1
|
Sheng X, Zhang H, Liu M, Tang X, Xing J, Chi H, Zhan W. Development and Evaluation of Recombinant B-Cell Multi-Epitopes of PDHA1 and GAPDH as Subunit Vaccines against Streptococcus iniae Infection in Flounder (Paralichthys olivaceus). Vaccines (Basel) 2023; 11:vaccines11030624. [PMID: 36992208 DOI: 10.3390/vaccines11030624] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Streptococcus iniae is a severe Gram-positive pathogen that can infect a wide range of freshwater and marine fish species. In continuation of our earlier studies on the development of S. iniae vaccine candidates, pyruvate dehydrogenase E1 subunit alpha (PDHA1) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were highly efficacious in protecting flounder (Paralichthys olivaceus) against S. iniae. In the present study, to investigate the potential of multi-epitope vaccination strategy to prevent flounder against S. iniae infection, the liner B-cell epitopes of PDHA1 and GAPDH proteins were predicted using a bioinformatics approach and were identified by immunoassay, and recombinant B-cell multi-epitopes of PDHA1 and GAPDH (rMEPIP and rMEPIG) containing immunodominant epitope-concentrated domains were expressed in Escherichia coli BL21 (DE3) and were used as a subunit vaccine to immunize healthy flounder, while recombinant PDHA1 (rPDHA1), GAPDH (rGAPDH) and formalin-inactivated S. iniae (FKC) served as controls. Then, the immunoprotection efficacy of rMEPIP and rMEPIG was evaluated by determining the percentages of CD4-1+, CD4-2+, CD8β+ T lymphocytes and surface-IgM-positive (sIgM+) lymphocytes in peripheral blood leucocytes (PBLs), spleen leucocytes (SPLs) and head kidney leucocytes (HKLs), as well as total IgM, specific IgM, and relative percentage survival (RPS) post immunization, respectively. It was found that fish immunized with rPDHA1, rGAPDH, rMEPIP, rMEPIG and FKC showed significant increases in sIgM+, CD4-1+, CD4-2+, and CD8β+ lymphocytes and production of total IgM and specific IgM against S. iniae or recombinant proteins rPDHA1 and rGAPDH, which indicated the activation of humoral and cellular immune responses after vaccination. Moreover, RPS rate of the multi-epitope vaccine rMEPIP and rMEPIG groups reached 74.07% and 77.78%, higher than that of rPDHA1 and rGAPDH (62.96% and 66.67%) and KFC (48.15%). These results demonstrated that B-cell multi-epitope protein vaccination, rMEPIP and rMEPIG, could give a better protective effect against S. iniae infection, which provided a promising strategy to design the efficient vaccine in teleost fish.
Collapse
Affiliation(s)
- Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Honghua Zhang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China
| | - Min Liu
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| |
Collapse
|
2
|
Immune Activation Following Vaccination of Streptococcus iniae Bacterin in Asian Seabass ( Lates calcarifer, Bloch 1790). Vaccines (Basel) 2023; 11:vaccines11020351. [PMID: 36851232 PMCID: PMC9963699 DOI: 10.3390/vaccines11020351] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Juvenile Asian seabass (Lates calcarifer) (body weight 10 ± 0.7 g) were intraperitoneally injected with 1012 CFU fish-1 of formalin-killed Streptococcus iniae. The protective efficacy of the vaccine on survival and infection rate was assessed upon challenge at 4, 8, 12, 20, and 28 weeks post-vaccination. The results revealed that the challenged vaccinated fish showed no mortality at all time points, and the control fish presented 10-43.33% mortality. The infection rate at 2 weeks post-challenge was 0-13.33% in the vaccinated fish and 30-82.35% in the control group. At 8 weeks post-vaccination, the vaccinated fish showed comparable ELISA antibody levels with the control; however, the antibody levels of the vaccinated fish increased significantly after the challenge (p < 0.05), suggesting the presence of an adaptive response. Innate immune genes, including MHC I, MHC II, IL-1β, IL-4/13B, and IL-10, were significantly upregulated at 12 h post-challenge in the vaccinated fish but not in the control. In summary, vaccination with S. iniae bacterin provided substantial protection by stimulating the innate and specific immune responses of Asian seabass against S. iniae infection.
Collapse
|
3
|
Rajme-Manzur D, Gollas-Galván T, Vargas-Albores F, Martínez-Porchas M, Hernández-Oñate MÁ, Hernández-López J. Granulomatous bacterial diseases in fish: An overview of the host's immune response. Comp Biochem Physiol A Mol Integr Physiol 2021; 261:111058. [PMID: 34419575 DOI: 10.1016/j.cbpa.2021.111058] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/26/2021] [Accepted: 08/17/2021] [Indexed: 11/15/2022]
Abstract
Bacterial diseases represent the main impediment to the development of fish aquaculture. Granulomatous diseases caused by bacteria lead to fish culture losses by high mortality rates and slow growth. Bacteria belonging to genera Streptococcus spp., Mycobacterium sp., Nocardia sp., Francisella sp., and Staphylococcus sp. have been implicated in the development of granulomatous processes. The granuloma formation and the fish's immune response continue to be the subject of scientific research. In fish, the first defense line is constituted by non-specific humoral factors through growth-inhibiting substances such as transferrin and antiproteases, or lytic effectors as lysozyme and antimicrobial peptides, and linking with non-specific phagocyte responses. If the first line is breached, fish produce antibody constituents for a specific humoral defense inhibiting bacterial adherence, as well as the mobilization of non-phagocytic host cells and counteracting toxins from bacteria. However, bacteria causing granulomatous diseases can be persistent microorganisms, difficult to eliminate that can cause chronic diseases, even using some immune system components to survive. Understanding the infectious process leading to granulomatosis and how the host's immune system responds against granulomatous diseases is crucial to know more about fish immunology and develop strategies to overcome granulomatous diseases.
