1
|
Angulo M, Angulo C. Trained immunity-based vaccines: A vision from the one health initiative. Vaccine 2025; 43:126505. [PMID: 39520776 DOI: 10.1016/j.vaccine.2024.126505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/29/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Trained immunity-based vaccines (TIbV or TRIMbV) represent a novel approach to combating infectious diseases. The innate immune system in animals, including humans, exhibits "memory-like" functions. Remarkably, the immunological mechanisms -both epigenetic and metabolic-) underlying this memory enables immune cells to develop defensive and protective outcomes against unspecific pathogenic infections. Under this context, the One Health initiative promotes integrative efforts to combat zoonotic (and anthropozoonotic) diseases, which is critical because 3 of 4 animal infections are transmitted to humans. Therefore, TIbV constitutes a potential affordable approach to control zoonotic pathologies, especially under pandemic scenarios. This review describes the state-of-the-art TIbV and their hurdles, opportunities, and prospects for the One Health initiative to prevent, control, and treat infectious diseases.
Collapse
Affiliation(s)
- Miriam Angulo
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S. 23096, Mexico.; Laboratorio Nacional CONAHCYT de Generación de Vacunas Veterinarias y Servicios de Diagnóstico (LNC-GVD), Centro de Investigaciones Biológicas del Noroeste, S.C., Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C. S., C.P. 23096, Mexico
| | - Carlos Angulo
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S. 23096, Mexico.; Laboratorio Nacional CONAHCYT de Generación de Vacunas Veterinarias y Servicios de Diagnóstico (LNC-GVD), Centro de Investigaciones Biológicas del Noroeste, S.C., Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C. S., C.P. 23096, Mexico.
| |
Collapse
|
2
|
Jiang X, Gao M, Ding Y, Wang J, Song Y, Xiao H, Kong X. Interleukin-17B in common carp (Cyprinus carpio L.): Molecular cloning and immune effects as immune adjuvant of Aeromonas veronii formalin-killed vaccine. FISH & SHELLFISH IMMUNOLOGY 2024; 153:109832. [PMID: 39147176 DOI: 10.1016/j.fsi.2024.109832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
The interleukin-17 (IL-17) family of cytokines is critical for host defense responses and mediates different pro- or anti-inflammatory mediators through different signaling pathways. However, the function of the related family member, IL-17B, in teleosts is poorly understood. In the present study, an IL-17B homolog (CcIL-17B) in common carp (Cyprinus carpio) was identified, and sequence analysis showed that CcIL-17B had eight conserved cysteine residues, four of which could form two pairs of disulfide bonds, which in turn formed a ring structure composed of nine amino acids (aa). The deduced aa sequences of CcIL-17B shared 35.79-92.93 % identify with known homologs. The expression patterns were characterized in healthy and bacteria-infected carp. In healthy carp, IL-17B mRNA was highly expressed in the spleen, whereas Aeromonas veronii effectively induced CcIL-17B expression in the liver, head, kidney, gills, and intestine. The recombinant protein rCcIL-17B could regulate the expression levels of inflammatory cytokines (such as IL-1β, IL-6, TNF-α, and IFN-γ) in primary cultured head kidney leukocytes in vitro. As an adjuvant for the formalin-killed A. veronii (FKA) vaccine, rCcIL-17B induced the production of specific antibodies more rapidly and effectively than Freund's complete adjuvant (FCA). The results of the challenge experiments showed that the relative percent survival (RPS) after vaccination with rCcIL-17B was 78.13 %. This percentage was significantly elevated compared to that observed in the alternative experimental groups (62.5 % and 37.5 %, respectively). Additionally, the bacterial loads in the spleen of the rCcIL-17B + FKA group were significantly lower than those in the control group from 12 h to 48 h after bacterial infection. Furthermore, histological analysis showed that the epithelial cells were largely intact, and the striated border structure was complete in the intestine of rCcIL-17B + FKA group. Collectively, our results demonstrate that CcIL-17B plays a crucial role in eliciting immune responses and evokes a higher RPS against A. veronii challenge compared to the traditional adjuvant FCA, indicating that rCcIL-17B is a promising vaccine adjuvant for controlling A. veronii infection.
Collapse
Affiliation(s)
- Xinyu Jiang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Mengjie Gao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Yi Ding
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Junya Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yunjie Song
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Hehe Xiao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Xianghui Kong
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, China.
| |
Collapse
|
3
|
Thirumalaikumar E, Vimal S, Sathishkumar R, Ravi M, Karthick V, Ramya S, Thomas J, Kumar V, Kamaraj C, Citarasu T. DNA vaccine incorporated poly (lactic-co-glycolic) acid (PLGA) microspheres offer enhanced protection against Aeromonas hydrophila infection. Int J Biol Macromol 2023; 253:127182. [PMID: 37793515 DOI: 10.1016/j.ijbiomac.2023.127182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023]
Abstract
Encapsulation of DNA vaccines onto carriers enhances the immunogenicity of an antigen. Specifically, biodegradable polymers offer sustained release of vaccines which is crucial for any targeted delivery approach. Poly (lactic-co-glycolic) acid (PLGA) microspheres were used to load a DNA vaccine having a targeted gene of outer membrane protein (OMP) of Aeromonas hydrophila to clone and construct a DNA vaccine using a eukaryotic expression vector system (pVAX1-OMP DNA) and delivery in Carassius auratus against A. hydrophila infection. PLGA microspheres were prepared by emulsion technique oil-in-water and characterized by a High-Resolution Scanning Electron Microscope (HR-SEM). The results of PLGA-pVAX1-OMP DNA microspheres shows that average of 100-150 μm particle size and a loading efficiency (LE) of 68.8 %. Results indicate that C. auratus fed with PLGA-pVAX1-OMP DNA microspheres revealed a significant improvement in innate immune response, which includes, myeloperoxidase activity, respiratory burst and total immunoglobulin level compared with control group fish. The immune-related gene, IL1β, IL10, TGF, c-type, and g-type lysozyme also showed significantly higher expression after immunization. Furthermore, dietary supplementation of the PLGA-pVAX1-OMP DNA (G III) group exhibited a significantly higher survival rate (78 %) than the control group of fish. These results help us to understand the of mechanism of DNA vaccine administrated feed through PLGA nanoparticles resistance to infection by regulating systemic and innate immunity in Carassius auratus.
Collapse
Affiliation(s)
- Eswaramoorthy Thirumalaikumar
- Aquatic Animal Health Laboratory, Centre for Marine Science and Technology (CMST), Manonmaniam Sundaranar University, Rajakkamangalam 629502, Tamilnadu, India
| | - S Vimal
- Department of Biochemistry, Saveetha Medical College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, Tamilnadu, India.
| | - Ramamoorthy Sathishkumar
- Aquatic Animal Health Laboratory, Centre for Marine Science and Technology (CMST), Manonmaniam Sundaranar University, Rajakkamangalam 629502, Tamilnadu, India
| | - M Ravi
- Centre for Ocean Research (DST-FIST Sponsored) (MoES-ESTC cell), Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai 600119, Tamilnadu, India
| | - V Karthick
- Centre for Ocean Research (DST-FIST Sponsored) (MoES-ESTC cell), Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai 600119, Tamilnadu, India
| | - S Ramya
- Centre for Ocean Research (DST-FIST Sponsored) (MoES-ESTC cell), Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai 600119, Tamilnadu, India
| | - John Thomas
- Centre for Nanobiotechnology, VIT University, Vellore, Tamilnadu, India
| | - Vinay Kumar
- Department of Community Medicine, Saveetha Medical College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, Tamil Nadu, India
| | - Chinnaperumal Kamaraj
- Interdisciplinary Institute of Indian System of Medicine (IIISM), Directorate of Research, SRM Institute of Science and Technology, Kattankulathur, Kancheepuram, India
| | - Thavasimuthu Citarasu
- Aquatic Animal Health Laboratory, Centre for Marine Science and Technology (CMST), Manonmaniam Sundaranar University, Rajakkamangalam 629502, Tamilnadu, India.
