, gill and hepatopancreas, with the highest levels of expression in the hepatopancreas. Following a challenge with the pathogen, Vibrio harveyi, the expression of HdFer1 and HdFer2 were markedly induced at different times. This study has identified a novel ferritin subunit in H. diversicolor which will contribute to further exploration of the role of ferritin in mollusk innate immune defense against invading pathogens.
Collapse
Affiliation(s)
- Jian He
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Jingzhe Jiang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Lu Gu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; College of Fisheries and Life, Shanghai Ocean University, Shanghai 201306, China
| | - Manman Zhao
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; College of Fisheries and Life, Shanghai Ocean University, Shanghai 201306, China
| | - Ruixuan Wang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Lingtong Ye
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Tuo Yao
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Jiangyong Wang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China.
| |
Collapse
|
12
|
Qiu R, Kan Y, Li D. Ferritin from the Pacific abalone Haliotis discus hannai: Analysis of cDNA sequence, expression, and activity. FISH & SHELLFISH IMMUNOLOGY 2016; 49:315-323. [PMID: 26766182 DOI: 10.1016/j.fsi.2015.12.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 12/30/2015] [Accepted: 12/31/2015] [Indexed: 06/05/2023]
Abstract
Ferritin plays an important role in iron homeostasis due to its ability to bind and sequester large amounts of iron. In this study, the gene encoding a ferritin (HdhFer2) was cloned from Pacific abalone (Haliotis discus hannai). The full-length cDNA of HdhFer2 contains a 5'-UTR of 121 bp, an ORF of 516 bp, and a 3'-UTR of 252 bp with a polyadenylation signal sequence of AATAAA and a poly(A) tail. It also contains a 31 bp iron-responsive element (IRE) in the 5'-UTR position, which is conserved in many ferritins. HdhFer2 consists of 171 amino acid residues with a predicted molecular weight (MW) ∼19.8 kDa and a theoretical isoelectric point (PI) of 4.84. The deduced amino acid sequence of HdhFer2 contains two ferritin iron-binding region signatures (IBRSs). HdhFer2 mRNA was detected in a wide range of tissues and was dominantly expressed in the gill. Infection with the bacterial pathogen Vibrio anguillarum significantly upregulated HdhFer2 expression in a time-dependent manner. Recombinant HdhFer2 (rHdhFer2) purified from Escherichia coli was able to bind ferrous iron in a concentration-dependent manner. In summary, these results suggest that HdhFer2 is a crucial protein in the iron-withholding defense system, and plays an important role in the innate immune response of abalone.
Collapse
Affiliation(s)
- Reng Qiu
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan Provincial Engineering Laboratory of Insects Bio-reactor, China-UK-NYNU-RRes Joint Libratory of Insect Biology, Nanyang Normal University, Nanyang, Henan 473061, China.
| | - Yunchao Kan
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan Provincial Engineering Laboratory of Insects Bio-reactor, China-UK-NYNU-RRes Joint Libratory of Insect Biology, Nanyang Normal University, Nanyang, Henan 473061, China
| | - Dandan Li
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan Provincial Engineering Laboratory of Insects Bio-reactor, China-UK-NYNU-RRes Joint Libratory of Insect Biology, Nanyang Normal University, Nanyang, Henan 473061, China
| |
Collapse
|
13
|
Using digital gene expression profile to detect representational difference of Chlamys farreri genes after laboratory exposure to persistent organic pollutants. Genes Genomics 2015. [DOI: 10.1007/s13258-015-0360-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
14
|
Song L, Wang L, Zhang H, Wang M. The immune system and its modulation mechanism in scallop. FISH & SHELLFISH IMMUNOLOGY 2015; 46:65-78. [PMID: 25797696 DOI: 10.1016/j.fsi.2015.03.013] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 03/07/2015] [Indexed: 06/04/2023]
Abstract
Scallops are a cosmopolitan family of bivalves, and some of them are highly prized as dominant aquaculture species. In the past decades, there have been increasing studies on the basic biology and immunology of scallops, and this review summarizes the research progresses of immune system and its modulation mechanism in scallop. As invertebrate, scallops lack adaptive immunity and they have evolved an array of sophisticated strategies to recognize and eliminate various invaders by employing a set of molecules and cells. It is evident that basic immune reactions such as immune recognition, signal transduction, and effector synthesis involved in immune response are accomplished in a variety of ways. They rely upon an extensive repertoire of phagocytosis, apoptosis and encapsulation of the circulating hemocytes for eliminating invasive pathogens, as well as the production of immune effectors that are active against a large range of pathogens or sensitive for the environmental stress. Furthermore, the molecular constitutions, metabolic pathways and immunomodulation mechanisms of the primitive catecholaminergic, cholinergic, enkephalinergic system and NO system in scallop are also discussed, which can be taken as an entrance to better understand the origin and evolution of the neuroendocrine-immune regulatory network in lower invertebrates.