Collapse
Affiliation(s)
- David Rajme-Manzur
- Centro de Investigación en Alimentación y Desarrollo, A.C. Coordinación de Ciencia y Tecnología de Alimentos de Origen Animal, Biology of Aquatic Organisms, Hermosillo, Sonora, Mexico
| | - Teresa Gollas-Galván
- Centro de Investigación en Alimentación y Desarrollo, A.C. Coordinación de Ciencia y Tecnología de Alimentos de Origen Animal, Biology of Aquatic Organisms, Hermosillo, Sonora, Mexico
| | - Francisco Vargas-Albores
- Centro de Investigación en Alimentación y Desarrollo, A.C. Coordinación de Ciencia y Tecnología de Alimentos de Origen Animal, Biology of Aquatic Organisms, Hermosillo, Sonora, Mexico
| | - Marcel Martínez-Porchas
- Centro de Investigación en Alimentación y Desarrollo, A.C. Coordinación de Ciencia y Tecnología de Alimentos de Origen Animal, Biology of Aquatic Organisms, Hermosillo, Sonora, Mexico.
| | - Miguel Ángel Hernández-Oñate
- CONACYT - Centro de Investigación en Alimentación y Desarrollo, A.C. Coordinación de Ciencia y Tecnología de Alimentos de Origen Vegetal, Hermosillo, Sonora, Mexico
| | - Jorge Hernández-López
- Centro de Investigaciones del Noroeste (CIBNOR), Unidad Hermosillo, Hermosillo, Sonora, Mexico
| |
Collapse
|
4
|
Fu Y, Zhang YA, Shen J, Tu J. Immunogenicity study of OmpU subunit vaccine against Vibrio mimicus in yellow catfish, Pelteobagrus fulvidraco. FISH & SHELLFISH IMMUNOLOGY 2021; 108:80-85. [PMID: 33285164 DOI: 10.1016/j.fsi.2020.11.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/17/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
The outer membrane protein U (OmpU) is a conserved outer membrane protein in a variety of pathogenic Vibrio species and has been considered as a vital protective antigen for vaccine development. Vibrio mimicus (V. mimicus) is the pathogen causing ascites disease in aquatic animals. In this study, the prokaryotically expressed and purified His-tagged OmpU of V. mimicus (His-OmpU) was used as a subunit vaccine. The formalin inactivated V. mimicus, purified His tag (His-tag), and PBS were used as controls. The vaccinated yellow catfish were challenged with V. mimicus at 28 days post-vaccination, and the results showed that the His-OmpU and inactivated V. mimicus groups exhibited much higher survival rates than the His-tag and PBS groups. To fully understand the underlying mechanism, we detected the expression levels of several immune-related genes in the spleen of fish at 28 days post-vaccination and 24 h post-challenge. The results showed that most of the detected immune-related genes were significantly upregulated in His-OmpU and inactivated V. mimicus groups. In addition, we performed the serum bactericidal activity assay, and the results showed that the serum from His-OmpU and inactivated V. mimicus groups exhibited much stronger bactericidal activity against V. mimicus than those of His-tag and PBS groups. Finally, the serum agglutination antibody was detected, and the antibody could be detected in His-OmpU and inactivated V. mimicus groups with the antibody titers increasing along with the time post-vaccination, but not in His-tag or PBS group. Our data reveal that the recombinant OmpU elicits potent protective immune response and is an effective vaccine candidate against V. mimicus in yellow catfish.
Collapse
Affiliation(s)
- Yu Fu
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, Hubei, China
| | - Yong-An Zhang
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, Hubei, China
| | - Jinyu Shen
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, Zhejiang, China.
| | - Jiagang Tu
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, Hubei, China.
| |
Collapse
|
5
|
Interleukin 34 Serves as a Novel Molecular Adjuvant against Nocardia Seriolae Infection in Largemouth Bass ( Micropterus Salmoides). Vaccines (Basel) 2020; 8:vaccines8020151. [PMID: 32231137 PMCID: PMC7349345 DOI: 10.3390/vaccines8020151] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 03/26/2020] [Accepted: 03/26/2020] [Indexed: 02/06/2023] Open
Abstract
DNA vaccines have been widely employed in controlling viral and bacterial infections in mammals and teleost fish. Co-injection of molecular adjuvants, including chemokines, cytokines, and immune co-stimulatory molecules, is one of the potential strategies used to improve DNA vaccine efficacy. In mammals and teleost fish, interleukin-34 (IL-34) had been described as a multifunctional cytokine and its immunological role had been confirmed; however, the adjuvant capacity of IL-34 remains to be elucidated. In this study, IL-34 was identified in largemouth bass. A recombinant plasmid of IL-34 (pcIL-34) was constructed and co-administered with a DNA vaccine encoding hypoxic response protein 1 (Hrp1; pcHrp1) to evaluate the adjuvant capacity of pcIL-34 against Nocardia seriolae infection. Our results indicated that pcIL-34 co-injected with pcHrp1 not only triggered innate immunity and a specific antibody response, but also enhanced the mRNA expression level of immune-related genes encoding for cytokines, chemokines, and humoral and cell-mediated immunity. Moreover, pcIL-34 enhanced the protection of pcHrp1 against N. seriolae challenge and conferred the relative percent survival of 82.14%. Collectively, IL-34 is a promising adjuvant in a DNA vaccine against nocardiosis in fish.
