1
|
Yang L, Wang C, Huang Y, Xu B, Liu Y, Yu J, Xiong L, Xiao T, Liu Q. Identification of the C1qDC gene family in grass carp (Ctenopharyngodon idellus) and the response of C1qA, C1qB, and C1qC to GCRV infection in vivo and in vitro. FISH & SHELLFISH IMMUNOLOGY 2024; 148:109477. [PMID: 38447782 DOI: 10.1016/j.fsi.2024.109477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/23/2024] [Accepted: 03/03/2024] [Indexed: 03/08/2024]
Abstract
Proteins from the C1q domain-containing (C1qDC) family recognize self-, non-self-, and altered-self ligands and serves as an initiator molecule for the classical complement pathway as well as recognizing immune complexes. In this study, C1qDC gene family members were identified and analyzed in grass carp (Ctenopharyngodon idellus). Members of the C1q subfamily were cloned, and their response to infection with the grass carp virus was investigated. In the grass carp genome, 54 C1qDC genes and 67 isoforms have been identified. Most were located on chromosome 3, with 52 shared zebrafish homologies. Seven substantially differentially expressed C1qDC family genes were identified in the transcriptomes of cytokine-induced killer (CIK) cells infected with grass carp reovirus (GCRV), all of which exhibited sustained upregulation. The opening reading frames of grass carp C1qA, C1qB, and C1qC, belonging to the C1q subfamily, were determined to be 738, 732, and 735 base pairs, encoding 245, 243, and 244 amino acids with molecular weights of 25.81 kDa, 25.63 kDa and 26.16 kDa, respectively. Three genes were detected in the nine collected tissues, and their expression patterns were similar, with the highest expression levels observed in the spleen. In vivo after GCRV infection showed expression trends of C1qA, C1qB, and C1qC in the liver, spleen, and kidney. An N-type pattern in the liver and kidney was characterized by an initial increase followed by a decrease, with the highest expression occurring during the recovering period, and a V-type pattern in the spleen with the lowest expression levels during the death period. In vitro, after GCRV infection showed expression trends of C1qA, C1qB, and C1qC, and this gradually increased within the first 24 h, with a notable increase observed at the 24 h time point. After CIK cells incubation with purified recombinant proteins, rC1qA, rC1qB, and rC1qC for 3 h, followed by GCRV inoculation, the GCRV replication indicated that rC1qC exerted a substantial inhibitory effect on viral replication in CIK cells after 24 h of GCRV inoculation. These findings offer valuable insights into the structure, evolution, and function of the C1qDC family genes and provide a foundational understanding of the immune function of C1q in grass carp.
Collapse
Affiliation(s)
- Le Yang
- Fisheries College, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Chong Wang
- Fisheries College, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Yuhong Huang
- Fisheries College, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Baohong Xu
- Fisheries College, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Lab, Changsha, Hunan, 410128, China
| | - Yi Liu
- Fisheries College, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Jianbo Yu
- Fisheries College, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Liming Xiong
- Fisheries College, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Tiaoyi Xiao
- Fisheries College, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Lab, Changsha, Hunan, 410128, China.
| | - Qiaolin Liu
- Fisheries College, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Lab, Changsha, Hunan, 410128, China.
| |
Collapse
|
2
|
Grinchenko A, Buriak I, Kumeiko V. Invertebrate C1q Domain-Containing Proteins: Molecular Structure, Functional Properties and Biomedical Potential. Mar Drugs 2023; 21:570. [PMID: 37999394 PMCID: PMC10672478 DOI: 10.3390/md21110570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/23/2023] [Accepted: 10/28/2023] [Indexed: 11/25/2023] Open
Abstract
C1q domain-containing proteins (C1qDC proteins) unexpectedly turned out to be widespread molecules among a variety of invertebrates, despite their lack of an integral complement system. Despite the wide distribution in the genomes of various invertebrates, data on the structure and properties of the isolated and characterized C1qDC proteins, which belong to the C1q/TNF superfamily, are sporadic, although they hold great practical potential for the creation of new biotechnologies. This review not only summarizes the current data on the properties of already-isolated or bioengineered C1qDC proteins but also projects further strategies for their study and biomedical application. It has been shown that further broad study of the carbohydrate specificity of the proteins can provide great opportunities, since for many of them only interactions with pathogen-associated molecular patterns (PAMPs) was evaluated and their antimicrobial, antiviral, and fungicidal activities were studied. However, data on the properties of C1qDC proteins, which researchers originally discovered as lectins and therefore studied their fine carbohydrate specificity and antitumor activity, intriguingly show the great potential of this family of proteins for the creation of targeted drug delivery systems, vaccines, and clinical assays for the differential diagnosis of cancer. The ability of invertebrate C1qDC proteins to recognize patterns of aberrant glycosylation of human cell surfaces and interact with mammalian immunoglobulins indicates the great biomedical potential of these molecules.
Collapse
Affiliation(s)
- Andrei Grinchenko
- School of Medicine and Life Sciences, Far Eastern Federal University, 690922 Vladivostok, Russia; (A.G.); (I.B.)
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| | - Ivan Buriak
- School of Medicine and Life Sciences, Far Eastern Federal University, 690922 Vladivostok, Russia; (A.G.); (I.B.)
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| | - Vadim Kumeiko
- School of Medicine and Life Sciences, Far Eastern Federal University, 690922 Vladivostok, Russia; (A.G.); (I.B.)
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| |
Collapse
|
3
|
Sokolnikova Y, Mokrina M, Magarlamov T, Grinchenko A, Kumeiko V. Specification of hemocyte subpopulations based on immune-related activities and the production of the agglutinin MkC1qDC in the bivalve Modiolus kurilensis. Heliyon 2023; 9:e15577. [PMID: 37151667 PMCID: PMC10161718 DOI: 10.1016/j.heliyon.2023.e15577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/12/2023] [Accepted: 04/14/2023] [Indexed: 05/09/2023] Open
Abstract
Bivalves, such as Modiolus are used as indicator organisms to monitor the state of the marine environment. Even though hemocytes are known to play a key role in the adaptive and protective mechanisms of bivalves, these cells are poorly studied in horse-mussel Modiolus kurilensis. In this paper, we present classification of horse-mussel hemocytes based on their immune functions, including the production of specific immune-related molecules, as well as their morphological composition after isolation by density gradient centrifugation. An effective fractionation protocol was adapted to separate four hemocyte subpopulations with distinct morphofunctional profiles. First subpopulation consisted of small under-differentiated hemoblasts (2.20 ± 0.85%) with a bromodeoxyuridine positive nucleus, and did not show any immune reactivity. Second was represented by agranulocytes (24.11 ± 2.40%), with evenly filled cytoplasm containing a well-developed protein-synthesizing apparatus, polysomes, smooth endoplasmic reticulum and mitochondria, and positively stained for myeloperoxidase, acidic proteins, glycogen and neutral polysaccharides. Third subpopulation consisted of eosinophilic granulocytes (62.64 ± 9.32%) that contained the largest number of lysosomes, peroxisomes and vesicles with contents of different density, and showed the highest phosphatase, reactive oxygen species (ROS) and phagocytic activities. Lastly, fourth group, basophilic granulocytes (14.21 ± 0.34%), are main producers of lectin-like protein MkC1qDC, recently discovered in M. kurilensis and characterized by pronounced antibacterial and anticancer activity. These cells characterized by intracytoplasmic of the MkC1qDC localization, forming granule-like bodies visualized with specific antibody. Both granulocytes and agranulocytes showed phagocytic activity and ROS production, and these reactions were more pronounced for eosinophilic granulocytes, suggesting that this group is the key element of the cell-mediated immune response of M. kurilensis. Our results support a concept of bivalve's hemocyte specification with distinct phenotypes.
Collapse
Affiliation(s)
- Yulia Sokolnikova
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041, Vladivostok, Russian Federation
- Corresponding author. A.V. Zhirmunsky National Scientific Center of Marine Biology, FEB RAS, 690041, Vladivostok, Russian Federation
| | - Mariia Mokrina
- Laboratory of Aquacultural Biology, Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-0845, Japan
- Far Eastern Federal University, 690922, Vladivostok, Russian Federation
| | - Timur Magarlamov
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041, Vladivostok, Russian Federation
| | - Andrey Grinchenko
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041, Vladivostok, Russian Federation
- Far Eastern Federal University, 690922, Vladivostok, Russian Federation
| | - Vadim Kumeiko
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041, Vladivostok, Russian Federation
- Far Eastern Federal University, 690922, Vladivostok, Russian Federation
- Corresponding author. Far Eastern Federal University, 690922, Vladivostok, Russian Federation
| |
Collapse
|
4
|
Stanovova MV, Gazizova GR, Gorbushin AM. Transcriptomic profiling of immune-associated molecules in the coelomocytes of lugworm Arenicola marina (Linnaeus, 1758). JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2023; 340:34-55. [PMID: 35438249 DOI: 10.1002/jez.b.23135] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/04/2022] [Accepted: 03/11/2022] [Indexed: 12/16/2022]
Abstract
Organization and functioning of immune system remain unevenly studied in different taxa of lophotrochozoan animals. We analyzed transcriptomic data on coelomocytes of the lugworm Arenicola marina (Linnaeus, 1758; Annelida, Polychaeta) to gain insights into the molecular mechanisms involved in polychaete immunity. Coelomocytes are specialized motile cells populating coelomic fluid of annelids, responsible for cellular defense reactions and providing humoral immune factors. The transcriptome was enriched with immune-related transcripts by challenging the cells in vitro with lipopolysaccharides of Escherichia coli and Zymosan from Saccharomyces cerevisiae. Our analysis revealed a multifaceted and complex internal defense system of the lugworm. A. marina possesses orthologs of proto-complement-like factors: six thioester-containing proteins, a complement-like receptor, and a MASP-related serine protease (MReM2). A. marina coelomocytes employ pattern-recognition receptors to detect pathogens and regulate immune responses. Among them, there are 18 Toll-like receptors and various putative lectin-like proteins with evolutionary conserved and taxa-specific domains. C-type lectins and a novel family of Gal-binding and CUB domains containing receptors were the most abundant in the transcriptome. The array of pore-forming proteins in the coelomocytes was surprisingly reduced compared to that of other invertebrate species. We characterized a set of conserved proteins metabolizing reactive oxygen species and nitric oxide and expanded the arsenal of potential antimicrobial peptides. Phenoloxidase activity in immune cells of lugworm is mediated only by laccase enzyme. The described repertoire of immune-associated molecules provides valuable candidates for further functional and comparative research on the immunity of annelids.
Collapse
Affiliation(s)
- Maria V Stanovova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Guzel R Gazizova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Alexander M Gorbushin
- Sechenov Institute of Evolutionary Physiology and Biochemistry (IEPhB RAS), St. Petersburg, Russia
| |
Collapse
|
5
|
Li MF, Zhang HQ, Sun JS. A novel C1qDC (PoC1qDC) with a collagen domain in Paralichthys olivaceus mediates complement activation and against bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108472. [PMID: 36470404 DOI: 10.1016/j.fsi.2022.108472] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/08/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Complement C1q domain containing protein (C1qDC) is a vital recognition molecule and has an important effect on immunity. The C1qDCs exhibit opsonic activity in fish, while the mechanisms of C1qDCs in activation complement still remain unclear. This study explored immunological characteristics of a C1qDC from Japanese flounder (Paralichthys olivaceus) (PoC1qDC). PoC1qDC consists of 296 amino acid residues, possessing a collagen domain and a C1q domain. According to our results, PoC1qDC was expressed in 9 diverse tissue samples and showed up-regulation after bacterial challenge. Recombinant PoC1qDC (rPoC1qDC) activated normal serum bactericidal and hemolytic activities by interaction with Japanese flounder IgM, but not enhanced the complement activity of C3-depeleted serum. rPoC1qDC was significantly bound to various bacterial species and agglutination activity against Edwardsiella piscicida and Streptococcus iniae. Furthermore, rPoC1qDC showed direct interaction with peripheral blood leucocytes while enhancing phagocytic and chemotactic activity. When PoC1qDC was overexpressed in Japanese flounder before E. piscicida infection, bacterial replication was significantly inhibited in fish tissues. Consistently, when PoC1qDC expression in Japanese flounder was knocked down, bacterial replication was significantly enhanced. The above findings first suggested the role of PoC1qDC in teleost in mediating complement activation by interaction with IgM, which can positively influence bacterial infection.
Collapse
Affiliation(s)
- Mo-Fei Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, China
| | - Hong-Qiang Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, China
| | - Jin-Sheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, China.
| |
Collapse
|
6
|
Wang J, Thaimuangphol W, Chen Z, Li G, Gong X, Zhao M, Chen Z, Wang B, Wang Z. A C1q domain-containing protein in Pinctada fucata contributes to the innate immune response and elimination of the pathogen. FISH & SHELLFISH IMMUNOLOGY 2022; 131:582-589. [PMID: 36280130 DOI: 10.1016/j.fsi.2022.10.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 10/05/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
The C1q domain-containing proteins (C1qDCs) in bivalve mollusks primarily exist as the globular head C1q proteins (ghC1qs), for the N-terminal collagen domains were very rare in bivalves, although widespread in C1qDCs of vertebrates. In this work, the C1qDC protein with only a ghC1q domain (named as Pf-ghC1q) was identified from Pinctada fucata, and molecular characterization, gene expression, and functional studies were also conducted. The full-length cDNA sequence of Pf-ghC1q was 738 bp long, containing a signal peptide of 23 residues encoded. Pf-ghC1q was clustered with some C1qDCs from other invertebrates in the phylogenetic tree analysis, rather than vertebrates. Pf-ghC1q was detected in all tested tissues, including the mantle, hemocyte, digestive gland, gill, and adductor muscle. Moreover, the expression levels of Pf-ghC1q were up-regulated in all tested tissues after the challenge with Vibrio alginolyticus 4 h later. The expression level of Pf-ghC1q was inhibited by specific si-276, and the low level of Pf-ghC1q affected the phagocytosis efficiency of V. alginolyticus by hemocytes. These results indicated that Pf-ghC1q may participate in the target recognition of V. alginolyticus and the phagocytosis process in the immune response of P. fucata.