Collapse
Affiliation(s)
| | - Lingling Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Huan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Mengqiang Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
15
|
You X, Sheng J, Liu L, Nie D, Liao Z. Three ferritin subunit analogs in Chinese giant salamander (Andrias davidianus) and their response to microbial stimulation. Mol Immunol 2015; 67:642-51. [PMID: 26319314 DOI: 10.1016/j.molimm.2015.07.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 07/11/2015] [Accepted: 07/17/2015] [Indexed: 11/28/2022]
Abstract
Ferritin, an evolutionarily conserved iron-binding protein, plays important roles in iron storage and detoxification and in host immune response to invading stimulus as well. In the present study, we identified three ferritin subunit analog cDNAs from Chinese giant salamander (Andrias davidianus). All the three ferritin subunit cDNAs had a putative iron responsive element in the 5'-untranslated region. Two deduced ferritin subunits (designated as cgsFerH and cgsFerM) had the highest identity of 90% to H type subunit of vertebrate ferritins, while another deduced ferritin subunit (designated as cgsFerL) had the highest identity of 84% to L type subunit of vertebrate ferritins. The Chinese giant salamander ferritin (cgsFer) was widely expressed in various tissues, with highest expression for cgsFerH and cgsFerL in liver and highest expression for cgsFerM in spleen. Infection of Chinese giant salamander with A. davidianus ranavirus showed significant induction of cgsFer expression. Both lipopolysaccharide and iron challenge drastically augmented cgsFer expression in the splenocytes and hepatocytes from Chinese giant salamander. In addition, recombinant cgsFers bound to ferrous iron in a dose-dependent manner, with significant ferroxidase activity. Furthermore, the recombinant cgsFer inhibited the growth of the pathogen Vibrio anguillarum. These results indicated that cgsFer was potential candidate of immune molecules involved in acute phase response to invading microbial pathogens in Chinese giant salamander possibly through its regulatory roles in iron homeostasis.
Collapse
Affiliation(s)
- Xiuling You
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Jianghong Sheng
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Liu Liu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Dongsong Nie
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Zhiyong Liao
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
16
|
Zhou Q, Zhang Y, Peng HF, Ke CH, Huang HQ. Toxicological responses of the hard clam Meretrix meretrix exposed to excess dissolved iron or challenged by Vibrio parahaemolyticus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 156:240-247. [PMID: 25269138 DOI: 10.1016/j.aquatox.2014.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 08/26/2014] [Accepted: 09/05/2014] [Indexed: 06/03/2023]
Abstract
The responses of genes encoding defense components such as ferritin, the lipopolysaccharide-induced tumor necrosis factor-alpha factor (LITAF), the inhibitor of nuclear factor-κB (IκB), metallothionein, and glutathione peroxidase were assessed at the transcriptional level in order to investigate the toxicological and immune mechanism of the hard clam Meretrix meretrix (HCMM) following challenge with iron or a bacterium (Vibrio parahaemolyticus). Fe dissolved in natural seawater led to an increase of Fe content in both the hepatopancreas and gill tissue of HCMM between 4 and 15 days of exposure. The ferritin gene responded both transcriptionally as indicated by real-time quantitative PCR and translationally as shown by western blotting results to iron exposure and both transcriptional and translational ferritin expression in the hepatopancreas had a positive correlation with the concentration of dissolved iron in seawater. Both iron and V. parahaemolyticus exposure triggered immune responses with similar trends in clam tissues. There was a significant post-challenge mRNA expression of LITAF and IκB at 3h, ferritin at 24h, and metallothionein and glutathione peroxidase at 48h. This behavior might be linked to their specific functions in physiological processes. These results suggested that similar signaling pathways were triggered during both iron and V. parahaemolyticus challenges. Here, we indicated that the ferritin of Meretrix meretrix was an intermediate in the pathway of iron homeostasis and in its innate immune defense mechanism.