| |
Collapse
|
4
|
Jensen KJ, Hansen MS, Skovgaard K, Svensson E, Larsen LE, Heegaard PMH, Benn CS, Jungersen G. Immunogenicity of Bacillus Calmette-Guérin in pigs: potential as a translational model of non-specific effects of BCG. Front Immunol 2023; 14:1219006. [PMID: 37520542 PMCID: PMC10374211 DOI: 10.3389/fimmu.2023.1219006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/26/2023] [Indexed: 08/01/2023] Open
Abstract
Background Clinical and immunological studies in humans show that the live attenuated Bacillus Calmette-Guérin (BCG) vaccine has beneficial non-specific effects, increasing resistance against diseases other than tuberculosis. The underlying mechanisms are currently being explored. The pig exhibits considerable physiological similarity to humans in anatomy and physiology, suggesting that similar responses to BCG could be expected. Studies of the non-specific effects of BCG in pigs are scarce. We investigated the feasibility of using pigs as a large animal model to investigate the non-specific immunological effects of BCG. Methods In a series of experiments, we randomized newborn or young piglets from conventional farms to receiving BCG or placebo and investigated the persistence of live BCG bacteria in various tissues, the immunogenicity of BCG in ex vivo blood and in vitro stimulation assays, and the acute phase protein and clinical responses to heterologous infectious challenge with influenza A virus or Actinobacillus pleuropneumoniae. Results The BCG vaccine was generally well tolerated. In contrast to humans, no skin reaction in the form of abscesses, ulcers, or scars was observed. Live BCG was recovered from draining lymph nodes in 2/13 animals 20 weeks after vaccination. Specific in vitro responses of IFN-γ to antigen-specific re-stimulation with mycobacterial antigen were increased but not TNF-responses to TLR2 or TLR4 agonists. A few genes were differentially expressed in blood after vaccination, including the antiviral genes RIG-I and CSF1, although the effect disappeared after correction for multiple testing. Clinical symptoms after heterologous bacterial or viral respiratory infections did not differ, nor did virus copies in nasopharyngeal samples after the challenge. However, the acute phase protein response was significantly reduced in BCG-vaccinated animals after influenza challenge but not after A. pleuropneumoniae challenge. Discussion BCG was safe in pigs, inducing specific immunological responses, but our model did not corroborate the innate immunological responsiveness to BCG seen in humans. The dose of BCG or the bacterial and viral challenges may have been sub-optimal. Even so, the acute phase protein response to influenza infection was significantly reduced in BCG-vaccinated animals.
Collapse
Affiliation(s)
- Kristoffer Jarlov Jensen
- Bandim Health Project, University of Southern Denmark, Copenhagen, Denmark
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
- Copenhagen Phase IV Unit, Center for Clinical Research and Prevention and Department of Clinical Pharmacology, Copenhagen University Hospital – Bispebjerg and Frederiksberg, Frederiksberg, Denmark
| | - Mette Sif Hansen
- Institute for Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
- Center for Diagnostics, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Kerstin Skovgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Erik Svensson
- Department of Tuberculosis and Mycobacteria, Statens Serum Institut, Copenhagen, Denmark
| | - Lars Erik Larsen
- Institute for Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Peter M. H. Heegaard
- Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Christine Stabell Benn
- Bandim Health Project, University of Southern Denmark, Copenhagen, Denmark
- Danish Institute for Advanced Study, University of Southern Denmark, Odense, Denmark
| | - Gregers Jungersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
5
|
Liu Y, Weng T, Pan X, Wen Y, Yang H, Chen J, Xia L. Construction of an alanine dehydrogenase gene deletion strain for vaccine development against Nocardia seriolae in hybrid snakehead (Channa maculata ♀ × Channa argus ♂). FISH & SHELLFISH IMMUNOLOGY 2023; 138:108827. [PMID: 37207887 DOI: 10.1016/j.fsi.2023.108827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/08/2023] [Accepted: 05/15/2023] [Indexed: 05/21/2023]
Abstract
Nocardia seriolae is the main pathogen of fish nocardiosis. In our previous study, alanine dehydrogenase was identified as a potential virulence factor of N. seriolae. On the basis of this fact, the alanine dehydrogenase gene of N. seriolae (NsAld) was knocked out to establish the strain ΔNsAld for vaccine development against fish nocardiosis in this study. The LD50 of strain ΔNsAld was 3.90 × 105 CFU/fish, higher than that of wild strain (5.28 × 104 CFU/fish) significantly (p < 0.05). When the strain ΔNsAld was used as a live vaccine to immunize hybrid snakehead (Channa maculata ♀ × Channa argus ♂) at 2.47 × 105 CFU/fish by intraperitoneal injection, the non-specific immune indexes (LZM, CAT, AKP, ACP and SOD activities), specific antibody (IgM) titers and several immune-related genes (CD4, CD8α, IL-1β, MHCIα, MHCIIα and TNFα) were up-regulated in different tissues, indicating that this vaccine could induce humoral and cell-mediated immune responses. Furthermore, the relative percentage survival (RPS) of ΔNsAld vaccine was calculated as 76.48% after wild N. seriolae challenge. All these results suggest that the strain ΔNsAld could be a potential candidate for live vaccine development to control fish nocardiosis in aquaculture.
Collapse
Affiliation(s)
- Yansheng Liu
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Tingting Weng
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Xuhao Pan
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Yiming Wen
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Huiyuan Yang
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Jianlin Chen
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University, Zhanjiang, Guangdong, China.
| | - Liqun Xia
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University, Zhanjiang, Guangdong, China.
| |
Collapse
|
6
|
Li B, Chen J, Huang P, Weng T, Wen Y, Yang H, Liu Y, Xia L. Induction of attenuated Nocardia seriolae and their use as live vaccine trials against fish nocardiosis. FISH & SHELLFISH IMMUNOLOGY 2022; 131:10-20. [PMID: 36162777 DOI: 10.1016/j.fsi.2022.09.053] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/09/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Nocardia seriolae, a Gram-positive facultative intercellular pathogen, has been identified as the causative agent of fish nocardiosis, causing substantial mortality and morbidity of a wide range of fish species. Looking into that fact, the effective vaccine against this pathogen is urgently needed to control the significant losses in aquaculture practices. In order to induct attenuated strains for developing the potential live vaccines, the mutagenic N. seriolae strain S-250 and U-20 were obtained from wild-type strain ZJ0503 through continuous passaging and ultraviolet (UV) irradiation, respectively. Additionally, the biological characteristic, virulence, stability, mediating immune response and supplying protective efficacy to hybrid snakehead of the S-250 and U-20 strains were determined in the present study. The results showed that U-20 strain displayed dramatic changes in morphological characteristic and significant decreased in the virulence to hybrid snakehead, while that of S-250 strain had no obvious different in comparison to ZJ0503 strain. When hybrid snakehead were intraperitoneally injected with ZJ0503, S-250 and U-20 strains at their respective sub-clinical dosage, the non-specific immunity parameters (serum LYZ, POD, ACP, AKP and SOD activities), specific antibody (IgM) titers production and immune-related genes (CC1, CC2, IL-1β, IL-8, TNFα, IFNγ, MHCIα, MHCIIα, CD4, CD8α, TCRα and TCRβ) expression were up-regulated, indicating that they were able to trigger humoral and cell-mediated immune responses. Furthermore, the protective efficacy in hybrid snakehead after vaccination with ZJ0503, S-250 and U-20 strains, in terms of relative percentage survival (RPS), were 28.85%, 56.89% and 89.65% respectively. Taken together, two attenuated N. seriolae strains S-250 and U-20 were obtained successfully and they could elicit strong immune response and supply protective efficacy to hybrid snakehead against N. seriolae, which suggested that these two attenuated strains were the potential candidates for live vaccine development to control fish nocardiosis in aquaculture.
