1
|
Arachchi UPE, Madushani KP, Shanaka KASN, Kim G, Lim C, Yang H, Jayamali BPMV, Kodagoda YK, Warnakula WADLR, Jung S, Wan Q, Lee J. Characterization of tripartite motif containing 59 (TRIM59) in Epinephelus akaara: Insights into its immune involvement and functional properties in viral pathogenesis, macrophage polarization, and apoptosis regulation. FISH & SHELLFISH IMMUNOLOGY 2025; 157:110082. [PMID: 39645217 DOI: 10.1016/j.fsi.2024.110082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/21/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
The tripartite motif-containing (TRIM) superfamily is the largest family of RING-type E3 ubiquitin ligases that is conserved across the metazoan kingdom. Previous studies in mammals have demonstrated that TRIM59 possesses ubiquitin-protein ligase activity and acts as a negative regulator of NF-κB signaling. However, TRIM59 has rarely been characterized in fish. This study aimed to characterize TRIM59 from Epinephelus akaara (Eatrim59) and elucidate its structural features, expression patterns, and functional properties in innate immune responses and in the regulation of apoptosis. Eatrim59 is composed of 406 amino acids with a molecular weight of 45.84 kDa and a theoretical isoelectric point of 5.25. It comprises a conserved RING domain, a B-box motif, and a coiled-coil region. Subcellular localization analysis revealed that Eatrim59 was localized in the endoplasmic reticulum. Eatrim59 was ubiquitously expressed in all tissues examined, with the highest relative expression detected in the blood, followed by the brain and spleen. Temporal expression of Eatrim59 was dynamically regulated in response to in vivo immune stimulation by Toll-like receptor ligands and nervous necrosis virus infection. In FHM cells overexpressing Eatrim59, an increase in viral replication was observed upon infection with the Viral hemorrhagic septicemia virus. This phenomenon is attributed to Eatrim59-mediated downregulation of interferon, pro-inflammatory cytokines, and other antiviral pathways. Moreover, macrophages stably overexpressing Eatrim59 exhibited a decrease in nitric oxide production and the formation of a filamentous actin structure upon lipopolysaccharide stimulation, indicating dampened M1 polarization. Furthermore, a decrease in apoptosis was observed in Eatrim59-overexpressing FHM cells under oxidative stress induced by H2O2. In conclusion, these findings demonstrate the multifaceted role of Eatrim59 as a regulator of innate immune response and apoptosis in E. akaara.
Collapse
Affiliation(s)
- U P E Arachchi
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - K P Madushani
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - K A S N Shanaka
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Gaeun Kim
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Chaehyeon Lim
- Genetics and Breeding Research Center, National Institute of Fisheries Science, Geoje, 53334, Republic of Korea
| | - Hyerim Yang
- Genetics and Breeding Research Center, National Institute of Fisheries Science, Geoje, 53334, Republic of Korea
| | - B P M Vileka Jayamali
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Yasara Kavindi Kodagoda
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - W A D L R Warnakula
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Sumi Jung
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea
| | - Qiang Wan
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea.
| |
Collapse
|
2
|
Emam M, Kumar S, Eslamloo K, Caballero-Solares A, Hall JR, Xue X, Paradis H, Gendron RL, Santander J, Rise ML. Transcriptomic response of lumpfish ( Cyclopterus lumpus) head kidney to viral mimic, with a focus on the interferon regulatory factor family. Front Immunol 2024; 15:1439465. [PMID: 39211041 PMCID: PMC11357929 DOI: 10.3389/fimmu.2024.1439465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/08/2024] [Indexed: 09/04/2024] Open
Abstract
The economic importance of lumpfish (Cyclopterus lumpus) is increasing, but several aspects of its immune responses are not well understood. To discover genes and mechanisms involved in the lumpfish antiviral response, fish were intraperitoneally injected with either the viral mimic polyinosinic:polycytidylic acid [poly(I:C)] or phosphate-buffered saline (PBS; vehicle control), and head kidneys were sampled 24 hours post-injection (hpi) for transcriptomic analyses. RNA sequencing (RNA-Seq) (adjusted p-value <0.05) identified 4,499 upregulated and 3,952 downregulated transcripts in the poly(I:C)-injected fish compared to the PBS-injected fish. Eighteen genes identified as differentially expressed by RNA-Seq were included in a qPCR study that confirmed the upregulation of genes encoding proteins with antiviral immune response functions (e.g., rsad2) and the downregulation of genes (e.g., jarid2b) with potential cellular process functions. In addition, transcript expression levels of 12 members of the interferon regulatory factor (IRF) family [seven of which were identified as poly(I:C)-responsive in this RNA-Seq study] were analyzed using qPCR. Levels of irf1a, irf1b, irf2, irf3, irf4b, irf7, irf8, irf9, and irf10 were significantly higher and levels of irf4a and irf5 were significantly lower in the poly(I:C)-injected fish compared to the PBS-injected fish. This research and associated new genomic resources enhance our understanding of the genes and molecular mechanisms underlying the lumpfish response to viral mimic stimulation and help identify possible therapeutic targets and biomarkers for viral infections in this species.