Collapse
|
6
|
Zhao Z, Zhang C, Lin Q, Li NQ, Huang ZB, Zhao M, Fu XZ, Wang GX, Zhu B. Single-walled carbon nanotubes as delivery vehicles enhance the immunoprotective effect of an immersion DNA vaccine against infectious spleen and kidney necrosis virus in mandarin fish. FISH & SHELLFISH IMMUNOLOGY 2020; 97:432-439. [PMID: 31883470 DOI: 10.1016/j.fsi.2019.12.072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/18/2019] [Accepted: 12/23/2019] [Indexed: 06/10/2023]
Abstract
As a high mortality disease, Infectious spleen and kidney necrosis virus (ISKNV) can cause massive economic damage on mandarin fish farming industry in China, which seriously hindered the development of mandarin fish farming industry. In this research, SWCNTs (single-walled carbon nanotubes) as a candidate for DNA vaccine carrier was vaccinated by immersion (1, 2, 5, 10, 20 mg/L) in juvenile mandarin fish. In muscle, spleen and kidney tissues, the results showed that transcription and expression of MCP gene can be detected in pcDNA-MCP and SWCNTs-pcDNA-MCP groups after bath immunization. The immune response (immune-related genes expression, serum antibody production, enzyme activities and C3 content) was significantly enhanced in fish which vaccinated with SWCNTs-pcDNA-MCP in comparison with those vaccinated with pcDNA-MCP alone. After 14 d challenge, the RPS (relative percentage survival) can be enhanced which using SWCNTs as a carrier in SWCNTs-pcDNA-MCP (82.4%) group at 20 mg/L (the highest vaccine dose) than the naked pcDNA-MCP (54.2%) group. This study reveals that functionalized SWCNTs could be a promising immersion DNA vaccine carrier in aquaculture.
Collapse
Affiliation(s)
- Zhao Zhao
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China
| | - Chen Zhang
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China
| | - Qiang Lin
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, PR China
| | - Ning-Qiu Li
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, PR China
| | - Zhi-Bin Huang
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, PR China
| | - Mi Zhao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xiao-Zhe Fu
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, PR China.
| | - Gao-Xue Wang
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China.
| | - Bin Zhu
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
7
|
Wang Q, Fu T, Li X, Luo Q, Huang J, Sun Y, Wang X. Cross-immunity in Nile tilapia vaccinated with Streptococcus agalactiae and Streptococcus iniae vaccines. FISH & SHELLFISH IMMUNOLOGY 2020; 97:382-389. [PMID: 31841691 DOI: 10.1016/j.fsi.2019.12.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/01/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
Streptococcus agalactiae and Streptococcus iniae are major bacterial pathogens of tilapia that can cause high mortality concomitant with large economic losses to aquaculture. Although development of vaccines using formalin-killed bacteria to control these diseases has been attempted, the mechanism of immunity against streptococcal infections and the cross-protective ability of these two bacteria remains unclear. To explore the immunological role of these vaccines, we compared the immune responses of tilapia after immunization with both vaccines and compared the relative percent survival (RPS) and cross-immunization protection of tilapia after separate infection with S. agalactiae and S. iniae. All results revealed that vaccinated fish had significantly higher (P < 0.05) levels of specific antibodies than control fish 14 days post secondary vaccination (PSV) and 7 days post challenge. In vaccinated fish, the mRNA expression of interleukin-8 (IL-8), interleukin-12 (IL-12), caspase-3 (C-3), tumour necrosis factor (TNF), and interferon (IFN) was significantly up regulated (P < 0.05) in the head kidney after immunized; similar results were found for IL-8, TNF and IFN in the posterior kidney, meanwhile the expression levels of C-3 and IFN were significantly increased (P < 0.05) in the spleen of vaccinated fish. Additionally, the levels of acid phosphatase (ACP), alkaline phosphatase (AKP), superoxide dismutase (SOD), and lysozyme (LZM) in vaccinated fish were improved at different degree when compared to the control fish. These results showed that vaccination with formalin-killed cells (FKCs) of either S. agalactiae or S. iniae conferred protection against infection by the corresponding pathogen in Nile tilapia, resulting in RPS values of 92.3% and 91.7%, respectively. Furthermore, cross-protection was observed, as the S. agalactiae FKC vaccine protected fish from S. iniae infection, and vice versa. These results suggested that the S. agalactiae and S. iniae FKC vaccines can induce immune responses and generate excellent protective effects in Nile tilapia.