Collapse
Affiliation(s)
- Bei Li
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Jianlin Chen
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University, Zhanjiang, Guangdong, China.
| | - Pujiang Huang
- Shenzhen Fishery Development and Research Center, Shenzhen, Guangdong, China
| | - Tingting Weng
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Yiming Wen
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Huiyuan Yang
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Yansheng Liu
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Liqun Xia
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University, Zhanjiang, Guangdong, China.
| |
Collapse
|
7
|
Wang W, Hou S, Chen J, Xia L, Lu Y. Construction of an attenuated glutamyl endopeptidase deletion strain of Nocardia seriolae. FISH & SHELLFISH IMMUNOLOGY 2022; 129:161-169. [PMID: 36002085 DOI: 10.1016/j.fsi.2022.08.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/17/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
The glutamyl endopeptidase homolog of Nocardia seriolae (GluNS) has been proved to be a potential virulence factor in our previous study. Present investigation was carried out to construct an attenuated N. seriolae strain by deletion with GluNS gene and evaluate its protective immunity in head snakehead. A deletion strain (NS-ΔGluNS) was established by knockout of gene GluNS from wild strain N. seriolae ZJ0503 via homologous recombination. The LD50 of NS-ΔGluNS in 3.41 × 106 cfu/mL was significantly increased than that of wild strain in 4.75 × 105 cfu/mL, indicating that the virulence of N. seriolae has been attenuated with the knockout of GluNS. Meanwhile, applying NS-ΔGluNS as an attenuated live vaccine to immune hybrid snakehead, the non-specific immunity parameters (serum LYZ, POD, ACP, and AKP activities), specific antibody (IgM) titers production and immune-related genes (MHCIα, CD4, and IL-8) expression were up-regulated in different tissues, which indicated that they were able to trigger humoral and cell-mediated immune responses. Furthermore, the protective efficacy in hybrid snakehead after vaccination with NS-ΔGluNS shown 73.53% relative percentage survival (RPS). Taken together, the attenuated NS-ΔGluNS was obtained successfully and it could elicit strong immune response and supply protective efficacy to hybrid snakehead against N. seriolae wild strain.
Collapse
Affiliation(s)
- Wenji Wang
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524088, China; Shenzhen Institute of Guangdong Ocean University, Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China
| | - Suying Hou
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524088, China; Shenzhen Institute of Guangdong Ocean University, Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China
| | - Jianlin Chen
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524088, China; Shenzhen Institute of Guangdong Ocean University, Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China
| | - Liqun Xia
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524088, China; Shenzhen Institute of Guangdong Ocean University, Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China.
| | - Yishan Lu
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524088, China; Shenzhen Institute of Guangdong Ocean University, Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China.
| |
Collapse
|
8
|
Juste RA, Ferreras-Colino E, de la Fuente J, Domínguez M, Risalde MA, Domínguez L, Cabezas-Cruz A, Gortázar C. Heat inactivated mycobacteria, alpha-gal and zebra fish: insights gained from experiences with two promising trained immunity inductors and a validated animal model. Immunol Suppl 2022; 167:139-153. [PMID: 35752944 DOI: 10.1111/imm.13529] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/22/2022] [Indexed: 11/30/2022]
Abstract
Trained immunity (TRAIM) may be defined as a form of memory where innate immune cells such as monocytes, macrophages, dendritic and natural killer (NK) cells undergo an epigenetic reprogramming that enhances their primary defensive capabilities. Cross-pathogen protective TRAIM can be triggered in different hosts by exposure to live microbes or microbe-derived products such as heat-inactivated Mycobacterium bovis or with the glycan α-Gal to elicit protective responses against several pathogens. We review the TRAIM paradigm using two models representing distinct scales of immune sensitization: the whole bacterial cell and one of its building blocks, the polysaccharides or glycans. Observations point out to macrophage lytic capabilities and cytokine regulation as two key components in nonspecific innate immune responses against infections. The study of the TRAIM response deserves attention to better characterize the evolution of host-pathogen cooperation both for identifying the etiology of some diseases and for finding new therapeutic strategies. In this field, the zebrafish provides a convenient and complete biological system that could help to deepen in the knowledge of TRAIM-mediated mechanisms in pathogen-host interactions. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ramón A Juste
- Animal Health Department, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Derio, Bizkaia, Spain.,NySA. Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Villaviciosa, Asturias, Spain
| | - Elisa Ferreras-Colino
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, Ciudad Real, Spain
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, Ciudad Real, Spain.,Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Mercedes Domínguez
- Unidad de Inmunología Microbiana, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Carretera Pozuelo-Majadahonda km 2, 28220 Majadahonda, Madrid, Spain
| | - María A Risalde
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, Facultad de Veterinaria, Universidad de Córdoba (UCO), Córdoba, Spain.,CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Lucas Domínguez
- VISAVET Health Surveillance Centre, Complutense University of Madrid, 28040, Madrid, Spain.,Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - Alejandro Cabezas-Cruz
- UMR BIPAR, INRAE, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | - Christian Gortázar
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, Ciudad Real, Spain
| |
Collapse
|
9
|
Angulo M, Angulo C. Trained immunity against diseases in domestic animals. Acta Trop 2022; 229:106361. [PMID: 35149041 DOI: 10.1016/j.actatropica.2022.106361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 11/15/2022]
Abstract
Trained immunity is a biological concept that has been demonstrated in different animal species, including human beings. Evidences indicate that innate immune cells can be trained and have a "memory". Under this concept, studies have shown that a first stimulus can potentiate immune responses upon a second one or protect upon homologous or heterologous pathogenic challenges. Research progress on trained innate immunity in mouse models and human beings has provided key information of this phenomenon. In domestic animals, this concept offers a heterologous protection against diseases. Recent studies in domestic animals have demonstrated that trained immunity is induced even by mucosal routes rather than only parenteral routes, as previously evidenced in mice and humans. This situation has led to a major breakthrough in the biotechnology field. Remarkably, the recent first proof-of-concept in calves and goats provides a reality beyond trained immunity as an affordable immunobiotechnological approach to control diseases. Currently, several responses to questions that have been deciphered in mouse and humans seem different in domestic animals; even these differences have been observed among animal species and breeds, which open new questions and challenges. The information of mechanistic studies in domestic animals based on the trained immunity paradigm has not been integrated before; therefore, it needs to be discussed and accurately presented. Moreover, prospects should be defined and biotechnological perspectives provided to promote research and development (R&D) to become a near reality in domestic animal, so this is the main objective of the review.
