1
|
Park JM, Moon JW, Zhang BZ, An BK. Antioxidant Activity and Other Characteristics of Lactic Acid Bacteria Isolated from Korean Traditional Sweet Potato Stalk Kimchi. Foods 2024; 13:3261. [PMID: 39456323 PMCID: PMC11507834 DOI: 10.3390/foods13203261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
The aim of this study was to examine the biological activity and probiotic properties of lactic acid bacteria (LAB) isolated from sweet potato stalk kimchi (SPK). Various LAB and Bacillus spp. are active in the early stages of the fermentation of kimchi made from sweet potato stalk. Four strains of LAB were identified, including SPK2 (Levilactobacillus brevis ATCC 14869), SPK3 (Latilactobacillus sakei NBRC 15893), SPK8 and SPK9 (Leuconostoc mesenteroides subsp. dextranicum NCFB 529). SPK2, SPK3, SPK8, and SPK9 showed 64.64-94.23% bile acid resistance and 78.66-82.61% pH resistance. We identified over 106 CFU/mL after heat treatment at 75 °C. Four strains showed high antimicrobial activity to Escherichia coli and Salmonella Typhimurium with a clear zone of >11 mm. SPK2 had the highest antioxidative potentials, higher than the other three bacteria, with 44.96 μg of gallic acid equivalent/mg and 63.57% DPPH scavenging activity. These results demonstrate that the four strains isolated from sweet potato kimchi stalk show potential as probiotics with excellent antibacterial effects and may be useful in developing health-promoting products.
Collapse
Affiliation(s)
- Jung-Min Park
- Department of Food Marketing and Safety, Konkuk University, Seoul 05029, Republic of Korea; (J.-M.P.); (J.-W.M.); (B.-Z.Z.)
| | - Ji-Woon Moon
- Department of Food Marketing and Safety, Konkuk University, Seoul 05029, Republic of Korea; (J.-M.P.); (J.-W.M.); (B.-Z.Z.)
| | - Bo-Zheng Zhang
- Department of Food Marketing and Safety, Konkuk University, Seoul 05029, Republic of Korea; (J.-M.P.); (J.-W.M.); (B.-Z.Z.)
| | - Byoung-Ki An
- Animal Resources Research Center, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
2
|
Guangxin L, Guangfeng L, Ce L, Hongling M, Yiqin D, Changhong C, Jianjun J, Sigang F, Juan F, Li L, Zhendong Q, Zhixun G. Genome sequencing analysis and validation of infestation-related functional genes of Vibrio parahaemolyticus LG2206 isolated from the hepatopancreas of diseased mud crab (Scylla paramamosain) in South China. FISH & SHELLFISH IMMUNOLOGY 2024; 153:109854. [PMID: 39179188 DOI: 10.1016/j.fsi.2024.109854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Vibrio parahaemolyticus (V. parahaemolyticus) is a major bacterial pathogen found in brackish environments, leading to disease outbreaks and great economic losses in the mud crab industry. This study investigated the molecular mechanism of V. parahaemolyticus infecting mud crabs through genome sequencing analysis, survival experiments, and the expression patterns of related functional genes. A strain of V. parahaemolyticus with high pathogenicity and lethality was isolated from diseased mud crab in South China. The genome sequencing results showed that the genome size of V. parahaemolyticus was a circular chromosome of 3,357,271 bp, with a GC content of 45 %, containing 2985 protein-coding genes, denoted as V. parahaemolyticus LG2206. Genome analysis data revealed that a total of 113 adherence coding genes were obtained, including 120 virulence factor coding genes, 37 type III secretion system (T3SS) coding genes, and 277 sequences of T3SS effectors. Survival experiments showed that the mortality was 20 % within 96 h in the 1 × 104 CFU/mL infection group, 90 % in the 3.2 × 105 CFU/mL treatment group, and 100 % in the 1 × 106 CFU/mL treatment group. The LD50 of V. parahaemolyticus LG2206 was determined as 4.6 × 104 CFU/mL. Six genes of znuA and fliD (flagellin encoding genes), yscE and yscR (T3SS encoding genes), and nfuA and htpX (virulence factor encoding genes) were selected and validated by quantitative real-time PCR analysis after infection with 4.6 × 104 CFU/mL of V. parahaemolyticus LG2206 for 96 h. The expression of the six genes exhibited a significant up-regulation trend at all tested time points. The results indicated that the infestation-related genes screened in the experiment play important roles in the infestation process. This study provides timely and effective information to further analyze the molecular mechanism of V. parahaemolyticus infection and develop comprehensive measures for disease prevention and control.
Collapse
Affiliation(s)
- Liu Guangxin
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Liu Guangfeng
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Li Ce
- Zhaoqing Aquatic Technology Extension Center, Zhaoqing, 526060, China
| | - Ma Hongling
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Deng Yiqin
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Cheng Changhong
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Jiang Jianjun
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Fan Sigang
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Feng Juan
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Lin Li
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.
| | - Qin Zhendong
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.
| | - Guo Zhixun
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China.
| |
Collapse
|
3
|
Xu Y, Wu M, Cao J, Wang Y, Zhang L, Yan X, Li Y, Xu J. Enhancement of Docosahexaenoic Acid and Eicosapentaenoic Acid Biosynthesis in Isochrysis galbana by Bacillus jeotgali. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:991-999. [PMID: 39122812 DOI: 10.1007/s10126-024-10337-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/09/2024] [Indexed: 08/12/2024]
Abstract
Isochrysis galbana is valuable in aquaculture due to its production of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). However, achieving high yields of polyunsaturated fatty acids (PUFAs) presents challenges, leading to exploration of innovative approaches. This study investigated the influence of Bacillus jeotgali on the growth of I. galbana and its fatty acid composition. Co-culturing I. galbana with B. jeotgali significantly increased chlorophyll a content and cell abundance, particularly at higher bacterial population densities (algae-to-bacteria ratio of 1:10). Physiological and biochemical analyses found elevated soluble protein content in microalgae co-cultured with B. jeotgali, accompanied by decreased superoxide dismutase (SOD) activity. Fatty acid composition analysis demonstrated a distinctive profile in co-cultured I. galbana, characterized by increased PUFAs, especially EPA and DHA. Gene expression analysis indicated an upregulation of desaturase genes (d4FAD, d5FAD, d6FAD, and d8FAD) associated with PUFA synthesis pathway in I. galbana during co-culturing with B. jeotgali. This study advances our understanding of bacteria-microalgae interactions and presents a promising strategy for enhancing the production of DHA and EPA.
Collapse
Affiliation(s)
- Yijun Xu
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang, 315832, China
| | - Minnan Wu
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang, 315832, China
| | - Jiayi Cao
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang, 315832, China.
| | - Yingying Wang
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang, 315832, China
| | - Lin Zhang
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang, 315832, China
| | - Xiaojun Yan
- Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Yanrong Li
- Ningbo Institute of Oceanography, Ningbo, Zhejiang, 315832, China
| | - Jilin Xu
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang, 315832, China.
- Fujian Dalai Seed Science and Technology Co., Ltd., Ningde, Fujian, 352101, China.
| |
Collapse
|
4
|
He W, Liu Y, Zhang W, Zhao Z, Bu X, Sui C, Pan S, Yao C, Tang Y, Mai K, Ai Q. Effects of dietary supplementation with heat-killed Lactobacillus acidophilus on growth performance, digestive enzyme activity, antioxidant capacity, and inflammatory response of juvenile large yellow croaker (Larimichthys crocea). FISH & SHELLFISH IMMUNOLOGY 2024; 151:109651. [PMID: 38796043 DOI: 10.1016/j.fsi.2024.109651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
A ten-week culture trial in juvenile large yellow croaker (Larimichthys crocea) (10.80 ± 0.10 g) was conducted to assess the impact of supplementing heat-killed Lactobacillus acidophilus (HLA) on growth performance, intestinal digestive enzyme activity, antioxidant capacity and inflammatory response. Five iso-nitrogenous (42 % crude protein) and iso-lipidic (12 % crude lipid) experimental feeds with different levels of HLA (0.0 %, 0.1 %, 0.2 %, 0.4 %, or 0.8 %) were prepared. They were named FO (control group), HLA0.1, HLA0.2, HLA0.4 and HLA0.8, respectively. The results indicated that HLA addition had no impact on survival (P > 0.05). In this experiment, the final body weight, weight gain rate and specific growth rate showed a quadratic regression trend, initially increasing and subsequently decreasing with the increasing in HLA levels, and attained the peak value at 0.2 % HLA supplemental level (P < 0.05). In contrast to the control group, in terms of digestive ability, amylase, lipase and trypsin exhibited a notable linear and quadratic pattern, demonstrating a substantial increase when 0.1% 0.2 % HLA was added in the diets (P < 0.05). Notably, elevated levels of catalase (CAT) activity, superoxide dismutase (SOD) activity, and total antioxidant capacity (T-AOC) were observed in the liver when adding 0.1%-0.2 % HLA, and the level of malondialdehyde (MDA) was significantly decreased and the liver exhibited a notable upregulation in the mRNA expression levels of nrf2, cat, sod2, and sod3 (P < 0.05). Additionally, the mRNA levels of genes associated with tight junctions in the intestines (zo-1, zo-2 and occludin) exhibited a significant upregulation when 0.2 % HLA was added in the feed (P < 0.05). Furthermore, the levels of mRNA expression for proinflammatory genes in the intestines including tnf-α, il-1β, il-6 and il-8 exhibited a quadratic regression trend, characterized by an initial decline followed by subsequent growth (P < 0.05). Meanwhile, the levels of mRNA expression for genes linked to anti-inflammatory responses in the intestines (including il-10, tgf-β, and arg1) exhibited a quadratic regression pattern, initially increasing and subsequently decreasing (P < 0.05). Compare with the control group, the levels of tnf-α, il-1β and il-8 expression were notably downregulated in all HLA addition groups (P < 0.05). When 0.2 % HLA was added, the expression levels of il-10, tgf-β and arg1 in the intestinal tract were markedly increased (P < 0.05). Overall, the supplementation of 0.2 % HLA in the feed has been shown to enhance the growth performance. The enhancement was attributed to HLA's capacity to improve antioxidant function, intestinal barrier integrity, and mitigate inflammatory responses. This research offers a scientific foundation for the utilization of HLA in aquaculture.
Collapse
Affiliation(s)
- Wenchang He
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture and Rural Affairs, And the Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, Shandong, 266003, People's Republic of China
| | - Yongtao Liu
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture and Rural Affairs, And the Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, Shandong, 266003, People's Republic of China
| | - Wencong Zhang
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture and Rural Affairs, And the Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, Shandong, 266003, People's Republic of China
| | - Zengqi Zhao
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture and Rural Affairs, And the Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, Shandong, 266003, People's Republic of China
| | - Xianyong Bu
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture and Rural Affairs, And the Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, Shandong, 266003, People's Republic of China
| | - Changxu Sui
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture and Rural Affairs, And the Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, Shandong, 266003, People's Republic of China
| | - Shijie Pan
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture and Rural Affairs, And the Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, Shandong, 266003, People's Republic of China
| | - Chuanwei Yao
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture and Rural Affairs, And the Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, Shandong, 266003, People's Republic of China
| | - Yuhang Tang
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture and Rural Affairs, And the Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, Shandong, 266003, People's Republic of China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture and Rural Affairs, And the Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, Shandong, 266003, People's Republic of China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, Shandong, 266237, People's Republic of China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture and Rural Affairs, And the Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, Shandong, 266003, People's Republic of China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, Shandong, 266237, People's Republic of China.
| |
Collapse
|
5
|
Han M, Zhou Z, Zhu T, Yu C, Si Q, Zhu C, Gao T, Jiang Q. Metabolomics and microbiome co-analysis reveals altered innate immune responses in Charybdis japonica following Aeromonas hydrophila infection. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 50:101240. [PMID: 38718732 DOI: 10.1016/j.cbd.2024.101240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/13/2024] [Accepted: 05/03/2024] [Indexed: 05/27/2024]
Abstract
A comprehensive bioinformatics analysis was conducted to elucidate the innate immune response of Charybdis japonica following exposure to Aeromonas hydrophila. This study integrated metabolomics, 16S rRNA sequencing, and enzymatic activity data to dissect the immune mechanisms activated in response to infection. Infection with A. hydrophila resulted in an increased abundance of beneficial intestinal genera such as Photobacterium spp., Rhodobacter spp., Polaribacter spp., Psychrilyobacter spp., and Mesoflavibacter spp. These probiotics appear to suppress A. hydrophila colonization by competitively dominating the intestinal microbiota. Key metabolic pathways affected included fatty acid biosynthesis, galactose metabolism, and nitrogen metabolism, highlighting their role in the crab's intestinal response. Enzymatic analysis revealed a decrease in activities of hexokinase, phosphofructokinase, and pyruvate kinase, which are essential for energy homeostasis and ATP production necessary for stress responses. Additionally, reductions were observed in the activities of acetyl-CoA carboxylase and fatty acid synthase. Gene expression analysis showed downregulation in Peroxiredoxin 1 (PRDX1), Peroxiredoxin 2 (PRDX2), glutathione-S-transferase (GST), catalase (CAT), and glutathione (GSH), with concurrent increases in malondialdehyde (MDA) levels, indicating severe oxidative stress. This study provides insights into the molecular strategies employed by marine crabs to counteract bacterial invasions in their natural habitat.