Collapse
Affiliation(s)
- Jing Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Wipavee Thaimuangphol
- Laboratory of Fish Immunology and Nutrigenomics, Applied Animal and Aquatic Sciences Research Unit, Division of Fisheries, Faculty of Technology, Mahasarakham University, Khamriang Sub-District, Kantarawichai, Mahasarakham, 44150, Thailand
| | - Zhiwei Chen
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Guiying Li
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Xiaoqing Gong
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Mingming Zhao
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Zongfa Chen
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Bei Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, 524088, China
| | - Zhongliang Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, 524088, China.
| |
Collapse
|
7
|
Yin Z, Nie H, Jiang K, Yan X. Molecular Mechanisms Underlying Vibrio Tolerance in Ruditapes philippinarum Revealed by Comparative Transcriptome Profiling. Front Immunol 2022; 13:879337. [PMID: 35615362 PMCID: PMC9125321 DOI: 10.3389/fimmu.2022.879337] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/05/2022] [Indexed: 12/13/2022] Open
Abstract
The clam Ruditapes philippinarum is an important species in the marine aquaculture industry in China. However, in recent years, the aquaculture of R. philippinarum has been negatively impacted by various bacterial pathogens. In this study, the transcriptome libraries of R. philippinarum showing different levels of resistance to challenge with Vibrio anguillarum were constructed and RNA-seq was performed using the Illumina sequencing platform. Host immune factors were identified that responded to V. anguillarum infection, including C-type lectin domain, glutathione S-transferase 9, lysozyme, methyltransferase FkbM domain, heat shock 70 kDa protein, Ras-like GTP-binding protein RHO, C1q, F-box and BTB/POZ domain protein zf-C2H2. Ten genes were selected and verified by RT-qPCR, and nine of the gene expression results were consistent with those of RNA-seq. The lectin gene in the phagosome pathway was expressed at a significantly higher level after V. anguillarum infection, which might indicate the role of lectin in the immune response to V. anguillarum. Comparing the results from R. philippinarum resistant and nonresistant to V. anguillarum increases our understanding of the resistant genes and key pathways related to Vibrio challenge in this species. The results obtained here provide a reference for future immunological research focusing on the response of R. philippinarum to V. anguillarum infection.
Collapse
Affiliation(s)
- Zhihui Yin
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Hongtao Nie
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Kunyin Jiang
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Xiwu Yan
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| |
Collapse
|
8
|
Liang X, Xiong X, Cao Y, Li Z, Chen J, Jiao Y, Deng Y, Du X. Globular C1q domain-containing protein from Pinctada fucata martensii participates in the immune defense process. FISH & SHELLFISH IMMUNOLOGY 2022; 123:521-527. [PMID: 35364260 DOI: 10.1016/j.fsi.2022.02.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
The globular C1q domain-containing (C1qDC) protein can recognize a variety of ligands, such as pathogen-associated molecular patterns, and plays an important role in the innate immune response. Our previous studies showed that a novel globular C1q domain-containing protein (PmC1qDC-1) is involved in the damage repair process of pearl oyster shells. However, the function of PmC1qDC-1 in pearl oyster innate immunity remains unknown. In the present study, the high-level structural analysis showed that PmC1qDC-1 was a spherical structure composed of 10 strands and was similar to the AiC1qDC-2 of bay scallop (Argopecten irradians). In situ hybridization indicated that PmC1qDC-1 had strong fluorescence signal in gills. Furthermore, the mRNA expression of PmC1qDC-1 was highly induced at 6-48 h in gill after lipopolysaccharide, peptidoglycan and polyinosinic-polycytidylic acid stimulation. Additionally, we obtained the recombinant protein of PmC1qDC-1 (rPmC1qDC-1) and found that rPmC1qDC-1 had antibacterial activity against Gram-negative (i.e., Pseudomonas aeruginosa, Vibrio parahaemolyticus, Escherichia coli, and Aeromonas hydrophila) and Gram-positive (i.e., Staphylococcus aureus and Bacillus subtilis) bacteria. These results indicated that PmC1qDC-1 might play an important role in the immune response against bacteria and viruses. This study provides clues for further studying the immune defense of Pinctada fucata martensii against pathogens and exploring the evolution of the classic pathway of complement system.
Collapse
Affiliation(s)
- Xueru Liang
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Xinwei Xiong
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Yanfei Cao
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Zhixin Li
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Jiayi Chen
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Yu Jiao
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang, 524088, China
| | - Yuewen Deng
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524088, China
| | - Xiaodong Du
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang, 524088, China.
| |
Collapse
|
9
|
Grinchenko AV, von Kriegsheim A, Shved NA, Egorova AE, Ilyaskina DV, Karp TD, Goncharov NV, Petrova IY, Kumeiko VV. A Novel C1q Domain-Containing Protein Isolated from the Mollusk Modiolus kurilensis Recognizing Glycans Enriched with Acidic Galactans and Mannans. Mar Drugs 2021; 19:668. [PMID: 34940667 PMCID: PMC8706970 DOI: 10.3390/md19120668] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/18/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022] Open
Abstract
C1q domain-containing (C1qDC) proteins are a group of biopolymers involved in immune response as pattern recognition receptors (PRRs) in a lectin-like manner. A new protein MkC1qDC from the hemolymph plasma of Modiolus kurilensis bivalve mollusk widespread in the Northwest Pacific was purified. The isolation procedure included ammonium sulfate precipitation followed by affinity chromatography on pectin-Sepharose. The full-length MkC1qDC sequence was assembled using de novo mass-spectrometry peptide sequencing complemented with N-terminal Edman's degradation, and included 176 amino acid residues with molecular mass of 19 kDa displaying high homology to bivalve C1qDC proteins. MkC1qDC demonstrated antibacterial properties against Gram-negative and Gram-positive strains. MkC1qDC binds to a number of saccharides in Ca2+-dependent manner which characterized by structural meta-similarity in acidic group enrichment of galactose and mannose derivatives incorporated in diversified molecular species of glycans. Alginate, κ-carrageenan, fucoidan, and pectin were found to be highly effective inhibitors of MkC1qDC activity. Yeast mannan, lipopolysaccharide (LPS), peptidoglycan (PGN) and mucin showed an inhibitory effect at concentrations three orders of magnitude greater than for the most effective saccharides. MkC1qDC localized to the mussel hemal system and interstitial compartment. Intriguingly, MkC1qDC was found to suppress proliferation of human adenocarcinoma HeLa cells in a dose-dependent manner, indicating to the biomedical potential of MkC1qDC protein.
Collapse
Affiliation(s)
- Andrei V. Grinchenko
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia; (A.V.G.); (N.A.S.); (N.V.G.); (I.Y.P.)
| | - Alex von Kriegsheim
- Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh EH4 2XU, UK;
| | - Nikita A. Shved
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia; (A.V.G.); (N.A.S.); (N.V.G.); (I.Y.P.)
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia; (A.E.E.); (D.V.I.); (T.D.K.)
| | - Anna E. Egorova
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia; (A.E.E.); (D.V.I.); (T.D.K.)
| | - Diana V. Ilyaskina
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia; (A.E.E.); (D.V.I.); (T.D.K.)
| | - Tatiana D. Karp
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia; (A.E.E.); (D.V.I.); (T.D.K.)
| | - Nikolay V. Goncharov
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia; (A.V.G.); (N.A.S.); (N.V.G.); (I.Y.P.)
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia; (A.E.E.); (D.V.I.); (T.D.K.)
| | - Irina Y. Petrova
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia; (A.V.G.); (N.A.S.); (N.V.G.); (I.Y.P.)
| | - Vadim V. Kumeiko
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia; (A.V.G.); (N.A.S.); (N.V.G.); (I.Y.P.)
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia; (A.E.E.); (D.V.I.); (T.D.K.)
| |
Collapse
|
10
|
A P, G M, M T, L B, N F. Characterisation and functional role of a novel C1qDC protein from a colonial ascidian. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 122:104077. [PMID: 33905781 DOI: 10.1016/j.dci.2021.104077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
As an invertebrate, the compound ascidian Botryllus schlosseri faces nonself only with innate immunity. In this species, we already identified the key components of the lectin and alternative complement activation pathways. In the present work, by mining the transcriptome, we identified a single transcript codifying for a protein, member of the C1q-domain-containing protein family, with a signal peptide followed by two globular C1q (gC1q) domains. It shares a similar domain organisation with C1q/TNF-related proteins 4, the only vertebrate protein family with two gC1q domains. Our gC1q domain-containing protein, called BsC1qDC, is actively transcribed by immunocytes. The transcription is modulated during the Botryllus blastogenetic cycle and is upregulated following the injection of Bacillus clausii cells in the circulation. Furthermore, the injection of bsc1qdc iRNA in the vasculature results in decreased transcription of the gene and a significant impairment of phagocytosis and degranulation, suggesting the involvement of this molecule in immune responses.
Collapse
Affiliation(s)
- Peronato A
- Department of Biology, University of Padova, Italy
| | - Minervini G
- Department of Biomedical Sciences, University of Padova, Italy
| | - Tabarelli M
- PhD School in Agricultural Science and Biotechnology, University of Udine, Italy
| | - Ballarin L
- Department of Biology, University of Padova, Italy.
| | - Franchi N
- Department of Biology, University of Padova, Italy
| |
Collapse
|
11
|
Yao T, Lu J, Bai C, Xie Z, Ye L. The Enhanced Immune Protection in Small Abalone Haliotis diversicolor Against a Secondary Infection With Vibrio harveyi. Front Immunol 2021; 12:685896. [PMID: 34295333 PMCID: PMC8290317 DOI: 10.3389/fimmu.2021.685896] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/22/2021] [Indexed: 11/28/2022] Open
Abstract
In recent years, more and more studies have shown that early pathogenic bacterial infection in invertebrates can enhance immunity and significantly reduce mortality when reinfected with the same pathogen. There are mechanisms to explain this phenomenon, but they are relatively few. In addition, dose-dependent primary infection is also associated with increased immunity. In the present study, the initial infection dose and mortality of abalone Haliotis diversicolor after reinfection with Vibrio harveyi were recorded, and the mechanism of immune enhancement was investigated by the transcriptomic response of abalone after two successive stimuli with V. harveyi. Priming with different concentrations of pathogen can enhance immunity; however, higher concentration is not always better. Compared with the first exposure, more genes were up-regulated after the second exposure. Among the commonly expressed genes, the immune related genes were significantly or persistently highly expressed after two infections and included pattern recognition receptors as well as immune effectors, such as toll-like receptors, perlucin 4, scavenger receptor class B-like protein, cytochrome P450 1B1-like, glutathione S-transferase 6, lysozyme and so on; in addition, these immune-related genes were mainly distributed in the pathways related to phagocytosis and calcium signaling. Among the specifically expressed genes, compared with the first infection, more genes were involved in the immune, metabolic and digestive pathways after the second infection, which would be more conducive to preventing the invasion of pathogens. This study outlined the mechanism of immune enhancement in abalone after secondary infection at the global molecular level, which is helpful for a comprehensive understanding of the mechanism of immune priming in invertebrates.