Collapse
Affiliation(s)
- Mohamed Emam
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Surendra Kumar
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Khalil Eslamloo
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
- Centre for Marine Applied Research, Dartmouth, NS, Canada
| | | | - Jennifer R. Hall
- Aquatic Research Cluster, Core Research Equipment and Instrument Training (CREAIT) Network, Ocean Sciences Centre, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Xi Xue
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Hélène Paradis
- Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Robert L. Gendron
- Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Javier Santander
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Matthew L. Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| |
Collapse
|
3
|
Toubanaki DK, Efstathiou A, Tzortzatos OP, Valsamidis MA, Papaharisis L, Bakopoulos V, Karagouni E. Nervous Necrosis Virus Modulation of European Sea Bass ( Dicentrarchus labrax, L.) Immune Genes and Transcriptome towards Establishment of Virus Carrier State. Int J Mol Sci 2023; 24:16613. [PMID: 38068937 PMCID: PMC10706053 DOI: 10.3390/ijms242316613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Viral infections of teleost fish have great environmental and economic implications in aquaculture. Nervous necrosis virus (NNV) is a pathogen affecting more than 120 different species, causing high mortality and morbidity. Herein, we studied the course of NNV experimental infection of D. labrax, focusing on survivors which indicated viral carrier state. To determine the carrier state of D. labrax head kidney, we performed a gene expression analysis of selected immune-related genes and we profiled its transcriptome 14 days post infection (dpi). All tested genes showed clear differentiations in expression levels while most of them were up-regulated 14 dpi suggesting that their role is not limited in early antiviral responses, but they are also implicated in disease persistence. To gain a better understanding of the fish that survived the acute infection but still maintained a high viral load, we studied the differential expression of 124 up-regulated and 48 down-regulated genes in D. labrax head kidney, at 14 dpi. Concluding, the NNV virus persistent profile was assessed in D. labrax, where immune-related gene modification was intense (14 dpi) and the head kidney transcriptome profile at this time point offered a glimpse into host attempts to control the infection in asymptomatic carriers.
Collapse
Affiliation(s)
- Dimitra K. Toubanaki
- Immunology of Infection Group, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece; (D.K.T.); (A.E.); (O.-P.T.)
| | - Antonia Efstathiou
- Immunology of Infection Group, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece; (D.K.T.); (A.E.); (O.-P.T.)
| | - Odysseas-Panagiotis Tzortzatos
- Immunology of Infection Group, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece; (D.K.T.); (A.E.); (O.-P.T.)
| | - Michail-Aggelos Valsamidis
- Department of Marine Sciences, School of the Environment, University of the Aegean, University Hill, Lesvos, 81100 Mytilene, Greece; (M.-A.V.); (V.B.)
| | | | - Vasileios Bakopoulos
- Department of Marine Sciences, School of the Environment, University of the Aegean, University Hill, Lesvos, 81100 Mytilene, Greece; (M.-A.V.); (V.B.)
| | - Evdokia Karagouni
- Immunology of Infection Group, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece; (D.K.T.); (A.E.); (O.-P.T.)