Collapse
Affiliation(s)
- Qing Zhou
- State Key Laboratory of Stress Cell Biology, School of Life Science, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science, School of Ocean and Earth Science, Xiamen University, Xiamen 361102, China
| | - Yong Zhang
- Department of Chemistry, College of Chemistry & Chemical Engineering, and the Key Laboratory of Chemical Biology of Fujian Province, Xiamen University, Xiamen 361102, China
| | - Hui-Fang Peng
- State Key Laboratory of Stress Cell Biology, School of Life Science, Xiamen University, Xiamen 361102, China
| | - Cai-Huan Ke
- State Key Laboratory of Marine Environmental Science, School of Ocean and Earth Science, Xiamen University, Xiamen 361102, China.
| | - He-Qing Huang
- State Key Laboratory of Stress Cell Biology, School of Life Science, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science, School of Ocean and Earth Science, Xiamen University, Xiamen 361102, China; Department of Chemistry, College of Chemistry & Chemical Engineering, and the Key Laboratory of Chemical Biology of Fujian Province, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
17
|
Huan P, Liu G, Wang H, Liu B. Multiple ferritin subunit genes of the Pacific oyster Crassostrea gigas and their distinct expression patterns during early development. Gene 2014; 546:80-8. [DOI: 10.1016/j.gene.2014.05.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 04/16/2014] [Accepted: 05/12/2014] [Indexed: 10/25/2022]
|
18
|
Ren C, Chen T, Jiang X, Wang Y, Hu C. Identification and functional characterization of a novel ferritin subunit from the tropical sea cucumber, Stichopus monotuberculatus. FISH & SHELLFISH IMMUNOLOGY 2014; 38:265-274. [PMID: 24698995 DOI: 10.1016/j.fsi.2014.03.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Revised: 03/12/2014] [Accepted: 03/15/2014] [Indexed: 06/03/2023]
Abstract
Ferritin is one of the major non-harm iron storage proteins that found in most cell types of animals, plants and microorganisms. In this study, a ferritin subunit named StmFer was identified from the sea cucumber (Stichopus monotuberculatus) and characterized functionally. The full-length cDNA of StmFer is 1184 bp in size with a 5'-untranslated region (UTR) of 131 bp, a 3'-UTR of 531 bp and an open reading frame of 522 bp that encoding a protein of 173 amino acids with a deduced molecular weight of 19.95 kDa. StmFer possesses both the ferroxidase center of vertebrate ferritin heavy subunit and iron nucleation sites of vertebrate ferritin light subunit. For the gene structure, StmFer contains only three exons separated by two introns. Higher levels of mRNA expression were noticed in intestine and coelomocyte of S. monotuberculatus by northern blot analysis. In in vitro experiments performed in coelomocytes, transcriptional expression of StmFer showed the strongest response to polyriboinosinic polyribocytidylic acid [Poly (I:C)] (9.08 fold up-regulation), followed by lipopolysaccharides (LPS), ferrous chloride (FeCl2) and inactivated bacteria (Vibrio alginolyticus) (7.84, 7.41 and 4.90 fold up-regulation, respectively) after 3 h post-challenge. In addition, the anti-oxidation activity and iron binding capacity of recombinant ferritin protein were demonstrated in this study. As a whole, our study suggested that the ferritin from sea cucumber may play critical roles not only in the cellular and organismic iron homeostasis, but also in the innate immune defense.