Collapse
Affiliation(s)
- Miriam Angulo
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz B.C.S. 23090, México.
| | - Carlos Angulo
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz B.C.S. 23090, México.
| |
Collapse
|
10
|
Arega SM, Knobel DL, Toka FN, Conan A. Non-specific effects of veterinary vaccines: a systematic review. Vaccine 2021; 40:1655-1664. [PMID: 34815120 DOI: 10.1016/j.vaccine.2021.11.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 11/01/2021] [Accepted: 11/08/2021] [Indexed: 12/11/2022]
Abstract
The benefits of vaccines have been centred on their specific effects on subsequent infections by target pathogens. Recent studies, however, have opened up new insights into additional effects of vaccines known as non-specific effects (NSEs) or heterologous effects of vaccines. While several articles have reviewed epidemiological and immunological evidence for NSEs of vaccines in humans, similar works on veterinary vaccines are scarce. The objective of this paper was to review the findings of published studies on NSEs of vaccines developed or repurposed for use in animals. In total 8412 titles were retrieved from PubMed and CABI databases on the 30th of April 2021. After the final stage of screening, 45 eligible articles were included in the review. Data from these articles were summarised and presented here. In general, most of the vaccines studied in the reviewed articles have beneficial NSEs against multiple pathogens and disease conditions. There were, however, fewe studies reporting detrimental NSEs from both non-live and live vaccines which is in contrast to the currently existing evidence of beneficial NSEs of live vaccines and detrimental NSEs of non-live vaccines. This review may be used as a complement for future review of RCT studies of NSEs of vaccines in animals and provide a useful addition to the evolving understanding of the NSEs of vaccines.
Collapse
Affiliation(s)
- Sintayehu M Arega
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis.
| | - Darryn L Knobel
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis; Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria, South Africa
| | - Felix N Toka
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| | - Anne Conan
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis; Center for One Health Research and Policy Advice, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region
| |
Collapse
|
11
|
Development of Fish Immunity and the Role of β-Glucan in Immune Responses. Molecules 2020; 25:molecules25225378. [PMID: 33213001 PMCID: PMC7698520 DOI: 10.3390/molecules25225378] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/21/2020] [Accepted: 11/04/2020] [Indexed: 02/06/2023] Open
Abstract
Administration of β-glucans through various routes, including immersion, dietary inclusion, or injection, have been found to stimulate various facets of immune responses, such as resistance to infections and resistance to environmental stress. β-Glucans used as an immunomodulatory food supplement have been found beneficial in eliciting immunity in commercial aquaculture. Despite extensive research involving more than 3000 published studies, knowledge of the receptors involved in recognition of β-glucans, their downstream signaling, and overall mechanisms of action is still lacking. The aim of this review is to summarize and discuss what is currently known about of the use of β-glucans in fish.
Collapse
|
12
|
Byrne KA, Loving CL, McGill JL. Innate Immunomodulation in Food Animals: Evidence for Trained Immunity? Front Immunol 2020; 11:1099. [PMID: 32582185 PMCID: PMC7291600 DOI: 10.3389/fimmu.2020.01099] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/06/2020] [Indexed: 01/07/2023] Open
Abstract
Antimicrobial resistance (AMR) is a significant problem in health care, animal health, and food safety. To limit AMR, there is a need for alternatives to antibiotics to enhance disease resistance and support judicious antibiotic usage in animals and humans. Immunomodulation is a promising strategy to enhance disease resistance without antibiotics in food animals. One rapidly evolving field of immunomodulation is innate memory in which innate immune cells undergo epigenetic changes of chromatin remodeling and metabolic reprogramming upon a priming event that results in either enhanced or suppressed responsiveness to secondary stimuli (training or tolerance, respectively). Exposure to live agents such as bacille Calmette-Guerin (BCG) or microbe-derived products such as LPS or yeast cell wall ß-glucans can reprogram or "train" the innate immune system. Over the last decade, significant advancements increased our understanding of innate training in humans and rodent models, and strategies are being developed to specifically target or regulate innate memory. In veterinary species, the concept of enhancing the innate immune system is not new; however, there are few available studies which have purposefully investigated innate training as it has been defined in human literature. The development of targeted approaches to engage innate training in food animals, with the practical goal of enhancing the capacity to limit disease without the use of antibiotics, is an area which deserves attention. In this review, we provide an overview of innate immunomodulation and memory, and the mechanisms which regulate this long-term functional reprogramming in other animals (e.g., humans, rodents). We focus on studies describing innate training, or similar phenomenon (often referred to as heterologous or non-specific protection), in cattle, sheep, goats, swine, poultry, and fish species; and discuss the potential benefits and shortcomings of engaging innate training for enhancing disease resistance.
Collapse
Affiliation(s)
- Kristen A. Byrne
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Services, USDA, Ames, IA, United States
| | - Crystal L. Loving
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Services, USDA, Ames, IA, United States
| | - Jodi L. McGill
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
13
|
Matsumoto M, Hayashi K, Araki K, Nakanishi T, Yamamoto A. Availability of culture filtrate protein-10 (CFP-10) secreted from Mycobacterium pseudoshottsii for mycobacteriosis diagnosis in ginbuna crucian carp Carrasius auratus langsdorfii. JOURNAL OF FISH DISEASES 2020; 43:81-89. [PMID: 31701546 DOI: 10.1111/jfd.13108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 06/10/2023]
Abstract
Mycobacteriosis in cultured fish is a challenge for the aquaculture industry worldwide. Treatment by chemical administration is difficult and no effective vaccine has been developed. Therefore, detection and isolation by early diagnosis are important for prevention of the spread of the disease. In mammals, interferon gamma release assays have been established for detection of tuberculosis; these tests are based on the delayed-type hypersensitivity (DTH) response against culture filtrate protein-10 (CFP-10) and the 6-kDa early secreted antigen target (ESAT-6) of Mycobacterium tuberculosis. On the other hand, little is known about the fish immune response against the ESAT-6 and CFP-10 proteins of mycobacteria, although these responses should find application in the diagnosis of mycobacteriosis in fish. In the present study, we identified ESAT-6 and CFP-10 from Mycobacterium pseudoshottsii and cloned the corresponding genes. Intraperitoneal injection of the corresponding DNA plasmid constructs in ginbuna crucian carp yielded increased expression of the fish interferon-γ1-1-encoding gene (IFN-γ1-1). In contrast, IFN-γ1-1 expression accompanied by DTH response was observed only in the CFP-10-DNA plasmid-injected fish. Furthermore, fish that had been prophylactically injected with CFP-10-DNA plasmid exhibited increased survival of M. pseudoshottsii infection. Taken together, these results suggested that CFP-10 may facilitate diagnosis of mycobacteriosis.
Collapse
Affiliation(s)
- Megumi Matsumoto
- Department of Marine Bioscience, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Kazuma Hayashi
- Faculty of Fisheries, Kagoshima University, Kagoshima, Japan
| | - Kyosuke Araki
- Department of Marine Bioscience, Tokyo University of Marine Science and Technology, Tokyo, Japan
- Faculty of Fisheries, Kagoshima University, Kagoshima, Japan
| | - Teruyuki Nakanishi
- Department of Veterinary Medicine, Nihon University, Fujisawa, Kanagawa, Japan
| | - Atsushi Yamamoto
- Department of Marine Bioscience, Tokyo University of Marine Science and Technology, Tokyo, Japan
- Faculty of Fisheries, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
14
|
Matsuura Y, Terashima S, Takano T, Matsuyama T. Current status of fish vaccines in Japan. FISH & SHELLFISH IMMUNOLOGY 2019; 95:236-247. [PMID: 31586679 DOI: 10.1016/j.fsi.2019.09.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 09/13/2019] [Accepted: 09/14/2019] [Indexed: 06/10/2023]
Abstract
Aquaculture is an important industry in Japan for the sustainable production of fish. It contributes to the diversity of Japanese traditional food culture, which uses fish such as "sushi" and "sashimi". In the recent aquaculture setting in Japan, infectious diseases have been an unavoidable problem and have caused serious economic losses. Therefore, there is an urgent need to overcome the disease problem to increase the productivity of aquaculture. Although our country has developed various effective vaccines against fish pathogens, which have contributed to disease prevention on fish farms, infectious diseases that cannot be controlled by conventional inactivated vaccines are still a problem. Therefore, other approaches to developing effective vaccines other than inactivated vaccines are required. This review introduces the vaccine used in Japan within the context of the current status of finfish aquacultural production and disease problems. This review also summarizes the current research into vaccine development and discusses the future perspectives of fish vaccines, focusing on the problems associated with vaccine promotion in Japan.