Collapse
Affiliation(s)
- Tuo Yao
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Jie Lu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Changming Bai
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Zhilv Xie
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Lingtong Ye
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| |
Collapse
|
12
|
Bowden TJ, Kraev I, Lange S. Extracellular Vesicles and Post-Translational Protein Deimination Signatures in Mollusca-The Blue Mussel ( Mytilus edulis), Soft Shell Clam ( Mya arenaria), Eastern Oyster ( Crassostrea virginica) and Atlantic Jacknife Clam ( Ensis leei). BIOLOGY 2020; 9:biology9120416. [PMID: 33255637 PMCID: PMC7760292 DOI: 10.3390/biology9120416] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/20/2022]
Abstract
Simple Summary Oysters and clams form an important component of the food chain and food security and are of considerable commercial value worldwide. They are affected by pollution and climate change, as well as a range of infections, some of which are opportunistic. For aquaculture purposes they are furthermore of great commercial value and changes in their immune responses can also serve as indicators of changes in ocean environments. Therefore, studies into understanding new factors in their immune systems may aid new biomarker discovery and are of considerable value. This study assessed new biomarkers relating to changes in protein function in four economically important marine molluscs, the blue mussel, soft shell clam, Eastern oyster, and Atlantic jacknife clam. These findings indicate novel regulatory mechanisms of important metabolic and immunology related pathways in these mollusks. The findings provide new understanding to how these pathways function in diverse ways in different animal species as well as aiding new biomarker discovery for Mollusca aquaculture. Abstract Oysters and clams are important for food security and of commercial value worldwide. They are affected by anthropogenic changes and opportunistic pathogens and can be indicators of changes in ocean environments. Therefore, studies into biomarker discovery are of considerable value. This study aimed at assessing extracellular vesicle (EV) signatures and post-translational protein deimination profiles of hemolymph from four commercially valuable Mollusca species, the blue mussel (Mytilus edulis), soft shell clam (Mya arenaria), Eastern oyster (Crassostrea virginica), and Atlantic jacknife clam (Ensis leei). EVs form part of cellular communication by transporting protein and genetic cargo and play roles in immunity and host–pathogen interactions. Protein deimination is a post-translational modification caused by peptidylarginine deiminases (PADs), and can facilitate protein moonlighting in health and disease. The current study identified hemolymph-EV profiles in the four Mollusca species, revealing some species differences. Deiminated protein candidates differed in hemolymph between the species, with some common targets between all four species (e.g., histone H3 and H4, actin, and GAPDH), while other hits were species-specific; in blue mussel these included heavy metal binding protein, heat shock proteins 60 and 90, 2-phospho-D-glycerate hydrolyase, GTP cyclohydrolase feedback regulatory protein, sodium/potassium-transporting ATPase, and fibrinogen domain containing protein. In soft shell clam specific deimination hits included dynein, MCM3-associated protein, and SCRN. In Eastern oyster specific deimination hits included muscle LIM protein, beta-1,3-glucan-binding protein, myosin heavy chain, thaumatin-like protein, vWFA domain-containing protein, BTB domain-containing protein, amylase, and beta-catenin. Deiminated proteins specific to Atlantic jackknife clam included nacre c1q domain-containing protein and PDZ domain-containing protein In addition, some proteins were common as deiminated targets between two or three of the Bivalvia species under study (e.g., EP protein, C1q domain containing protein, histone H2B, tubulin, elongation factor 1-alpha, dominin, extracellular superoxide dismutase). Protein interaction network analysis for the deiminated protein hits revealed major pathways relevant for immunity and metabolism, providing novel insights into post-translational regulation via deimination. The study contributes to EV characterization in diverse taxa and understanding of roles for PAD-mediated regulation of immune and metabolic pathways throughout phylogeny.
Collapse
Affiliation(s)
- Timothy J. Bowden
- Aquaculture Research Institute, School of Food & Agriculture, University of Maine, Orono, ME 04469-5735, USA;
| | - Igor Kraev
- Electron Microscopy Suite, Faculty of Science, Technology, Engineering and Mathematics, Open University, Milton Keynes MK7 6AA, UK;
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK
- Correspondence: ; Tel.: +44-(0)207-911-5000
| |
Collapse
|
13
|
Xie B, He Q, Hao R, Zheng Z, Du X. Molecular and functional analysis of PmC1qDC in nacre formation of Pinctada fucata martensii. FISH & SHELLFISH IMMUNOLOGY 2020; 106:621-627. [PMID: 32827655 DOI: 10.1016/j.fsi.2020.08.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 08/05/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
The C1q-domain-containing (C1qDC) proteins are a family of proteins characterized by a globular C1q (gC1q) domain in their C-terminus which hold the potential function in the shell formation as shell matrix proteins. In this study, a C1qDC protein was identified and characterized in pearl oyster (Pinctada fucata martensii) (PmC1qDC) to explore its function in nacre formation. The PmC1qDC-deduced protein sequence carried a typical globular C1q (gC1q) domain that possessed the typical 10-stranded β-sandwich fold with a jelly-roll topology common to all C1qDC family members and shared high homology with other gC1q domains. Homologous analysis of PmC1qDC presented it contained conserved secondary structure and Phe135, Phe155, Tyr166, Phe173, Tyr181, Phe183, and Phe256 amino acid residues. Expression pattern analysis showed that PmC1qDC expressed in all the detected tissues and exhibited a significantly higher expression level in nacre formation-associated tissues. After the shell notching, the expression level of PmC1qDC showed significantly up-regulation after 12 h in the central zone of mantle (MC). PmC1qDC expression significantly decreased in the MC after RNA interference (RNAi). Furthermore, disordered crystals with evident rough surface and irregular crystal tablets were observed in the nacre after RNAi. Results suggested that PmC1qDC affects the shell nacre formation, which is significant to improve the pearl production of pearl oyster.
Collapse
Affiliation(s)
- Bingyi Xie
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Qi He
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Ruijuan Hao
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Zhe Zheng
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China.
| | - Xiaodong Du
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang, 524088, China.
| |
Collapse
|
14
|
Mendes AF, Goncalves P, Serrano-Solis V, Silva PMD. Identification of candidate microRNAs from Ostreid herpesvirus-1 (OsHV-1) and their potential role in the infection of Pacific oysters (Crassostrea gigas). Mol Immunol 2020; 126:153-164. [PMID: 32853878 DOI: 10.1016/j.molimm.2020.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 12/21/2022]
Abstract
Oyster production is an economic activity of great interest worldwide. Recently, oysters have been suffering significant mortalities from OsHV-1infection, which has resulted in substantial economic loses in several countries around the world. Understanding viral pathogenicity mechanisms is of central importance for the establishment of disease control measures. Thus, the present work aimed to identify and characterize miRNAs from OsHV-1 as well as to predict their target transcripts in the virus and the host. OsHV-1 genome was used for the in silico discovery of pre-miRNAs. Subsequently, viral and host target transcripts of the OsHV-1 miRNAs were predicted according to the base pairing interaction between mature miRNAs and mRNA 3' untranslated regions (UTRs). Six unique pre-miRNAs were found in different regions of the viral genome, ranging in length from 85 to 172 nucleotides. A complex network of self-regulation of viral gene expression mediated by the miRNAs was identified. These sequences also seem to have a broad ability to regulate the expression of host immune-related genes, especially those associated with pathogen recognition. Our results suggest that OsHV-1 encodes miRNAs with important functions in the infection process, inducing self-regulation of viral transcripts, as well as affecting the regulation of Pacific oyster transcripts related to immunity. Understanding the molecular basis of host-pathogen interactions can help mitigate the recurrent events of oyster mass mortalities by OsHV-1 observed worldwide.
Collapse
Affiliation(s)
- Andrei Félix Mendes
- Laboratório de Imunologia e Patologia de Invertebrados (LABIPI), Departamento de Biologia Molecular, Universidade Federal da Paraíba (UFPB), 58051-900, João Pessoa, Paraíba, Brazil
| | - Priscila Goncalves
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
| | - Victor Serrano-Solis
- Laboratório de Imunologia e Patologia de Invertebrados (LABIPI), Departamento de Biologia Molecular, Universidade Federal da Paraíba (UFPB), 58051-900, João Pessoa, Paraíba, Brazil
| | - Patricia Mirella da Silva
- Laboratório de Imunologia e Patologia de Invertebrados (LABIPI), Departamento de Biologia Molecular, Universidade Federal da Paraíba (UFPB), 58051-900, João Pessoa, Paraíba, Brazil.
| |
Collapse
|
15
|
Mazurais D, Servili A, Noel C, Cormier A, Collet S, Leseur R, Le Roy M, Vitré T, Madec L, Zambonino-Infante JL. Transgenerational regulation of cbln11 gene expression in the olfactory rosette of the European sea bass (Dicentrarchus labrax) exposed to ocean acidification. MARINE ENVIRONMENTAL RESEARCH 2020; 159:105022. [PMID: 32662446 DOI: 10.1016/j.marenvres.2020.105022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/12/2020] [Accepted: 05/17/2020] [Indexed: 06/11/2023]
Abstract
Elevated amounts of atmospheric CO2 are causing ocean acidification (OA) that may affect marine organisms including fish species. While several studies carried out in fish revealed that OA induces short term dysfunction in sensory systems including regulation of neurons activity in olfactory epithelium, information on the effects of OA on other physiological processes and actors is scarcer. In the present study we focused our attention on a European sea bass (Dicentrarchus labrax) sghC1q gene, a member of the C1q-domain-containing (C1qDC) protein family. In vertebrates, C1qDC family includes actors involved in different physiological processes including immune response and synaptic organization. Our microsynteny analysis revealed that this sghC1q gene is the orthologous gene in European sea bass to zebrafish (Danio rerio) cbln11 gene. We cloned the full length cbln11 mRNA and identified the different domains (the signal peptide, the coiled coil region and the globular C1q domain) of the deduced protein sequence. Investigation of mRNA expression by qPCR and in situ hybridization revealed that cbln11gene is especially expressed in the non-sensory epithelium of the olfactory rosette at larval and adult stages. The expression of cbln11 mRNA was analysed by qPCR in the first generation (F0) of European sea bass broodstock exposed since larval stages to water pH of 8.0 (control) or 7.6 (predicted for year 2100) and in their offspring (F1) maintained in the environmental conditions of their parents. Our results showed that cbln11 mRNA expression level was lower in larvae exposed to OA then up-regulated at adult stage in the olfactory rosette of F0 and that this up-regulation is maintained under OA at larval and juvenile stages in F1. Overall, this work provides evidence of a transgenerational inheritance of OA-induced up-regulation of cbln11 gene expression in European sea bass. Further studies will investigate the potential immune function of cbln11 gene and the consequences of these regulations, as well as the possible implications in terms of fitness and adaptation to OA in European sea bass.
Collapse
Affiliation(s)
- David Mazurais
- IFREMER, Univ Brest, CNRS, IRD, LEMAR, F-29280, Plouzané, France.
| | - Arianna Servili
- IFREMER, Univ Brest, CNRS, IRD, LEMAR, F-29280, Plouzané, France
| | - Cyril Noel
- IFREMER, SEBIMER, F-29280, Plouzané, France
| | | | - Sophie Collet
- IFREMER, Univ Brest, CNRS, IRD, LEMAR, F-29280, Plouzané, France
| | - Romane Leseur
- IFREMER, Univ Brest, CNRS, IRD, LEMAR, F-29280, Plouzané, France
| | - Maelenn Le Roy
- IFREMER, Univ Brest, CNRS, IRD, LEMAR, F-29280, Plouzané, France
| | - Thomas Vitré
- IFREMER, Univ Brest, CNRS, IRD, LEMAR, F-29280, Plouzané, France
| | - Lauriane Madec
- IFREMER, Univ Brest, CNRS, IRD, LEMAR, F-29280, Plouzané, France
| | | |
Collapse
|
16
|
Liu Z, Zhou Z, Wang L, Zhang Y, Zong Y, Zheng Y, Li M, Wang W, Song L. A Signaling Pathway to Mediate the Combined Immunomodulation of Acetylcholine and Enkephalin in Oyster Crassostrea gigas. Front Immunol 2020; 11:616. [PMID: 32362893 PMCID: PMC7180215 DOI: 10.3389/fimmu.2020.00616] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 03/18/2020] [Indexed: 11/17/2022] Open
Abstract
Molluscs have evolved a primitive but complete neuroendocrine-immune (NEI) system with a vast array of neurotransmitters to conduct both humoral and cellular immunomodulation. Previous studies have illustrated the immune functions of several key neurotransmitters. However, the combined effects of multiple neurotransmitters and the signaling pathway to mediate such immunomodulation have not been well-understood. In the present study, iTRAQ and LC-ESI-MS/MS approaches were employed to investigate the combined immunomodulation functions of two crucial neurotransmitters, acetylcholine (ACh), and [Met5]-enkephalin (ENK), in oyster Crassostrea gigas. A total number of 5,379 proteins were identified from hemocytes of oysters after the treatments with Ach and ENK separately or simultaneously, and 1,475 of them were found to be significantly up-regulated, while 1,115 of them were significantly down-regulated. The protein expression patterns in the groups treated by ACh and ENK separately were quite similar, which were dramatically different from that in the group treated by ACh+ENK. One hundred seventy-two proteins were found to be differentially expressed in all the three neurotransmitter treatment groups. Functional validation suggested that ACh and ENK possibly modulate the immune response in oyster hemocytes by enhancing pathogen recognition, cell apoptosis, and the enzyme activities of superoxide dismutase (SOD). Moreover, GO enrichment and co-expression network analyses implied that the combined immunomodulation of ACh and ENK might be mediated by p53, EGF-R–ErbB, and Fc gamma R (FcγR) signaling pathways. These results collectively indicated that multiple neurotransmitters executed a combined and ordered immune regulation through common signaling cascades in molluscs, which was under delicate control to maintain the homeostasis.