Collapse
Affiliation(s)
- Mingming Han
- Centre for Marine and Coastal Studies, University Sains Malaysia, Minden, Penang 11800, Malaysia
| | - Zihan Zhou
- Centre for Marine and Coastal Studies, University Sains Malaysia, Minden, Penang 11800, Malaysia
| | - Tian Zhu
- Freshwater Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing 210017, China
| | - Cigang Yu
- Key Laboratory of Biosafety, Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing 210424, China
| | - Qin Si
- Key Laboratory of Biosafety, Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing 210424, China
| | - Chenxi Zhu
- Freshwater Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing 210017, China
| | - Tianheng Gao
- Institute of Marine Biology, College of Oceanography, Hohai University, China
| | - Qichen Jiang
- Freshwater Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing 210017, China; Low-temperature Germplasm Bank of Important Economic Fish (Freshwater Fisheries Research Institute of Jiangsu Province) of Jiangsu Provincial Science and Technology Resources (Agricultural Germplasm Resources) Coordination Service Platform, Nanjing 210017, China.
| |
Collapse
|
6
|
Gao Y, Tan R, Wang Z, Qiang L, Yao H. The effects of Bacillus subtilis on the immunity, mucosal tissue morphology, immune-related gene transcriptions, and intestinal microbiota in flounder (Paralichthys olivaceus) with two feeding methods: Continuous versus discontinuous feeding. Vet Immunol Immunopathol 2024; 271:110742. [PMID: 38547603 DOI: 10.1016/j.vetimm.2024.110742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/28/2024] [Accepted: 03/12/2024] [Indexed: 04/29/2024]
Abstract
Probiotics as dietary additives can improve weight gain, feed efficiency, and disease resistance in cultured fish. In this research, we evaluated and compared the effects of Bacillus subtilis on immunity, mucosal tissue morphology, immune-related gene transcriptions, and intestinal microbiota in flounder (Paralichthys olivaceus) by a 30-day feeding experiment based on a continuous feeding schedule (E1) and a discontinuous feeding schedule (E2). As a result, the use of B. subtilis exerted the best positive effects on survival rate, enzyme activity, mucosal tissue morphology, immune-related gene transcriptions, and intestinal microbiota in flounders. Alkaline phosphatase (AKP), lysozyme (LZM), and superoxide dismutase (SOD) activities in the liver of E2 were higher than those of E1 (P < 0.05). Furthermore, the villi length in the intestinal tract and the fold length in the stomach of E2 were also higher than in E1 (P < 0.05). The il-1 expression levels in the spleen were significantly increased in E2 (P < 0.05) compared to E1. We performed 16 S rRNA sequencing analysis to find that Bacillus in E1 (1.06%) and E2 (1.01%) had higher relative abundances than in E0 (0.053%) at the end of the experiments, indicating that short-term application of B. subtilis with the continuous or discontinuous feeding method can allow both the adaptation of the ecosystem to the presence of probiotics by the establishment of new species in the gut microbiota and the ability these new probiotic species to perform corresponding functions. No significant differences in the ability of probiotic establishment were observed between E1 and E2. Our findings provided a unique perspective to explore the mechanism of immune enhancement with probiotics and to screen the optimal administration strategy in aquaculture application for probiotic use. Together, these results point to some level of enhancement in immune status by continuous and discontinuous feeding after a short-term feeding period, which could be used as a prophylactic strategy for flounder health management.
Collapse
Affiliation(s)
- Yingli Gao
- Laboratory of Pathology and Immunology of Aquatic Animals, School of Marine Life and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China; Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Marine Resources Development and Research Institute, Lianyungang 222005, China.
| | - Ruiming Tan
- Laboratory of Pathology and Immunology of Aquatic Animals, School of Marine Life and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zicheng Wang
- Laboratory of Pathology and Immunology of Aquatic Animals, School of Marine Life and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Lu Qiang
- Laboratory of Pathology and Immunology of Aquatic Animals, School of Marine Life and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Haijing Yao
- Laboratory of Pathology and Immunology of Aquatic Animals, School of Marine Life and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
7
|
Li Y, Lv J, Sun D, Guo J, Liu P, Gao B. Characterization of a pseudohemocyanin gene (PtPhc1) and its immunity function in response to Vibrio parahaemolyticus infection in the swimming crab Portunus trituberculatus. FISH & SHELLFISH IMMUNOLOGY 2024; 147:109435. [PMID: 38336144 DOI: 10.1016/j.fsi.2024.109435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/13/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Pseudohemocyanin is a member of the hemocyanin superfamily, but little research is available on its function in immunology. In this study, a Portunus trituberculatus pseudohemocyanin gene, named PtPhc1, was obtained by gene cloning. The PtPhc1 cDNA was 2312 bp in length, encoding 684 amino acids while exhibiting a characteristic hemocyanin structural domain. Tissue expression analysis revealed ubiquitous expression of PtPhc1 across all tissues, with the highest level of expression observed in the hepatopancreas. The expression pattern of PtPhc1 in response to Vibrio parahaemolyticus infection was clarified using RT-qPCR in swimming crabs. Notably, the expression peaked at 24 h, and increased 1435-fold compared to the control group in the hepatopancreas. While the expression level reached the maximum value at 72 h, which was 3.24 times higher than that of the control group in hemocytes. Remarkably, the reduction in PtPhc1 expression led to a noteworthy 30% increase in the mortality rate of P. trituberculatus when exposed to V. parahaemolyticus. In addition, in vitro bacterial inhibition assays exhibited a dose-dependent suppression of bacterial proliferation by recombinant PtPhc1 protein, with a notable inhibition rate of 48.33% against V. parahaemolyticus at a concentration of 0.03 mg/mL. To the best of our knowledge, the results establish the function of pseudohaemocyanin in immunity for the first time, contributing to a deeper comprehension of innate immune regulatory mechanisms in aquatic organisms and advancing strategies for disease-resistant breeding.
Collapse
Affiliation(s)
- Yukun Li
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Jianjian Lv
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Dongfang Sun
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Junyang Guo
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Ping Liu
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Baoquan Gao
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
8
|
Čanak I, Kostelac D, Jakopović Ž, Markov K, Frece J. Lactic Acid Bacteria of Marine Origin as a Tool for Successful Shellfish Farming and Adaptation to Climate Change Conditions. Foods 2024; 13:1042. [PMID: 38611348 PMCID: PMC11011843 DOI: 10.3390/foods13071042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Climate change, especially in the form of temperature increase and sea acidification, poses a serious challenge to the sustainability of aquaculture and shellfish farming. In this context, lactic acid bacteria (LAB) of marine origin have attracted attention due to their ability to improve water quality, stimulate the growth and immunity of organisms, and reduce the impact of stress caused by environmental changes. Through a review of relevant research, this paper summarizes previous knowledge on this group of bacteria, their application as protective probiotic cultures in mollusks, and also highlights their potential in reducing the negative impacts of climate change during shellfish farming. Furthermore, opportunities for further research and implementation of LAB as a sustainable and effective solution for adapting mariculture to changing climate conditions were identified.
Collapse
Affiliation(s)
| | | | | | | | - Jadranka Frece
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10 000 Zagreb, Croatia; (I.Č.); (D.K.); (K.M.)
| |
Collapse
|
9
|
Wang Q, Zhou X, Jin Q, Zhu F. Effects of the aquatic pollutant sulfamethoxazole on the innate immunity and antioxidant capacity of the mud crab Scylla paramamosain. CHEMOSPHERE 2024; 349:140775. [PMID: 38013024 DOI: 10.1016/j.chemosphere.2023.140775] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 11/01/2023] [Accepted: 11/19/2023] [Indexed: 11/29/2023]
Abstract
Sulfamethoxazole (SMZ) is commonly used in aquaculture to treat bacterial infections, but its long-term residual properties in natural water can pose a direct threat to aquatic animals. This study is to investigate the effects of continuous exposure to SMZ on mud crabs (Scylla paramamosain) at four different concentrations (0, 10, 100, and 1000 ng/L) that reflect the range found in natural aquatic environments. The results confirmed that SMZ exposure reduced the expression levels of genes related to the innate immunity in mud crabs, including JAK, Astakine, TLR, and Crustin. It also stimulated oxidative stress, caused the production of reactive oxygen species and lower activities of antioxidant enzymes such as peroxidase, superoxide dismutase, catalase, and glutathione. SMZ exposure damaged the DNA of crab hemocytes and hepatopancreas tissue, and reduced the phagocytosis, ultimately leading to a decreased survival rates of mud crabs infected with Vibrio alginolyticus. These findings demonstrate that SMZ exposure has immunotoxic effects on mud crabs' innate immunity and reduces the ability to resist pathogen infections.
Collapse
Affiliation(s)
- Qi Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Xiujuan Zhou
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Qingri Jin
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 311399, China
| | - Fei Zhu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China.
| |
Collapse
|
10
|
Touraki M, Chanou A, Mavridou V, Tsertseli V, Tsiridi M, Panteris E. Administration of probiotics affects Artemia franciscana metanauplii intestinal ultrastructure and offers resistance against a Photobacterium damselae ssp . piscicida induced oxidative stress response. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2023; 5:100113. [PMID: 37671319 PMCID: PMC10475491 DOI: 10.1016/j.fsirep.2023.100113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/10/2023] [Accepted: 08/21/2023] [Indexed: 09/07/2023] Open
Abstract
The effects of Photobacterium damselae ssp. piscicida (Phdp) on immune responses and intestinal ultrastructure of Artemia franciscana following infection and their amelioration by the probiotic bacteria Bacillus subtilis, Lactobacillus plantarum and Lactococcus lactis were evaluated. Pathogen growth inhibition in coculture with each probiotic and its virulence against Artemia were confirmed with an LC50 of 105 CFU mL-1. Phdp administration to Artemia at sublethal levels resulted in depletion of superoxide dismutase, glutathione reductase, glutathione transferase and phenoloxidase activities, extensive lipid peroxidation and reduced survival. Following a combined administration of each probiotic and the pathogen, enzyme activities and survival were significantly higher, while lipid peroxidation was reduced, compared to the infected group with no probiotic treatment (P < 0.05). The transmission electron microscopy study revealed that pathogen infection resulted in disarranged and fragmented microvilli, formation of empty or pathogen containing cytoplasmic vacuoles and damaged mitochondria. In the probiotic-treated and Phdp-infected series, intestinal cells showed normal appearance, except for the presence of pathogen-containing vacuoles and highly ordered but laterally stacked microvilli. The results of the present study indicate that Phdp induces cell death through an oxidative stress response and probiotics enhance Artemia immune responses to protect it against the Phdp induced damage.