Collapse
Affiliation(s)
- Yuta Matsuura
- Research Center of Fish Diseases, National Research Institute of Aquaculture, Japan Fisheries Research and Education Agency, Minami.-Ise, Mie, Japan
| | - Sachiko Terashima
- Research Center of Fish Diseases, National Research Institute of Aquaculture, Japan Fisheries Research and Education Agency, Minami.-Ise, Mie, Japan
| | - Tomokazu Takano
- Research Center of Fish Diseases, National Research Institute of Aquaculture, Japan Fisheries Research and Education Agency, Minami.-Ise, Mie, Japan
| | - Tomomasa Matsuyama
- Research Center of Fish Diseases, National Research Institute of Aquaculture, Japan Fisheries Research and Education Agency, Minami.-Ise, Mie, Japan.
| |
Collapse
|
15
|
Matsumoto M, Kubota T, Fujita S, Shiozaki K, Kishida S, Yamamoto A. Elucidation of the Interleukin 12 Production Mechanism during Intracellular Bacterial Infection in Amberjack, Seriola dumerili. Infect Immun 2019; 87:e00459-19. [PMID: 31501250 PMCID: PMC6803335 DOI: 10.1128/iai.00459-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 08/27/2019] [Indexed: 11/20/2022] Open
Abstract
Intracellular bacterial infections affect all vertebrates. Cultured fish are particularly vulnerable because no effective protection measures have been established since such infections emerged approximately 50 years ago. As in other vertebrates, the induction of cell-mediated immunity (CMI) plays an important role in protecting fish against infection. However, details of the mechanism of CMI induction in fish have not been clarified. In the present study, we focused on the production of interleukin 12 (IL-12), an important factor in CMI induction in fish. Using several different approaches, we investigated IL-12 regulation in amberjack (Seriola dumerili), the species most vulnerable to intracellular bacterial disease. The results of promoter assays and transcription factor gene expression analyses showed that the expression of interferon regulatory factor-1 (IRF-1) and activator protein-1 (AP-1) is necessary for IL-12 production. Phagocytosis of living cells (LCs) of Nocardia seriolae bacteria induced IL-12 production in neutrophils, accompanied by IRF-1 and AP-1 gene expression. Bacteria in which the exported repetitive protein (Erp)-like gene was deleted (Δerp-L) could not establish intracellular parasitism or induce IRF-1 and AP-1 expression or IL-12 production, despite being phagocytosed by neutrophils. These data suggest that IL-12 production is regulated by (i) two transcription factors, IRF-1 and AP-1, (ii) phagocytosis of LCs by neutrophils, and (iii) one or more cell components of LCs. Our results enhance the understanding of the immune response to intracellular bacterial infections in vertebrates and could facilitate the discovery of new agents to prevent intracellular bacterial disease.
Collapse
Affiliation(s)
- Megumi Matsumoto
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | - Taisei Kubota
- Faculty of Fisheries, Kagoshima University, Kagoshima, Japan
| | - Sinsuke Fujita
- Faculty of Fisheries, Kagoshima University, Kagoshima, Japan
| | - Kazuhiro Shiozaki
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
- Faculty of Fisheries, Kagoshima University, Kagoshima, Japan
| | - Shosei Kishida
- Faculty of Medicine, Kagoshima University, Kagoshima, Japan
| | - Atsushi Yamamoto
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
- Faculty of Fisheries, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
16
|
Petit J, Embregts CWE, Forlenza M, Wiegertjes GF. Evidence of Trained Immunity in a Fish: Conserved Features in Carp Macrophages. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 203:216-224. [PMID: 31127029 PMCID: PMC6571502 DOI: 10.4049/jimmunol.1900137] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 04/22/2019] [Indexed: 02/06/2023]
Abstract
Trained immunity is a form of innate immune memory best described in mice and humans. Clear evidence of the evolutionary conservation of trained immunity in teleost fish is lacking. Given the evolutionary position of teleosts as early vertebrates with a fully developed immune system, we hypothesize that teleost myeloid cells show features of trained immunity common to those observed in mammalian macrophages. These would at least include the ability of fish macrophages to mount heightened responses to a secondary stimulus in a nonspecific manner. We established an in vitro model to study trained immunity in fish by adapting a well-described culture system of head kidney-derived macrophages of common carp. A soluble NOD-specific ligand and a soluble β-glucan were used to train carp macrophages, after which cells were rested for 6 d prior to exposure to a secondary stimulus. Unstimulated trained macrophages displayed evidence of metabolic reprogramming as well as heightened phagocytosis and increased expression of the inflammatory cytokines il6 and tnf-α. Stimulated trained macrophages showed heightened production of reactive oxygen and nitrogen species as compared with the corresponding stimulated but untrained cells. We discuss the value of our findings for future studies on trained immunity in teleost fish.
Collapse
Affiliation(s)
- Jules Petit
- Cell Biology and Immunology Group, Wageningen University & Research, 6708 WD Wageningen, the Netherlands; and
| | - Carmen W E Embregts
- Cell Biology and Immunology Group, Wageningen University & Research, 6708 WD Wageningen, the Netherlands; and
| | - Maria Forlenza
- Cell Biology and Immunology Group, Wageningen University & Research, 6708 WD Wageningen, the Netherlands; and
| | - Geert F Wiegertjes
- Cell Biology and Immunology Group, Wageningen University & Research, 6708 WD Wageningen, the Netherlands; and
- Aquaculture and Fisheries Group, Wageningen University & Research, 6708 WD Wageningen, the Netherlands
| |
Collapse
|
17
|
Kato G, Kakazu T, Yamada M, Lau LM, Nakajima K, Sato S, Nakanishi T, Endo M, Sano M. Granulomatous inflammation in ginbuna crucian carp Carassius auratus langsdorfii against Mycobacterium gordonae. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 91:93-100. [PMID: 30385316 DOI: 10.1016/j.dci.2018.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/27/2018] [Accepted: 10/27/2018] [Indexed: 06/08/2023]
Abstract
In this study, we investigated the immune responses against Mycobacterium gordonae in ginbuna crucian carp. Cumulative mortality of ginbuna injected with 2.0 × 107 CFU of M. gordonae was 50% at 170 days post-infection. CD4-1, CD8α, T-bet and IFNγ2 gene expression levels were significantly upregulated in ginbuna injected with 1.9 × 108 CFU of M. gordonae at 21 and 28 days post-infection. The CD4-2 level did not change during the experiment. Granulomatous responses consisted of central macrophage accumulation and surrounding lymphocytes, and Ziehl-Neelsen-positive bacteria were observed in the trunk kidney of the challenged fish. Immunohistochemistry using anti-ginbuna IFNγs and anti-ginbuna CD4-1 polyclonal antibody revealed that the marginal lymphocytes were positive for CD4-1, and the IFNγ-producing cells surrounded the mycobacterial cell-laden phagocytes. These results suggest that CD4-1+ cells and IFNγ2 play important roles in the granulomatous inflammation against Mycobacterial infections in teleosts.