| |
Collapse
|
4
|
Cho JY, Kim J, Kim JW, Lee D, Kim DG, Kim YS, Lee JH, Nam BH, Kim YO, Kong HJ. Characterization of TRIM16, a member of the fish-specific finTRIM family, in olive flounder Paralichthys olivaceus. FISH & SHELLFISH IMMUNOLOGY 2022; 127:666-671. [PMID: 35803510 DOI: 10.1016/j.fsi.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/01/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Tripartite motif-containing (TRIM) proteins are conserved throughout the metazoan kingdom, and the TRIM subset finTRIM is highly diversified in fish. We isolated TRIM16 cDNA, a member of the finTRIM family, from the olive flounder Paralichthys olivaceus (PoTRIM16). PoTRIM16 contained a 1,725-bp coding sequence encoding a 574-amino acid polypeptide, which in turn contained a really interesting new gene (RING) finger domain, B-box-type zinc finger (B-BOX), nuclease SbcCD subunit C (SbcC), structural maintenance of chromosome (SMC prok B), and stonustoxin (SNTX) subunit alpha (SPRY-PRY-SNTX). Multiple alignment of related sequences revealed that PoTRIM16 showed 86.63-97.40% identity with fish orthologues, and a phylogenetic tree was constructed of vertebrates. PoTRIM16 mRNA was detected in all tissues examined; levels were highest in the eye and ovary. PoTRIM16 mRNA expression was investigated during early development. Under VHSV infection, PoTRIM16 mRNA was downregulated in the liver of P. olivaceus. This is the first study to characterize fish-specific finTRIM in P. olivaceus, which may play a role in the immune response against virus infection.
Collapse
Affiliation(s)
- Ja Young Cho
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, 46083, Republic of Korea
| | - Julan Kim
- Fish Genetics and Breeding Research Center, National Institute of Fisheries Science, Geoje, 53334, Republic of Korea
| | - Ju-Won Kim
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, 46083, Republic of Korea
| | - Dain Lee
- Fish Genetics and Breeding Research Center, National Institute of Fisheries Science, Geoje, 53334, Republic of Korea
| | - Dong-Gyun Kim
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, 46083, Republic of Korea
| | - Young-Sam Kim
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, 46083, Republic of Korea
| | - Jeong Ho Lee
- Fish Genetics and Breeding Research Center, National Institute of Fisheries Science, Geoje, 53334, Republic of Korea
| | - Bo-Hye Nam
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, 46083, Republic of Korea
| | - Young-Ok Kim
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, 46083, Republic of Korea
| | - Hee Jeong Kong
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, 46083, Republic of Korea.
| |
Collapse
|
5
|
Yu Y, Li C, Liu J, Zhu F, Wei S, Huang Y, Huang X, Qin Q. Palmitic Acid Promotes Virus Replication in Fish Cell by Modulating Autophagy Flux and TBK1-IRF3/7 Pathway. Front Immunol 2020; 11:1764. [PMID: 32849631 PMCID: PMC7419653 DOI: 10.3389/fimmu.2020.01764] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/01/2020] [Indexed: 12/23/2022] Open
Abstract
Palmitic acid is the most common saturated fatty acid in animals, plants, and microorganisms. Studies highlighted that palmitic acid plays a significant role in diverse cellular processes and viral infections. Accumulation of palmitic acid was observed in fish cells (grouper spleen, GS) infected with Singapore grouper iridovirus (SGIV). The fluctuated content levels after viral infection suggested that palmitic acid was functional in virus-cell interactions. In order to investigate the roles of palmitic acid in SGIV infection, the effects of palmitic acid on SGIV induced cytopathic effect, expression levels of viral genes, viral proteins, as well as virus production were evaluated. The infection and replication of SGIV were increased after exogenous addition of palmitic acid but suppressed after knockdown of fatty acid synthase (FASN), of which the primary function was to catalyze palmitate synthesis. Besides, the promotion of virus replication was associated with the down-regulating of interferon-related molecules, and the reduction of IFN1 and ISRE promotor activities by palmitic acid. We also discovered that palmitic acid restricted TBK1, but not MDA5-induced interferon immune responses. On the other hand, palmitic acid decreased autophagy flux in GS cells via suppressing autophagic degradation, and subsequently enhanced viral replication. Together, our findings indicate that palmitic acid is not only a negative regulator of TBK1-IRF3/7 pathway, but also a suppressor of autophagic flux. Finally, palmitic acid promotes the replication of SGIV in fish cells.
Collapse
Affiliation(s)
- Yepin Yu
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Chen Li
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jiaxin Liu
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Fengyi Zhu
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shina Wei
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Youhua Huang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xiaohong Huang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Qiwei Qin
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
6
|
Huo S, Jiao H, Chen B, Kuang M, Li Q, Lu Y, Liu X. FTR67, a member of the fish-specific finTRIM family, triggers IFN pathway and against spring viremia of carp virus. FISH & SHELLFISH IMMUNOLOGY 2020; 103:1-8. [PMID: 32334126 DOI: 10.1016/j.fsi.2020.04.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/14/2020] [Accepted: 04/18/2020] [Indexed: 06/11/2023]
Abstract
Tripartite motif (TRIM) proteins have attracted particular research interest because of their multiple functions in the antiviral innate immune response. TRIM proteins perform different functions during virus infection, some play a role in inhibiting while others play a role in promoting. In this study, we described a species-specific TRIM gene named ftr67. Analysis of tissue distribution showed that ftr67 was mainly expressed in the gill and liver in five examined tissues of zebrafish. The phylogenic analysis showed that ftr67 was closest to the grass carp TRIM67. Overexpression of ftr67 resulted in a significantly decreased SVCV entry and impaired SVCV replication in FHM cells. Furthermore, overexpression of ftr67 could significantly induce the upregulation of molecular sensor RIG-I, IRF3/7, IFN and ISGs. In addition, RING domain of ftr67 was a required part essential for the antiviral effect. In summary, our results demonstrated that the important role of ftr67 in regulating SVCV infection, which offers a potential target for development of anti-SVCV therapies.