Collapse
Affiliation(s)
- Chunhua Ren
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB); Key Laboratory of Applied Marine Biology of Guangdong Province and Chinese Academy of Sciences (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, PR China.
| | - Ting Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB); Key Laboratory of Applied Marine Biology of Guangdong Province and Chinese Academy of Sciences (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, PR China.
| | - Xiao Jiang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB); Key Laboratory of Applied Marine Biology of Guangdong Province and Chinese Academy of Sciences (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, PR China.
| | - Yanhong Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB); Key Laboratory of Applied Marine Biology of Guangdong Province and Chinese Academy of Sciences (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, PR China.
| | - Chaoqun Hu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB); Key Laboratory of Applied Marine Biology of Guangdong Province and Chinese Academy of Sciences (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, PR China.
| |
Collapse
|
19
|
Sun Y, Zhang Y, Fu X, Zhang R, Zou J, Wang S, Hu X, Zhang L, Bao Z. Identification of two secreted ferritin subunits involved in immune defense of Yesso scallop Patinopecten yessoensis. FISH & SHELLFISH IMMUNOLOGY 2014; 37:53-59. [PMID: 24434645 DOI: 10.1016/j.fsi.2014.01.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 01/03/2014] [Accepted: 01/04/2014] [Indexed: 06/03/2023]
Abstract
As an important iron storage protein, ferritin plays a crucial role in the iron-withholding defense system. In this study, two secreted ferritin subunits (PyFerS1 and PyFerS2) were identified from the Yesso scallop, Patinopecten yessoensis. The complete DNA sequences of the two ferritins are 7101 and 5359 bp, consisting of seven and five exons, respectively. The full-length cDNAs of PyFerS1 and PyFerS2 are 960 and 956 bp in length, encoding 228 and 220 amino acids, respectively. They have typical ferritin structures, with four long α-helices, one short α-helix and an L-loop. Signal peptides were found at the N-terminus of both ferritins, and phylogenetic analysis showed that they both clustered with secreted mollusc ferritins. PyFerS1 possesses all seven conserved residues of the ferroxidase center, whereas PyFerS2 only has two. Real-time PCR analysis indicated high expression level of PyFerS2 in the D-shaped larvae, and PyFerS1 in both D-shaped larvae and fertilized eggs. In adult scallops, PyFerS1 was only detected in the hepatopancreas, whereas PyFerS2 was detected in both hepatopancreas and mantle. After the scallops were challenged by iron ion or bacteria Vibrio anguillarum, the expression of both PyFerS1 and PyFerS2 was significantly elevated, suggesting they may play a role in scallop innate immune defense. For the first time, secreted ferritins were cloned and comprehensively characterized in bivalve molluscs. It will assist in better understanding of the role of secreted ferritins in bivalve innate immunity.
Collapse
Affiliation(s)
- Yan Sun
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yueyue Zhang
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xiaoteng Fu
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Ru Zhang
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jiajun Zou
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Shi Wang
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xiaoli Hu
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Lingling Zhang
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Zhenmin Bao
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
20
|
Pauletto M, Milan M, Moreira R, Novoa B, Figueras A, Babbucci M, Patarnello T, Bargelloni L. Deep transcriptome sequencing of Pecten maximus hemocytes: a genomic resource for bivalve immunology. FISH & SHELLFISH IMMUNOLOGY 2014; 37:154-165. [PMID: 24486903 DOI: 10.1016/j.fsi.2014.01.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 01/17/2014] [Accepted: 01/21/2014] [Indexed: 06/03/2023]
Abstract
Pecten maximus, the king scallop, is a bivalve species with important commercial value for both fisheries and aquaculture, traditionally consumed in several European countries. Major problems in larval rearing, however, still limit hatchery-based seed production. High mortalities during early larval stages, likely related to bacterial pathogens, represent the most relevant bottleneck. To address this issue, understanding host defense mechanisms against microbes is extremely important. In this study next-generation RNA-sequencing was carried on scallop hemocytes. To enrich for immune-related transcripts, cDNA libraries from hemocytes challenged in vivo with inactivated-Vibrio anguillarum and in vitro with pathogen-associated molecular patterns, as well as unchallenged controls, were sequenced yielding 216,444,674 sequence reads. De novo assembly of the scallop hemocyte transcriptome consisted of 73,732 contigs (31% annotated). A total of 934 contigs encoded proteins with a known immune function, grouped into several functional categories. Particular attention was reserved to Toll-like receptors (TLRs), a family of pattern recognition receptors (PRRs) involved in non-self recognition. Through mining the scallop hemocyte transcriptome, at least four TLRs could be identified. The organization of canonical TLR domains demonstrated that single cysteine cluster and multiple cysteine cluster TLRs co-exist in this species. In addition, preliminary data concerning their mRNA level following bacterial challenge suggested that different members of this family could exhibit opposite responses to pathogenic stimuli. Finally, a global analysis of differential expression comparing gene-expression levels in in vitro and in vivo stimulated hemocytes against controls provided evidence on a large set of transcripts involved in the great scallop immune response.