Collapse
Affiliation(s)
- Zhaoqun Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China.,Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control Dalian Ocean University, Dalian, China
| | - Zhi Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China.,Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control Dalian Ocean University, Dalian, China
| | - Yukun Zhang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control Dalian Ocean University, Dalian, China
| | - Yanan Zong
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control Dalian Ocean University, Dalian, China
| | - Yan Zheng
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control Dalian Ocean University, Dalian, China
| | - Meijia Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control Dalian Ocean University, Dalian, China
| | - Weilin Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control Dalian Ocean University, Dalian, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China.,Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control Dalian Ocean University, Dalian, China
| |
Collapse
|
17
|
Gerdol M, Greco S, Pallavicini A. Extensive Tandem Duplication Events Drive the Expansion of the C1q-Domain-Containing Gene Family in Bivalves. Mar Drugs 2019; 17:md17100583. [PMID: 31615007 PMCID: PMC6835236 DOI: 10.3390/md17100583] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/11/2019] [Accepted: 10/12/2019] [Indexed: 01/04/2023] Open
Abstract
C1q-domain-containing (C1qDC) proteins are rapidly emerging as key players in the innate immune response of bivalve mollusks. Growing experimental evidence suggests that these highly abundant secretory proteins are involved in the recognition of microbe-associated molecular patterns, serving as lectin-like molecules in the bivalve proto-complement system. While a large amount of functional data concerning the binding specificity of the globular head C1q domain and on the regulation of these molecules in response to infection are quickly accumulating, the genetic mechanisms that have led to the extraordinary lineage-specific expansion of the C1qDC gene family in bivalves are still largely unknown. The analysis of the chromosome-scale genome assembly of the Eastern oyster Crassostrea virginica revealed that the 476 oyster C1qDC genes, far from being uniformly distributed along the genome, are located in large clusters of tandemly duplicated paralogs, mostly found on chromosomes 7 and 8. Our observations point out that the evolutionary process behind the development of a large arsenal of C1qDC lectin-like molecules in marine bivalves is still ongoing and likely based on an unequal crossing over.
Collapse
Affiliation(s)
- Marco Gerdol
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy.
| | - Samuele Greco
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy.
| | - Alberto Pallavicini
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy.
- National Institute of Oceanography and Applied Geophysics, 34151 Trieste, Italy.
| |
Collapse
|
18
|
Lv Z, Wang L, Jia Z, Sun J, Wang W, Liu Z, Qiu L, Wang M, Song L. Hemolymph C1qDC promotes the phagocytosis of oyster Crassostrea gigas hemocytes by interacting with the membrane receptor β-integrin. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 98:42-53. [PMID: 30995452 DOI: 10.1016/j.dci.2019.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 06/09/2023]
Abstract
Phagocytosis constitutes a conserved cellular process for multicellular animals to ingest or engulf other cells or particles, which is facilitated by the use of opsonins to bind foreign particles and interact with cell surface receptors. The invertebrate secreted C1q domain-containing proteins (C1qDCs) have been reported to exhibit opsonic activity, while the detailed mechanisms of opsonization still remain unclear. In the present study, a C1qDC (designated as CgC1qDC-5) with opsonic activity was identified from the hemolymph of oyster Crassostrea gigas. CgC1qDC-5 exhibited the ability to bind pathogen-associated molecular patterns (PAMPs) of lipopolysaccharides (LPS) and Lipid A. It could also bind and agglutinate Gram-negative bacteria Escherichia coli, Vibrio splendidus and Vibrio anguillarum, whereas the agglutinating activity could be inhibited by LPS. In addition, CgC1qDC-5 could enhance the phagocytosis of hemocytes toward E. coli, V. splendidus, and V. anguillarum. GST pull-down and surface plasmon resonance assays in vitro revealed that CgC1qDC-5 could interact with β-integrin (CgIntegrin). In vivo, CgC1qDC-5 was observed to bind hemocytes and co-localized with CgIntegrin on the cell membrane of hemocytes. Antibody-mediated blockage of CgIntegrin hindered the CgC1qDC-5-enhanced hemocytic phagocytosis. CgIntegrin also exhibited the ability to bind the Gram-negative bacteria E. coli, V. splendidus, V. anguillarum and Vibrio parahaemolyticus, and PAMP of LPS, but not Lipid A. A phagocytosis assay demonstrated that CgIntegrin could directly mediate phagocytosis toward bacteria as a phagocytic receptor. These results collectively suggested that CgC1qDC-5 could serve as an opsonin to recognize and bind bacteria, and subsequently interact with CgIntegrin on the hemocyte surface to enhance the CgIntegrin-mediated phagocytosis in oyster.
Collapse
Affiliation(s)
- Zhao Lv
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lingling Wang
- Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Zhihao Jia
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiejie Sun
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Weilin Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Zhaoqun Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Limei Qiu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Mengqiang Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Linsheng Song
- Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
19
|
Gorbushin AM. Derivatives of the lectin complement pathway in Lophotrochozoa. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 94:35-58. [PMID: 30682446 DOI: 10.1016/j.dci.2019.01.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/20/2019] [Accepted: 01/21/2019] [Indexed: 05/16/2023]
Abstract
A plethora of non-overlapping immune molecular mechanisms in metazoans is the most puzzling issue in comparative immunobiology. No valid evolutionary retrospective on these mechanisms has been developed. In this study, we aimed to reveal the origin and evolution of the immune complement-like system in Lophotrochozoa. For this, we analyzed publicly available transcriptomes of prebilaterian and lophotrochozoan species, mapping lineage-specific molecular events on the phylogenetic tree. We found that there were no orthologs of mannose-binding lectin (MBL) and ficolins (FCN) in Lophotrochozoa but C1q-like proteins (C1qL), bearing both a collagen domain and a globular C1q domain, were omnipresent in them. This suggests that among all complement-like activators the C1qL-specific domain architecture was an evolutionarily first. Two novel protostomian MASP-Related Molecules, MReM1 and MReM2, might hypothetically compensate for the loss of a prebilaterian MASP-orthologous gene and act in complex with C1qL and C1qDC as a "proto-activator" of an ancient "proto-complement". We proposed a new model of the complement evolution predicting that numerous lineage-specific complement-like systems should have evolved from a stem "antique" molecular complex. First evolved in the common ancestor of coelomic animals, the "antique" humoral complex consisted of a TEP molecule, the common ancestor of TEP-associated proteases (C2/Bf/Сf/Lf), the common ancestor of MASP-like proteases (MASP/C1r/C1s, MReM1/MReM2) and multimeric recognition proteins (C1q-, MBL- and FCN-homologs). Further evolutionary specialization and expansion of the complex was independent and lineage-specific, examples being the mammalian complement system and the Apogastropoda complement-like complex. The latter includes an impressive array of multimeric recognition proteins, the variable immunoglobulin and lectin domain containing molecules (VIgL), homologous to C1q, MBL, FCN and other lectins. Four novel polymorphic subfamilies of VIgLs were found to be expressed in Apogastropoda: C1q-related proteins (QREP), zona pellucida-related proteins (ZREP), Scavenger Receptor Cys-Rich-related proteins (SREP) and HPA-lectin related proteins (HREP). The transcriptional response of fibrinogen-related proteins of VIgL family (LlFREP), LlQREP and LlSREP to infestation of common periwinkle, Littorina littorea, with digenean parasite Himasthla elongata correlates with that of LlMReM1, supporting the model suggested in this study.
Collapse
Affiliation(s)
- Alexander M Gorbushin
- Sechenov Institute of Evolutionary Physiology and Biochemistry (IEPhB RAS), Saint-Petersburg, Russia.
| |
Collapse
|
20
|
Li Y, Niu D, Bai Y, Lan T, Peng M, Dong Z, Li J. Identification of a novel C1q complement component in razor clam Sinonovacula constricta and its role in antibacterial activity. FISH & SHELLFISH IMMUNOLOGY 2019; 87:193-201. [PMID: 30639866 DOI: 10.1016/j.fsi.2019.01.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 01/07/2019] [Accepted: 01/10/2019] [Indexed: 06/09/2023]
Abstract
The serum complement component C1q mediates a variety of immune regulatory functions. Herein, we identified a globular head C1q (ghC1q) gene in razor clam Sinonovacula constricta. The complete Sc-ghC1q gene was 872 bp long included an 81 bp 5'-untranslated region (UTR), a 95 bp 3'-UTR with a poly(A) tail, and an open reading frame (ORF) of 696 bp. The mRNA expression of Sc-ghC1q was upregulated in hepatopancreas and hemocytes. After Staphylococcus aureus or Vibrio anguillarum challenge, Sc-ghC1q mRNA transcript abundance was significantly upregulated in hemolymph. Recombinant Sc-ghC1q protein could bind lipopolysaccharide (LPS) and lipoteichoic acid (LTA), and it could agglutinate both Gram-positive and Gram-negative bacteria. Additionally, flow cytometry revealed that Sc-ghC1q strongly promoted phagocytosis in hemocytes. Together, these results demonstrated that Sc-ghC1q played an important role in innate immunity in S. constricta.
Collapse
Affiliation(s)
- Yan Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Donghong Niu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.
| | - Yuqi Bai
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Tianyi Lan
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Maoxiao Peng
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhiguo Dong
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, Lianyungang, 222005, China
| | - Jiale Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Engineering Research Centre of Aquaculture, Shanghai, 201306, China.
| |
Collapse
|
21
|
Du X, Wang GH, Yue B, Wang JJ, Gu QQ, Zhou S, Zhang M, Hu YH. A novel C1q domain containing protein in black rockfish (Sebastes schlegelii) serves as a pattern recognition receptor with immunoregulatory properties and possesses binding activity to heat-aggregated IgG. FISH & SHELLFISH IMMUNOLOGY 2019; 87:73-81. [PMID: 30615989 DOI: 10.1016/j.fsi.2019.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/28/2018] [Accepted: 01/03/2019] [Indexed: 06/09/2023]
Abstract
C1q-domain-containing (C1qDC) proteins, which are involved in a series of immune responses, are important pattern recognition receptors in innate immunity in vertebrates and invertebrates. Functional studies of C1qDC proteins in vertebrates are scarce. In the present study, a C1qDC protein (SsC1qDC) from the teleost black rockfish (Sebastes schlegelii) was identified and examined at expression and functional levels. The open reading frame of SsC1qDC is 636 bp, and the predicted amino acid sequence of SsC1qDC shares 62%-69% overall identity with the C1qDC proteins of several fish species. SsC1qDC possesses conserved C1qDC features, including a signal sequence and a C1q domain. SsC1qDC was expressed in different tissues and its expression was up-regulated by bacterial and viral infection. Recombinant SsC1qDC (rSsC1qDC) exhibited apparent binding activities against PAMPs including LPS and PGN. rSsC1qDC had antibacterial activity against Vibrio parahaemolyticus, and was able to enhance the phagocytic activity of macrophages towards Vibrio anguillarum. rSsC1qDC interacted with human heat-aggregated IgG. Furthermore, in the presence of rSsC1qDC, fish exhibited enhanced resistance against bacterial infection. Collectively, these results indicated that SsC1qDC serves as a pattern recognition receptor and plays a vital role in the defense system of black rockfish.
Collapse
Affiliation(s)
- Xue Du
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China; Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Guang-Hua Wang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Bin Yue
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jing-Jing Wang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qin-Qin Gu
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shun Zhou
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Min Zhang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Yong-Hua Hu
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Haikou, 571101, China.
| |
Collapse
|
22
|
Zong Y, Liu Z, Wu Z, Han Z, Wang L, Song L. A novel globular C1q domain containing protein (C1qDC-7) from Crassostrea gigas acts as pattern recognition receptor with broad recognition spectrum. FISH & SHELLFISH IMMUNOLOGY 2019; 84:920-926. [PMID: 30385248 DOI: 10.1016/j.fsi.2018.10.079] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/23/2018] [Accepted: 10/28/2018] [Indexed: 06/08/2023]
Abstract
The globular C1q domain containing (C1qDC) proteins are a family of versatile pattern recognition receptors (PRRs) to bind various ligands by their globular C1q (gC1q) domain. In the present study, a novel globular C1qDC (CgC1qDC-7) was characterized from Pacific oyster Crassostrea gigas. The open reading frame of CgC1qDC-7 was of 555 bp, encoding a polypeptide of 185 amino acids. Phylogenetic analysis indicated that CgC1qDC-7 shared high homology with C1qDCs from Crassostrea virginica, Mytilus galloprovincialis, and Mizuhopecten yessoensis. The mRNA transcripts of CgC1qDC-7 were widely expressed in all the tested tissues including mantle, gonad, gills, adductor muscle, hemocytes, hepatopancreas and labial palps, with the highest expression level in hemocytes and gills. The recombinant protein of CgC1qDC-7 (rCgC1qDC-7) exhibited binding activity towards Gram-negative bacteria (Vibrio splendidus, V. anguillarum, Escherichia coli, V. alginolyticus, and Aeromonas hydrophila), Gram-positive bacteria (Micrococcus luteus and Staphylococcus aureus) and fungi (Pichia pastoris and Yarrowia lipolytica), and displayed strongest binding affinity towards Gram-negative bacteria V. splendidus and V. anguillarum. It also exhibited affinity to vital pathogen-associated molecular patterns (PAMPs), such as lipopolysaccharide (LPS), peptidoglycan (PGN), mannan (MAN) and Poly (I:C) with high affinity towards LPS and PGN, and low affinity to MAN and Poly (I:C). These results collectively indicated that CgC1qDC-7 was a novel PRR in C. gigas with high binding affinity towards LPS and PGN as well as Gram-negative bacteria.