Collapse
Affiliation(s)
- Shitian Huo
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, China
| | - Houqi Jiao
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, China
| | - Bo Chen
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, China
| | - Ming Kuang
- Institute of Systems Biomedicine, Department of Immunology, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, 100191, China
| | - Qing Li
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, China
| | - Yuanan Lu
- Department of Public Health Sciences, University of Hawaii at Manoa, Honolulu, Hawaii, 96822, USA
| | - Xueqin Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, China.
| |
Collapse
|
7
|
Zheng J, Zhang Y, Zhi L, Lv S, Xiao L, Huang X, Huang Y, Qin Q. The novel gene TRIM44L from orange-spotted grouper negatively regulates the interferon response. FISH & SHELLFISH IMMUNOLOGY 2019; 92:746-755. [PMID: 31279081 DOI: 10.1016/j.fsi.2019.06.062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/26/2019] [Accepted: 06/30/2019] [Indexed: 06/09/2023]
Abstract
Accumulated evidence suggests that some of the tripartite motif (TRIM) -family proteins function as critical regulators of carcinogenesis, immunity, and antiviral functions. TRIM44 is an atypical TRIM family protein that lacks the entire RING domain and has been demonstrated to play a crucial role in cancer and viral infection. To our knowledge, the role of TRIM44 in fish still remains largely unknown. Here, we cloned and characterized a novel TRIM44-like gene from orange spotted grouper (EcTRIM44L). Sequence analysis indicated that EcTRIM44L encoded a 393 amino acid peptide, which shared 81.44% and 51.02% identity with large yellow croaker (Larimichthys crocea) and zebrafish (Danio rerio), respectively. However, EcTRIM44L only exhibited 24.69% identity with the TRIM44 protein of humans (Homo sapiens). Moreover, EcTRIM44L contained two conserved domains, including a B-Box domain and a coiled-coil domain, but not a RING domain. Using fluorescence microscopy, we observed green fluorescence in the cytoplasm of the EcTRIM44L-EGFP transfected grouper spleen (GS) cells. As the infection proceeded, EcTRIM44L transcription was significantly up-regulated in red-spotted grouper nervous necrosis virus (RGNNV) infection, suggesting that EcTRIM44L might be involved in fish virus infections. The in vitro overexpression of EcTRIM44L significantly enhanced RGNNV replication, as demonstrated by the accelerated cytopathic effect (CPE) progression induced by RGNNV, as well as the increased expression of coat protein (CP) and RNA-dependent RNA polymerase (RdRp). The overexpression of EcTRIM44L significantly decreased the level of interferon (IFN) related signaling molecules and pro-inflammatory cytokine expression, suggesting that EcTRIM44L affected virus replication by negatively regulating the IFN response. In addition, the melanoma differentiation-associated protein 5 (MDA5) and mitochondrial antiviral-signaling protein (MAVS), but not mediator of IRF3 activation (MITA)-evoked IFN response was negatively regulated by EcTRIM44L. Together, for the first time, our results indicate that EcTRIM44L negatively regulates the interferon response against grouper RNA virus infection.