Collapse
Affiliation(s)
- Marianna Pauletto
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro, PD, Italy.
| | - Massimo Milan
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro, PD, Italy.
| | - Rebeca Moreira
- Instituto de Investigaciones Marinas (IIM), CSIC, C/Eduardo Cabello 6, 36208 Vigo, Pontevedra, Spain.
| | - Beatriz Novoa
- Instituto de Investigaciones Marinas (IIM), CSIC, C/Eduardo Cabello 6, 36208 Vigo, Pontevedra, Spain.
| | - Antonio Figueras
- Instituto de Investigaciones Marinas (IIM), CSIC, C/Eduardo Cabello 6, 36208 Vigo, Pontevedra, Spain.
| | - Massimiliano Babbucci
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro, PD, Italy.
| | - Tomaso Patarnello
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro, PD, Italy.
| | - Luca Bargelloni
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro, PD, Italy.
| |
Collapse
|
21
|
Zhang L, Sun W, Cai W, Zhang Z, Gu Y, Chen H, Ma S, Jia X. Differential response of two ferritin subunit genes (VpFer1 and VpFer2) from Venerupis philippinarum following pathogen and heavy metals challenge. FISH & SHELLFISH IMMUNOLOGY 2013; 35:1658-1662. [PMID: 23891591 DOI: 10.1016/j.fsi.2013.07.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 07/11/2013] [Accepted: 07/15/2013] [Indexed: 06/02/2023]
Abstract
As a principal extracellular iron storage molecule, ferritin plays an important role in the iron-withholding strategy of innate immunity and detoxification system. In this study, we cloned and characterized another ferritin from Venerupis philippinarum (designated as VpFer2), in addition to one previously reported (VpFer1). VpFer2 possessed all the conserved features critical for the fundamental structure and function of ferritin H subunit. VpFer1 and VpFer2 mRNA were both found to be most abundantly expressed in hepatopancreas. Vibrio challenge could significantly up-regulate the mRNA expression of VpFers, and VpFer2 showed more sensitive to Vibrio anguillarum infection. For heavy metals exposure, the expression level of VpFer1 was significantly induced by Cd at 48 h, but kept relatively constant after exposure to Cu. With regards to VpFer2, the expression level dropped significantly at 24 h, then began to increase to the peak value at 48 h under Cd exposure, while Cu exposure constantly depressed the expression level of VpFer2 throughout the time course. Similarly, VpFer2 seemed to be more sensitive to heavy metals exposure than VpFer1 as its mRNA level changed by higher magnitudes. All these results suggested that VpFers may be important proteins involved in host immune defense and heavy metals detoxification. The diverse expression patterns of VpFers demonstrated that VpFer2 was an early and sensitive responder to environmental stress in V. philippinarum.