Collapse
Affiliation(s)
- Maria Touraki
- Laboratory of General Biology, Division of Genetics, Development and Molecular Biology, Department of Biology, School of Sciences, Aristotle University of Thessaloniki (A.U.TH.), Thessaloniki 54 124, Greece
| | - Anna Chanou
- Laboratory of General Biology, Division of Genetics, Development and Molecular Biology, Department of Biology, School of Sciences, Aristotle University of Thessaloniki (A.U.TH.), Thessaloniki 54 124, Greece
| | - Vasiliki Mavridou
- Laboratory of General Biology, Division of Genetics, Development and Molecular Biology, Department of Biology, School of Sciences, Aristotle University of Thessaloniki (A.U.TH.), Thessaloniki 54 124, Greece
| | - Vasiliki Tsertseli
- Laboratory of General Biology, Division of Genetics, Development and Molecular Biology, Department of Biology, School of Sciences, Aristotle University of Thessaloniki (A.U.TH.), Thessaloniki 54 124, Greece
| | - Maria Tsiridi
- Laboratory of General Biology, Division of Genetics, Development and Molecular Biology, Department of Biology, School of Sciences, Aristotle University of Thessaloniki (A.U.TH.), Thessaloniki 54 124, Greece
| | - Emmanuel Panteris
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| |
Collapse
|
11
|
Ahmmed MK, Bhowmik S, Ahmmed F, Giteru SG, Islam SS, Hachem M, Hussain MA, Kanwugu ON, Agyei D, Defoirdt T. Utilisation of probiotics for disease management in giant freshwater prawn (Macrobrachium rosenbergii): Administration methods, antagonistic effects and immune response. JOURNAL OF FISH DISEASES 2023; 46:1321-1336. [PMID: 37658593 DOI: 10.1111/jfd.13850] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 09/03/2023]
Abstract
The giant freshwater prawn (Macrobrachium rosenbergii) is a high-yielding prawn variety well-received worldwide due to its ability to adapt to freshwater culture systems. Macrobrachium rosenbergii is an alternative to shrimp typically obtained from marine and brackish aquaculture systems. However, the use of intensive culture systems can lead to disease outbreaks, particularly in larval and post-larval stages, caused by pathogenic agents such as viruses, bacteria, fungi, yeasts and protozoans. White tail disease (viral), white spot syndrome (viral) and bacterial necrosis are examples of economically significant diseases. Given the increasing antibiotic resistance of disease-causing microorganisms, probiotics have emerged as promising alternatives for disease control. Probiotics are live active microbes that are introduced into a target host in an adequate number or dose to promote its health. In the present paper, we first discuss the diseases that occur in M. rosenbergii production, followed by an in-depth discussion on probiotics. We elaborate on the common methods of probiotics administration and explain the beneficial health effects of probiotics as immunity enhancers. Moreover, we discuss the antagonistic effects of probiotics on pathogenic microorganisms. Altogether, this paper provides a comprehensive overview of disease control in M. rosenbergii aquaculture through the use of probiotics, which could enhance the sustainability of prawn culture.
Collapse
Affiliation(s)
- Mirja Kaizer Ahmmed
- Department of Fishing and Post-harvest Technology, Chittagong Veterinary and Animal Sciences University, Chittagong, Bangladesh
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Shuva Bhowmik
- Centre for Bioengineering and Nanomedicine, Faculty of Dentistry, Division of Health Sciences, University of Otago, Dunedin, New Zealand
- Department of Food Science, University of Otago, Dunedin, New Zealand
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Fatema Ahmmed
- Riddet Institute, Massey University, Palmerston North, New Zealand
- Department of Chemistry, University of Otago, Dunedin, New Zealand
| | - Stephen G Giteru
- Department of Food Science, University of Otago, Dunedin, New Zealand
- Alliance Group Limited, Invercargill, New Zealand
| | - Shikder Saiful Islam
- Fisheries and Marine Resource Technology Discipline, Life Science School, Khulna University, Khulna, Bangladesh
- Institute for Marine and Antarctic Studies, University of Tasmania, Launceston, Tasmania, Australia
| | - Mayssa Hachem
- Department of Chemistry and Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi, UAE
| | - Md Ashraf Hussain
- Department of Fisheries Technology and Quality Control, Sylhet Agricultural University, Sylhet, Bangladesh
- ARC Centre of Excellence in Synthetic Biology and School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Osman N Kanwugu
- Institute of Chemical Engineering, Ural Federal University, Yekaterinburg, Russia
| | - Dominic Agyei
- Department of Food Science, University of Otago, Dunedin, New Zealand
| | - Tom Defoirdt
- Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium
| |
Collapse
|
12
|
Tian J, Yang Y, Xu W, Du X, Ye Y, Zhu B, Huang Y, Zhao Y, Li Y. Effects of β-1,3-glucan on growth, immune responses, and intestinal microflora of the river prawn (Macrobrachium nipponense) and its resistance against Vibrio parahaemolyticus. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109142. [PMID: 37805111 DOI: 10.1016/j.fsi.2023.109142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/01/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
In this study, we investigated the impact of β-1,3-glucan on the immune responses and gut microbiota of the river prawn (Macrobrachium nipponense) in the presence of Vibrio parahaemolyticus stress. Shrimps were fed one of the following diets: control (G1), 0.2% curdlan (G2), 0.1% β-1,3-glucan (G3), 0.2% β-1,3-glucan (G4), or 1.0% β-1,3-glucan (G5) for 6 weeks and then challenged with V. parahaemolyticus for 96 h. Under Vibrio stress, shrimps in G4 exhibited the highest length gain rate, weight gain rate, and survival rate. They also showed increased intestinal muscle thickness and villus thickness compared to the control and 0.2% curdlan groups. The apoptosis rate was lower in G4 than in the control group, and the digestive enzyme activities (pepsin, trypsin, amylase, and lipase), immune enzyme activities (acid phosphatase, alkaline phosphatase, lysozyme, and phenoxidase), and energy metabolism (triglyceride, cholesterol, glycogen, and lactate dehydrogenase) were enhanced. Expression levels of growth-related genes (ecdysone receptor, calmodulin-dependent protein kinase I, chitin synthase, and retinoid X receptor) and immune-related genes (toll-like receptor 3, myeloid differentiation primary response 88, mitogen-activated protein kinase 7, and mitogen-activated protein kinase 14) were higher in G4 than in the control. Microbiota analysis indicated higher bacterial abundance in shrimps fed β-1,3-glucan, as evidenced by Sob, Chao1, and ACE indices. Moreover, 0.2% β-1,3-glucan increased the relative abundances of Bacteroidota and Firmicutes while reducing those of Corynebacteriales and Lactobacillales. In summary, β-1,3-glucan enhances immune enzyme activities, alters immune-related gene expression, and impacts gut microbial diversity in shrimp. These findings provide valuable insights into the mechanisms underlying β-1,3 glucan's immune-enhancing effects.
Collapse
Affiliation(s)
- Jiangtao Tian
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Ying Yang
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Wenyue Xu
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Xinglin Du
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Yucong Ye
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Bihong Zhu
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Yizhou Huang
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Yunlong Zhao
- School of Life Science, East China Normal University, Shanghai, 200241, China.
| | - Yiming Li
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai, 200092, China.
| |
Collapse
|
13
|
Yang B, Song H, Hu R, Tao L, Liang Z, Cong W, Kang Y. Weissella confusa N17 Derived from Loach (Misgurnus anguillicaudatus) Exhibits Promising for Further Applications in Loach Aquaculture. Probiotics Antimicrob Proteins 2023:10.1007/s12602-023-10149-4. [PMID: 37632675 DOI: 10.1007/s12602-023-10149-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2023] [Indexed: 08/28/2023]
Abstract
The application of probiotics, in aquaculture, is becoming increasingly widespread and have had positive application effects. However, reports of loach-derived probiotics are quite limited. In this study, two representative strains of lactic acid bacteria with excellent traits, namely, Weissella confusa N17 and Lactobacillus saniviri N19, were screened from the intestine of healthy loaches. W. confusa N17 and L. saniviri N19 could inhibit different common various pathogenic bacteria, especially Aeromonas spp., and were sensitive to the most common antibiotics. The survival rate of the two strains exceeded 50% after 4 h of incubation in 10% loach bile. Moreover, the two strains showed significant tolerance to trypsin. Their autoaggregation capacity and hydrophobicity were greater than 30%. In addition, the aggregation ability of both strains was higher than 30% for both A. veronii TH0426 and A. hydrophila TPS. The two strains had a high biofilm-forming ability and strong adhesion to epithelioma papulosum cyprini (EPC) cells. Scanning electron microscopy results showed that the culture supernatants of the two strains had a significantly destructive effect on A. veronii TH0426 and A. hydrophila TPS. Overall, the traits of W. confusa N17 were better than those of L. saniviri N19. Genome sequencing and analysis demonstrated a lack of virulence factor-related or drug resistance-related genes in genome N17. The diet supplemented with the W. confusa N17 strain significantly improved the resistance of loaches to A. veronii infection, and the protection rate reached 57.1%. Therefore, W. confusa N17 exhibits promising for further applications in loach aquaculture.
Collapse
Affiliation(s)
- Bintong Yang
- Marine College, Shandong University/Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, 264209, China
- Shandong Fu Han Ocean Sci-Tech Co., Ltd, Haiyang, 265100, China
- College of Veterinary Medicine/College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Haichao Song
- Marine College, Shandong University/Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, 264209, China
| | - Renge Hu
- Marine College, Shandong University/Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, 264209, China
| | - Luotao Tao
- College of Veterinary Medicine/College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Zhenlin Liang
- Marine College, Shandong University/Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, 264209, China
| | - Wei Cong
- Marine College, Shandong University/Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, 264209, China
| | - Yuanhuan Kang
- Marine College, Shandong University/Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, 264209, China.
- College of Veterinary Medicine/College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
- Shandong Key Laboratory of Animal Microecological Preparation, Tai'an, 271000, China.
| |
Collapse
|
14
|
Liang H, Tran NT, Deng T, Li J, Lei Y, Bakky MAH, Zhang M, Li R, Chen W, Zhang Y, Chen X, Li S. Identification and Characterization of a Potential Probiotic, Clostridium butyricum G13, Isolated from the Intestine of the Mud Crab (Scylla paramamosain). Microbiol Spectr 2023; 11:e0131723. [PMID: 37522814 PMCID: PMC10434012 DOI: 10.1128/spectrum.01317-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/26/2023] [Indexed: 08/01/2023] Open
Abstract
The butyrate-producing bacterium Clostridium butyricum has been proven to be important in improving the growth and health benefits of aquatic animals. In this study, C. butyricum G13 was isolated for the first time from the gut of the mud crab (Scylla paramamosain). The results of this study showed that C. butyricum G13 could produce a high concentration of butyric acid and grow well in a wide range of pHs (4 to 9) and NaCl (1 to 2.5%) and bile salt (0.2 to 1.0%) concentrations. In vitro characterization revealed that C. butyricum G13 is a Gram-positive and gamma-hemolytic bacterium sensitive to most antibiotics and shows hydrophobicity and the capacity to degrade starch. In vitro fermentation using mud crab gut contents showed that C. butyricum G13 alone or in combination with galactooligosaccharides (GOS) and/or resistant starch (RS) significantly increased butyric acid production and beneficially affected the abundance and diversity of intestinal microbiota. In addition, C. butyricum G13 can improve the survival rate of mud crabs and effectively maintain the normal structure of gut morphology after infection with Vibrio parahaemolyticus. In conclusion, C. butyricum G13 can be considered a potential probiotic that improves the immune capacity and confers health benefits on mud crabs. IMPORTANCE With the development of society, more and more aquatic animals are demanded. Intensification in the aquaculture scale is facing problems, such as disease outbreaks, eutrophication of water bodies, and misuse of antibiotics. Among these challenges, disease outbreak is the most important factor directly affecting aquaculture production. It is crucial to explore new approaches effective for the prevention and control of diseases. Probiotics have been widely used in aquaculture and have shown beneficial effects on the host. In this study, the butyrate-producing bacterium Clostridium butyricum G13 was isolated for the first time from the intestine of the mud crab through in vitro fermentation. The bacterium has probiotic properties and changes the gut microbiota to be beneficial to hosts in vitro as well as protecting hosts from Vibrio parahaemolyticus infection in vivo. The outcomes of this study indicate that C. butyricum G13 can be used as a potential probiotic in mud crab aquaculture.
Collapse
Affiliation(s)
- Huifen Liang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| | - Ngoc Tuan Tran
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| | - Taoqiu Deng
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| | - Jinkun Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| | - Yifan Lei
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| | - Mohammad Akibul Hasan Bakky
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| | - Ming Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| | - Rui Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| | - Wenxuan Chen
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| | - Yueling Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| | - Xiuli Chen
- Guangxi Academy of Fishery Sciences, Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Nanning, China
| | - Shengkang Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| |
Collapse
|
15
|
Habteweld HA, Asfaw T. Novel Dietary Approach with Probiotics, Prebiotics, and Synbiotics to Mitigate Antimicrobial Resistance and Subsequent Out Marketplace of Antimicrobial Agents: A Review. Infect Drug Resist 2023; 16:3191-3211. [PMID: 37249957 PMCID: PMC10224695 DOI: 10.2147/idr.s413416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/16/2023] [Indexed: 05/31/2023] Open
Abstract
Antimicrobial resistance (AMR) is a significant public health concern worldwide. The continuous use and misuse of antimicrobial agents have led to the emergence and spread of resistant strains of bacteria, which can cause severe infections that are difficult to treat. One of the reasons for the constant development of new antimicrobial agents is the need to overcome the resistance that has developed against existing drugs. However, this approach is not sustainable in the long term, as bacteria can quickly develop resistance to new drugs as well. Additionally, the development of new drugs is costly and time-consuming, and there is no guarantee that new drugs will be effective or safe. An alternative approach to combat AMR is to focus on improving the body's natural defenses against infections by using probiotics, prebiotics, and synbiotics, which are helpful to restore and maintain a healthy balance of bacteria in the body. Probiotics are live microorganisms that can be consumed as food or supplements to promote gut health and improve the body's natural defenses against infections. Prebiotics are non-digestible fibers that stimulate the growth of beneficial bacteria in the gut, while synbiotics are a combination of probiotics and prebiotics that work together to improve gut health. By promoting a healthy balance of bacteria in the body, these can help to reduce the risk of infections and the need for antimicrobial agents. Additionally, these approaches are generally safe and well tolerated, and they do not contribute to the development of AMR. In conclusion, the continuous development of new antimicrobial agents is not a sustainable approach to combat AMR. Instead, alternative approaches such as probiotics, prebiotics, and synbiotics should be considered as they can help to promote a healthy balance of bacteria in the body and reduce the need for antibiotics.