Collapse
Affiliation(s)
- Jiaying Zheng
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Ya Zhang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Linyong Zhi
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Shunyou Lv
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Liming Xiao
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaohong Huang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Youhua Huang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
8
|
Liu J, Huang Y, Huang X, Li C, Ni SW, Yu Y, Qin Q. Grouper DDX41 exerts antiviral activity against fish iridovirus and nodavirus infection. FISH & SHELLFISH IMMUNOLOGY 2019; 91:40-49. [PMID: 31082519 DOI: 10.1016/j.fsi.2019.05.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 04/24/2019] [Accepted: 05/09/2019] [Indexed: 06/09/2023]
Abstract
DEAD (Asp-Glu-Ala-Asp)-box polypeptide 41 (DDX41) is a member of the DEXDc family of helicases, that has recently been identified to be a crucial intracellular DNA sensor that triggers multiple signaling molecules to activate the type I interferon response. However, the precise function of DDX41 in fish during a viral infection remains unknown. In the present study, the DDX41 homolog from orange spotted grouper, Epinephelus coioides (EcDDX41), was cloned and its potential role in the immune response to a fish viral infection were investigated. EcDDX41 encodes a putative protein of 614 amino acid residues that contained two conserved domains: 1) DEADc domain; and 2) HELICc domain. The sequence analysis indicated that EcDDX41 shared 99%, 94%, and 86% identity with Asian seabass (Lates calcarifer), zebrafish (Danio rerio), and humans (Homo sapiens), respectively. EcDDX41 mRNA was present in all of the detected tissues, with the highest level of expression in the gills. The level of EcDDX41 expression was up-regulated following infection with Singapore grouper iridovirus (SGIV) or red-spotted grouper nervous necrosis virus (RGNNV) in grouper spleen (GS) cell cultures, suggesting that EcDDX41 may be involved in fish virus infection. Furthermore, EcDDX41 overexpression in GS cells significantly inhibited SGIV and RGNNV replication. EcDDX41 overexpression significantly increased the expression of antiviral and inflammatory cytokine genes, including interferon regulatory factor genes (e.g., IRF1, IRF2, IRF3, and IRF7), interferon induced genes (e.g., ISG15, ISG56, IFP35, Viperin, and MXI), and pro-inflammatory cytokine genes (e.g., TNFα, IL-1β, and IL-8). Moreover, EcDDX41 positively regulated the mitochondrial antiviral-signaling protein (MAVS) and TANK-binding kinase 1 (TBK1)-induced interferon immune response, but did mediate IRF3 activation (MITA) to evoke an interferon immune response in unstimulated cells. Together, our results provide novel insight into the role of fish DDX41 in the antiviral innate immune response.
Collapse
Affiliation(s)
- Jiaxin Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Youhua Huang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Xiaohong Huang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Chen Li
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Song Wei Ni
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yepin Yu
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China.
| |
Collapse
|
9
|
Integrated Transcriptomic and Proteomic Analysis of Red Blood Cells from Rainbow Trout Challenged with VHSV Point Towards Novel Immunomodulant Targets. Vaccines (Basel) 2019; 7:vaccines7030063. [PMID: 31324030 PMCID: PMC6789484 DOI: 10.3390/vaccines7030063] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 06/29/2019] [Accepted: 07/01/2019] [Indexed: 12/15/2022] Open
Abstract
Teleost red blood cells (RBCs) are nucleated and therefore can propagate cellular responses to exogenous stimuli. RBCs can mount an immune response against a variety of fish viruses, including the viral septicemia hemorrhagic virus (VHSV), which is one of the most prevalent fish viruses resulting in aquaculture losses. In this work, RBCs from blood and head kidney samples of rainbow trout challenged with VHSV were analyzed via transcriptomic and proteomic analyses. We detected an overrepresentation of differentially expressed genes (DEGs) related to the type I interferon response and signaling in RBCs from the head kidney and related to complement activation in RBCs from blood. Antigen processing and presentation of peptide antigen was overrepresented in RBCs from both tissues. DEGs shared by both tissues showed an opposite expression profile. In summary, this work has demonstrated that teleost RBCs can modulate the immune response during an in vivo viral infection, thus implicating RBCs as cell targets for the development of novel immunomodulants.