Collapse
Affiliation(s)
- Qishuo Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention & Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, 271018, PR China; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China
| | - Tianzeng Fu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention & Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, 271018, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 272000, PR China
| | - Xincang Li
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, PR China
| | - Qian Luo
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention & Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, 271018, PR China
| | - Jinjing Huang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention & Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, 271018, PR China
| | - Yongcan Sun
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention & Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, 271018, PR China
| | - Xuepeng Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention & Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, 271018, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 272000, PR China.
| |
Collapse
|
8
|
Liu C, Hu X, Cao Z, Sun Y, Chen X, Zhang Z. Construction and characterization of a DNA vaccine encoding the SagH against Streptococcus iniae. FISH & SHELLFISH IMMUNOLOGY 2019; 89:71-75. [PMID: 30917926 DOI: 10.1016/j.fsi.2019.03.045] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 03/16/2019] [Accepted: 03/20/2019] [Indexed: 06/09/2023]
Abstract
Streptococcus iniae is an important aquaculture pathogen that is associated with disease outbreaks in wild and cultured fish species. Streptolysin S has been identified as an important virulence factor of S. iniae. With an aim to develop effective vaccines against S. iniae for Japanese flounder (Paralichthys olivaceus), in this study, we constructed a DNA vaccine based on the sagH gene, which belongs to the streptolysin S-associated gene cluster. In fish vaccinated with pSagH, the transcription of sagH was detected in tissues and SagH protein was also detected in the muscles of pSagH-vaccinated fish by immunohistochemistry. The immunoprotective effect of SagH showed that fish vaccinated with pSagH at one and two months exhibited a high relative percent survival (RPS) of 92.62% and 90.58% against S. iniae serotype I, respectively. In addition, SagH conferred strong cross protection against S. iniae serotype II and resulted in an RPS of 83.01% and 80.65% at one and two months, respectively. Compared to the control group, fish vaccinated with pSagH were able to induce much stronger respiratory burst activity, and higher titer of specific antibodies. The results of quantitative real-time PCR demonstrated that pSagH upregulated the expression of several immune genes that are possibly involved in both innate and adaptive immune responses. These results indicate that pSagH is a candidate DNA vaccine candidate against S. iniae serotype I and II infection in Japanese flounder in aquaculture.
Collapse
Affiliation(s)
- Chunsheng Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, PR China
| | - Xiucong Hu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, PR China
| | - Zhenjie Cao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China
| | - Yun Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, PR China.
| | - Xiaojuan Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China
| | - Zhengshi Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China
| |
Collapse
|
9
|
Wang E, Liu T, Wu J, Wang K, Chen D, Geng Y, Huang X, Ouyang P, Lai W, Ai X. Molecular characterization, phylogenetic analysis and adjuvant effect of channel catfish interleukin-1βs against Streptococcus iniae. FISH & SHELLFISH IMMUNOLOGY 2019; 87:155-165. [PMID: 30630049 DOI: 10.1016/j.fsi.2019.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 12/30/2018] [Accepted: 01/06/2019] [Indexed: 06/09/2023]
Abstract
Channel catfish is one of the most extensively cultured species worldwide, which is widely used as a classical model for comparative immunology. Interleukin-1β (IL1β) is an immunoregulatory cytokine with the potential to enhance the immune response induced by vaccines in many animals. To characterize the molecular characterization and identify the immunoadjuvant role of channel catfish IL1β, molecular cloning, phylogenetic analysis, and expression of two IL1β genes were performed, the bioactivity of their recombinant proteins (rIL1β1 and rIL1β2) were detected in vitro and their adjuvant effects on a subunit vaccine encoding C5a peptidase (pSCPI) of Streptococcus iniae were evaluated. The results indicated that two IL1βs remained highly conserved possessing five conserved motifs compared with other fish IL1βs, although there were 28 nucleotide differences and 16 amino acid differences between channel catfish IL1β1 and IL1β2. Analysis of the ratios of nonsynonymous (dN) and synonymous (dS) substitutions revealed that fish IL1β genes were subjected to negative/purifying selection with global dN/dS ratios value 0.425. The results of adjuvant effect showed that compared with injection of pSCPI alone, co-injecting pSCPI with both rIL1β1 and rIL1β2 significantly enhanced antibody levels, serum bactericidal activity, lysozyme activity, alternative complement hemolytic activity, and the expression of endogenous IL1β and TNF-α in head kidney and spleen. Although vaccination with rIL1β1 or rIL1β2 failed to offer immunoprotection against S. iniae infection, the RPS (relative percent survival) of pSCPI+rIL1β1 and pSCPI+rIL1β2 groups were both higher than pSCPI alone (RPS, 50%), with 64.26% and 60.71%, respectively. Moreover, pSCPI+rIL1β1+rIL1β2 offered significantly higher (P < 0.05) immunoprotection (RPS, 75%) against S. iniae infection than pSCPI alone. Our present results not only enrich the molecular structure study of fish IL1βs but also signify that two recombinant channel catfish IL1βs can be used as potential adjuvants in a subunit vaccine model against bacterial infection, which are of profound importance to prevent and control bacterial disease in channel catfish.