Collapse
Affiliation(s)
- Yanan Zong
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Zhaoqun Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Zhaojun Wu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Zirong Han
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
23
|
Pathogen-Derived Carbohydrate Recognition in Molluscs Immune Defense. Int J Mol Sci 2018; 19:ijms19030721. [PMID: 29510476 PMCID: PMC5877582 DOI: 10.3390/ijms19030721] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 02/22/2018] [Accepted: 02/22/2018] [Indexed: 12/13/2022] Open
Abstract
Self-nonself discrimination is a common theme for all of the organisms in different evolutionary branches, which is also the most fundamental step for host immune protection. Plenty of pattern recognition receptors (PRRs) with great diversity have been identified from different organisms to recognize various pathogen-associated molecular patterns (PAMPs) in the last two decades, depicting a complicated scene of host-pathogen interaction. However, the detailed mechanism of the complicate PAMPs–PRRs interactions at the contacting interface between pathogens and hosts is still not well understood. All of the cells are coated by glycosylation complex and thick carbohydrates layer. The different polysaccharides in extracellular matrix of pathogen-host are important for nonself recognition of most organisms. Coincidentally, massive expansion of PRRs, majority of which contain recognition domains of Ig, leucine-rich repeat (LRR), C-type lectin (CTL), C1q and scavenger receptor (SR), have been annotated and identified in invertebrates by screening the available genomic sequence. The phylum Mollusca is one of the largest groups in the animal kingdom with abundant biodiversity providing plenty of solutions about pathogen recognition and immune protection, which might offer a suitable model to figure out the common rules of immune recognition mechanism. The present review summarizes the diverse PRRs and common elements of various PAMPs, especially focusing on the structural and functional characteristics of canonical carbohydrate recognition proteins and some novel proteins functioning in molluscan immune defense system, with the objective to provide new ideas about the immune recognition mechanisms.
Collapse
|
24
|
Cui Y, Wei Z, Shen Y, Li C, Shao Y, Zhang W, Zhao X. A novel C1q-domain-containing protein from razor clam Sinonovacula constricta mediates G-bacterial agglutination as a pattern recognition receptor. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 79:166-174. [PMID: 29100917 DOI: 10.1016/j.dci.2017.10.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 10/30/2017] [Accepted: 10/30/2017] [Indexed: 06/07/2023]
Abstract
Complement component 1q (C1q) with a characteristic C1q globular domain is an important pattern recognition molecule in the classical complement systems and plays a major role in the crosslinking between innate immunity and specific immunity in vertebrates. In this study, a homologous gene encoding typically C1q domains was obtained from the razor clam Sinonovacula constricta (designated ScC1qDC) by rapid amplification of the cDNA end. The full-length cDNA of ScC1qDC was 1225 bp in length with a 5'UTR of 258 bp, a 3'UTR of 223 bp, and an open reading frame of 744 bp encoding a polypeptide of 247 amino acids containing a typical C1q globular domain. The mRNA transcripts of ScC1qDC were constitutively transcribed in all examined tissues with higher expression in the hepatopancreas. Time-course expression analysis indicated that ScC1qDC was significantly up-regulated both in hepatopancreas and gills after Vibrio parahaemolyticus challenge. The recombinant ScC1qDC (rScC1qDC) displayed high binding activities to various pathogen-associated molecular patterns, including LPS, PGN, and MAN. Recombinant ScC1qDC showed no agglutinating activity to Gram-positive bacterium of Micrococcus luteus but showed obvious activities towards all the three examined Gram-negative bacteria. All our results indicated that ScC1qDC might be served as a pattern recognition receptor and promoted Gram-negative bacteria agglutination during the pathogen challenge.
Collapse
Affiliation(s)
- Yi Cui
- School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Zhixin Wei
- School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Yaoyao Shen
- School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Chenghua Li
- School of Marine Sciences, Ningbo University, Ningbo 315211, PR China.
| | - Yina Shao
- School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Weiwei Zhang
- School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Xuelin Zhao
- School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| |
Collapse
|
25
|
Lv Z, Qiu L, Wang M, Jia Z, Wang W, Xin L, Liu Z, Wang L, Song L. Comparative study of three C1q domain containing proteins from pacific oyster Crassostrea gigas. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 78:42-51. [PMID: 28923592 DOI: 10.1016/j.dci.2017.09.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 06/23/2017] [Accepted: 09/14/2017] [Indexed: 06/07/2023]
Abstract
C1q domain containing proteins (C1qDCs) are a family of proteins containing a globular head C1q domain (ghC1q) in C-terminus, which serve as pattern recognition receptors (PRRs) and mediate a series of immune responses. In the present study, three C1qDC proteins from pacific oyster Crassostrea gigas (CgC1qDC-2, CgC1qDC-3, CgC1qDC-4) were characterized and comparatively investigated to understand their roles in the immune response. All the three recombinant CgC1qDC proteins (rCgC1qDCs) could bind lipopolysaccharide (LPS) significantly but they could not bind lipoteichoic acid (LTA), β-1,3-glucan (GLU), mannan (MAN), and polyinosinic-polycytidylic acid (Poly I:C). Correspondingly, they all exhibited higher binding activities towards Gram-negative bacteria Vibrio anguillarum and V. splendidus. Moreover, they could enhance the phagocytosis of oyster hemocytes, and the enhancements towards Gram-negative bacteria were significantly higher than that towards Gram-positive bacteria (p < 0.01). The LPS binding affinity of rCgC1qDC-3 (KD = 8.74 × 10-7 M) was higher than that of rCgC1qDC-2 (KD = 7.76 × 10-5 M) and rCgC1qDC-4 (KD = 1.09 × 10-5 M). Meanwhile, rCgC1qDC-3 exhibited significantly higher enhancement on phagocytosis of oyster hemocytes towards Gram-negative bacteria than that of rCgC1qDC-2 and rCgC1qDC-4 (p < 0.05). After the secondary challenge with V. splendidus, the up-regulations of CgC1qDC-2 and CgC1qDC-4 mRNA in hemocytes occurred at 6 h, while that of CgC1qDC-3 was observed at 3 h and lasted for 24 h. And CgC1qDC-3 responded with high mRNA level for tested 24 h upon the secondary challenge with V. anguillarum as well. These results collectively suggested that three CgC1qDCs could serve as PRRs to specifically recognize certain Gram-negative bacteria and opsonins to enhance phagocytosis. CgC1qDC-3, with higher binding affinity to LPS, stronger opsonization and more rapid and persistent mRNA expression response upon the secondary challenge with homologous Vibrios, might exert efficient functions in the immune responses against invading pathogens.
Collapse
Affiliation(s)
- Zhao Lv
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Limei Qiu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Mengqiang Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhihao Jia
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weilin Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lusheng Xin
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaoqun Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingling Wang
- Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Linsheng Song
- Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
26
|
Goncalves P, Jones DB, Thompson EL, Parker LM, Ross PM, Raftos DA. Transcriptomic profiling of adaptive responses to ocean acidification. Mol Ecol 2017; 26:5974-5988. [PMID: 28833825 DOI: 10.1111/mec.14333] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/28/2017] [Accepted: 08/07/2017] [Indexed: 12/22/2022]
Abstract
Some populations of marine organisms appear to have inherent tolerance or the capacity for acclimation to stressful environmental conditions, including those associated with climate change. Sydney rock oysters from the B2 breeding line exhibit resilience to ocean acidification (OA) at the physiological level. To understand the molecular basis of this physiological resilience, we analysed the gill transcriptome of B2 oysters that had been exposed to near-future projected ocean pH over two consecutive generations. Our results suggest that the distinctive performance of B2 oysters in the face of OA is mediated by the selective expression of genes involved in multiple cellular processes. Subsequent high-throughput qPCR revealed that some of these transcriptional changes are exclusive to B2 oysters and so may be associated with their resilience to OA. The intracellular processes mediated by the differentially abundant genes primarily involve control of the cell cycle and maintenance of cellular homeostasis. These changes may enable B2 oysters to prevent apoptosis resulting from oxidative damage or to alleviate the effects of apoptosis through regulation of the cell cycle. Comparative analysis of the OA conditioning effects across sequential generations supported the contention that B2 and wild-type oysters have different trajectories of changing gene expression and responding to OA. Our findings reveal the broad set of molecular processes underlying transgenerational conditioning and potential resilience to OA in a marine calcifier. Identifying the mechanisms of stress resilience can uncover the intracellular basis for these organisms to survive and thrive in a rapidly changing ocean.
Collapse
Affiliation(s)
- Priscila Goncalves
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia.,Sydney Institute of Marine Science, Sydney, NSW, Australia
| | - David B Jones
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia.,Sydney Institute of Marine Science, Sydney, NSW, Australia
| | - Emma L Thompson
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia.,Sydney Institute of Marine Science, Sydney, NSW, Australia.,School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Laura M Parker
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Pauline M Ross
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - David A Raftos
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia.,Sydney Institute of Marine Science, Sydney, NSW, Australia
| |
Collapse
|
27
|
Bai Z, Zhao L, Chen X, Li Q, Li J. A galectin contributes to the innate immune recognition and elimination of pathogens in the freshwater mussel Hyriopsis cumingii. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 73:36-45. [PMID: 28300581 DOI: 10.1016/j.dci.2017.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 03/08/2017] [Accepted: 03/09/2017] [Indexed: 06/06/2023]
Abstract
Galectins are members of the lectin superfamily. They function as pattern recognition receptors in the innate immune system of vertebrates and invertebrates. A galectin homolog from the triangle sail mussel Hyriopsis cumingii (HcGal2) was cloned and characterized. HcGal2 mRNA was expressed in all tissues examined, displaying particular enrichment in mantle tissue. Interestingly, rHcGAL2 protein was only detected in the mantle, hemocytes, and gills, suggesting that post-transcriptional regulation may occur. HcGal2 expression was induced in the mantle, liver, and hemocytes after exposure to lipopolysaccharides, Gram-negative bacteria (Aeromonas hydrophila), and Gram-positive bacteria (Staphylococcus aureus). The transcript significant upregulated was also detected after implantation in the mantle, pearl sac, liver, and hemocytes. Recombinant HcGAL2 protein (rHcGAL2) agglutinated Gram-positive and Gram-negative bacteria. In addition, rHcGAL2 promoted phagocytosis by hemocytes in vivo. Our data suggest that HcGal2 functioned as a pattern recognition receptor in against the pathogenic microbes and contributed to the "non-self" recognition and elimination in H. cumingii.
Collapse
Affiliation(s)
- Zhiyi Bai
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, Ministry of Agriculture, Shanghai 201306, PR China
| | - Liting Zhao
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, Ministry of Agriculture, Shanghai 201306, PR China
| | - Xiajun Chen
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, Ministry of Agriculture, Shanghai 201306, PR China
| | - Qingqing Li
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, Ministry of Agriculture, Shanghai 201306, PR China
| | - Jiale Li
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, Ministry of Agriculture, Shanghai 201306, PR China.
| |
Collapse
|
28
|
Huang Y, Wu L, Jin M, Hui K, Ren Q. A C1qDC Protein (HcC1qDC6) with Three Tandem C1q Domains Is Involved in Immune Response of Triangle-Shell Pearl Mussel ( Hyriopsis cumingii). Front Physiol 2017; 8:521. [PMID: 28785225 PMCID: PMC5519582 DOI: 10.3389/fphys.2017.00521] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 07/06/2017] [Indexed: 12/31/2022] Open
Abstract
C1q-domain-containing (C1qDC) proteins are a family of proteins with a globular C1q (gC1q) domain and participate in several immune responses. In this study, a C1qDC gene was identified from the triangle-shell pearl mussel Hyriopsis cumingii (designated as HcC1qDC6). This gene has a full-length cDNA of 1782 bp and an open reading frame of 1,335 bp that encodes a 444-amino acid polypeptide containing three gC1q domains. HcC1qDC6 contains at least five exons and four introns. The mRNA transcripts of HcC1qDC6 were found to have the highest expression levels in the mantle tissue. The expression levels in the mantle and hepatopancreas were significantly upregulated by Staphylococcus aureus and Vibrio parahaemolyticus challenges. Moreover, knockdown of HcC1qDC6 inhibits the expression of two immune-related genes (tumor necrosis factor and whey acidic protein). The recombinant proteins of C1q1, C1q2, and C1q3 all exhibit a binding activity against seven bacterial species and directly bind to peptidoglycan and lipopolysaccharide. The results indicate that HcC1qDC6 is involved in the innate immunity of H. cumingii.
Collapse
Affiliation(s)
- Ying Huang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal UniversityNanjing, China
| | - Lei Wu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal UniversityNanjing, China
| | - Min Jin
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, State Oceanic Administration (SOA)Xiamen, China
| | - Kaimin Hui
- Jiangsu Key Laboratory for Biodiversity and Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal UniversityNanjing, China
| | - Qian Ren
- Jiangsu Key Laboratory for Biodiversity and Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal UniversityNanjing, China.,Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu ProvinceLianyungang, China
| |
Collapse
|
29
|
Chen L, Wu F, Yuan S, Feng B. Identification and characteristic of three members of the C1q/TNF-related proteins (CTRPs) superfamily in Eudontomyzon morii. FISH & SHELLFISH IMMUNOLOGY 2016; 59:233-240. [PMID: 27771341 DOI: 10.1016/j.fsi.2016.10.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 10/17/2016] [Accepted: 10/18/2016] [Indexed: 06/06/2023]
Abstract
C1q is the target recognition protein of the classical complement pathway and a major connecting link between innate and acquired immunity. C1q and the multifunctional tumor necrosis factor (TNF) ligand family is of similar crystal structures, are designated the C1q/TNF-related proteins (CTRPs) superfamily. They are involved in processes as diverse as host defense, inflammation, apoptosis, autoimmunity, cell differentiation, organogenesis, hibernation and insulinresistant obesity. In this study, three members of the CTRPs superfamily were isolated and characterized in Yalu River lampreys (Eudontomyzon morii), and are respectively named LaC1qC, LaCTRP1, LaCTRP9. The full-length cDNAs of C1qC-like (LaC1qAL), CTRP1-like (LaCTRP1), and CTRP9-like (LaCTRP9) consist of 723, 762 and 825 bp of nucleotide sequence encoding polypeptides of 241, 254 and 275 amino acids, respectively. All-three proteins share three common domains: a signal peptide at the N terminus, a collagenous domain (characteristic Gly-X-Y repeats), and a C-terminal globular domain. In addition, the higher expression level of the three proteins in heart by RT-PCR and real-time PCR tissue profiling implied that they might involve in immune response or injury repair of the heart in lamprey.