Collapse
|
10
|
Lv S, Zhang Y, Zheng J, Huang X, Huang Y, Qin Q. Negative regulation of the interferon response by finTRIM82 in the orange spotted grouper. FISH & SHELLFISH IMMUNOLOGY 2019; 88:391-402. [PMID: 30853655 DOI: 10.1016/j.fsi.2019.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/26/2019] [Accepted: 03/01/2019] [Indexed: 06/09/2023]
Abstract
Tripartite motif (TRIM) proteins have been demonstrated to exhibit critical functions in multiple cellular processes, including development, carcinogenesis, and programmed cell death, and are also widely recognized to be important antiviral restriction factors or modulators of immune and inflammatory signaling pathways. However, in teleosts, additional TRIM members have been identified and their functions remain largely unknown. Here, a novel finTRIM gene from orange spotted grouper (EcfinTRIM82) was cloned and characterized. Sequence analysis indicated that EcfinTRIM82 encoded a 575 amino acid peptide which shared 94% and 82% identity with Asian sea bass (Lates calcarifer), and zebrafish (Danio rerio) finTRIM82, respectively. EcfinTRIM82 contained three conserved domains, including a RING, B-Box, and SPRY domain. Using fluorescence microscopy, we found that green fluorescence aggregates were observed in the cytoplasm of EcfinTRIM82-EGFP transfected grouper spleen (GS) cells. As the infection proceeded, EcfinTRIM82 transcription was significantly upregulated in Singapore grouper iridovirus (SGIV) or red-spotted grouper nervous necrosis virus (RGNNV) infected GS cells. This suggests that EcfinTRIM82 might be involved in fish virus infection. The in vitro overexpression of EcfinTRIM82 in GS cells significantly enhanced the replication of SGIV and RGNNV, evidenced by increased expression of viral genes, including the SGIV major capsid protein (MCP), VP19, ICP-18, RGNNV coat protein (CP), and RNA-dependent RNA polymerase (RdRp). Furthermore, the ectopic expression of EcfinTRIM82 significantly decreased the expression of interferon (IFN)-related signaling molecules, including interferon regulatory factor 3 (IRF3), IRF7, interferon stimulated gene 15 (ISG15), ISG56, IFP35, and myxovirus resistance gene (MXI), suggesting that EcfinTRIM82 regulated viral replication via the negative regulation of the host IFN response. In addition, EcfinTRIM82 overexpression substantially decreased the level of proinflammatory cytokine transcription. Furthermore, the ectopic expression of EcfinTRIM82 significantly weakened the melanoma differentiation-associated protein 5 (MDA5), mediator of IRF3 activation (MITA) and mitochondrial antiviral-signaling (MAVS) protein-induced IFN response by detecting the transcription of interferon related cytokines and the promoter activity of IFN. Together, our results demonstrate that finTRIM82 negatively regulates the innate antiviral immune response against grouper virus infection.
Collapse
Affiliation(s)
- Shunyou Lv
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Ya Zhang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jiaying Zheng
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaohong Huang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Youhua Huang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
11
|
Liu W, Kuang M, Zhang Z, Lu Y, Liu X. Molecular Characterization and Expression Analysis of ftr01, ftr42, and ftr58 in Zebrafish (Danio rerio). Virol Sin 2019; 34:434-443. [PMID: 30989427 DOI: 10.1007/s12250-019-00112-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 02/21/2019] [Indexed: 11/30/2022] Open
Abstract
Tripartite motif (TRIM) proteins were shown to play an important role in innate antiviral immunity. FinTRIM (ftr) is a new subset of TRIM genes that do not possess obvious orthologs in higher vertebrates. However, little is known about its function. In this study, we used bioinformatic analysis to examine the phylogenetic relationships and conserved domains of zebrafish (Danio rerio) ftr01, ftr42, and ftr58, as well as qualitative real-time PCR to examine their expression patterns in zebrafish embryonic fibroblast (ZF4) cells and zebrafish tissues. Sequence analysis showed that the three finTRIMs are highly conserved, and all contain a RING domain, B-box domain, and SPRY-PRY domain. In addition, ftr42 and ftr58 had one coiled-coil domain (CCD), whereas ftr01 had two CCDs. Tissue expression analysis revealed that the mRNA level of ftr01 was the highest in the liver, whereas those of ftr42 and ftr58 were the highest in the gill; the expression of these finTRIMs was clearly upregulated not in the eyes, but in the liver, spleen, kidney, gill, and brain of zebrafish following spring viremia of carp virus (SVCV) infection. Similarly, the expression of these three finTRIM genes also increased in ZF4 cells after SVCV infection. Our study revealed that ftr01, ftr42, and ftr58 may play an important role in antiviral immune responses, and these findings validate the need for more in-depth research on the finTRIM family in the future.