Collapse
Affiliation(s)
- Erlong Wang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Tao Liu
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Jie Wu
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Kaiyu Wang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, PR China.
| | - Defang Chen
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Yi Geng
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Xiaoli Huang
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Ping Ouyang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Weimin Lai
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Xiaohui Ai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, PR China
| |
Collapse
|
10
|
Recombinant outer membrane protein T (OmpT) of Vibrio ichthyoenteri, a potential vaccine candidate for flounder (Paralichthys olivaceus). Microb Pathog 2019; 126:185-192. [DOI: 10.1016/j.micpath.2018.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 11/01/2018] [Accepted: 11/02/2018] [Indexed: 11/17/2022]
|
11
|
Zhou X, Xing J, Tang X, Zhan W. Evaluation of bivalent vaccines candidates among VAA, OmpK and OmpR from Vibrio anguillarum in flounder (Paralichthys olivaceus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 85:1-9. [PMID: 29559319 DOI: 10.1016/j.dci.2018.03.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/16/2018] [Accepted: 03/16/2018] [Indexed: 06/08/2023]
Abstract
Outer membrane protein (Omp) K, OmpR and VAA have been identified with good immunogenicity from Vibrio anguillarum, and their recombinant proteins showed variable relative percent survival (RPS) in previous study. In order to develop effective bivalent vaccine candidates, recombinant (r) VAA + rOmpK (AK), rVAA + rOmpR (AR), rOmpK + rOmpR (KR) among VAA, OmpK and OmpR, or formalin-killed cells (FKC) of V. anguillarum were immunized in flounder, respectively. Results revealed that AK, AR, KR and FKC could induce the proliferation of surface membrane immunoglobulin-positive B lymphocytes or CD3+ T lymphocytes in peripheral blood lymphocytes, and significantly enhance the total antibodies, specific antibodies and immune-related gene than those of control group. AK, AR, KR or FKC showed RPS of 74.92%, 78.49%, 82.09% and 56.99%, respectively. These results indicated that three bivalent vaccines AK, AR and KR could induce strong cellular and humoral immunity, and had high protection against V. anguillarum infection in flounders.
Collapse
Affiliation(s)
- Xiujuan Zhou
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, PR China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Aoshanwei Town, Qingdao, China.
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, PR China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Aoshanwei Town, Qingdao, China
| |
Collapse
|
12
|
Xing J, Zhou X, Tang X, Sheng X, Zhan W. FlaC supplemented with VAA, OmpK or OmpR as bivalent subunit vaccine candidates induce immune responses against Vibrio anguillarum in flounder ( Paralichthys olivaceus ). Vaccine 2018; 36:1316-1322. [DOI: 10.1016/j.vaccine.2017.11.074] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 11/21/2017] [Accepted: 11/26/2017] [Indexed: 10/18/2022]
|
13
|
Tang X, Wang H, Liu F, Sheng X, Xing J, Zhan W. Outer membrane protein A: An immunogenic protein induces highly protective efficacy against Vibrio ichthyoenteri. Microb Pathog 2017; 113:152-159. [PMID: 29074429 DOI: 10.1016/j.micpath.2017.10.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 09/21/2017] [Accepted: 10/20/2017] [Indexed: 11/30/2022]
Abstract
Vibrio ichthyoenteri was an important causative agent of bacterial enteritis in flounder (Paralichthys olivaceus). Outer membrane protein A (OmpA) of Gram-negative pathogen was a major cell surface antigen. In the present study, OmpA of V. ichthyoenteri was recombinantly expressed in Escherichia coli, and the immunogenicity of OmpA was identified by western blotting using flounder anti-rOmpA and anti-V. ichthyoenteri antibodies. The vaccine potential of rOmpA was tested in a flounder model, and a high relative percentage of survival rate was obtained with 73.1% after challenge with V. ichthyoenteri. Meanwhile, the immune response of flounder induced by rOmpA was also investigated, and the results showed that the sIg + lymphocytes in blood, spleen, and pronephros significantly proliferated, and the peak levels occurred at week 4 after immunization. Moreover, rOmpA could induce higher levels of specific serum antibodies than the control group after immunization, and the peak level occurred at week 5 after immunization. Meanwhile, qRT-PCR analysis showed that the expressions of CD4-1, CD8α, IL-1β, IFN-γ, MHCIα and MHCIIα genes were significantly up-regulated after immunization with rOmpA. Taking together, these results demonstrated that rOmpA could evoke highly protective effects against V. ichthyoenteri challenge and induce strong immune response of flounder, which indicated that OmpA was a promising vaccine candidate.
Collapse
Affiliation(s)
- Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, No.1 Wenhai Road, Qingdao 266071, China
| | - Hongye Wang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Fuguo Liu
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, No.1 Wenhai Road, Qingdao 266071, China.
| |
Collapse
|
14
|
Wang E, Long B, Wang K, Wang J, He Y, Wang X, Yang Q, Liu T, Chen D, Geng Y, Huang X, Ouyang P, Lai W. Interleukin-8 holds promise to serve as a molecular adjuvant in DNA vaccination model against Streptococcus iniae infection in fish. Oncotarget 2016; 7:83938-83950. [PMID: 27911873 PMCID: PMC5356636 DOI: 10.18632/oncotarget.13728] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 11/15/2016] [Indexed: 11/25/2022] Open
Abstract
DNA vaccines had been widely used in animal models against various viral infections, while it was not so convincing for many infectious diseases especially bacterial disease in aquaculture. Interleukin-8(IL-8) as one of the CXC chemokines, its immunological role and adjuvant potential which had been proved in mammals were rarely reported in fish species. In this study, recombination plasmid pcDNA3.1/IL-8(pcIL-8) was conducted and the capacity of IL-8 as molecular adjuvant was explored from several aspects by co-injecting with a DNA vaccine encoding α-enolase(pcENO) against Streptococcus iniae infection in channel catfish. The results suggested that co-injection of pcIL-8 with DNA vaccine increased the innate immunity and specific antibody levels, as well as increased the immune-related genes involving in pro-inflammatory response, humoral and cellular immunity. Moreover, pcIL-8 enhanced the immunoprotection of pcENO with the relative percent survival(RPS) of 60% to 80% against S.iniae infection at 4 week post vaccination(p.v.), with the significantly higher RPS of 73.33% in pcENO+pcIL-8 group compared with that of pcENO alone(53.33%) at challenge test of 8 weeks p.v. Taken together, these results indicate pcIL-8 as a molecular adjuvant co-injected with DNA vaccine not only improves the immunoprotection but also maintains long period of immunity for channel catfish against S.iniae infection. Our study signifies that IL-8 holds promise to serve as a potential adjuvant in DNA vaccines against bacterial infections for long time.