Collapse
Affiliation(s)
- Liyong Chen
- Guangdong Province Key Laboratory for Medical Molecular Diagnostics, China-America Cancer Research Institute, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan 523808, China.
| | - Fenfang Wu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou 510275, China
| | - Shengjian Yuan
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou 510275, China
| | - Bo Feng
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou 510275, China
| |
Collapse
|
30
|
Huang Y, Wang W, Ren Q. Identification and function of a novel C1q domain-containing (C1qDC) protein in triangle-shell pearl mussel (Hyriopsis cumingii). FISH & SHELLFISH IMMUNOLOGY 2016; 58:612-621. [PMID: 27725260 DOI: 10.1016/j.fsi.2016.10.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/02/2016] [Accepted: 10/06/2016] [Indexed: 06/06/2023]
Abstract
C1q is the target recognition sequence of the classical complement pathway and a major link that connects innate and acquired immunity. In this study, a C1qDC homolog, HcC1qDC5, from the triangle-shell pearl mussel (Hyriopsis cumingii) was identified. The complete nucleotide sequence of HcC1qDC5 cDNA consists of a 5'-untranslated terminal region (UTR) of 123 bp, a 3'-UTR of 105 bp with a poly(A) tail, and an open reading frame (ORF) of 1344 bp, which encodes a polypeptide of 447 amino acids. HcC1qDC5 contains a signal peptide and three typical C1q domains. The HcC1qDC5 gene was expressed in all tested tissues, with the highest expression in the mantle. Staphylococcus aureus or Vibrio parahaemolyticus infection increased the mRNA transcript levels of HcC1qDC5 in the hepatopancreas and mantle. The recombinant HcC1qDC5 protein could bind to Gram-negative and Gram-positive bacteria as well as to different PAMPs (LPS and PGN). RNAi results showed that HcC1qDC5 was involved in V. parahaemolyticus-induced HcTNF and HcWAP expression. The combined results demonstrated that HcC1qDC5 participates in the innate immunity of H. cumingii.
Collapse
Affiliation(s)
- Ying Huang
- Jiangsu Key Laboratory for Biodiversity & Biotechnology, Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, PR China
| | - Wen Wang
- Jiangsu Key Laboratory for Biodiversity & Biotechnology, Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, PR China
| | - Qian Ren
- Jiangsu Key Laboratory for Biodiversity & Biotechnology, Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, PR China.
| |
Collapse
|
31
|
Zhang L, Sun W, Cai W, Zhang Z, Chen H, Ma S, Jia X. Transcriptional response of four C1q domain containing protein (C1qDC) genes from Venerupis philippinarum exposed to the water soluble fraction of No.0 diesel oil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 132:40-46. [PMID: 27261881 DOI: 10.1016/j.ecoenv.2016.05.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/15/2016] [Accepted: 05/25/2016] [Indexed: 06/05/2023]
Abstract
As pattern recognitionreceptors, the C1q-domain-containing (C1qDC) proteins play an important role in the pathogen recognition and complement pathway activation. In the present study, four novel C1q domain containing proteins (designated as VpC1qDC1, VpC1qDC2, VpC1qDC3 and VpC1qDC4) were cloned and characterized from clam Venerupis philippinarum. The four VpC1qDCs all possessed the conserved features critical for the fundamental structure and function of the C1q family. The four VpC1qDCs genes showed differential response profiles after exposure to the water soluble fraction of No.0 diesel oil (WSFD). More notably, VpC1qDC1 and VpC1qDC3 were more sensitive to low concentration of WSFD, as their mRNA level changed by higher magnitudes. In addition, VpC1qDC2 and VpC1qDC4 displayed notable increases with larger amplitude to high concentration of WSFD. All these results suggested that the transcriptional response of VpC1qDCs genes were probably a protective mechanism of the cell to oils pollution. The diverse expression patterns of VpC1qDCs demonstrated that VpC1qDC1 and VpC1qDC3 were sensitive responders to environmental stress in V. philippinarum.
Collapse
Affiliation(s)
- Linbao Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Guangzhou 510300, PR China; Key Laboratory of Fishery Ecology Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China.
| | - Wei Sun
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Guangzhou 510300, PR China; Key Laboratory of Fishery Ecology Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Wengui Cai
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Guangzhou 510300, PR China; Key Laboratory of Fishery Ecology Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Zhe Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Guangzhou 510300, PR China; Key Laboratory of Fishery Ecology Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Haigang Chen
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Guangzhou 510300, PR China; Key Laboratory of Fishery Ecology Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Shengwei Ma
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Guangzhou 510300, PR China; Key Laboratory of Fishery Ecology Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Xiaoping Jia
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Guangzhou 510300, PR China; Key Laboratory of Fishery Ecology Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China.
| |
Collapse
|
32
|
Bathige SDNK, Umasuthan N, Jayasinghe JDHE, Godahewa GI, Park HC, Lee J. Three novel C1q domain containing proteins from the disk abalone Haliotis discus discus: Genomic organization and analysis of the transcriptional changes in response to bacterial pathogens. FISH & SHELLFISH IMMUNOLOGY 2016; 56:181-187. [PMID: 27417231 DOI: 10.1016/j.fsi.2016.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/28/2016] [Accepted: 07/09/2016] [Indexed: 06/06/2023]
Abstract
The globular C1q (gC1q) domain containing proteins, commonly referred as C1q domain containing (C1qDC) proteins, are an essential family of proteins involved in various innate immune responses. In this study, three novel C1qDC proteins were identified from the disk abalone (Haliotis discus discus) transcriptome database and designated as AbC1qDC1, AbC1qDC2, and AbC1qDC3. The cDNA sequences of AbC1qDC1, AbC1qDC2, and AbC1qDC3 consisted of 807, 1305, and 660 bp open reading frames (ORFs) encoding 269, 435, and 220 amino acids (aa), respectively. Putative signal peptides and the N-terminal gC1q domain were identified in all three AbC1qDC proteins. An additional predicted motif region, known as the coiled coil region (CCR), was identified next to the signal sequence of AbC1qDC2. The genomic organization of the AbC1qDCs was determined using a bacterial artificial chromosome (BAC) library. It was found that the CDS of AbC1qDC1 was distributed among three exons, while the CDSs of AbC1qDC2 and AbC1qDC3 were distributed between two exons. Sequence analysis indicated that the AbC1qDC proteins shared <40% identity with other counterparts from different species. According to the neighbor-joining phylogenetic tree, the proteins were grouped within an invertebrate group with high evolutionary distances, which suggests that they are new members of the C1qDC family. Higher expression of AbC1qDC1 and AbC1qDC2 was detected in hepatopancreas, muscle, and mantle tissues compare to the other tissues analyzed, using reverse transcription, followed by quantitative real-time PCR (qPCR) using SYBR Green, whereas AbC1qDC3 was predominantly expressed in gill tissues, followed by muscles and the hepatopancreas. The temporal expression of AbC1qDC transcripts in gills after bacterial (Vibrio parahaemolyticus and Listeria monocytogenes) and lipopolysaccharide stimulation indicated that AbC1qDCs can be strongly induced by both Gram-negative and Gram-positive bacterial species with different response profiles. The results of this study suggest that AbC1qDCs are involved in immune responses against invading bacterial pathogens.
Collapse
Affiliation(s)
- S D N K Bathige
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Navaneethaiyer Umasuthan
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - J D H E Jayasinghe
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - G I Godahewa
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Hae-Chul Park
- Graduate School of Medicine, Korea University, Ansan, Gyeonggido, 15355, Republic of Korea.
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea.
| |
Collapse
|
33
|
Zhao LL, Jin M, Li XC, Ren Q, Lan JF. Four C1q domain-containing proteins involved in the innate immune response in Hyriopsis cumingii. FISH & SHELLFISH IMMUNOLOGY 2016; 55:323-331. [PMID: 27288256 DOI: 10.1016/j.fsi.2016.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/01/2016] [Accepted: 06/04/2016] [Indexed: 06/06/2023]
Abstract
C1q is a key subcomponent of the complement C1 complex. This subcomponent contains a globular C1q (gC1q) domain with remarkable ligand binding properties. C1q domain-containing (C1qDC) proteins are composed of all proteins with a gC1q domain. C1qDC proteins exist in many invertebrates and recognize non-self-ligands. In our study, four C1qDC genes, namely, HcC1qDC1-HcC1qDC4, were identified from Hyriopsis cumingii. HcC1qDC1-HcC1qDC4 encode a protein of 224, 204, 305, and 332 amino acids, respectively. All C1qDC proteins consist of a gC1q domain at the C terminal. In addition to the gC1q domain, a coiled-coil region is found in HcC1qDC4. Multiple alignments and phylogenetic tree analysis revealed that the C1qDC proteins highly differ from one another. Tissue distribution analysis demonstrated that HcC1qDC1-HcC1qDC4 are widely distributed in hemocytes, hepatopancreas, gills, mantle, and foot. These C1qDC genes are regulated by bacteria to varying degrees. These recombinant HcC1qDC proteins exhibit a binding activity against different bacterial species. Our results may suggest the roles of HcC1qDC genes in anti-bacterial immune defense.
Collapse
Affiliation(s)
- Ling-Ling Zhao
- College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, Nanjing, 210046, PR China
| | - Min Jin
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, SOA, Xiamen, 361005, PR China
| | - Xin-Cang Li
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, PR China
| | - Qian Ren
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, Nanjing, 210046, PR China; Key Laboratory of Animal Virology of Ministry of Agriculture and College of Life Sciences, Zhejiang University, Hangzhou, 310058, PR China.
| | - Jiang-Feng Lan
- College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China.
| |
Collapse
|
34
|
Li Y, Jiang S, Li M, Xin L, Wang L, Wang H, Qiu L, Song L. A cytokine-like factor astakine accelerates the hemocyte production in Pacific oyster Crassostrea gigas. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 55:179-187. [PMID: 26523496 DOI: 10.1016/j.dci.2015.10.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 10/27/2015] [Accepted: 10/27/2015] [Indexed: 06/05/2023]
Abstract
Astakine has been reported to be a hematopoietic growth factor of prokineticin homolog firstly found in arthropods freshwater crayfish Pacifastacus leniusculus. In the present study, an astakine homologous gene was identified from Pacific oyster Crassostrea gigas (designated CgAstakine). The full length cDNA of CgAstakine encoded a polypeptide of 103 amino acids containing a prokineticin (PK) domain homologous to that in astakine from freshwater crayfish P. leniusculus. The deduced amino acid sequence of CgAstakine shared higher similarity with those of other invertebrate astakines than prokineticins from vertebrates. The mRNA of CgAstakine was highly expressed in hepatopancreas and adductor muscle of oyster, while the CgAstakine protein was mainly distributed in hepatopancreas, gill and hemocytes. The mRNA expression of CgAstakine in hemocytes was significantly increased (p < 0.01) and maintained at a high level from 3 h to 9 h after Vibrio anguillarum challenge. After the oyster hemocytes were incubated with 5 μg/mL recombinant CgAstakine protein (rCgAstakine) for 24 h in vitro, the proliferation of hemocytes was significantly increased to 1.89 fold of that in control group (p < 0.05). Moreover, the total count of oyster hemocytes was significantly upregulated (2.45 fold of that in control group, p < 0.05) at 12 h after the oysters were received an injection of rCgAstakine (0.5 μg/g). These results collectively indicated that CgAstakine could modulate the hemocytes proliferation both in vitro and in vivo, and probably involved in the hematopoietic process fighting against the invasion of foreign pathogens.