Collapse
Affiliation(s)
- Wanmeng Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.,Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China.,Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
| | - Ming Kuang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.,Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China.,Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
| | - Ze Zhang
- School of Life Sciences, Beijing Normal University, Beijing, 100875, China.,National Institute of Biological Sciences, Zhongguancun Life Science Park, Beijing, 102206, China
| | - Yuanan Lu
- Department of Public Health Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Xueqin Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China. .,Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China. .,Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China.
| |
Collapse
|
12
|
Wu M, Zhao X, Gong XY, Wang Y, Gui JF, Zhang YB. FTRCA1, a Species-Specific Member of finTRIM Family, Negatively Regulates Fish IFN Response through Autophage-Lysosomal Degradation of TBK1. THE JOURNAL OF IMMUNOLOGY 2019; 202:2407-2420. [PMID: 30850476 DOI: 10.4049/jimmunol.1801645] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 02/14/2019] [Indexed: 11/19/2022]
Abstract
In mammals, tripartite motif (TRIM) proteins have emerged as pivotal players endowed with, directly, antiviral effects and, indirectly, modulatory capacity of the innate immune response. An unprecedented expansion of TRIM family has occurred in fish; however, the functional role of fish TRIM family members remains largely unknown. In this study, we identify a species-specific TRIM gene from crucian carp Carassius auratus, named FTRCA1, phylogenetically similar to the members of finTRIM, a subfamily of TRIM exclusively in teleost fish. FTRCA1 is induced by IFN and IFN stimuli as a typical IFN-stimulated gene. Overexpression of FTRCA1 negatively regulates IFN antiviral response by inhibition of IRF3 phosphorylation; consistently, knockdown of FTRCA1 results in enhanced levels of IRF3 phosphorylation and also IFN expression following poly(I:C) transfection. Whereas FTRCA1 is associated with several pivotal signaling molecules of RIG-I-like receptor pathway, its association with TBK1 results in autophage-lysosomal degradation of TBK1, thus abrogating the downstream IFN induction. Interestingly, FTRCA1 is phosphorylated by TBK1, but this phosphorylation is not required for downregulation of TBK1 protein. Transfection assays indicate that FTRCA1 is likely an E3 ligase with the requirement of RING finger domain, and deletion of N-terminal RING domain or mutation of seven conservative sites abolishes the negative regulatory function of FTRCA1. Collectively, these results illuminate a novel finTRIM-mediated innate immune modulatory pathway, thus providing insights into species-specific regulation of fish IFN response.
Collapse
Affiliation(s)
- Min Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.,Department of Aquaculture, University of Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiang Zhao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.,Department of Aquaculture, University of Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiu-Ying Gong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.,Department of Aquaculture, University of Chinese Academy of Sciences, Wuhan 430072, China
| | - Yang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.,Department of Aquaculture, University of Chinese Academy of Sciences, Wuhan 430072, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.,Department of Aquaculture, University of Chinese Academy of Sciences, Wuhan 430072, China.,The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China; and
| | - Yi-Bing Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; .,Department of Aquaculture, University of Chinese Academy of Sciences, Wuhan 430072, China.,The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China; and.,Key Laboratory of Aquaculture Disease Control of Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
13
|
Langevin C, Levraud JP, Boudinot P. Fish antiviral tripartite motif (TRIM) proteins. FISH & SHELLFISH IMMUNOLOGY 2019; 86:724-733. [PMID: 30550990 DOI: 10.1016/j.fsi.2018.12.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 12/03/2018] [Accepted: 12/05/2018] [Indexed: 06/09/2023]
Abstract
Tripartite motif (TRIM) family or RBCC proteins comprises characteristic zinc-binding domains (a RING (R), a B-box type 1 (B1) and a B-box type 2 (B2)) and coiled-coil (CC) domain followed by a C-terminus variable domain. There are about 80 different TRIM proteins in human, but more than 200 in zebrafish with several large gene expansions (ftr >70 genes; btr >30 genes; trim35 > 30 genes). Repertoires of trim genes in fish are variable across fishes, but they have been remarkably diversified independently in a number of species. In mammals, TRIM proteins are involved in antiviral immunity through an astonishing diversity of mechanisms, from direct viral restriction to modulation of immune signaling and more recently autophagy. In fish, the antiviral role of TRIM proteins remains poorly understood. In zebrafish, fish specific TRIMs so called fintrims show a signature of positive selection in the C terminus SPRY domain, reminding features of mammalian antiviral trims such as TRIM5. Expression studies show that a number of trim genes, including many fintrims, can be induced during viral infections, and may play a role in antiviral defence. Some of them trigger antiviral activity in vitro against DNA and RNA viruses, such as FTR83 that also up-regulates the expression of type I IFN in zebrafish larvae. The tissue distribution of TRIM expression suggests that they may be involved in the regionalization of antiviral immunity, providing a particular protection to sensitive areas exposed to invading pathogens.