Collapse
Affiliation(s)
- Erlong Wang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bo Long
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Kaiyu Wang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jun Wang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yang He
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xingli Wang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qian Yang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Tao Liu
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Defang Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yi Geng
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiaoli Huang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ping Ouyang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Weimin Lai
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
15
|
Wang E, Wang J, Long B, Wang K, He Y, Yang Q, Chen D, Geng Y, Huang X, Ouyang P, Lai W. Molecular cloning, expression and the adjuvant effects of interleukin-8 of channel catfish (Ictalurus Punctatus) against Streptococcus iniae. Sci Rep 2016; 6:29310. [PMID: 27373470 PMCID: PMC4931690 DOI: 10.1038/srep29310] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/13/2016] [Indexed: 01/08/2023] Open
Abstract
Interleukin-8 (IL-8) as an important cytokine involving in inflammatory and immune response, has been studied as effective adjuvants for vaccines in mammals. However, there are fewer reports about the characterization and adjuvant effects of IL-8 in fish. In this study, cloning and sequence analysis of IL-8 coding region of channel catfish (Ictalurus punctatus) were conducted, mature IL-8(rtIL-8) was expressed and evaluated for its adjuvant effects on the immunoprotection of subunit vaccine encoding α-enolase (rENO) of Streptococcus iniae from several aspects in channel catfish. The results showed co-vaccination of rENO with rtIL-8 enhanced immune responses including humoral and cellular immunity, with higher relative percent survival(RPS,71.4%) compared with the moderate RPS of rENO alone(50%) against S. iniae infection at 4 week post vaccination. While rtIL-8 failed to maintain long-lasting immune protection, only with RPS of 26.67% in rENO + rtIL-8-vaccinated fish compared with that of rENO alone(20%) at 8 week, signifying that IL-8 hold promise for use as potential immunopotentiator in vaccines against bacterial infections in fish, whereas it is insufficient to extend the immunoprotection for long time, and further studies are required to understand the mechanisms of IL-8 used as an adjuvant and seek for more effective way to strengthen the adjuvanticity of IL-8.
Collapse
Affiliation(s)
- Erlong Wang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Jun Wang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Bo Long
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Kaiyu Wang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yang He
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Qian Yang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Defang Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yi Geng
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xiaoli Huang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Ping Ouyang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Weimin Lai
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| |
Collapse
|
16
|
Zhang J, Li MF. ORF75 of megalocytivirus RBIV-C1: A global transcription regulator and an effective vaccine candidate. FISH & SHELLFISH IMMUNOLOGY 2015; 45:486-494. [PMID: 25982404 DOI: 10.1016/j.fsi.2015.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 04/28/2015] [Accepted: 05/05/2015] [Indexed: 06/04/2023]
Abstract
Megalocytivirus, a DNA virus belonging to the Iridoviridae family, is a severe pathogen to a wide range of marine and freshwater fish. In this study, using turbot (Scophthalmus maximus) as a host model, we examined the immunoprotective property of one megalocytivirus gene, ORF75, in the form of DNA vaccine (named pORF75). Immunofluorescence microscopy and RT-PCR analysis showed that P444, the protein encoded by ORF75, was naturally produced in the tissues of turbot during megalocytivirus infection, and that the vaccine gene in pORF75 was expressed in fish cells transfected with pORF75 and in the tissues of turbot immunized with pORF75. Following vaccination of turbot with pORF75, a high level of survival (73%) was observed against a lethal megalocytivirus challenge. Consistently, viral replication in the vaccinated fish was significantly inhibited. Immune response analysis showed that pORF75-vaccinated fish (i) exhibited upregulated expression of the genes involved in innate and adaptive immunity, (ii) possessed specific memory immune cells that showed significant response to secondary antigen stimulation, and (iii) produced specific serum antibodies which, when co-introduced into turbot with megalocytivirus, blocked viral replication. Furthermore, whole-genome transcriptome analysis revealed that ORF75 knockdown altered the transcription of 43 viral genes. Taken together, these results indicate that ORF75 encoded a highly protective immunogen that is also a global transcription regulator of megalocytivirus.