Collapse
Affiliation(s)
- Yiqun Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Meijia Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lusheng Xin
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingling Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Hao Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Limei Qiu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Linsheng Song
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
35
|
Wang K, Pales Espinosa E, Tanguy A, Allam B. Alterations of the immune transcriptome in resistant and susceptible hard clams (Mercenaria mercenaria) in response to Quahog Parasite Unknown (QPX) and temperature. FISH & SHELLFISH IMMUNOLOGY 2016; 49:163-176. [PMID: 26690665 DOI: 10.1016/j.fsi.2015.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 12/03/2015] [Accepted: 12/06/2015] [Indexed: 06/05/2023]
Abstract
Quahog Parasite Unknown (QPX) is a fatal protistan parasite that causes severe losses in the hard clam (Mercenaria mercenaria) fisheries along the northeastern coast of the US. Field and laboratory studies of QPX disease have demonstrated a major role for water temperature and M. mercenaria genetic origin in disease development. Infections are more likely to occur at cold temperatures, with clam stocks originating from southern states being more susceptible than clams from northern origin where disease is enzootic. Even though the influence of temperature on QPX infection have been examined in susceptible and resistant M. mercenaria at physiological and cellular scales, the underlying molecular mechanisms associated with host-pathogen interactions remain largely unknown. This study was carried out to explore the molecular changes in M. mercenaria in response to temperature and QPX infection on the transcriptomic level, and also to compare molecular responses between susceptible and resistant clam stocks. A M. mercenaria oligoarray (15 K Agilent) platform was produced based on our previously generated transcriptomic data and was used to compare gene expression profiles in naive and QPX-infected susceptible (Florida stock) and resistant (Massachusetts) clams maintained at temperatures favoring disease development (13 °C) or clam healing (21 °C). In addition, transcriptomic changes reflecting focal (the site of infection, mantle) and systemic (circulating hemocytes) responses were also assessed using the oligoarray platform. Results revealed significant regulation of multiple biological pathways by temperature and QPX infection, mainly associated with immune recognition, microbial killing, protein synthesis, oxidative protection and metabolism. Alterations were widely systemic with most changes in gene expression revealed in hemocytes, highlighting the role of circulating hemocytes as the first line of defense against pathogenic stress. A large number of complement-related recognition molecules with fibrinogen or C1q domains were shown to be specially induced following QPX challenge, and the expression of these molecules was significantly higher in resistant clams as compared to susceptible ones. These highly variable immune proteins may be potent candidate molecular markers for future study of M. mercenaria resistance against QPX. Beyond the specific case of clam response to QPX, this study also provides insights into the primitive complement-like system in the hard clam.
Collapse
Affiliation(s)
- Kailai Wang
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794, USA
| | | | - Arnaud Tanguy
- UPMC Université Paris 6, Station Biologique de Roscoff, 29682, Roscoff, France
| | - Bassem Allam
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794, USA.
| |
Collapse
|
36
|
Takeuchi T, Koyanagi R, Gyoja F, Kanda M, Hisata K, Fujie M, Goto H, Yamasaki S, Nagai K, Morino Y, Miyamoto H, Endo K, Endo H, Nagasawa H, Kinoshita S, Asakawa S, Watabe S, Satoh N, Kawashima T. Bivalve-specific gene expansion in the pearl oyster genome: implications of adaptation to a sessile lifestyle. ZOOLOGICAL LETTERS 2016; 2:3. [PMID: 26900483 PMCID: PMC4759782 DOI: 10.1186/s40851-016-0039-2] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 02/11/2016] [Indexed: 05/12/2023]
Abstract
INTRODUCTION Bivalve molluscs have flourished in marine environments, and many species constitute important aquatic resources. Recently, whole genome sequences from two bivalves, the pearl oyster, Pinctada fucata, and the Pacific oyster, Crassostrea gigas, have been decoded, making it possible to compare genomic sequences among molluscs, and to explore general and lineage-specific genetic features and trends in bivalves. In order to improve the quality of sequence data for these purposes, we have updated the entire P. fucata genome assembly. RESULTS We present a new genome assembly of the pearl oyster, Pinctada fucata (version 2.0). To update the assembly, we conducted additional sequencing, obtaining accumulated sequence data amounting to 193× the P. fucata genome. Sequence redundancy in contigs that was caused by heterozygosity was removed in silico, which significantly improved subsequent scaffolding. Gene model version 2.0 was generated with the aid of manual gene annotations supplied by the P. fucata research community. Comparison of mollusc and other bilaterian genomes shows that gene arrangements of Hox, ParaHox, and Wnt clusters in the P. fucata genome are similar to those of other molluscs. Like the Pacific oyster, P. fucata possesses many genes involved in environmental responses and in immune defense. Phylogenetic analyses of heat shock protein70 and C1q domain-containing protein families indicate that extensive expansion of genes occurred independently in each lineage. Several gene duplication events prior to the split between the pearl oyster and the Pacific oyster are also evident. In addition, a number of tandem duplications of genes that encode shell matrix proteins are also well characterized in the P. fucata genome. CONCLUSIONS Both the Pinctada and Crassostrea lineages have expanded specific gene families in a lineage-specific manner. Frequent duplication of genes responsible for shell formation in the P. fucata genome explains the diversity of mollusc shell structures. These duplications reveal dynamic genome evolution to forge the complex physiology that enables bivalves to employ a sessile lifestyle in the intertidal zone.
Collapse
Affiliation(s)
- Takeshi Takeuchi
- />Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495 Japan
| | - Ryo Koyanagi
- />DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495 Japan
| | - Fuki Gyoja
- />Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495 Japan
| | - Miyuki Kanda
- />DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495 Japan
| | - Kanako Hisata
- />Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495 Japan
| | - Manabu Fujie
- />DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495 Japan
| | - Hiroki Goto
- />DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495 Japan
| | - Shinichi Yamasaki
- />DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495 Japan
| | - Kiyohito Nagai
- />Pearl Research Institute, Mikimoto CO. LTD, Shima, Mie 517-0403 Japan
| | - Yoshiaki Morino
- />Graduate School of Life and Environmental Science, University of Tsukuba, Ibaraki, 305-8572 Japan
| | - Hiroshi Miyamoto
- />Department of Genetic Engineering, Faculty of Biology-Oriented Science and Technology, Kinki University, 930 Nishimitani, Kinokawa, Wakayama 649-6493 Japan
| | - Kazuyoshi Endo
- />Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033 Japan
| | - Hirotoshi Endo
- />Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba 277-8564 Japan
| | - Hiromichi Nagasawa
- />Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657 Japan
- />College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058 People’s Republic of China
| | - Shigeharu Kinoshita
- />Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657 Japan
| | - Shuichi Asakawa
- />Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657 Japan
| | - Shugo Watabe
- />Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657 Japan
- />Kitasato University School of Marine Bioscience, Sagamihara, Kanagawa 252-0373 Japan
| | - Noriyuki Satoh
- />Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495 Japan
| | - Takeshi Kawashima
- />Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495 Japan
- />Present Address: Graduate School of Life and Environmental Science, University of Tsukuba, Ibaraki, 305-8572 Japan
| |
Collapse
|
37
|
Wang L, Wang L, Zhang D, Jiang Q, Sun R, Wang H, Zhang H, Song L. A novel multi-domain C1qDC protein from Zhikong scallop Chlamys farreri provides new insights into the function of invertebrate C1qDC proteins. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 52:202-214. [PMID: 26049063 DOI: 10.1016/j.dci.2015.05.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 05/20/2015] [Accepted: 05/20/2015] [Indexed: 06/04/2023]
Abstract
The C1q domain containing (C1qDC) proteins are a family of proteins possessing globular C1q (gC1q) domains, and they rely on this domain to recognize various ligands such as PAMPs, immunoglobulins, ligands on apoptotic cell. In the present study, a novel multi-domain C1qDC protein (CfC1qDC-2) was identified from scallop Chlamys farreri, and its full length cDNA was composed of 1648 bp, encoding a signal peptide and three typical gC1q domains. BLAST analysis revealed significant sequence similarity between CfC1qDC-2 and C1qDC proteins from mollusks. Three gC1q domains were predicted in its tertiary structure to form a tightly packed bell-shaped trimer, and each one adopted a typical 10-stranded sandwich fold with a jelly-roll topology and contained six aromatic amino acids forming the hydrophobic core. The mRNA transcripts of CfC1qDC-2 were mainly detected in the tissues of hepatopancreas and gonad of adult scallops, and the expression level was up-regulated in hemocytes after stimulated by LPS, PGN and β-glucan. During the embryonic development of scallop, the mRNA transcripts of CfC1qDC-2 were presented in all the detected stages, and the expression level was up-regulated from D-hinged larvae and reached the highest at eye-spot larvae. The recombinant protein of MBP-CfC1qDC-2 (rCfC1qDC-2) could bind various PAMPs including LPS, PGN, LTA, β-glucan, mannan as well as polyI:C, and different microorganisms including three Gram-negative bacteria, three Gram-positive bacteria and two yeasts, as well as scallop apoptotic cells. Meanwhile, rCfC1qDC-2 could interact with human heat-aggregated IgG and IgM, and inhibit the C1q-dependent hemolysis of rabbit serum. All these results indicated that CfC1qDC-2 could recognize not only PAMPs as a PRR, but also the apoptotic cells. Moreover, the similar structures and functions shared by CfC1qDC-2 and complement C1q provided a new insight into the evolution of C1qDC proteins in complement system.
Collapse
Affiliation(s)
- Leilei Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Lianyungang Maternal and child Health Hospital, Lianyungang 222001, China
| | - Lingling Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Daoxiang Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiufen Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Huan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | | |
Collapse
|
38
|
Song L, Wang L, Zhang H, Wang M. The immune system and its modulation mechanism in scallop. FISH & SHELLFISH IMMUNOLOGY 2015; 46:65-78. [PMID: 25797696 DOI: 10.1016/j.fsi.2015.03.013] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 03/07/2015] [Indexed: 06/04/2023]
Abstract
Scallops are a cosmopolitan family of bivalves, and some of them are highly prized as dominant aquaculture species. In the past decades, there have been increasing studies on the basic biology and immunology of scallops, and this review summarizes the research progresses of immune system and its modulation mechanism in scallop. As invertebrate, scallops lack adaptive immunity and they have evolved an array of sophisticated strategies to recognize and eliminate various invaders by employing a set of molecules and cells. It is evident that basic immune reactions such as immune recognition, signal transduction, and effector synthesis involved in immune response are accomplished in a variety of ways. They rely upon an extensive repertoire of phagocytosis, apoptosis and encapsulation of the circulating hemocytes for eliminating invasive pathogens, as well as the production of immune effectors that are active against a large range of pathogens or sensitive for the environmental stress. Furthermore, the molecular constitutions, metabolic pathways and immunomodulation mechanisms of the primitive catecholaminergic, cholinergic, enkephalinergic system and NO system in scallop are also discussed, which can be taken as an entrance to better understand the origin and evolution of the neuroendocrine-immune regulatory network in lower invertebrates.
Collapse
Affiliation(s)
| | - Lingling Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Huan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Mengqiang Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
39
|
Gardères J, Bourguet-Kondracki ML, Hamer B, Batel R, Schröder HC, Müller WEG. Porifera Lectins: Diversity, Physiological Roles and Biotechnological Potential. Mar Drugs 2015; 13:5059-101. [PMID: 26262628 PMCID: PMC4557014 DOI: 10.3390/md13085059] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 07/09/2015] [Accepted: 07/27/2015] [Indexed: 12/29/2022] Open
Abstract
An overview on the diversity of 39 lectins from the phylum Porifera is presented, including 38 lectins, which were identified from the class of demosponges, and one lectin from the class of hexactinellida. Their purification from crude extracts was mainly performed by using affinity chromatography and gel filtration techniques. Other protocols were also developed in order to collect and study sponge lectins, including screening of sponge genomes and expression in heterologous bacterial systems. The characterization of the lectins was performed by Edman degradation or mass spectrometry. Regarding their physiological roles, sponge lectins showed to be involved in morphogenesis and cell interaction, biomineralization and spiculogenesis, as well as host defense mechanisms and potentially in the association between the sponge and its microorganisms. In addition, these lectins exhibited a broad range of bioactivities, including modulation of inflammatory response, antimicrobial and cytotoxic activities, as well as anticancer and neuromodulatory activity. In view of their potential pharmacological applications, sponge lectins constitute promising molecules of biotechnological interest.
Collapse
Affiliation(s)
- Johan Gardères
- Unité Molécules de Communication et Adaptation des Microorganismes, UMR 7245 CNRS, Muséum National d’Histoire Naturelle, CP 54, 57 rue Cuvier, Paris 75005, France; E-Mails: (J.G.); (M.-L.B.-K.)
- Laboratory for Marine Molecular Biology, Center for Marine Research, Ruđer Bošković Institute, G. Paliaga 5, 52210 Rovinj, Croatia; E-Mails: (B.H.); (R.B.)