Collapse
Affiliation(s)
| | - Tsegahun Asfaw
- Department of Medical Laboratory Science, Debre Berhan University, Debre Berhan, Ethiopia
| |
Collapse
|
16
|
Cheng C, Ma H, Liu G, Fan S, Deng Y, Jiang J, Feng J, Guo Z. The role of Nrf2 signaling pathway in the mud crab (Scylla paramamosain) in response to Vibrio parahaemolyticus infection. FISH & SHELLFISH IMMUNOLOGY 2023; 136:108729. [PMID: 37011739 DOI: 10.1016/j.fsi.2023.108729] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/26/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
The transcription factor Nrf2 plays vital roles in detoxification and antioxidant enzymes against oxidative stress. However, the function of Nrf2 in crustaceans is not well studied. In this study, a novel Nrf2 gene from the mud crab (Sp-Nrf2) was identified. It was encoded 245 amino acids. Sp-Nrf2 expression was ubiquitously expressed in all tested tissues, with the highest expression level in the gill. Sp-Nrf2 protein was mainly located in the nucleus. The expression levels of Sp-Nrf2, and antioxidant-related genes (HO-1 and NQO-1) were induced after Vibrio parahaemolyticus infection, indicating that Nrf2 signaling pathway was involved in the responses to bacterial infection. Over-expression of Sp-Nrf2 could improve cell viability after H2O2 exposure, indicating that Sp-Nrf2 might relieve oxidative stress. Silencing of Sp-Nrf2 in vivo decreased HO-1 and NQO-1 expression. Moreover, knocking down Sp-Nrf2 in vivo can increase malondialdehyde content and the mortality of mud crabs after V. parahaemolyticus infection. Our results indicated that Nrf2 signaling pathway played a significant role in immune response against bacterial infection.
Collapse
Affiliation(s)
- ChangHong Cheng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, PR China.
| | - HongLing Ma
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, PR China
| | - GuangXin Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, PR China
| | - SiGang Fan
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, PR China
| | - YiQin Deng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, PR China
| | - JianJun Jiang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, PR China
| | - Juan Feng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, PR China
| | - ZhiXun Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, PR China; Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, PR China.
| |
Collapse
|
17
|
Potential role of prebiotics and probiotics in conferring health benefits in economically important crabs. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2022; 3:100041. [DOI: 10.1016/j.fsirep.2021.100041] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 01/03/2023] Open
|
18
|
Cao H, Huang X, Gu Y, Zheng X, Xu L, Gai C. Protective effects of Bacillus licheniformis against Citrobacter freundii infection in Chinese mitten crab Eriocheir sinensis. J Invertebr Pathol 2022; 193:107805. [DOI: 10.1016/j.jip.2022.107805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/07/2022] [Accepted: 07/27/2022] [Indexed: 11/28/2022]
|
19
|
Rohani MF, Islam SM, Hossain MK, Ferdous Z, Siddik MA, Nuruzzaman M, Padeniya U, Brown C, Shahjahan M. Probiotics, prebiotics and synbiotics improved the functionality of aquafeed: Upgrading growth, reproduction, immunity and disease resistance in fish. FISH & SHELLFISH IMMUNOLOGY 2022; 120:569-589. [PMID: 34963656 DOI: 10.1016/j.fsi.2021.12.037] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/30/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Aquaculture plays an increasingly significant role in improving the sustainability of global fish production. This sector has been intensified with the advent of new husbandry practices and the development of new technology. However, the increasing intensification and indiscriminate commercialized farming has enhanced the vulnerability of cultivated aquatic species to damage from pathogens. In efforts to confront these various diseases, frequent use of drugs, antibiotics, chemotherapeutics, and agents for sterilization have unintentionally added to the risk of transmission of pathogens and harmful chemical compounds to consumers. Some natural dietary supplements are believed to have the potential to offset this setback in aquaculture. Application of bio-friendly feed additives such as probiotics, prebiotics and synbiotics are becoming popular dietary supplements with the potential to not only improve growth performance, but in some cases can also enhance immune competence and the overall well-being of fish and crustaceans. The present review discusses and summarizes the effects of probiotics, prebiotics and synbiotics application on growth, stress mitigation, microbial composition of intestine, immune system and health condition of aquatic animals in association with existing constraints and future perspectives in aquaculture.
Collapse
Affiliation(s)
- Md Fazle Rohani
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh; Department of Aquaculture, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Sm Majharul Islam
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md Kabir Hossain
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Zannatul Ferdous
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh; Department of Aquaculture, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Muhammad Ab Siddik
- Department of Fisheries Biology and Genetics, Patuakhali Science and Technology University, Patuakhali, Bangladesh
| | - Mohammad Nuruzzaman
- Krishi Gobeshona Foundation, BARC Complex, Farmgate, Dhaka, 1215, Bangladesh
| | - Uthpala Padeniya
- FAO-World Fisheries University Pilot Programme, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 48513, South Korea
| | - Christopher Brown
- FAO-World Fisheries University Pilot Programme, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 48513, South Korea
| | - Md Shahjahan
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| |
Collapse
|
20
|
Molting Alters the Microbiome, Immune Response, and Digestive Enzyme Activity in Mud Crab ( Scylla paramamosain). mSystems 2021; 6:e0091721. [PMID: 34636669 PMCID: PMC8510556 DOI: 10.1128/msystems.00917-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Molting is a crucial lifelong process in the growth, development, and reproduction of crustaceans. In mud crab (Scylla paramamosain), new exoskeleton, gills, and appendages are formed after a molting, which contributes to a 40 to 90% increase in body weight. However, little is currently known about the associations between molting and the dynamic changes of microbiota and physiological characteristics in mud crabs. In this study, the effects of molting on changes of the microbiome, immune response, and digestive enzyme activities in mud crabs were investigated. The results showed dynamic changes in the abundances and community compositions of crab-associated microbiota harboring the gills, subcuticular epidermis, hepatopancreas, midgut, and hemolymph during molting. Renewed microbiota was observed in the gills and midgut of crabs at the postmolt stages, which seems to be related to the formation of a new exoskeleton after the molting. A significant positive correlation between the expression of two antimicrobial peptide (AMP) genes (SpALF5 and SpCrustin) and the relative abundance of two predominant microorganisms (Halomonas and Shewanella) in hemolymph was observed in the whole molt cycle, suggesting that AMPs play a role in modulating hemolymph microbiota. Furthermore, digestive enzymes might play a vital role in the changes of microbiota harboring the hepatopancreas and midgut, which provide suitable conditions for restoring and reconstructing host-microbiome homeostasis during molting. In conclusion, this study confirms that molting affects host-associated microbiota and further sheds light on the effects on the immune response and the digestive systems as well. IMPORTANCE Molting is crucial for crustaceans. In mud crab, its exoskeleton is renewed periodically during molting, and this process is an ideal model to study the effects of host development on its microbiota. Here, multiple approaches were used to investigate the changes in microbial taxa, immune response, and digestive enzyme activity with respect to molting in mud crab. The results found that a renewed microbiota was generated in the gills and midgut of crab after a molt. A significant positive correlation between changes in the relative abundances of microbes (such as Halomonas and Shewanella) and the expression of AMP genes (SpALF5 and SpCrustin) was observed in the hemolymph of crabs during the whole molt cycle, suggesting the modulation of hemolymph microbes by AMPs. Furthermore, the digestive enzymes were found to participate in the regulation of microbiota in hepatopancreas and midgut, consequently providing a suitable condition for the restoration and reconstruction of host-microbiome homeostasis during the molting. This study confirms that molting affects the microbial communities and concomitantly influences the immune and digestive systems in mud crabs. This is also the first time the homeostasis of the host and microbiome, and the associations between molting and physiological characteristics in crustaceans, have been revealed.
Collapse
|
21
|
Liu B, Song C, Gao Q, Liu B, Zhou Q, Sun C, Zhang H, Liu M, Tadese DA. Maternal and environmental microbes dominate offspring microbial colonization in the giant freshwater prawn Macrobrachium rosenbergii. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:148062. [PMID: 34091334 DOI: 10.1016/j.scitotenv.2021.148062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/23/2021] [Accepted: 05/23/2021] [Indexed: 06/12/2023]
Abstract
Microbial colonization is vital for physiological equilibrium in animals. However, the impact of maternal and environmental microbes on microbial succession in the early developmental stages of Macrobrachium rosenbergii remains elusive. In this study, the effects of maternal and environmental microbes on the embryonic and larval microbiota of M. rosenbergii were evaluated by high-throughput sequencing. The results showed that Proteobacteria and Firmicutes were the dominant phyla in the intestine, gonads, and hepatopancreases of maternal prawn. In addition, Actinobacteria was dominant in the intestine while Actinobacteria, Bacteroidetes, and Acidobacteria were dominant in gonads of maternal prawn. During the embryonic stages, Proteobacteria, Actinobacteria, and Bacteroidetes became the dominant phyla. In post-larval stages, Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes tended to dominate. In the water, Proteobacteria, Actinobacteria, and Bacteroidetes were the dominant phyla at 7, 14, and 21 dph water. Maternal microbes prominently impacted the microbial composition during the embryonic stages. Specifically, microbial colonization during embryonic stages was directly related to the maternal hepatopancreas according to source-tracking models. When the post-larvae developed to 7 days, the high contribution to the larval microbiota mimicked the environment. These results indicated that microbial colonization in embryonic and post-larval stages was attributed to the maternal and environmental microbe community, respectively. This study provides a theoretical basis for microbial community manipulation to promote prawn growth and physiological health in aquaculture.
Collapse
Affiliation(s)
- Bo Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Changyou Song
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Qiang Gao
- Zhejiang Institute of Freshwater Fishery, Huzhou 313001, PR China
| | - Bo Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Qunlan Zhou
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Cunxin Sun
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Huimin Zhang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Mingyang Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Dawit Adisu Tadese
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| |
Collapse
|
22
|
Cheng CH, Ma HT, Ma HL, Liu GX, Deng YQ, Feng J, Wang LC, Cheng YY, Guo ZX. The role of tumor suppressor protein p53 in the mud crab (Scylla paramamosain) after Vibrio parahaemolyticus infection. Comp Biochem Physiol C Toxicol Pharmacol 2021; 246:108976. [PMID: 33460823 DOI: 10.1016/j.cbpc.2021.108976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/16/2020] [Accepted: 01/04/2021] [Indexed: 10/22/2022]
Abstract
The tumor suppressor protein p53 plays important roles in DNA repair, cell cycle and genetic stability. In the present study, a p53 gene in the mud crab (Scylla paramamosain) (designated as Sp-53) was identified and characterized. The open reading frame of Sp-53 was comprised a 1383 bp, which encoded a putative protein of 460 amino acids. Sp-53 is expressed in all examined tissues, with the highest expression in hepatopancreas and hemocytes. Vibrio parahaemolyticus infection induced oxidative stress, and led to DNA damage. The Sp-53 transcriptions in hepatopancreas were significantly up-regulated after V. parahaemolyticus infection. RNA interference (RNAi) experiment was used to understand the roles of Sp-53 in response to V. parahaemolyticus infection. Knocking down Sp-53 in vivo significantly reduced the expression of the Mn-SOD, Gpx3 and caspase 3 after V. parahaemolyticus infection. Moreover, the mortality of mud crabs and DNA damage in Sp-53-silenced mud crab challenged with V. parahaemolyticus were significantly higher than those in the control group. All these results suggested that Sp-53 played an important role in responses to V. parahaemolyticus infection through its participation in regulation of antioxidant defense, DNA repair and apoptosis.