Collapse
Affiliation(s)
- Goshi Kato
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, 108-8477, Japan.
| | - Taichi Kakazu
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, 108-8477, Japan
| | - Mitsuo Yamada
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, 108-8477, Japan
| | - Lik-Ming Lau
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, 108-8477, Japan
| | - Kazue Nakajima
- Niigata Prefectural Inland Water Fisheries Experiment Station, Niigata, 940-1137, Japan
| | - Shoh Sato
- Niigata Prefectural Inland Water Fisheries Experiment Station, Niigata, 940-1137, Japan
| | - Teruyuki Nakanishi
- Department of Veterinary Medicine, Nihon University, Kanagawa, 252-0880, Japan
| | - Makoto Endo
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, 108-8477, Japan
| | - Motohiko Sano
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, 108-8477, Japan
| |
Collapse
|
18
|
Ho PY, Chen YC, Maekawa S, Hu HH, Tsai AW, Chang YF, Wang PC, Chen SC. Efficacy of recombinant protein vaccines for protection against Nocardia seriolae infection in the largemouth bass Micropterus salmoides. FISH & SHELLFISH IMMUNOLOGY 2018; 78:35-41. [PMID: 29665404 DOI: 10.1016/j.fsi.2018.04.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 06/08/2023]
Abstract
A reverse vaccinology-based survey of potent antigens associated with fish nocardiosis was conducted using the largemouth bass, Micropterus salmoides, with an aim to develop subunit vaccines. The antigens selected from the virulent strain Nocardia seriolae 961113 include the gene products of NGL2579 (GAPDH), NGL5701 (MMP), NGL4377 (OCTase), NGL4486 (ABC transporter), NGL3372 (LLE), NGL3388 (GHf10), NGL6627 (Antigen-85), NGL6696 (Esterase), and NGL6936 (CBP). These antigens were heterologously expressed in E. coli BL21 (DE3) for recombinant protein production. Then fish were vaccinated was these antigens, boosted at 2 weeks, and challenged with N. seriolae at 6 weeks after vaccination. The relative protection survival assay revealed high and significant protection efficacies of 94.45, 50.00, and 44.45 in fish that received the NGL3388 (GHf10), NGL6936 (CBP), and NGL3372 (LLE) vaccines, respectively. There were no apparent relationships or differences in tissue lesions among the administered vaccines. The serum titers against the bacterial preparations were higher for all vaccinated groups than for the control group at 4 weeks after immunization. However, no significant difference in serum titer was found at 6 weeks after immunization. The results of this study demonstrate that subunit vaccines against fish nocardiosis have differential effects, but are highly promising for nocardial prophylaxis.
Collapse
Affiliation(s)
- Ping-Yueh Ho
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, No. 1 Shuefu Road, Neipu, Pingtung 91201, Taiwan, ROC
| | - Yao-Chung Chen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, No. 1 Shuefu Road, Neipu, Pingtung 91201, Taiwan, ROC
| | - Shun Maekawa
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, No. 1 Shuefu Road, Neipu, Pingtung 91201, Taiwan, ROC
| | - Hsiang-Hui Hu
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, No. 1 Shuefu Road, Neipu, Pingtung 91201, Taiwan, ROC
| | - An-Wei Tsai
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, No. 1 Shuefu Road, Neipu, Pingtung 91201, Taiwan, ROC
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, 14853, New York, United States
| | - Pei-Chi Wang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, No. 1 Shuefu Road, Neipu, Pingtung 91201, Taiwan, ROC.
| | - Shih-Chu Chen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, No. 1 Shuefu Road, Neipu, Pingtung 91201, Taiwan, ROC; Research Center for Animal Biologics, National Pingtung University of Science and Technology, No. 1 Shuefu Road, Neipu, Pingtung 91201, Taiwan, ROC.
| |
Collapse
|
19
|
Maekawa S, Yoshida T, Wang PC, Chen SC. Current knowledge of nocardiosis in teleost fish. JOURNAL OF FISH DISEASES 2018; 41:413-419. [PMID: 29341219 DOI: 10.1111/jfd.12782] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/21/2017] [Accepted: 11/29/2017] [Indexed: 06/07/2023]
Abstract
Nocardia sp. is the causative agent of nocardiosis, a lethal granulomatous disease of the skin, muscle, and various inner tissues affecting various teleost and shellfish. Four species of Nocardia have been isolated from diseased fish and shellfish, namely Nocardia asteroides, Nocardia seriolae, Nocardia salmonicida and Nocardia crassostreae. Therefore, in fish aquaculture, nocardiosis has caused severe economic losses, especially in the Asian region. Considerable research has been performed, since the first report of identified Nocardia sp. in fish, to characterize Nocardia sp. and identify rapid detection techniques, immune response against infection and prophylactic approaches. In this review, the current state of knowledge about nocardiosis in fish has been presented, including the pathogenesis, diagnosis, host immune response and vaccine development.
Collapse
Affiliation(s)
- S Maekawa
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - T Yoshida
- Department of Marine Biology and Environmental Sciences, Faculty of Agriculture, Miyazaki University, Miyazaki, Japan
| | - P-C Wang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Southern Taiwan Fish Disease Centre, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - S-C Chen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Southern Taiwan Fish Disease Centre, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- International Degree Program of Ornamental Fish Science and Technology, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|
20
|
Matsumoto M, Araki K, Hayashi K, Takeuchi Y, Shiozaki K, Suetake H, Yamamoto A. Adjuvant effect of recombinant interleukin-12 in the Nocardiosis formalin-killed vaccine of the amberjack Seriola dumerili. FISH & SHELLFISH IMMUNOLOGY 2017; 67:263-269. [PMID: 28602739 DOI: 10.1016/j.fsi.2017.06.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/13/2017] [Accepted: 06/06/2017] [Indexed: 06/07/2023]
Abstract
Nocardiosis causes serious economic damage in the fish farming of Japanese yellowtail fish. Nocardia seriolae identified as pathogenic bacterium is an intracellular-pathogen. In general, induction of cell-mediated immunity (CMI) is effective in infection defense against intracellular-pathogen. However, the conventional formalin-killed N. seriolae (FKC) vaccine induces humoral immunity. Interleukin-12 (IL-12) is Th1 type heterodimeric cytokine and induces cell differentiation in mammals. Our previous study showed that recombinant amberjack IL-12 has a role in CMI induction in vitro and could be a possible CMI inducing adjuvant. However, its adjuvant effect of fish IL-12 was not studied. In the present study, six types of amberjack recombinant IL-12 (rIL-12) were mixed and injected into amberjack with FKC. Firstly, we analyzed Th1- and Th2- related gene expression and monitored Th1/Th2 status followed by investigation of antibody titer. As a result, Th1-type immunity was induced in FKC + rIL-12 vaccinated fish. Secondly, we checked Th1/Th2 status of vaccinated fish after 10 days of N. seriolae infection using the expression of related genes. High T-bet/GATA-3 ratio was observed in FKC + rIL-12 vaccinated fish, suggesting that Th1 cells possesing antigen memory were induced against N. seriolae infection. Finally, the survival rate in challenge test showed that 88% of FKC + rIL-12 vaccinated fish was survived at 34 days after N. seriolae injection whereas PBS (control) and FKC only were exterminated. These result suggest that i) rIL-12 is viable CMI inducible adjuvant and ii) production of Th1 cells having antigen memory resulting from activation of IL-12 signaling pathway is important for defense against N. seriolae infection.