- ERC Advanced Investigator Grant Research Group at Institute for Physiological Chemistry, University Medical Center of Johannes Gutenberg University Mainz, Duesbergweg 6, Mainz D-55128, Germany; E-Mail:
| | - Marie-Lise Bourguet-Kondracki
- Unité Molécules de Communication et Adaptation des Microorganismes, UMR 7245 CNRS, Muséum National d’Histoire Naturelle, CP 54, 57 rue Cuvier, Paris 75005, France; E-Mails: (J.G.); (M.-L.B.-K.)
| | - Bojan Hamer
- Laboratory for Marine Molecular Biology, Center for Marine Research, Ruđer Bošković Institute, G. Paliaga 5, 52210 Rovinj, Croatia; E-Mails: (B.H.); (R.B.)
| | - Renato Batel
- Laboratory for Marine Molecular Biology, Center for Marine Research, Ruđer Bošković Institute, G. Paliaga 5, 52210 Rovinj, Croatia; E-Mails: (B.H.); (R.B.)
| | - Heinz C. Schröder
- ERC Advanced Investigator Grant Research Group at Institute for Physiological Chemistry, University Medical Center of Johannes Gutenberg University Mainz, Duesbergweg 6, Mainz D-55128, Germany; E-Mail:
| | - Werner E. G. Müller
- ERC Advanced Investigator Grant Research Group at Institute for Physiological Chemistry, University Medical Center of Johannes Gutenberg University Mainz, Duesbergweg 6, Mainz D-55128, Germany; E-Mail:
| |
Collapse
|
40
|
Jiang S, Li H, Zhang D, Zhang H, Wang L, Sun J, Song L. A C1q domain containing protein from Crassostrea gigas serves as pattern recognition receptor and opsonin with high binding affinity to LPS. FISH & SHELLFISH IMMUNOLOGY 2015; 45:583-591. [PMID: 26002640 DOI: 10.1016/j.fsi.2015.05.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 05/10/2015] [Accepted: 05/11/2015] [Indexed: 06/04/2023]
Abstract
C1q proteins serve as pattern recognition receptors and involve in the pathogen recognition and complement pathway activation. In the present study, a novel C1q domain containing protein from Crassostrea gigas (designated CgC1qDC-1) was isolated by liposaccharide-Sepharose 6B affinity chromatography. The coding sequence of CgC1qDC-1 gene was determined by performing a homologous search of eight tryptic peptides identified by MALDI-TOF/TOF-MS against the genome of C. gigas. The coding sequence of CgC1qDC-1 was of 387 bp encoding a polypeptide of 128 amino acids containing a typical globular C1q domain. The globular C1q domain possessed eight β strands with a jelly-roll topology structure, which was similar to the structure of human gC1q domain. The mRNA transcripts of CgC1qDC-1 were dominantly expressed in mantle and hemocytes, while low expressed in hepatopancreas, gonad, gill and muscle. The expression level of CgC1qDC-1 increased drastically at 6 h after Vibrio splendidus stimulation, and then gradually fell to the normal level at about 24 h. ELISA assay quantified that CgC1qDC-1 bound to LPS with high binding affinity (Kd = 0.09 × 10(-6) M). Moreover, CgC1qDC-1 significantly enhanced the phagocytosis of oyster hemocytes towards Gram-negative bacteria Escherichia coli and V. splendidus. These results collectively indicated that CgC1qDC-1 could serve as pattern recognition receptor and opsonin in the innate immune response against invading Gram-negative bacteria.
Collapse
Affiliation(s)
- Shuai Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Hui Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Daoxiang Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Huan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lingling Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin 300387, China
| | | |
Collapse
|
41
|
Immune responses to infectious diseases in bivalves. J Invertebr Pathol 2015; 131:121-36. [PMID: 26003824 DOI: 10.1016/j.jip.2015.05.005] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 04/07/2015] [Accepted: 05/05/2015] [Indexed: 12/21/2022]
Abstract
Many species of bivalve mollusks (phylum Mollusca, class Bivalvia) are important in fisheries and aquaculture, whilst others are critical to ecosystem structure and function. These crucial roles mean that considerable attention has been paid to the immune responses of bivalves such as oysters, clams and mussels against infectious diseases that can threaten the viability of entire populations. As with many invertebrates, bivalves have a comprehensive repertoire of immune cells, genes and proteins. Hemocytes represent the backbone of the bivalve immune system. However, it is clear that mucosal tissues at the interface with the environment also play a critical role in host defense. Bivalve immune cells express a range of pattern recognition receptors and are highly responsive to the recognition of microbe-associated molecular patterns. Their responses to infection include chemotaxis, phagolysosomal activity, encapsulation, complex intracellular signaling and transcriptional activity, apoptosis, and the induction of anti-viral states. Bivalves also express a range of inducible extracellular recognition and effector proteins, such as lectins, peptidoglycan-recognition proteins, thioester bearing proteins, lipopolysaccharide and β1,3-glucan-binding proteins, fibrinogen-related proteins (FREPs) and antimicrobial proteins. The identification of FREPs and other highly diversified gene families in bivalves leaves open the possibility that some of their responses to infection may involve a high degree of pathogen specificity and immune priming. The current review article provides a comprehensive, but not exhaustive, description of these factors and how they are regulated by infectious agents. It concludes that one of the remaining challenges is to use new "omics" technologies to understand how this diverse array of factors is integrated and controlled during infection.
Collapse
|
42
|
Gerdol M, Venier P, Pallavicini A. The genome of the Pacific oyster Crassostrea gigas brings new insights on the massive expansion of the C1q gene family in Bivalvia. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 49:59-71. [PMID: 25445912 DOI: 10.1016/j.dci.2014.11.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 11/06/2014] [Accepted: 11/06/2014] [Indexed: 05/26/2023]
Abstract
C1q domain-containing (C1qDC) proteins are regarded as important players in the innate immunity of bivalve mollusks and other invertebrates and their highly adaptive binding properties indicate them as efficient pathogen recognition molecules. Although experimental studies support this view, the molecular data available at the present time are not sufficient to fully explain the great molecular diversification of this family, present in bivalves with hundreds of C1q coding genes. Taking advantage of the fully sequenced genome of the Pacific oyster Crassostrea gigas and more than 100 transcriptomic datasets, we: (i) re-annotated the oyster C1qDC loci, thus identifying the correct genomic organization of 337 C1qDC genes, (ii) explored the expression pattern of oyster C1qDC genes in diverse developmental stages and adult tissues of unchallenged and experimentally treated animals; (iii) investigated the expansion of the C1qDC gene family in all major bivalve subclasses. Overall, we provide a broad description of the functionally relevant features of oyster C1qDC genes, their comparative expression levels and new evidence confirming that a gene family expansion event has occurred during the course of Bivalve evolution, leading to the diversification of hundreds of different C1qDC genes in both the Pteriomorphia and Heterodonta subclasses.
Collapse
Affiliation(s)
- Marco Gerdol
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, 34127 Trieste (TS), Italy
| | - Paola Venier
- Deparment of Biology, University of Padova, Via Ugo Bassi 58/B, 35121 Padova (PD), Italy
| | - Alberto Pallavicini
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, 34127 Trieste (TS), Italy.
| |
Collapse
|
43
|
Zeng Y, Xiang J, Lu Y, Chen Y, Wang T, Gong G, Wang L, Li X, Chen S, Sha Z. sghC1q, a novel C1q family member from half-smooth tongue sole (Cynoglossus semilaevis): identification, expression and analysis of antibacterial and antiviral activities. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 48:151-163. [PMID: 25312696 DOI: 10.1016/j.dci.2014.09.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 09/28/2014] [Accepted: 09/28/2014] [Indexed: 06/04/2023]
Abstract
The C1q family includes many proteins that contain a globular (gC1q) domain, and this family is widely conserved from bacteria to mammals. The family is divided into three subgroups: C1q, C1q-like and ghC1q. In this study, a novel C1q family member, sghC1q, was cloned and identified from Cynoglossus semilaevis (named CssghC1q). The full-length CssghC1q cDNA spans 905 bp, including an open reading frame (ORF) of 768 bp, a 5'-untranslated region (UTR) of 25 bp and a 3'-UTR of 112 bp. The ORF encodes a putative protein of 255 amino acids (aa) with a deduced molecular weight of 28 kDa. The predicted protein contains a signal peptide (aa 1-19), a coiled-coil region (aa 61-102) and a globular C1q (gC1q) domain (aa 117-255). Protein sequence alignment indicated that the C-terminus of CssghC1q is highly conserved across several species. Phylogenetic analysis indicated that CssghC1q is most closely related to Maylandia zebra C1q-like-2-like. The CssghC1q genomic sequence spanned 1562 bp, with three exons and two introns. CssghC1q is constitutively expressed in all evaluated tissues, with the highest expression in the liver and the weakest in the heart. After a challenge with Vibrio anguillarum, CssghC1q transcript levels exhibited distinct time-dependent response patterns in the blood, head kidney, skin, spleen, intestine and liver. Recombinant CssghC1q protein exhibited antimicrobial activities against Gram-negative bacteria, Gram-positive bacteria and viruses. The minimum inhibitory concentration (MIC) values against Vibrio harveyi, Vibrio anguillarum, Pseudomonas aeruginosa and Staphylococcus aureus were 0.043 mg/mL, 0.087 mg/mL, 0.174 mg/mL and 0.025 mg/mL, respectively. A low concentration (0.06 mg/mL) of CssghC1q showed significant antiviral activity in vitro against nervous necrosis virus (NNV). These results suggest that CssghC1q plays a vital role in immune defense against bacteria and viruses.
Collapse
Affiliation(s)
- Yan Zeng
- Key Lab for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Jinsong Xiang
- Key Lab for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Yang Lu
- Key Lab for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Yadong Chen
- Key Lab for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Tianzi Wang
- Key Lab for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; College of Fisheries and Life Science, Henan Normal University, Xinxiang 453000, China
| | - Guangye Gong
- Key Lab for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Lei Wang
- Key Lab for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; College of Fisheries and Life Science, Henan Normal University, Xinxiang 453000, China
| | - Xihong Li
- Key Lab for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Songlin Chen
- Key Lab for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Zhenxia Sha
- Key Lab for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
| |
Collapse
|
44
|
McDowell IC, Nikapitiya C, Aguiar D, Lane CE, Istrail S, Gomez-Chiarri M. Transcriptome of American oysters, Crassostrea virginica, in response to bacterial challenge: insights into potential mechanisms of disease resistance. PLoS One 2014; 9:e105097. [PMID: 25122115 PMCID: PMC4133350 DOI: 10.1371/journal.pone.0105097] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 07/18/2014] [Indexed: 11/19/2022] Open
Abstract
The American oyster Crassostrea virginica, an ecologically and economically important estuarine organism, can suffer high mortalities in areas in the Northeast United States due to Roseovarius Oyster Disease (ROD), caused by the gram-negative bacterial pathogen Roseovarius crassostreae. The goals of this research were to provide insights into: 1) the responses of American oysters to R. crassostreae, and 2) potential mechanisms of resistance or susceptibility to ROD. The responses of oysters to bacterial challenge were characterized by exposing oysters from ROD-resistant and susceptible families to R. crassostreae, followed by high-throughput sequencing of cDNA samples from various timepoints after disease challenge. Sequence data was assembled into a reference transcriptome and analyzed through differential gene expression and functional enrichment to uncover genes and processes potentially involved in responses to ROD in the American oyster. While susceptible oysters experienced constant levels of mortality when challenged with R. crassostreae, resistant oysters showed levels of mortality similar to non-challenged oysters. Oysters exposed to R. crassostreae showed differential expression of transcripts involved in immune recognition, signaling, protease inhibition, detoxification, and apoptosis. Transcripts involved in metabolism were enriched in susceptible oysters, suggesting that bacterial infection places a large metabolic demand on these oysters. Transcripts differentially expressed in resistant oysters in response to infection included the immune modulators IL-17 and arginase, as well as several genes involved in extracellular matrix remodeling. The identification of potential genes and processes responsible for defense against R. crassostreae in the American oyster provides insights into potential mechanisms of disease resistance.
Collapse
Affiliation(s)
- Ian C. McDowell
- College of the Environment and Life Sciences, University of Rhode Island, Kingston, Rhode Island, United States of America
| | - Chamilani Nikapitiya
- College of the Environment and Life Sciences, University of Rhode Island, Kingston, Rhode Island, United States of America
| | - Derek Aguiar
- Department of Computer Science and Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, United States of America
| | - Christopher E. Lane
- College of the Environment and Life Sciences, University of Rhode Island, Kingston, Rhode Island, United States of America
| | - Sorin Istrail
- Department of Computer Science and Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, United States of America
| | - Marta Gomez-Chiarri
- College of the Environment and Life Sciences, University of Rhode Island, Kingston, Rhode Island, United States of America
- * E-mail:
| |
Collapse
|
45
|
Liu HH, Xiang LX, Shao JZ. A novel C1q-domain-containing (C1qDC) protein from Mytilus coruscus with the transcriptional analysis against marine pathogens and heavy metals. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 44:70-75. [PMID: 24296435 DOI: 10.1016/j.dci.2013.11.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 11/22/2013] [Indexed: 06/02/2023]
Abstract
The C1q-domain-containing (C1qDC) proteins, which are involved in various processes of vertebrates, are important pattern recognition receptors in innate immunity of invertebrates. In present study, a novel C1qDC was identified from Mytilus coruscus (designated as McC1qDC), which was 917 bp in length encoding 236 amino acids with a typical signal peptide of 19 amino acid residues in N-terminus. Based on its conserved C1q domain and molecular architecture of 10 β-strand jelly-roll folding topology structure, McC1qDC might be classified as a member of the C1q family. The mRNA transcript of McC1qDC was predominantly detectable in the hemocytes, and a less degree in gill, gonad and mantle, but trace in foot, adductor and digestive gland. Upon induction by Vibrio harveyi and Vibrio alginolyticus, McC1qDC expression was significantly up-regulated. Time-dependent mRNA expression of McC1qDC was found during copper and cadmium exposure for its heavy metal-binding domain. These results indicated that McC1qDC was a novel member of the C1qDC protein family as a pattern recognition receptor against pathogens, and might be developed as a potential indicator for monitoring heavy metals pollution.
Collapse
Affiliation(s)
- Hui-Hui Liu
- College of Life Sciences, Zhejiang University, Hangzhou 310012, People's Republic of China; School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316004, People's Republic of China
| | - Li-Xin Xiang
- College of Life Sciences, Zhejiang University, Hangzhou 310012, People's Republic of China
| | - Jian-Zhong Shao
- College of Life Sciences, Zhejiang University, Hangzhou 310012, People's Republic of China.
| |
Collapse
|