Collapse
Affiliation(s)
- Jian Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mo-Fei Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
| |
Collapse
|
17
|
Evaluation and Selection of Appropriate Reference Genes for Real-Time Quantitative PCR Analysis of Gene Expression in Nile Tilapia (Oreochromis niloticus) during Vaccination and Infection. Int J Mol Sci 2015; 16:9998-10015. [PMID: 25941937 PMCID: PMC4463629 DOI: 10.3390/ijms16059998] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 04/23/2015] [Accepted: 04/24/2015] [Indexed: 01/09/2023] Open
Abstract
qPCR as a powerful and attractive methodology has been widely applied to aquaculture researches for gene expression analyses. However, the suitable reference selection is critical for normalizing target genes expression in qPCR. In the present study, six commonly used endogenous controls were selected as candidate reference genes to evaluate and analyze their expression levels, stabilities and normalization to immune-related gene IgM expression during vaccination and infection in spleen of tilapia with RefFinder and GeNorm programs. The results showed that all of these candidate reference genes exhibited transcriptional variations to some extent at different periods. Among them, EF1A was the most stable reference with RefFinder, followed by 18S rRNA, ACTB, UBCE, TUBA and GAPDH respectively and the optimal number of reference genes for IgM normalization under different experiment sets was two with GeNorm. Meanwhile, combination the Cq (quantification cycle) value and the recommended comprehensive ranking of reference genes, EF1A and ACTB, the two optimal reference genes, were used together as reference genes for accurate analysis of immune-related gene expression during vaccination and infection in Nile tilapia with qPCR. Moreover, the highest IgM expression level was at two weeks post-vaccination when normalized to EF1A, 18S rRNA, ACTB, and EF1A together with ACTB compared to one week post-vaccination before normalizing, which was also consistent with the IgM antibody titers detection by ELISA.
Collapse
|
18
|
Abstract
This chapter reviews papers mostly written since 2005 that report results using live attenuated bacterial vectors to deliver after administration through mucosal surfaces, protective antigens, and DNA vaccines, encoding protective antigens to induce immune responses and/or protective immunity to pathogens that colonize on or invade through mucosal surfaces. Papers that report use of such vaccine vector systems for parenteral vaccination or to deal with nonmucosal pathogens or do not address induction of mucosal antibody and/or cellular immune responses are not reviewed.
Collapse
|
19
|
Jiang J, Miyata M, Chan C, Ngoh SY, Liew WC, Saju JM, Ng KS, Wong FS, Lee YS, Chang SF, Orbán L. Differential transcriptomic response in the spleen and head kidney following vaccination and infection of Asian seabass with Streptococcus iniae. PLoS One 2014; 9:e99128. [PMID: 24992587 PMCID: PMC4081116 DOI: 10.1371/journal.pone.0099128] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/08/2014] [Indexed: 11/18/2022] Open
Abstract
Vaccination is an important strategy in the protection of aquaculture species from major diseases. However, we still do not have a good understanding of the mechanisms underlying vaccine-induced disease resistance. This is further complicated by the presence of several lymphoid organs that play different roles when mounting an immune response. In this study, we attempt to elucidate some of these mechanisms using a microarray-based approach. Asian seabass (Lates calcarifer) were vaccinated against Streptococcus iniae and the transcriptomic changes within the spleen and head kidney at one and seven days post-vaccination were profiled. We subsequently challenged the seabass at three weeks post-vaccination with live S. iniae and similarly profiled the transcriptomes of the two organs after the challenge. We found that vaccination induced an early, but transient transcriptomic change in the spleens and a delayed response in the head kidneys, which became more similar to one another compared to un-vaccinated ones. When challenged with the pathogen, the spleen, but not the head kidneys, responded transcriptomically at 25-29 hours post-challenge. A unique set of genes, in particular those involved in the activation of NF-κB signaling, was up-regulated in the vaccinated spleens upon pathogen challenge but not in the un-vaccinated spleens. A semi-quantitative PCR detection of S. iniae using metagenomic DNA extracted from the water containing the seabass also revealed that vaccination resulted in reduction of pathogen shedding. This result indicated that vaccination not only led to a successful immune defense against the infection, but also reduced the chances for horizontal transmission of the pathogen. In conclusion, we have provided a transcriptomic analysis of how the teleost spleen and head kidneys responded to vaccination and subsequent infection. The different responses from the two organs are suggestive of their unique roles in establishing a vaccine-induced disease resistance.