Collapse
Affiliation(s)
- Megumi Matsumoto
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-8580, Japan
| | - Kyosuke Araki
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-8580, Japan; Faculty of Fisheries, Kagoshima University, Kagoshima 890-0056, Japan
| | - Kazuma Hayashi
- Faculty of Fisheries, Kagoshima University, Kagoshima 890-0056, Japan
| | - Yutaka Takeuchi
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-8580, Japan; Faculty of Fisheries, Kagoshima University, Kagoshima 890-0056, Japan
| | - Kazuhiro Shiozaki
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-8580, Japan; Faculty of Fisheries, Kagoshima University, Kagoshima 890-0056, Japan
| | - Hiroaki Suetake
- Department of Marine Bioscience and Technology, Fukui Prefectural University, Fukui, Japan
| | - Atsushi Yamamoto
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-8580, Japan; Faculty of Fisheries, Kagoshima University, Kagoshima 890-0056, Japan.
| |
Collapse
|
21
|
Robledo D, Hermida M, Rubiolo JA, Fernández C, Blanco A, Bouza C, Martínez P. Integrating genomic resources of flatfish (Pleuronectiformes) to boost aquaculture production. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2016; 21:41-55. [PMID: 28063346 DOI: 10.1016/j.cbd.2016.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/09/2016] [Accepted: 12/13/2016] [Indexed: 12/15/2022]
Abstract
Flatfish have a high market acceptance thus representing a profitable aquaculture production. The main farmed species is the turbot (Scophthalmus maximus) followed by Japanese flounder (Paralichthys olivaceous) and tongue sole (Cynoglossus semilaevis), but other species like Atlantic halibut (Hippoglossus hippoglossus), Senegalese sole (Solea senegalensis) and common sole (Solea solea) also register an important production and are very promising for farming. Important genomic resources are available for most of these species including whole genome sequencing projects, genetic maps and transcriptomes. In this work, we integrate all available genomic information of these species within a common framework, taking as reference the whole assembled genomes of turbot and tongue sole (>210× coverage). New insights related to the genetic basis of productive traits and new data useful to understand the evolutionary origin and diversification of this group were obtained. Despite a general 1:1 chromosome syntenic relationship between species, the comparison of turbot and tongue sole genomes showed huge intrachromosomic reorganizations. The integration of available mapping information supported specific chromosome fusions along flatfish evolution and facilitated the comparison between species of previously reported genetic associations for productive traits. When comparing transcriptomic resources of the six species, a common set of ~2500 othologues and ~150 common miRNAs were identified, and specific sets of putative missing genes were detected in flatfish transcriptomes, likely reflecting their evolutionary diversification.
Collapse
Affiliation(s)
- Diego Robledo
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Biology (CIBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Miguel Hermida
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Juan A Rubiolo
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Carlos Fernández
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Andrés Blanco
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Carmen Bouza
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Paulino Martínez
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| |
Collapse
|
22
|
Petit J, Wiegertjes GF. Long-lived effects of administering β-glucans: Indications for trained immunity in fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 64:93-102. [PMID: 26945622 DOI: 10.1016/j.dci.2016.03.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/18/2016] [Accepted: 03/02/2016] [Indexed: 06/05/2023]
Abstract
Over the past decades, it has become evident that immune-modulation of fish with β-glucans, using injection, dietary or even immersion routes of administration, has stimulating but presumed short-lived effects on both intestinal and systemic immunity and can increase protection against a subsequent pathogenic challenge. Although the exact effects can be variable depending on, among others, fish species and administration route, the immune-stimulating effects of β-glucans on the immune system of fish appear to be universal. This review provides a condensed update of the most recent literature describing the effects of β-glucans on the teleost fish immune system. We shortly discuss possible mechanisms influencing immune-stimulation by β-glucans, including microbial composition of the gut, receptor recognition and downstream signalling. Of interest, in mammalian monocytes, β-glucans are potent inducers of trained immunity. First, we screened the literature for indications of this phenomenon in fish. Criteria that we applied include indications for at least one out of three features considered characteristic of trained immunity; (i) providing protection against a secondary infection in a T- and B-lymphocyte independent manner, (ii) conferring increased resistance upon re-infection and, (iii) relying on key roles for innate immune cell types such as natural killer cells and macrophages. We conclude that several indications exist that support the notion that the innate immune system of teleost fish can be trained. Second, we screened the literature for indications of long-lived effects on innate immunity of fish after administering β-glucans, a criterion which could help to identify key roles for macrophages on resistance to infection. We discuss whether β-glucans, as well-known immune-stimulants, are able to train the immune system of fish and argue in favour of further studies designed to specifically investigate this phenomenon in fish.
Collapse
Affiliation(s)
- Jules Petit
- Cell Biology and Immunology Group, Wageningen Institute of Animal Sciences, Wageningen University, PO Box 338, 6700 AH Wageningen, The Netherlands
| | - Geert F Wiegertjes
- Cell Biology and Immunology Group, Wageningen Institute of Animal Sciences, Wageningen University, PO Box 338, 6700 AH Wageningen, The Netherlands.
| |
Collapse
|
23
|
|
24
|
Cho HK, Kim J, Moon JY, Nam BH, Kim YO, Kim WJ, Park JY, An CM, Cheong J, Kong HJ. Microarray analysis of gene expression in olive flounder liver infected with viral haemorrhagic septicaemia virus (VHSV). FISH & SHELLFISH IMMUNOLOGY 2016; 49:66-78. [PMID: 26631808 DOI: 10.1016/j.fsi.2015.11.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/04/2015] [Accepted: 11/23/2015] [Indexed: 06/05/2023]
Abstract
The most fatal viral pathogen in olive flounder Paralichthys olivaceus, is viral hemorrhagic septicemia virus, which afflicts over 48 species of freshwater and marine fish. Here, we performed gene expression profiling on transcripts isolated from VHSV-infected olive flounder livers using a 13 K cDNA microarray chip. A total of 1832 and 1647 genes were upregulated and down-regulated over two-fold, respectively, after infection. A variety of immune-related genes showing significant changes in gene expression were identified in upregulated genes through gene ontology annotation. These genes were grouped into categories such as antibacterial peptide, antigen-recognition and adhesion molecules, apoptosis, cytokine-related pathway, immune system, stress response, and transcription factor and regulatory factors. To verify the cDNA microarray data, we performed quantitative real-time PCR, and the results were similar to the microarray data. In conclusion, these results may be useful for the identification of specific genes or for the diagnosis of VHSV infection in flounder.
Collapse
Affiliation(s)
- Hyun Kook Cho
- Biotechnology Research Division, National Fisheries Research and Development Institute, Busan 46083, Republic of Korea
| | - Julan Kim
- Biotechnology Research Division, National Fisheries Research and Development Institute, Busan 46083, Republic of Korea
| | - Ji Young Moon
- Biotechnology Research Division, National Fisheries Research and Development Institute, Busan 46083, Republic of Korea
| | - Bo-Hye Nam
- Biotechnology Research Division, National Fisheries Research and Development Institute, Busan 46083, Republic of Korea
| | - Young-Ok Kim
- Biotechnology Research Division, National Fisheries Research and Development Institute, Busan 46083, Republic of Korea
| | - Woo-Jin Kim
- Biotechnology Research Division, National Fisheries Research and Development Institute, Busan 46083, Republic of Korea
| | - Jung Youn Park
- Biotechnology Research Division, National Fisheries Research and Development Institute, Busan 46083, Republic of Korea
| | - Cheul Min An
- Biotechnology Research Division, National Fisheries Research and Development Institute, Busan 46083, Republic of Korea
| | - Jaehun Cheong
- Department of Molecular Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Hee Jeong Kong
- Biotechnology Research Division, National Fisheries Research and Development Institute, Busan 46083, Republic of Korea.