Collapse
Affiliation(s)
- Linbao Zhang
- Key Lab. of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Key Lab. of Fishery Ecology Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Chávez-Mardones J, Valenzuela-Muñoz V, Núñez-Acuña G, Maldonado-Aguayo W, Gallardo-Escárate C. Concholepas concholepas Ferritin H-like subunit (CcFer): Molecular characterization and single nucleotide polymorphism associated to innate immune response. FISH & SHELLFISH IMMUNOLOGY 2013; 35:910-917. [PMID: 23838046 DOI: 10.1016/j.fsi.2013.06.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 06/27/2013] [Accepted: 06/28/2013] [Indexed: 06/02/2023]
Abstract
Ferritin has been identified as the principal protein of iron storage and iron detoxification, playing a pivotal role for the cellular homeostasis in living organisms. However, recent studies in marine invertebrates have suggested its association with innate immune system. In the present study, one Ferritin subunit was identified from the gastropod Concholepas concholepas (CcFer), which was fully characterized by Rapid Amplification of cDNA Ends technique. Simultaneously, a challenge test was performed to evaluate the immune response against Vibrio anguillarum. The full length of cDNA Ccfer was 1030 bp, containing 513 bp of open reading frame that encodes to 170 amino acid peptide, which was similar to the Ferritin H subunit described in vertebrates. Untranslated Regions (UTRs) were identified with a 5'UTR of 244 bp that contains iron responsive element (IRE), and a 3'UTR of 273 bp. The predicted molecular mass of deduced amino acid of CcFer was 19.66 kDa and isoelectric point of 4.92. Gene transcription analysis revealed that CcFer increases against infections with V. anguillarum, showing a peak expression at 6 h post-infection. Moreover, a single nucleotide polymorphism was detected at -64 downstream 5'UTR sequence (SNP-64). Quantitative real time analysis showed that homozygous mutant allele (TT) was significantly associated with higher expression levels of the challenged group compared to wild (CC) and heterozygous (CT) variants. Our findings suggest that CcFer is associated to innate immune response in C. concholepas and that the presence of SNPs may involve differential transcriptional expression of CcFer.
Collapse
Affiliation(s)
- Jacqueline Chávez-Mardones
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, P.O. Box 160-C, Concepción, Chile
| | | | | | | | | |
Collapse
|
23
|
Chen G, Wang C, Zhang C, Wang Y, Xu Z, Wang C. A preliminary study of differentially expressed genes of the scallop Chlamys farreri against acute viral necrobiotic virus (AVNV). FISH & SHELLFISH IMMUNOLOGY 2013; 34:1619-1627. [PMID: 23507337 DOI: 10.1016/j.fsi.2013.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 02/27/2013] [Accepted: 03/04/2013] [Indexed: 06/01/2023]
Abstract
The scallop Chlamys farreri is one of the most important aquaculture species in northern coastal provinces. However, the sustainable development of scallop industry is currently threatened by a notorious pathogen named as acute viral necrobiotic virus (AVNV), which often causes mass mortality of the animals. Despite that great attention has been focused on this novel pathogen, little knowledge about the host-virus interactions is available. In this study, suppression subtractive hybridization (SSH) was employed to identify the up-regulated differentially expressed genes in the hemocytes of C. farreri challenged by AVNV. A forward subtracted cDNA library was finally constructed and 288 positive colonies representing differentially genes were screened to perform sequencing. A total of 275 ESTs were used for further analysis using bioinformatics tools after vector screening, among which 167 ESTs could be finally identified, with significant match (E values <1 × 10(-3)) to the deposited genes (proteins) in the corresponding databases. These genes could be classified into ten categories according to their Gene Ontology annotations of biological processes and molecular functions, i.e. cell defense and homeostasis (13.82%), cellular protein metabolic process (14.90), cellular metabolism (13.09%), cytoskeletal or cellular component (5.82%), transcription regulation or RNA processing (2.18%), cell division (meiosis)/apoptosis (2.18%), DNA metabolic process and repair (1.45%), cell adhesion/signaling (1.09%), microsatellite (0.73%), and ungrouped or unknown functions (6.88). The possible biological significance of some novel genes (mainly immune and homeostasis related genes) in the host response to AVNV were discussed. This study is the first global analysis of differentially expressed genes in hemocytes from AVNV-infected C. farreri, and in addition to increasing our understanding of the molecular pathogenesis of this virus-associated scallop disease, the results presented here should provide new insights into the molecular basis of host-pathogen interactions in C. farreri.