Collapse
Affiliation(s)
- Chang-Hong Cheng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, China
| | - Hai-Tao Ma
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Hong-Ling Ma
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, China
| | - Guang-Xin Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, China
| | - Yi-Qin Deng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, China
| | - Juan Feng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, China
| | - Li-Cang Wang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, China
| | - Ying-Ying Cheng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, China
| | - Zhi-Xun Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, China.
| |
Collapse
|
23
|
Abstract
The results of the use of probiotic strains of microorganisms of the Bacillus family for the correction and formation of the microflora of the gastrointestinal tract and the impact on metabolism in calves are presented.
The aim of the study. To analyze the effect of probiotics on the microflora of the gastrointestinal tract in calves and biochemical parameters of blood in calves up to one month.
Materials and methods. The research was conducted during 2020 in the conditions of Ukrainian farms for cattle breeding. Five experimental groups of five one-week-old calves were formed in each and one control group. Calves were kept separately in the same conditions on the same diet, but with feeding together with colostrum substitute probiotics of five grams per animal: Bacillus amyloliquefaciense, Bacillus mucilaginosus, Bacillus coagulans, Bacillus megaterium, Bacillus pumilus. The strains are deposited and produced by “Kronos Agro” Ukraine.
Results. It was found that as a result of studies when feeding calves B. coagulans, B. pumilus and B. mucilaginosus the number of Lactobacillus sp. was 80 % higher than in the control group. The level of opportunistic pathogens in the experimental group with B. coagulans had minimal values. Animals in the group where B. mucilaginosus was given had a higher amount of Candida - up to 300 CFU/g and Enterobacteriaceae – 200 CFU/g; which is 50 % less compared to control groups, but more than in the experiment with B. coagulans. According to the results of biochemical examination of blood serum in calves, the absence of toxic effects of probiotic strains: Bacillus amyloliquefaciense, Bacillus mucilaginosus, Bacillus coagulans, Bacillus megaterium, Bacillus pumilus on the internal organs of animals was established.
Conclusions. It was found that the maximum positive effect on the microflora of the gastrointestinal tract of calves up to 30 days of age had B. coagulans (1×109) when fed at a dose of 5 g per animal. The amount of Lactobacillus sp. was the maximum and reached 800 CFU/g, which is 80 % more than in the control group. At the same time, the level of opportunistic pathogens in the experimental group with B. coagulans had minimal indicators and was: Clostridium by 20 %, Escherichia coli – by 70 %, Enterobacteriaceae, Staphylococcus and Candida – 100 % less than the control.
In the study of biochemical parameters, it was found that the activity of enzymes, protein and glucose levels in the serum of experimental animals fed with B. coagulans were within the physiological norm, indicating a normal metabolic process and no toxic effects.
Collapse
|
24
|
A Review of the Nursery Culture of Mud Crabs, Genus Scylla: Current Progress and Future Directions. Animals (Basel) 2021; 11:ani11072034. [PMID: 34359163 PMCID: PMC8300130 DOI: 10.3390/ani11072034] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 11/22/2022] Open
Abstract
Simple Summary Nursery culture knowledge is important for successful commercial seed production especially for mud crab, genus Scylla, a highly valued delicacy. The aim of this review paper is to summarise the status and information on the current nursery culture stage of the mud crab. Various aspects of mud crab hatchery described in this paper are expected to facilitate practitioners and lay people to easily understand a mud crab nursery. This review also provides guidelines for researchers in conducting future research and development on a mud crab nursery in order to increase the production of mud crab crablets for the farming industry. Abstract The nursery stages of mud crab, genus Scylla, proceed from the megalopa stage to crablet instar stages. We review the definition and several of the key stages in mud crab nursery activities. The practice of the direct stocking of megalopa into ponds is not recommended due to their sensitivity. Instead, nursery rearing is needed to grow-out mud crabs of a larger size before pond stocking. Individual nursery rearing results in a higher survival rate at the expense of growth and a more complicated maintenance process compared with communal rearing. The nursery of mud crabs can be done both indoors or outdoors with adequate shelter and feed required to obtain a good survival percentage and growth performance. Artemia nauplii are still irreplaceable as nursery feed, particularly at the megalopa stage, while the survival rate may be improved if live feed is combined with artificial feed such as microbound diet formulations. Water quality parameters, identical to those proposed in tiger shrimp cultures, can be implemented in mud crab rearing. The transportation of crablets between different locations can be done with or without water. The provision of monosex seeds from mud crab hatcheries is expected to become commonplace, increasing seed price and thus improving the income of farmers. Numerous aspects of a mud crab nursery including nutrition; feeding strategies; understanding their behaviour, i.e., cannibalism; control of environmental factors and practical rearing techniques still need further improvement.
Collapse
|
25
|
Zhang N, Wang L, Wei Y. Effects of Bacillus pumilus on growth performance, immunological indicators and gut microbiota of mice. J Anim Physiol Anim Nutr (Berl) 2021; 105:797-805. [PMID: 33675272 DOI: 10.1111/jpn.13505] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/20/2022]
Abstract
An increasing number of Bacillus strains have been developed for use as animal feed additives. The aim of the current work was to evaluate the impacts of Bacillus pumilus fsznc-09 in growth performance, organs development, blood constituents, genes expression of growth and immune in spleen and microbial communities in jejunum of weanling mice. The results showed that the body weight of mice in BP1 group increased significantly (p < 0.05) after feeding Bacillus pumilus fsznc-09. Compared with control group, the feed conversion ratio of BP1 and BP2 groups showed 13.57% (p < 0.05) and 9.64% improvements, respectively. The lengths of large intestine, small intestine in BP1 group were significantly increased (p < 0.05). While compared with control group, the organ indexes in BP1 and BP2 group did not differ significantly. Compared with control group, the activities of serum total superoxide dismutase (T-SOD), alkaline phosphatase (AKP), lysozyme (LZM) in BP1 group and T-SOD, AKP in BP2 group were significantly increased (p < 0.05). Compared with control group, the expressions of ghrelin-2 (Ghrl-2) and insulin-like growth factor 1 (Igf1) in BP1 group were significantly increased (p < 0.05). Compared with control group, the expressions of interleukin-6 (IL-6), nitric oxide synthase (INOS), tumour necrosis factor-α (TNF-α), interleukin-1β (IL-1β) in BP1 group and the expressions of IL-6, INOS, TNF-α, IL-1β and interferon alpha 11 (Ifna11) in BP2 group were slightly decreased. Moreover, compared with control group, the diversity of intestinal flora and relative abundance of potentially probiotics (e.g., Bifidobacterium, Bacillus) in BP1 and BP2 groups were increased. While compared with control group, the relative abundance of the potentially pathogenic bacterium (e.g., Staphylococcus) was reduced. The relative abundances of dominant species in BP1 (Lactobacillus johnsonii) and BP2 (Lactobacillus reuteri) groups were also higher than control group (Lactobacillus intestinalis). In conclusion, Bacillus pumilus fsznc-09 might improve the growth performance and immunity of mice.
Collapse
Affiliation(s)
- Nanchi Zhang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Chengdu, China.,Key Laboratory of Animal Science of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu, China.,Aba Vocational College, Aba, China
| | - Li Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Chengdu, China.,Key Laboratory of Animal Science of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu, China
| | - Yong Wei
- Animal Science Academy of Sichuan Province, Chengdu, China
| |
Collapse
|
26
|
de Souza Valente C, Wan AHL. Vibrio and major commercially important vibriosis diseases in decapod crustaceans. J Invertebr Pathol 2021; 181:107527. [PMID: 33406397 DOI: 10.1016/j.jip.2020.107527] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 12/25/2020] [Accepted: 12/28/2020] [Indexed: 12/18/2022]
Abstract
Bacteria fromthe Vibriogenus are autochthonous to aquatic environments and ubiquitous in aquaculture production systems. Many Vibrio species are non-pathogenic and can be commonly found in healthy farmed aquatic animals. However, some Vibrio species and strains are pathogenic leading to a variety of 'vibriosis' diseases. These diseases can have a significant negative impact on animal production, including farmed crustaceans such as shrimps, lobsters, and crabs. As such, vibriosis can pose a threat to meeting growing food demand and global food security. Preventive management is essential to avoid the onset of vibriosis. This includes a robust health management plan, the use of prophylaxis and treatment measures, and enhancing animal health through nutrition. Furthermore, the use of probiotics, prebiotics, synbiotics, quorum sensing disruption, green water, biofloc, bacteriophages, and immune priming could also play a role in preventing and controlling a vibriosis outbreak. This review aims to inform and update the reader about the current state of knowledge about Vibrio and associated vibriosis in farmed crustaceans (i.e. shrimp, lobster, and crabs). Furthermore, the review will identify potential knowledge gaps in the literature, which serves as a basis for future research priorities.
Collapse
Affiliation(s)
- Cecília de Souza Valente
- Aquaculture and Nutrition Research Unit, Room 204, Annex Building, Ryan Institute and School of Natural Sciences, National University of Ireland Galway, Galway City H91 TK33, Ireland; Aquaculture and Nutrition Research Unit, Carna Research Station, Ryan Institute, National University of Ireland Galway, Carna, Connemara, Co. Galway H91 V8Y1, Ireland.
| | - Alex H L Wan
- Aquaculture and Nutrition Research Unit, Room 204, Annex Building, Ryan Institute and School of Natural Sciences, National University of Ireland Galway, Galway City H91 TK33, Ireland; Aquaculture and Nutrition Research Unit, Carna Research Station, Ryan Institute, National University of Ireland Galway, Carna, Connemara, Co. Galway H91 V8Y1, Ireland
| |
Collapse
|
27
|
Cheng CH, Ma HL, Deng YQ, Feng J, Jie YK, Guo ZX. Effects of Vibrio parahaemolyticus infection on physiological response, histopathology and transcriptome changes in the mud crab (Scylla paramamosain). FISH & SHELLFISH IMMUNOLOGY 2020; 106:197-204. [PMID: 32777460 DOI: 10.1016/j.fsi.2020.07.061] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/21/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Mud crab (Scylla paramamosain) is an important economic species in China. Vibrio parahaemolyticus infection have caused a great economic loss in mud crab farming. The mechanism involved in the immune responses of mud crab to V. parahaemolyticus is unclear. In this study, the physiological and immune response to V. parahaemolyticus infection were investigated in S. paramamosain. The results showed that V. parahaemolyticus infection decreased total hemocyte counts, led to cytological damage, and caused high mortality. Transcriptome analysis showed that 1327 differentially expressed genes (DEGs), including 809 up-regulated and 518 down-regulated ones, were obtained after V. parahaemolyticus challenge. These DEGs were mainly involved in the immune response and infectious disease. Additionally, transcriptome analysis revealed that Toll, immune deficiency (IMD), and prophenoloxidase signalling pathways played essential roles in antibacterial immunity against V. parahaemolyticus infection in mud crab.
Collapse
Affiliation(s)
- Chang-Hong Cheng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, PR China
| | - Hong-Ling Ma
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, PR China
| | - Yi-Qin Deng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, PR China
| | - Juan Feng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, PR China
| | - Yu-Ken Jie
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, PR China
| | - Zhi-Xun Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, PR China.
| |
Collapse
|
28
|
Shi F, Zi Y, Lu Z, Li F, Yang M, Zhan F, Li Y, Li J, Zhao L, Lin L, Qin Z. Bacillus subtilis H2 modulates immune response, fat metabolism and bacterial flora in the gut of grass carp (Ctenopharyngodon idellus). FISH & SHELLFISH IMMUNOLOGY 2020; 106:8-20. [PMID: 32717323 DOI: 10.1016/j.fsi.2020.06.061] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/28/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
Functional ingredients such as Bacillus subtilis are used in aquaculture to improve fish condition, modulate microbiota and promote a healthy intestinal system. However, the underlying mechanisms of grass carp treated with B. subtilis are not fully characterized. This study investigated the gut microbes of grass carp after treated with B. subtilis H2 (106 CFU/mL) and Aeromonas hydrophila (106 CFU/mL). The intestinal flora was found that the dominant bacterial phyla identified in all samples were Proteobacteria, Actinobacteria, Fusobacteria, Bacteroidetes and Acidobacteria. Compared with the control group, the relative abundance of Proteobacteria and Bacteroidetes in B. subtilis group were significantly increased. In addition, the relative abundances of Aeromonas and Shewanella in A. hydrophila group were more than the control group. For the intestinal transcriptomic profiling of the grass carp treated with B. subtilis H2, 824 different expressed genes (DEGs) between the B. subtilis H2 treated and non-treated groups were detected, including 365 up-regulated and 459 down-regulated genes. Six DEGs were randomly selected for further validation by quantitative real-time RT-PCR (qRT-PCR) and the results were consistent with the RNA-seq data. Additionally, eight immunomodulatory genes (IL-4, IL-11, IFN-α, CSF, FOSB, MAPK12b, IGHV3-11 and IGHV3-21) were significantly up-regulated after treated with B. subtilis H2. Furthermore, almost all the lipid metabolism-associated genes were significantly up-regulated after treated with B. subtilis H2 according to the lipid metabolism pathways. Eleven lipid metabolism-associated genes were selected by qRT-PCR, which showed that the expressions of almost all the selected genes were increased, especially Apob-48, ABCG8 and DGAT. Taken together, our results support that B. subtilis could modulate the immune response, fat metabolism and bacterial assembly in the gut of grass carp.