| |
Collapse
|
25
|
Oksanen KE, Myllymäki H, Ahava MJ, Mäkinen L, Parikka M, Rämet M. DNA vaccination boosts Bacillus Calmette-Guérin protection against mycobacterial infection in zebrafish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 54:89-96. [PMID: 26363085 DOI: 10.1016/j.dci.2015.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 08/31/2015] [Accepted: 09/03/2015] [Indexed: 06/05/2023]
Abstract
Despite the widespread use of the current Bacillus Calmette-Guérin (BCG) vaccine, tuberculosis is still a major cause of morbidity and mortality worldwide. Vaccination with BCG does not prevent a Mycobacterium tuberculosis infection, nor does it inhibit the reactivation of latent tuberculosis. Here, we show that adult zebrafish are modestly and variably protected from a mycobacterial infection by BCG vaccination. An intraperitoneal (i.p.) BCG vaccination was associated with enhanced survival upon a high-dose (20,000 bacteria) Mycobacterium marinum infection. In addition, BCG-vaccinated fish were more able to restrict a low-dose (30 bacteria) intraperitoneal infection with M. marinum, as indicated by lower bacterial loads at six weeks post infection (wpi). However, the vaccination could not completely prevent an infection. A qRT-PCR analysis comparing BCG-vaccinated and unvaccinated fish upon a mycobacterial infection indicated that the induction of Tumor necrosis factor (TNF) was more modest in vaccinated fish. The partial protection gained by BCG could be boosted by a DNA vaccine combining Ag85B, ESAT6 and a resuscitation-related gene RpfE, suggesting that this combination of antigens could be useful for a future BCG booster vaccine. We conclude that zebrafish is a useful early-phase preclinical model for studying subunit vaccines designed for boosting the effects of BCG.
Collapse
Affiliation(s)
- Kaisa E Oksanen
- BioMediTech, University of Tampere, FIN 33014, Tampere, Finland
| | - Henna Myllymäki
- BioMediTech, University of Tampere, FIN 33014, Tampere, Finland
| | - Maarit J Ahava
- BioMediTech, University of Tampere, FIN 33014, Tampere, Finland
| | - Leena Mäkinen
- BioMediTech, University of Tampere, FIN 33014, Tampere, Finland
| | | | - Mika Rämet
- BioMediTech, University of Tampere, FIN 33014, Tampere, Finland; Department of Pediatrics, Tampere University Hospital, FIN 33521, Tampere, Finland; Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland; PEDEGO Research Unit, and Medical Research Center Oulu, University of Oulu, Oulu, Finland.
| |
Collapse
|
26
|
Yamasaki M, Araki K, Maruyoshi K, Matsumoto M, Nakayasu C, Moritomo T, Nakanishi T, Yamamoto A. Comparative analysis of adaptive immune response after vaccine trials using live attenuated and formalin-killed cells of Edwardsiella tarda in ginbuna crucian carp (Carassius auratus langsdorfii). FISH & SHELLFISH IMMUNOLOGY 2015; 45:437-442. [PMID: 25959574 DOI: 10.1016/j.fsi.2015.04.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 04/27/2015] [Accepted: 04/28/2015] [Indexed: 06/04/2023]
Abstract
Edwardsiella tarda is an intracellular pathogen that causes edwardsiellosis in fish. Although vaccine trials with formalin-killed cells (FKC) have been reported, the vaccinations failed in protect against E. tarda infection. On the other hand, a live attenuated vaccine strategy is effective against edwardsiellosis; however, the mechanism underlying its effectiveness in fish is unclear. In the present study, we compared the adaptive immune responses in fish vaccinated with FKCs and live attenuated vaccines to elucidate the induction of adaptive immune responses following vaccination. After challenge with E. tarda, live cell (LC)-vaccinated fish showed high survival rates, high IFN-g and T-bet gene expression levels, and increased cytotoxic T lymphocytes (CTLs). In contrast, all FKC-vaccinated fish died following E. tarda infection. In addition, FKC vaccination induced high IL-4/13A and IL-10 expression levels and increased antibody titers, whereas Th1-like responses were suppressed. These results indicate that LC vaccination contributes to protection against E. tarda infection by inducing cell-mediated immunity (CMI). Thus our study findings could contribute to the development a vaccine that induces CMI against edwardsiellosis.
Collapse
Affiliation(s)
- Masatoshi Yamasaki
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-8580, Japan
| | - Kyosuke Araki
- Faculty of Fisheries, Kagoshima University, 4-50-20 Shimoarata, Kagoshima 890-0056, Japan.
| | - Kota Maruyoshi
- Faculty of Fisheries, Kagoshima University, 4-50-20 Shimoarata, Kagoshima 890-0056, Japan
| | - Megumi Matsumoto
- Faculty of Fisheries, Kagoshima University, 4-50-20 Shimoarata, Kagoshima 890-0056, Japan
| | - Chihaya Nakayasu
- National Research Institute of Aquaculture, Fisheries Research Agency, Minami-ise, Mie 516-0193, Japan
| | - Tadaaki Moritomo
- College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Teruyuki Nakanishi
- College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Atsushi Yamamoto
- Faculty of Fisheries, Kagoshima University, 4-50-20 Shimoarata, Kagoshima 890-0056, Japan
| |
Collapse
|
27
|
Tafalla C, Bøgwald J, Dalmo RA. Adjuvants and immunostimulants in fish vaccines: current knowledge and future perspectives. FISH & SHELLFISH IMMUNOLOGY 2013; 35:1740-1750. [PMID: 23507338 DOI: 10.1016/j.fsi.2013.02.029] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 02/07/2013] [Accepted: 02/26/2013] [Indexed: 06/01/2023]
Abstract
Vaccination is the most adequate method to control infectious diseases that threaten the aquaculture industry worldwide. Unfortunately, vaccines are usually not able to confer protection on their own; especially those vaccines based on recombinant antigens or inactivated pathogens. Therefore, the use of adjuvants or immunostimulants is often necessary to increase the vaccine efficacy. Traditional adjuvants such as mineral oils are routinely used in different commercial bacterial vaccines available for fish; however, important side effects may occur with this type of adjuvants. A search for alternative molecules or certain combinations of them as adjuvants is desirable in order to increase animal welfare without reducing protection levels. Especially, combinations that may target specific cell responses and thus a specific pathogen, with no or minor side effects, should be explored. Despite this, the oil adjuvants currently used are quite friendlier with respect to side effects compared with the oil adjuvants previously used. The great lack of fish antiviral vaccines also evidences the importance of identifying optimal combinations of a vaccination strategy with the use of a targeting adjuvant, especially for the promising fish antiviral DNA vaccines. In this review, we summarise previous studies performed with both traditional adjuvants as well as the most promising new generation adjuvants such as ligands for Toll receptors or different cytokines, focussing mostly on their protective efficacies, and also on what is known concerning their effects on the fish immune system when delivered in vivo.
Collapse
Affiliation(s)
- Carolina Tafalla
- Centro de Investigación en Sanidad Animal (CISA-INIA), Carretera de Algete a El Casar km. 8.1, Valdeolmos, 28130 Madrid, Spain.
| | | | | |
Collapse
|
28
|
Yamasaki M, Araki K, Nakanishi T, Nakayasu C, Yoshiura Y, Iida T, Yamamoto A. Adaptive immune response to Edwardsiella tarda infection in ginbuna crucian carp, Carassius auratus langsdorfii. Vet Immunol Immunopathol 2013; 153:83-90. [DOI: 10.1016/j.vetimm.2013.02.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 01/24/2013] [Accepted: 02/07/2013] [Indexed: 12/24/2022]
|