Collapse
Affiliation(s)
- Guofu Chen
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, Shandong Province, PR China
| | | | | | | | | | | |
Collapse
|
24
|
Zhang Y, Zhang R, Zou J, Hu X, Wang S, Zhang L, Bao Z. Identification and characterization of four ferritin subunits involved in immune defense of the Yesso scallop (Patinopecten yessoensis). FISH & SHELLFISH IMMUNOLOGY 2013; 34:1178-1187. [PMID: 23428517 DOI: 10.1016/j.fsi.2013.01.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 01/21/2013] [Accepted: 01/27/2013] [Indexed: 06/01/2023]
Abstract
As a primary iron storage protein, ferritin plays a vital role in iron homeostasis and innate immunity. In this study, four ferritin subunits (PyFer1, PyFer2, PyFer3, and PyFer4) were cloned from the Yesso scallop, Patinopecten yessoensis, by rapid amplification of cDNA ends (RACE) following in silico transcriptome analysis. The full-length cDNAs of the four ferritins are 895, 920, 891, and 1400 bp in length, respectively, and each contains a putative iron response element (IRE) in its 5' UTR. Meanwhile, multiple A+U-destabilizing elements (TATT or ATTTA) are present in the 3' UTRs of PyFer2 and PyFer4. The open reading frames of the four ferritins are 522, 516, 516, and 519 bp, encoding 173, 171, 171, and 172 amino acids, respectively. These proteins have typical ferritin structures, with four long α-helices, one short α-helix and an L-loop. All of the predicted proteins possess both the ferroxidase center of mammalian H ferritins (E25, Y32, E59, E60, H63, E105, and Q139) and the iron nucleation site of mammalian L ferritins (H116, D129, and E132), and the recombinant proteins possess apparent ferroxidase activity. Quantitative real-time PCR analysis revealed that the expression of the four PyFers was significantly elevated at the D-shaped stage and was relatively high in the adult mantle and hepatopancreas. Furthermore, the four PyFers were significantly up-regulated by iron or bacterial challenge, and all four purified recombinant PyFers were able to inhibit the growth of the scallop pathogen Vibrio anguillarum. These results suggest that these PyFers are likely to play important roles in many fundamental biological processes in P. yessoensis, including immune defense, iron homeostasis, and shell development.
Collapse
Affiliation(s)
- Yueyue Zhang
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | | | | | | | | | | | | |
Collapse
|
25
|
He S, Peng K, Hong Y, Wang J, Sheng J, Gu Q. Molecular properties and immune defense of two ferritin subunits from freshwater pearl mussel, Hyriopsis schlegelii. FISH & SHELLFISH IMMUNOLOGY 2013; 34:865-874. [PMID: 23339972 DOI: 10.1016/j.fsi.2012.12.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 12/15/2012] [Accepted: 12/23/2012] [Indexed: 06/01/2023]
Abstract
Ferritin is a conserved iron-binding protein involved in cellular iron metabolism and host defense. In the present study, two distinct cDNAs for ferritins in the freshwater pearl mussel Hyriopsis schlegelii were identified (designated as HsFer-1 and HsFer-2) by SMART RACE approach and expressed sequence tag (EST) analysis. The full-length cDNAs of HsFer-1 and HsFer-2 were of 760 and 877 bp, respectively. Both of the two cDNAs contained an open reading frame (ORF) of 522 bp encoding for 174 amino acid residues. Sequence characterization and homology alignment indicated that HsFer-1 and HsFer-2 had higher similarity to H-type subunit of vertebrate ferritins than L-type subunit. Analysis of the HsFer-1 and HsFer-2 untranslated regions (UTR) showed that both of them had an iron response element (IRE) in the 5'-UTR, which was considered to be the binding site for iron regulatory protein (IRP). Quantitative real-time PCR (qPCR) assays were employed to examine the mRNA expression profiles. Under normal physiological conditions, the expression level of both HsFer-1 and HsFer-2 mRNA were the highest in hepatopancreas, moderate in gonad, axe foot, intestine, kidney, heart, gill, adductor muscle and mantle, the lowest in hemocytes. After stimulation with bacteria Aeromonas hydrophila, HsFer-1 mRNA experienced a different degree of increase in the tissues of hepatopancreas, gonad and hemocytes, the peak level was 2.47-fold, 9.59-fold and 1.37-fold, respectively. Comparatively, HsFer-2 showed up-regulation in gonad but down-regulation in hepatopancreas and hemocytes. Varying expression patterns indicate that two types of ferritins in H. schlegelii might play different roles in response to bacterial challenge. Further bacteriostatic analysis showed that both the purified recombinant ferritins inhibited the growth of A. hydrophila to a certain degree. Collectively, our results suggest that HsFer-1 and HsFer-2 are likely to be functional proteins involved in immune defense against bacterial infection.