Collapse
Affiliation(s)
- Fei Shi
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Yingjuan Zi
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Zhijie Lu
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Fenglin Li
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Minxuan Yang
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Fanbin Zhan
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Yanan Li
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Jun Li
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China; School of Biological Sciences, Lake Superior State University, Sault Ste. Marie, MI, 49783, USA
| | - Lijuan Zhao
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Li Lin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China.
| | - Zhendong Qin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China.
| |
Collapse
|
29
|
Liu M, Jiang X, Chen A, Chen T, Cheng Y, Wu X. Transcriptome analysis reveals the potential mechanism of dietary carotenoids improving antioxidative capability and immunity of juvenile Chinese mitten crabs Eriocheir sinensis. FISH & SHELLFISH IMMUNOLOGY 2020; 104:359-373. [PMID: 32553983 DOI: 10.1016/j.fsi.2020.06.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/05/2020] [Accepted: 06/13/2020] [Indexed: 06/11/2023]
Abstract
Carotenoids are known to be involved in the regulation of the antioxidative capability, immune response and stress resistance in crustacean species; however, very limited information is available on their underlying molecular mechanisms. This study performed transcriptome sequencing of hemolymph and hepatopancreas of juvenile Chinese mitten crabs (Eriocheir sinensis) that fed with three diets, i.e. diet A containing 90 mg kg-1 dry weight of astaxanthin, diet B containing 200 mg kg-1 dry weight of β-carotene and control diet without supplementation of dietary carotenoids. The results showed that there were 2955 and 497 differentially expressed genes (DEGs) in the hemolymph between the astaxanthin treatment and control groups, and between the β-carotene treatment and control groups, respectively. Moreover, compared with the control group, 833 and 1886 DEGs were obtained in the hepatopancreas of the astaxanthin treatment and the β-carotene treatment groups, respectively. The DEGs in the three groups were enriched in 255 specific KEGG metabolic pathways according to KEGG enrichment analysis. Through this study, a series of key genes involved in Nrf2 signalling, ROS production, intracellular antioxidant enzymes and chaperones were significantly affected by dietary carotenoids. Dietary carotenoids also significantly altered the expression levels of immune-related molecules associated with signal transduction, prophenoloxidase cascade, apoptosis, pattern recognition proteins/receptors and antimicrobial peptides. In conclusion, this transcriptomic study provides valuable information for understanding the molecular mechanism and potential pathway of dietary carotenoids improved the antioxidative capability and immunity of juvenile E. sinensis.
Collapse
Affiliation(s)
- Meimei Liu
- Centre for Research on Environmental Ecology and Fish Nutrition of Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiaodong Jiang
- Centre for Research on Environmental Ecology and Fish Nutrition of Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China
| | - Aqin Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Ting Chen
- The Key Laboratory of Applied Marine Biology of Guangdong Province and Chinese Academy of Sciences, South China Sea Institute of Oceanology, CAS, Guangzhou, 510301, China.
| | - Yongxu Cheng
- Centre for Research on Environmental Ecology and Fish Nutrition of Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Xugan Wu
- Centre for Research on Environmental Ecology and Fish Nutrition of Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
30
|
Deng Y, Cheng C, Feng J, Liu S, Ma H, Chen X, Chen H, Guo Z. Rapid environmental change shapes pond water microbial community structure and function, affecting mud crab (Scylla paramamosain) survivability. Appl Microbiol Biotechnol 2020; 104:2229-2241. [DOI: 10.1007/s00253-019-10328-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/11/2019] [Accepted: 12/18/2019] [Indexed: 12/11/2022]
|
31
|
Tran NT, Kong T, Zhang M, Li S. Pattern recognition receptors and their roles on the innate immune system of mud crab (Scylla paramamosain). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 102:103469. [PMID: 31430487 DOI: 10.1016/j.dci.2019.103469] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/21/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
The innate immune system is the first line of defense protecting the hosts against invading pathogens. Mud crab (Scylla paramamosain) is widely distributed in China and Indo-west Pacific countries, which develops a very complicated innate immune system against pathogen invasions. Innate immunity involves the humoral and cellular responses that are linked to the pattern recognition receptors (PRRs). PRRs initially recognize the infection and trigger the activation of signaling cascades, leading to transcriptional regulation of inflammatory mediators that function in pathogenic control and clearance. In mud crab S. paramamosain, the Toll/Toll-like receptors, lipopolysaccharide and β-1,3-glucan binding proteins, C-type lectins, scavenger receptors, and down syndrome cell adhesion molecules have been identified as receptor families responsible for the recognition of bacteria, fungi, and viruses, and are important components in the innate immune system. In this review, we summarize the literature on the current knowledge and the roles of PRRs in the immune defenses of mud crab, which in an effort to provide much information for further researches.
Collapse
Affiliation(s)
- Ngoc Tuan Tran
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Marine Biology Institute, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Tongtong Kong
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Marine Biology Institute, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Ming Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Marine Biology Institute, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Shengkang Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Marine Biology Institute, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China.
| |
Collapse
|
32
|
|
33
|
Chen F, Wang K. Characterization of the innate immunity in the mud crab Scylla paramamosain. FISH & SHELLFISH IMMUNOLOGY 2019; 93:436-448. [PMID: 31362092 DOI: 10.1016/j.fsi.2019.07.076] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/20/2019] [Accepted: 07/26/2019] [Indexed: 06/10/2023]
Abstract
Mud crabs, Scylla paramamosain, are one of the most economical and nutritious crab species in China and South Asia. Inconsistent with the high development of commercial mud crab aquaculture, effective immunological methods to prevent frequently-occurring diseases have not yet been developed. Thus, high mortalities often occur throughout the different developmental stages of this species resulting in large economic losses. In recent years, numerous attempts have been made to use various advanced biological technologies to understand the innate immunity of S. paramamosain as well as to characterize specific immune components. This review summarizes these research advances regarding cellular and humoral responses of the mud crab during pathogen infection, highlighting hemocytes and gills defense, pattern recognition, immune-related signaling pathways (Toll, IMD, JAK/STAT, and prophenoloxidase (proPO) cascades), immune effectors (antimicrobial peptides), production of reactive oxygen species and the antioxidant system. Diseases affecting the development of mud crab aquaculture and potential disease control strategies are discussed.
Collapse
Affiliation(s)
- Fangyi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China; State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, Fujian, China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen University, Xiamen, Fujian, China
| | - Kejian Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China; State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, Fujian, China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
34
|
Yang Q, Lü Y, Zhang M, Gong Y, Li Z, Tran NT, He Y, Zhu C, Lu Y, Zhang Y, Li S. Lactic acid bacteria, Enterococcus faecalis Y17 and Pediococcus pentosaceus G11, improved growth performance, and immunity of mud crab (Scylla paramamosain). FISH & SHELLFISH IMMUNOLOGY 2019; 93:135-143. [PMID: 31326583 DOI: 10.1016/j.fsi.2019.07.050] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 07/10/2019] [Accepted: 07/17/2019] [Indexed: 06/10/2023]
Abstract
Mud crabs (Scylla paramamosain), a commercially important cultured species in the southeastern region of China, is usually infected by Vibriosis or parasites, causing great economic losses in cultured farms. Previous studies have demonstrated that probiotics benefited in enhancing the immune response against invading pathogens in aquatic animals. In this study, the effects of dietary administration of lactic acid bacteria (LAB) (Enterococcus faecalis Y17 and Pediococcus pentosaceus G11) on growth performance and immune responses of mud crab were assessed. Both strains (Y17 and G11) showed an inhibitory activity against bacterial pathogens (Aeromonas hydrophila, Vibrio parahaemolyticus, Vibrio alginolyticus, Staphylococcus aureus, and β Streptococcus), and a wide pH tolerance range of 2-10. In vivo, mud crabs were fed a control diet and experimental diets supplemented with 109 cfu g-1 diet either Y17 or G11 for 6 weeks before subjecting to a challenge test with V. parahaemolyticus for 12 h. The probiotic-supplemented diets had significant effects on weight gain and specific growth rate during the feeding trial. Increased serum enzyme activities of phenoloxidase, lysozyme, and SOD were observed in the hemolymph of mud crab in Y17 and G11-supplemented groups compared to that in the controls (P < 0.01). The significantly up-regulated expression of gene CAT, LYS, proPO, and SOD could be seen in hepatopancreas in G11-supplemented groups. After the pathogenicity test, the survival rate of Y17 + and G11 + V. parahaemolyticus groups was 66.67% and 80.00%, respectively, compared with 53.33% for the control groups. Taken together, dietary supplementation of Y17 and G11 strains were beneficial in mud crab, which could increase growth performance, modulate immune system and protect the host against V. parahaemolyticus infection.
Collapse
Affiliation(s)
- Qiuhua Yang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Yongling Lü
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Ming Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Yi Gong
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Zhongzhen Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Ngoc Tuan Tran
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Yüyong He
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Chunhua Zhu
- College of Fishery, Guangdong Ocean University. Zhanjiang, 524088, China
| | - Yishan Lu
- College of Fishery, Guangdong Ocean University. Zhanjiang, 524088, China
| | - Yueling Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Shengkang Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China.
| |
Collapse
|
35
|
Du Y, Xu Z, Yu G, Liu W, Zhou Q, Yang D, Li J, Chen L, Zhang Y, Xue C, Cao Y. A Newly Isolated Bacillus subtilis Strain Named WS-1 Inhibited Diarrhea and Death Caused by Pathogenic Escherichia coli in Newborn Piglets. Front Microbiol 2019; 10:1248. [PMID: 31249559 PMCID: PMC6582243 DOI: 10.3389/fmicb.2019.01248] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/20/2019] [Indexed: 01/31/2023] Open
Abstract
Bacillus subtilis is recognized as a safe and reliable human and animal probiotic and is associated with bioactivities such as production of vitamin and immune stimulation. Additionally, it has great potential to be used as an alternative to antimicrobial drugs, which is significant in the context of antibiotic abuse in food animal production. In this study, we isolated one strain of B. subtilis, named WS-1, from apparently healthy pigs growing with sick cohorts on one Escherichia coli endemic commercial pig farm in Guangdong, China. WS-1 can strongly inhibit the growth of pathogenic E. coli in vitro. The B. subtilis strain WS-1 showed typical Bacillus characteristics by endospore staining, biochemical test, enzyme activity analysis, and 16S rRNA sequence analysis. Genomic analysis showed that the B. subtilis strain WS-1 shares 100% genomic synteny with B. subtilis with a size of 4,088,167 bp. Importantly, inoculation of newborn piglets with 1.5 × 1010 CFU of B. subtilis strain WS-1 by oral feeding was able to clearly inhibit diarrhea (p < 0.05) and death (p < 0.05) caused by pathogenic E. coli in piglets. Furthermore, histopathological results showed that the WS-1 strain could protect small intestine from lesions caused by E. coli infection. Collectively, these findings suggest that the probiotic B. subtilis strain WS-1 acts as a potential biocontrol agent protecting pigs from pathogenic E. coli infection. Importance: In this work, one B. subtilis strain (WS-1) was successfully isolated from apparently healthy pigs growing with sick cohorts on one E. coli endemic commercial pig farm in Guangdong, China. The B. subtilis strain WS-1 was identified to inhibit the growth of pathogenic E. coli both in vitro and in vivo, indicating its potential application in protecting newborn piglets from diarrhea caused by E. coli infections. The isolation and characterization will help better understand this bacterium, and the strain WS-1 can be further explored as an alternative to antimicrobial drugs to protect human and animal health.