Collapse
Affiliation(s)
- Junhui Jiang
- Reproductive Genomics Group, Strategic Research Program, Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Republic of Singapore
- Agri-Food and Veterinary Authority of Singapore, Singapore, Republic of Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Republic of Singapore
| | - Masato Miyata
- MSD Animal Health Innovation, Singapore, Republic of Singapore
| | - Candy Chan
- Reproductive Genomics Group, Strategic Research Program, Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Republic of Singapore
| | - Si Yan Ngoh
- Reproductive Genomics Group, Strategic Research Program, Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Republic of Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Republic of Singapore
| | - Woei Chang Liew
- Reproductive Genomics Group, Strategic Research Program, Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Republic of Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Republic of Singapore
| | - Jolly M. Saju
- Reproductive Genomics Group, Strategic Research Program, Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Republic of Singapore
| | - Kah Sing Ng
- MSD Animal Health Innovation, Singapore, Republic of Singapore
| | - Fong Sian Wong
- MSD Animal Health Innovation, Singapore, Republic of Singapore
| | - Yeng Sheng Lee
- MSD Animal Health Innovation, Singapore, Republic of Singapore
| | - Siow Foong Chang
- MSD Animal Health Innovation, Singapore, Republic of Singapore
- * E-mail: (SFC); (LO)
| | - László Orbán
- Reproductive Genomics Group, Strategic Research Program, Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Republic of Singapore
- Department of Animal Sciences and Animal Husbandry, Georgikon Faculty, University of Pannonia, Keszthely, Hungary
- Centre for Comparative Genomics, Murdoch University, Murdoch, Australia
- * E-mail: (SFC); (LO)
| |
Collapse
|
20
|
Abstract
DNA vaccinations against fish viral diseases as IHNV at commercial level in Canada against VHSV at experimental level are both success stories. DNA vaccination strategies against many other viral diseases have, however, not yet yielded sufficient results in terms of protection. There is an obvious need to combat many other viral diseases within aquaculture where inactivated vaccines fail. There are many explanations to why DNA vaccine strategies against other viral diseases fail to induce protective immune responses in fish. These obstacles include: 1) too low immunogenicity of the transgene, 2) too low expression of the transgene that is supposed to induce protection, 3) suboptimal immune responses, and 4) too high degradation rate of the delivered plasmid DNA. There are also uncertainties with regard distribution and degradation of DNA vaccines that may have implications for safety and regulatory requirements that need to be clarified. By combining plasmid DNA with different kind of adjuvants one can increase the immunogenicity of the transgene antigen – and perhaps increase the vaccine efficacy. By using molecular adjuvants with or without in combination with targeting assemblies one may expect different responses compared with naked DNA. This includes targeting of DNA vaccines to antigen presenting cells as a central factor in improving their potencies and efficacies by means of encapsulating the DNA vaccine in certain carriers systems that may increase transgene and MHC expression. This review will focus on DNA vaccine delivery, by the use of biodegradable PLGA particles as vehicles for plasmid DNA mainly in fish.
Collapse
|
21
|
Abstract
DNA vaccinations against fish viral diseases as IHNV at commercial level in Canada against VHSV at experimental level are both success stories. DNA vaccination strategies against many other viral diseases have, however, not yet yielded sufficient results in terms of protection. There is an obvious need to combat many other viral diseases within aquaculture where inactivated vaccines fail. There are many explanations to why DNA vaccine strategies against other viral diseases fail to induce protective immune responses in fish. These obstacles include: 1) too low immunogenicity of the transgene, 2) too low expression of the transgene that is supposed to induce protection, 3) suboptimal immune responses, and 4) too high degradation rate of the delivered plasmid DNA. There are also uncertainties with regard distribution and degradation of DNA vaccines that may have implications for safety and regulatory requirements that need to be clarified. By combining plasmid DNA with different kind of adjuvants one can increase the immunogenicity of the transgene antigen - and perhaps increase the vaccine efficacy. By using molecular adjuvants with or without in combination with targeting assemblies one may expect different responses compared with naked DNA. This includes targeting of DNA vaccines to antigen presenting cells as a central factor in improving their potencies and efficacies by means of encapsulating the DNA vaccine in certain carriers systems that may increase transgene and MHC expression. This review will focus on DNA vaccine delivery, by the use of biodegradable PLGA particles as vehicles for plasmid DNA mainly in fish.
Collapse
Affiliation(s)
| | | | - Roy A Dalmo
- UiT - The Arctic University of Norway, Faculty of Biosciences, Fisheries & Economics, Norwegian College of Fishery Science 9037 Tromsø, Norway.
| |
Collapse
|
22
|
Sun Y, Sun L, Xing MQ, Liu CS, Hu YH. SagE induces highly effective protective immunity against Streptococcus iniae mainly through an immunogenic domain in the extracellular region. Acta Vet Scand 2013; 55:78. [PMID: 24215645 PMCID: PMC3829104 DOI: 10.1186/1751-0147-55-78] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 11/03/2013] [Indexed: 11/10/2022] Open
Abstract
Background Streptococcus iniae is a Gram-positive bacterium and a severe pathogen of a wide range of farmed fish. S. iniae possesses a virulence-associated streptolysin S cluster composed of several components, one of which is SagE. SagE a transmembrane protein with one major extracellular region named ECR. This study aimed to develop a SagE-based DNA candidate vaccine against streptococcosis and examine the immunoprotective mechanism of the vaccine. Results We constructed a DNA vaccine, pSagE, based on the sagE gene and examined its immunological property in a Japanese flounder (Paralichthys olivaceus) model. The results showed that at 7 days post-vaccination, expression of SagE at transcription and translation levels was detected in the tissues of the vaccinated fish. After challenge with S. iniae at one and two months post-vaccination, pSagE-vaccinated fish exhibited relative percent survival (RPS) of 95% and 88% respectively. Immunological analysis showed that (i) pSagE significantly upregulated the expression of a wide range of immune genes, (ii) pSagE induced the production of specific serum antibodies that bound whole-cell S. iniae, and (iii) treatment of S. iniae with pSagE-induced antibodies blocked bacterial invasion of host cells. To localize the immunoprotective domain of SagE, the ECR-expressing DNA vaccine pSagEECR was constructed. Immunization analysis showed that flounder vaccinated with pSagEECR exhibited a RPS of 68%, and that pSagEECR induced serum antibody production and immune gene expression in a manner similar to, though to lower magnitudes than, those induced by pSagE. Conclusions We in this study developed a DNA vaccine, pSagE, which induces highly protective immunity against S. iniae. The protective effect of pSagE is probably due to its ability to elicit systemic immune response, in particular that of the humoral branch, which leads to production of specific serum antibodies that impair bacterial infection. These results add insights to the immunoprotective mechanism of fish DNA vaccine.
Collapse
|