Collapse
Affiliation(s)
- Shuhao He
- School of Life Sciences and Food Engineering, Nanchang University, No. 999 Xuefu Road, Hong Gu Tan New District, Nanchang, Jiangxi 330031, China
| | | | | | | | | | | |
Collapse
|
26
|
Varotto L, Domeneghetti S, Rosani U, Manfrin C, Cajaraville MP, Raccanelli S, Pallavicini A, Venier P. DNA damage and transcriptional changes in the gills of mytilus galloprovincialis exposed to nanomolar doses of combined metal salts (Cd, Cu, Hg). PLoS One 2013; 8:e54602. [PMID: 23355883 PMCID: PMC3552849 DOI: 10.1371/journal.pone.0054602] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 12/14/2012] [Indexed: 12/19/2022] Open
Abstract
Aiming at an integrated and mechanistic view of the early biological effects of selected metals in the marine sentinel organism Mytilus galloprovincialis, we exposed mussels for 48 hours to 50, 100 and 200 nM solutions of equimolar Cd, Cu and Hg salts and measured cytological and molecular biomarkers in parallel. Focusing on the mussel gills, first target of toxic water contaminants and actively proliferating tissue, we detected significant dose-related increases of cells with micronuclei and other nuclear abnormalities in the treated mussels, with differences in the bioconcentration of the three metals determined in the mussel flesh by atomic absorption spectrometry. Gene expression profiles, determined in the same individual gills in parallel, revealed some transcriptional changes at the 50 nM dose, and substantial increases of differentially expressed genes at the 100 and 200 nM doses, with roughly similar amounts of up- and down-regulated genes. The functional annotation of gill transcripts with consistent expression trends and significantly altered at least in one dose point disclosed the complexity of the induced cell response. The most evident transcriptional changes concerned protein synthesis and turnover, ion homeostasis, cell cycle regulation and apoptosis, and intracellular trafficking (transcript sequences denoting heat shock proteins, metal binding thioneins, sequestosome 1 and proteasome subunits, and GADD45 exemplify up-regulated genes while transcript sequences denoting actin, tubulins and the apoptosis inhibitor 1 exemplify down-regulated genes). Overall, nanomolar doses of co-occurring free metal ions have induced significant structural and functional changes in the mussel gills: the intensity of response to the stimulus measured in laboratory supports the additional validation of molecular markers of metal exposure to be used in Mussel Watch programs.
Collapse
Affiliation(s)
- Laura Varotto
- Department of Biology, University of Padova, Padova, Italy
| | | | - Umberto Rosani
- Department of Biology, University of Padova, Padova, Italy
| | - Chiara Manfrin
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Miren P. Cajaraville
- Department of Zoology & Cell Biology, University of the Basque Country UPV/EHU, Bilbao, Basque Country, Spain
| | | | | | - Paola Venier
- Department of Biology, University of Padova, Padova, Italy
| |
Collapse
|