Collapse
Affiliation(s)
- Yunping Du
- Biochemistry and Molecular Biology Laboratory, State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, China
| | - Zhichao Xu
- Biochemistry and Molecular Biology Laboratory, State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, China
| | - Guolian Yu
- Animal Disease Laboratory, Wen's Group Academy, Wen's Foodstuffs Group Co., Ltd., Xingning, China
| | - Wei Liu
- Animal Disease Laboratory, Wen's Group Academy, Wen's Foodstuffs Group Co., Ltd., Xingning, China
| | - Qingfeng Zhou
- Animal Disease Laboratory, Wen's Group Academy, Wen's Foodstuffs Group Co., Ltd., Xingning, China
| | - Dehong Yang
- Animal Disease Laboratory, Wen's Group Academy, Wen's Foodstuffs Group Co., Ltd., Xingning, China
| | - Jie Li
- Department of Biological Engineering, School of Biology and Food Engineering, Changshu Institute of Technology, Suzhou, China
| | - Li Chen
- Biochemistry and Molecular Biology Laboratory, State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, China
| | - Yun Zhang
- Biochemistry and Molecular Biology Laboratory, State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, China
| | - Chunyi Xue
- Biochemistry and Molecular Biology Laboratory, State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, China
| | - Yongchang Cao
- Biochemistry and Molecular Biology Laboratory, State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
36
|
Zhang X, Tang X, Tran NT, Huang Y, Gong Y, Zhang Y, Zheng H, Ma H, Li S. Innate immune responses and metabolic alterations of mud crab (Scylla paramamosain) in response to Vibrio parahaemolyticus infection. FISH & SHELLFISH IMMUNOLOGY 2019; 87:166-177. [PMID: 30639477 DOI: 10.1016/j.fsi.2019.01.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 05/27/2023]
Abstract
Vibrio parahaemolyticus is one of the major pathogens caused diseases in cultured mud crab (Scylla paramamosain). Mud crabs lack an adaptive immune system, their defenses depend almost on innate immunity. Evaluation of the molecular responses of mud crabs to pathogens is essential for control of disease occurrence in farmed animals. In this study, the impacts of V. parahaemolyticus on immunity-related genes and metabolites in mud crabs of different groups (PG, SG and MG refer to controlled, survival and moribund groups, respectively) were investigated. Our results revealed that V. parahaemolyticus infection stimulated significant expressions of immune-related genes (prophenoloxidase, alpha 2-macroglobulin, lysosomal-associated membrane protein, Rab5, C-type lectin B and anti-lipopolysaccharide factor 5) in the MG within 72 h post-infection. The ATP content was significantly reduced in all tissues except muscle of moribund mud crabs. A total of 668 metabolites (including 190 down-regulated and 145 up-regulated) were identified and assigned to 77 pathways in both SG and MG. Metabolites involved in the saturated fatty acid are up-regulated, whereas unsaturated fatty acid and amino acid metabolisms are down-regulated in the immune system of mud crabs during the bacterial infection in MG. Furthermore, a reduction of hemocyte number and an increase of microbial abundance was found in MG. Our results demonstrated that V. parahaemolyticus induced death of mud crabs through reducing the metabolites associate with energy biosynthesis and innate immune system (i.e. proliferation of hemocyte and melanization), resulting in decrease of ATP in different tissues and failed to clearance of pathogens, respectively. The findings of this study provide a basic information of the responses of mud crab on bacterial infection, which is essential for prevention and control of diseases in mud crab aquaculture.
Collapse
Affiliation(s)
- Xusheng Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Marine Biology Institute, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Xixiang Tang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Ngoc Tuan Tran
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Marine Biology Institute, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Ying Huang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Marine Biology Institute, Shantou University, Shantou, 515063, China
| | - Yi Gong
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Marine Biology Institute, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Yueling Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Marine Biology Institute, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Huaiping Zheng
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Marine Biology Institute, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Hongyu Ma
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Marine Biology Institute, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Shengkang Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Marine Biology Institute, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China.
| |
Collapse
|
37
|
Wang A, Ran C, Wang Y, Zhang Z, Ding Q, Yang Y, Olsen RE, Ringø E, Bindelle J, Zhou Z. Use of probiotics in aquaculture of China-a review of the past decade. FISH & SHELLFISH IMMUNOLOGY 2019; 86:734-755. [PMID: 30553887 DOI: 10.1016/j.fsi.2018.12.026] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/16/2018] [Accepted: 12/13/2018] [Indexed: 06/09/2023]
Abstract
China is the largest aquaculture producer in the world. Antibiotics were extensively used to ensure the development of the intensive aquaculture; however, the use of antibiotics causes safety- and environment-associated problems. As an alternative strategy to antibiotics, aquatic probiotics have attracted attention. The microbial organisms used as probiotics or tested as potential probiotics in Chinese aquaculture belong to various taxonomic divisions, including Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria and yeast. Moreover, the mixture of probiotic strains and synbiotics are also widely used. Studies on the mode of action of aquatic probiotics have extended our understanding of the probiotic effects, and novel mechanisms have been discovered, such as interference of quorum sensing. However, use of probiotics in Chinese aquaculture is still at an initial stage, and there are potential risks for some probiotic applications in aquaculture. Further regulation and management are required to normalize the production and usage of aquatic probiotics. In this review, we discuss species, effects, and mode of actions of probiotics in Chinese aquaculture since 2008. Challenges and future directions for research are also discussed.
Collapse
Affiliation(s)
- Anran Wang
- Liege University, Gembloux Agro-Bio Tech, AgroBioChem/TERRA, Precision Livestock and Nutrition Unit/AgricultureIsLife, Passage des Deportes, 2, 5030, Gembloux, Belgium; Sino-Norway Fish Gastrointestinal Microbiota Joint Lab, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Chao Ran
- Sino-Norway Fish Gastrointestinal Microbiota Joint Lab, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Yanbo Wang
- Marine Resource & Nutritional Biology, Food Quality and Safety Department, Zhejiang Gongshang University, Hangzhou, China
| | - Zhen Zhang
- Sino-Norway Fish Gastrointestinal Microbiota Joint Lab, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Qianwen Ding
- Sino-Norway Fish Gastrointestinal Microbiota Joint Lab, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Yalin Yang
- Sino-Norway Fish Gastrointestinal Microbiota Joint Lab, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Rolf Erik Olsen
- Norway-China Fish Gastrointestinal Microbiota Joint Lab, Institute of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Einar Ringø
- Norway-China Fish Gastrointestinal Microbiota Joint Lab, Faculty of Biosciences, Fisheries and Economics, UiT the Arctic University of Norway, Tromsø, Norway
| | - Jérôme Bindelle
- Liege University, Gembloux Agro-Bio Tech, AgroBioChem/TERRA, Precision Livestock and Nutrition Unit/AgricultureIsLife, Passage des Deportes, 2, 5030, Gembloux, Belgium
| | - Zhigang Zhou
- Sino-Norway Fish Gastrointestinal Microbiota Joint Lab, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China.
| |
Collapse
|
38
|
Su H, Hu X, Xu Y, Xu W, Huang X, Wen G, Yang K, Li Z, Cao Y. Persistence and spatial variation of antibiotic resistance genes and bacterial populations change in reared shrimp in South China. ENVIRONMENT INTERNATIONAL 2018; 119:327-333. [PMID: 29990953 DOI: 10.1016/j.envint.2018.07.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 07/04/2018] [Accepted: 07/04/2018] [Indexed: 06/08/2023]
Abstract
More attention has been paid to the abundance and diversity of antibiotic resistance genes (ARGs) in aquatic environments. However, few studies have investigated the persistence and spatial variation of ARGs in aquatic organisms. This study investigated the occurrence and abundance of ARGs and the bacterial populations in shrimp intestinal tracts during the rearing period in different regions of Guangdong, South China. The results showed that sul1, sul2, qnrD, and floR were the predominant ARGs. Compared with those of juvenile shrimp, the total concentrations of ARGs in the intestinal tract of adult shrimp in three shrimp farms were 2.45-3.92 times higher (p < 0.05), and the bacterial populations in the adult shrimp intestinal tract changed considerably. Redundancy analysis (RDA) showed that the abundance of Proteobacteria, Firmicutes, and Verrucomicrobia in Farms A, B, and C, respectively, were strongly positively correlated with the most abundant and predominant genes (sul1 and qnrD for Farm A; floR and sul2 for Farm B; floR and sul2 for Farm C) in the shrimp intestinal tract. The results of this study indicated that ARGs gained persistence in the developmental stages of the reared shrimp. Different phyla of predominant bacteria were responsible for the increase of ARGs abundance in the shrimp intestinal tract in different regions. This study represents a case study of the persistence and spatial variation of ARGs in aquaculture and can be a reference for the determination of harmful impacts of ARGs on food safety and human health.
Collapse
Affiliation(s)
- Haochang Su
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, P.R. China; Key Laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Xiaojuan Hu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, P.R. China; Key Laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Yu Xu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, P.R. China; Key Laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Wujie Xu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, P.R. China; Key Laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Xiaoshuai Huang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, P.R. China; Key Laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Guoliang Wen
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, P.R. China; Key Laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Keng Yang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, P.R. China; Key Laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Zhuojia Li
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, P.R. China; Key Laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Yucheng Cao
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, P.R. China; Key Laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.
| |
Collapse
|
39
|
Yilmaz S, Sova M, Ergün S. Antimicrobial activity of trans-cinnamic acid and commonly used antibiotics against important fish pathogens and nonpathogenic isolates. J Appl Microbiol 2018; 125:1714-1727. [PMID: 30179290 DOI: 10.1111/jam.14097] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/17/2018] [Accepted: 08/14/2018] [Indexed: 12/19/2022]
Abstract
AIMS Antibiotics and several other chemicals have been used to prevent fish diseases. However, this situation results in economic loss for the companies in the aquaculture industry and most importantly it pollutes the environment. Cinnamic acid is a naturally occurring aromatic acid and is considered to be safe for human consumption. Therefore, in this study, the antibacterial activity of trans-cinnamic acid and commonly used antibiotics, namely chloramphenicol, vancomycin, streptomycin and erythromycin, were tested against 32 bacteria, including fish pathogens, nonpathogenic isolates and collection strains. METHODS AND RESULTS Trans-cinnamic acid was applied against the bacteria using the disc diffusion and microdilution method under in vitro conditions. Antibiotics were also tested under similar conditions against all tested bacteria using the disc diffusion method. The results show that among 32 bacterial strains trans-cinnamic acid exhibited potent inhibitory effect on the Gram-negative fish pathogen Aeromonas sobria. In addition, a moderate inhibition of trans-cinnamic acid of fish pathogens Aeromonas salmonicida, Vibrio (Listonella) anguillarum, Vibrio crassostreae and Yersinia ruckeri was also observed for trans-cinnamic acid in our study. On the contrary, the majority of nonpathogenic intestinal isolates were resistant to trans-cinnamic acid. CONCLUSIONS To the best of our knowledge, this is the first report on the antimicrobial activity of trans-cinnamic acid on 24 of the studied bacteria isolated from fish. In conclusion, trans-cinnamic acid can be used as an environmentally friendly alternative additive to prevent and control primarily A. sobria, as well as other pathogenic bacteria such as A. salmonicida, V. anguillarum, V. crassostreae and Y. ruckeri. SIGNIFICANCE AND IMPACT OF THE STUDY This study indicated that trans-cinnamic acid may present an environmentally friendly alternative therapeutic agent against A. sobria infections in the aquaculture industry.
Collapse
Affiliation(s)
- S Yilmaz
- Department of Aquaculture, Faculty of Marine Sciences and Technology, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - M Sova
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - S Ergün
- Department of Aquaculture, Faculty of Marine Sciences and Technology, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| |
Collapse
|
40
|
Hemolymph Microbiomes of Three Aquatic Invertebrates as Revealed by a New Cell Extraction Method. Appl Environ Microbiol 2018; 84:AEM.02824-17. [PMID: 29453260 DOI: 10.1128/aem.02824-17] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/02/2018] [Indexed: 12/29/2022] Open
Abstract
Symbiotic microorganisms have been found in the hemolymph (blood) of many aquatic invertebrates, such as crabs, shrimp, and oysters. Hemolymph is a critical site in the host immune response. Currently, studies on hemolymph microorganisms are mostly performed with culture-dependent strategies using selective media (e.g., thiosulfate-citrate-bile salts-sucrose [TCBS], 2216E, and LB) for enumerating and isolating microbial cells. However, doubts remain about the "true" representation of the microbial abundance and diversity of symbiotic microorganisms in hemolymph, particularly for uncultivable microorganisms, which are believed to be more abundant than the cultured microorganisms. To explore this, we developed a culture-independent cell extraction method for separating microbial cells from the hemolymph of three aquatic invertebrates (Scylla paramamosain [mud crab], Litopenaeus vannamei [whiteleg shrimp], and Crassostrea angulata [Portuguese oysters]) involving filtration through a 5-μm-pore-size mesh filter membrane (the filtration method). A combination of the filtration method with fluorescence microscopy and high-throughput sequencing technique provides insight into the abundances and diversity of the total microbiota in the hemolymph of these three invertebrates. More than 2.6 × 104 cells/ml of microbial cells dominated by Escherichia-Shigella and Halomonas, Photobacterium and Escherichia-Shigella, and Pseudoalteromonas and Arcobacter were detected in the hemolymph of Scylla paramamosain, Litopenaeus vannamei, and Crassostrea angulata, respectively. A parallel study for investigating the hemolymph microbiomes by comparing the filtration method and a culture-dependent method (the plate count method) showed significantly higher microbial abundances (between 26- and 369-fold difference; P < 0.05) and less biased community structures of the filtration method than those of the plate count method. Furthermore, hemolymph of the three invertebrates harbored many potential pathogens, including Photobacterium, Arcobacter, and Vibrio species. Finally, the filtration method provides a solution that improves the understanding of the metabolic functions of uncultivable hemolymph microorganisms (e.g., metagenomics) devoid of host hemocyte contamination.IMPORTANCE Microorganisms are found in the hemolymph of invertebrates, a critical site in the host immune response. Currently, studies on hemolymph microorganisms are mostly performed with culture-dependent strategies. However, doubts remain about the "true" representation of the hemolymph microbiome. This study developed a culture-independent cell extraction method that could separate microbial cells from the hemolymph of three aquatic invertebrates (S. paramamosain, L. vannamei, and C. angulata) based on filtration through a 5-μm-pore-size mesh filter membrane (the filtration method). A combination of the filtration method with fluorescence microscopy and a high-throughput sequencing technique provides insight into the abundances and diversity of the total microbiota in the hemolymph of these three invertebrates. Our results demonstrate that the hemolymph of aquatic invertebrates harbors a much higher microbial abundance and more distinct microbial community composition than previously estimated. Furthermore, this work provides a less biased solution for studying the metabolic functions of uncultivable hemolymph microbiota devoid of host hemocyte contamination.
Collapse
|
41
|
Mingmongkolchai S, Panbangred W. Bacillus probiotics: an alternative to antibiotics for livestock production. J Appl Microbiol 2018; 124:1334-1346. [PMID: 29316021 DOI: 10.1111/jam.13690] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/16/2017] [Accepted: 12/29/2017] [Indexed: 12/16/2022]
Abstract
The use of probiotics as feed supplements in animal production has increased considerably over the last decade, particularly since the ban on antibiotic growth promoters in the livestock sector. Several Bacillus sp. are attractive for use as probiotic supplements in animal feed due to their ability to produce spores. Their heat stability and ability to survive the low pH of the gastric barrier represent an advantage over other probiotic micro-organisms. This review discusses important characteristics required for selection of Bacillus probiotic strains and summarizes the beneficial effect of Bacillus-based feed additives on animal production. Although the mechanism of action of Bacillus probiotics has not been fully elucidated, they are effective in improving the growth, survival and health status of terrestrial and aquatic livestock. Bacillus strains also have utility in bioremediation and can reduce nitrogenous waste, thereby improving environmental conditions and water quality. Finally, recent innovative approaches for using Bacillus spores in various applications are discussed.
Collapse
Affiliation(s)
- S Mingmongkolchai
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Faculty of Science, Mahidol University-Osaka University Collaborative Research Center for Bioscience and Biotechnology (MU-OU:CRC), Mahidol University, Bangkok, Thailand
| | - W Panbangred
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Faculty of Science, Mahidol University-Osaka University Collaborative Research Center for Bioscience and Biotechnology (MU-OU:CRC), Mahidol University, Bangkok, Thailand
| |
Collapse
|
42
|
Seafood spoilage microbiota and associated volatile organic compounds at different storage temperatures and packaging conditions. Int J Food Microbiol 2018; 280:87-99. [PMID: 29478710 DOI: 10.1016/j.ijfoodmicro.2017.12.029] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 12/21/2017] [Accepted: 12/30/2017] [Indexed: 01/12/2023]
Abstract
Seafood comprising of both vertebrate and invertebrate aquatic organisms are nutritious, rich in omega-3 fatty acids, essential vitamins, proteins, minerals and form part of healthy diet. However, despite the health and nutritional benefits, seafood is highly perishable. Spoilage of seafood could be as a result of microbial activity, autolysis or chemical oxidation. Microbial activity constitutes more spoilage than others. Spoilage bacteria are commonly Gram negative and produce off odours and flavours in seafood as a result of their metabolic activities. Storage temperature, handling and packaging conditions affect microbial growth and thus the shelf-life of seafood. Due to the complexity of the microbial communities in seafood, culture dependent methods of detection may not be useful, hence the need for culture independent methods are necessary to understand the diversity of microbiota and spoilage process. Similarly, the volatile organic compounds released by spoilage bacteria are not fully understood in some seafood. This review therefore highlights current knowledge and understanding of seafood spoilage microbiota, volatile organic compounds, effects of storage temperature and packaging conditions on quality of seafood.
Collapse
|
43
|
Cloning, tissue distribution and nutritional regulation of a fatty acyl Elovl4-like elongase in mud crab, Scylla paramamosain (Estampador, 1949). Comp Biochem Physiol B Biochem Mol Biol 2017; 217:70-78. [PMID: 29277642 DOI: 10.1016/j.cbpb.2017.12.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/01/2017] [Accepted: 12/07/2017] [Indexed: 12/25/2022]
Abstract
In this report, the full-length cDNA of fatty acyl Elovl4-like elongase was cloned from the hepatopancreas of Scylla paramamosain by rapid-amplification of cDNA ends (RACE). To the best of our knowledge, this is the first report of Elovl4-like elongase in crustaceans. The full-length cDNA of Elovl4-like was 1119bp, which included a 5'-terminal untranslated region (UTR) of 58bp, a 3'-terminal UTR of 44bp and an open reading frame (ORF) of 1017bp encoding a polypeptide of 338 amino acids. Tissue distribution analysis revealed that Elovl4-like transcripts are widely distributed in various organs, with high mRNA levels in the hepatopancreas and cranial ganglia. Further, Elovl4-like transcriptional levels in hepatopancreas were up-regulated in proportion to the replacement of dietary fish oil (FO) with soybean oil (SO). The result showed that Elovl4-like transcripts increased about 0.83 and 1.12-fold respectively when SO constituted 80% and 100% of total oil (P<0.05). These results may contribute to better understanding of the long-chain polyunsaturated fatty acids (LC-PUFA) biosynthetic pathway and regulation mechanism in this species.
Collapse
|
44
|
Li Z, Deng H, Zhou Y, Tan Y, Wang X, Han Y, Liu Y, Wang Y, Yang R, Bi Y, Zhi F. Bioluminescence Imaging to Track Bacteroides fragilis Inhibition of Vibrio parahaemolyticus Infection in Mice. Front Cell Infect Microbiol 2017; 7:170. [PMID: 28553617 PMCID: PMC5425466 DOI: 10.3389/fcimb.2017.00170] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 04/19/2017] [Indexed: 12/17/2022] Open
Abstract
Bacteroides fragilis is an anaerobic, Gram-negative, commensal bacterium of the human gut. It plays an important role in promoting the maturation of the immune system, as well as suppressing abnormal inflammation. Many recent studies have focused on the relationship between B. fragilis and human immunity, and indicate that B. fragilis has many useful probiotic effects. As inhibition of intestinal pathogens is an important characteristic of probiotic strains, this study examined whether B. fragilis could inhibit pathogenic bacteria. Results showed that Vibrio parahaemolyticus was inhibited by B. fragilis in vitro, and that B. fragilis could protect both RAW 264.7 and LoVo cells from damage caused by V. parahaemolyticus. Using in vivo imaging, we constructed a light-emitting V. parahaemolyticus strain and showed that B. fragilis might shorten the colonization time and reduce the number of lux-expressing bacteria in a mouse model. These results provide useful information for developing B. fragilis into a probiotic product, and also indicate that this commensal bacterium might aid in the clinical treatment of gastroenteritis caused by V. parahaemolyticus.
Collapse
Affiliation(s)
- Zhengchao Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Nanfang Hospital, Southern Medical UniversityGuangzhou, China.,State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and EpidemiologyBeijing, China
| | - Huimin Deng
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Nanfang Hospital, Southern Medical UniversityGuangzhou, China.,State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and EpidemiologyBeijing, China
| | - Yazhou Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and EpidemiologyBeijing, China
| | - Yafang Tan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and EpidemiologyBeijing, China
| | - Xiaoyi Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and EpidemiologyBeijing, China
| | - Yanping Han
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and EpidemiologyBeijing, China
| | - Yangyang Liu
- Guangzhou ZhiYi Biotechnology Co. Ltd.Guangzhou, China
| | - Ye Wang
- Guangzhou ZhiYi Biotechnology Co. Ltd.Guangzhou, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and EpidemiologyBeijing, China
| | - Yujing Bi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and EpidemiologyBeijing, China
| | - Fachao Zhi
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Nanfang Hospital, Southern Medical UniversityGuangzhou, China
| |
Collapse
|
45
|
Feng Y, Qiao L, Liu R, Yao H, Gao C. Potential probiotic properties of lactic acid bacteria isolated from the intestinal mucosa of healthy piglets. ANN MICROBIOL 2017. [DOI: 10.1007/s13213-017-1254-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
46
|
Gut Microbiota and Metabolic Phenotype of Portunus Trituberculatus. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2016. [DOI: 10.1016/s1872-2040(16)60978-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
47
|
Innate immune response, intestinal morphology and microbiota changes in Senegalese sole fed plant protein diets with probiotics or autolysed yeast. Appl Microbiol Biotechnol 2016; 100:7223-38. [DOI: 10.1007/s00253-016-7592-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/25/2016] [Accepted: 04/28/2016] [Indexed: 10/21/2022]
|
48
|
Huang WS, Duan LP, Huang B, Zhou LH, Liang Y, Tu CL, Zhang FF, Nie P, Wang T. Identification of three IFN-γ inducible lysosomal thiol reductase ( GILT )-like genes in mud crab Scylla paramamosain with distinct gene organizations and patterns of expression. Gene 2015; 570:78-88. [DOI: 10.1016/j.gene.2015.06.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 05/17/2015] [Accepted: 06/02/2015] [Indexed: 12/22/2022]
|
49
|
Azra MN, Ikhwanuddin M. A review of maturation diets for mud crab genus Scylla broodstock: Present research, problems and future perspective. Saudi J Biol Sci 2015; 23:257-67. [PMID: 26981008 PMCID: PMC4778523 DOI: 10.1016/j.sjbs.2015.03.011] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 03/09/2015] [Accepted: 03/20/2015] [Indexed: 11/23/2022] Open
Abstract
Study of broodstock maturation diets is important in order to increase the quality of berried females, which indirectly improve the larval quantity in the hatchery production of cultured species. This paper reviewed the studies on the maturation diets for mud crab broodstock, genus Scylla and compared independently to identify their effect on reproductive performance and larval quality. The broodstock is usually caught from the wild and held in the spawning or maturation tank for further use of hatchery seed production. Mud crab broodstock was fed either natural diet, artificial diet or mixed diet. Trash fishes were commonly used as a natural feed for mud crab broodstock; meanwhile artificial diets are from formulated fish meal and various kinds of feed. The results indicated that mud crab broodstock has a high dietary requirement for lipids, fatty acids and protein which are to be used during the maturation and breeding processes. However, the natural diet produce better larval quality compared to the artificial diet. The mixed diet is the better diet which resulted in better reproductive performances such as growth, survival, fecundity and maturation processes. This review also discusses the problems in the previous studies for the potential future research to develop very high quality and cost-effective formulated diet for the enhancement of broodstock and seed production technology. Information from this review can be useful in developing a better quality of crustacean broodstock’s diet for commercial hatchery production.
Collapse
Affiliation(s)
- Mohamad N. Azra
- School of Fisheries and Aquaculture Sciences, Universiti Malaysia Terengganu, Kuala Terengganu, Terengganu, Malaysia
| | - Mhd Ikhwanuddin
- Institute of Tropical Aquaculture, Universiti Malaysia Terengganu, Kuala Terengganu, Terengganu, Malaysia
- Corresponding author at: Institute of Tropical Aquaculture, Universiti Malaysia Terengganu, Mengabang Telipot, 21030 Kuala Terengganu, Terengganu, Malaysia. Tel.: +60 9 6683638; fax: +60 9 6683502.
| |
Collapse
|