Collapse
Affiliation(s)
- Christelle Langevin
- INRA, Virologie et Immunologie Moléculaires, Université Paris-Saclay, Jouy-en-Josas, France.
| | - Jean-Pierre Levraud
- Institut Pasteur, Macrophages et Développement de l'Immunité, Paris, France; Centre National de la Recherche Scientifique, UMR3738, Paris, France
| | - Pierre Boudinot
- INRA, Virologie et Immunologie Moléculaires, Université Paris-Saclay, Jouy-en-Josas, France.
| |
Collapse
|
14
|
Zhang Y, Lv S, Zheng J, Huang X, Huang Y, Qin Q. Grouper viperin acts as a crucial antiviral molecule against iridovirus. FISH & SHELLFISH IMMUNOLOGY 2019; 86:1026-1034. [PMID: 30584907 DOI: 10.1016/j.fsi.2018.12.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/17/2018] [Accepted: 12/21/2018] [Indexed: 06/09/2023]
Abstract
Virus inhibitory protein, endoplasmic reticulum-associated, IFN-inducible (viperin), is an antiviral protein, induced by interferon (IFN), poly(I:C) and viral infection to exert antiviral function. To investigate the roles of viperin during fish virus infection, a viperin homolog from orange spotted grouper (Epinephelus coioides) (Ecviperin) was cloned and characterized in this study. Ecviperin encoded a 361-aa protein which shared 87% and 69% identity with Siniperca undulata and Homo sapiens, respectively. Amino acid alignment analysis showed that Ecviperin contained a conserved radical-SAM domain (aa73-281). Phylogenetic analysis indicated that Ecviperin showed the nearest relationship with S. undulata. In healthy grouper, Ecviperin was distributed in all tissues, and the expression of Ecviperin was the highest in kidney and spleen. In vitro, the mRNA expression of Ecviperin was significantly up-regulated in response to Singaporean grouper iridovirus (SGIV) infection. Subcellular localization analysis showed that Ecviperin was distributed in the cytoplasm and co-localized with endoplasmic reticulum (ER). The ectopic expression of Ecviperin significantly inhibited the replication of SGIV. Furthermore, overexpression of Ecviperin positively regulated the interferon related molecules, including interferon regulatory factor 3 (IRF3), IRF7, interferon stimulated gene 15 (ISG15), myxovirus resistance gene I (MXI), interferon-induced 35-kDa protein (IFP35), and TNF receptor-associated factor 6 (TRAF6). In addition, the expression of pro-inflammation cytokines was differently regulated by Ecviperin overexpression. Furthermore, reporter gene analysis showed that the overexpression of Ecviperin enhanced the activity of nuclear factor of kappa B (NF-κB), IFN-1 and interferon-stimulated response element (ISRE) promoter, suggesting that Ecviperin might restrict SGIV replication by the positive regulation of interferon and inflammatory response. Taken together, our results demonstrated that Ecviperin encoded an ER-localized protein, and exerted antiviral function against fish DNA virus by up-regulating interferon and pro-inflammatory response.
Collapse
Affiliation(s)
- Ya Zhang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Shunyou Lv
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Jiaying Zheng
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Xiaohong Huang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Youhua Huang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China.
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, PR China.
| |
Collapse
|
15
|
Zhang J, Sun L. Global profiling of megalocytivirus-induced proteins in tongue sole (Cynoglossus semilaevis) spleen identifies cellular processes essential to viral infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 92:150-159. [PMID: 30428365 PMCID: PMC7102559 DOI: 10.1016/j.dci.2018.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 11/06/2018] [Accepted: 11/06/2018] [Indexed: 05/30/2023]
Abstract
Megalocytivirus is a DNA virus with a broad host range among farmed fish including tongue sole (Cynoglossus semilaevis). In this study, label-free proteomics was performed to examine protein expression in tongue sole spleen induced by megalocytivirus at 8 and 12 days post infection (dpi). Compared to uninfected control fish, virus-infected fish displayed 315 up-regulated proteins and 111 down-regulated proteins at 8 dpi, and 48 up-regulated proteins and 43 down-regulated proteins at 12 dpi. The expressions of five differentially expressed proteins were confirmed by Western blot. The differentially expressed proteins were enriched in the pathways and processes associated with innate immune response and viral infection. Interference with the expression of two up-regulated proteins of the ubiquitin proteasome system (UPS), i.e. proteasome assembly chaperone 2 and proteasome maturation protein, significantly reduced viral propagation in fish, whereas overexpression of these two proteins significantly enhanced viral propagation. Consistently, inhibition of the functioning of proteasome significantly impaired viral replication in vivo. This study provided the first global protein profile responsive to megalocytivirus in tongue sole, and revealed an essential role of UPS in viral infection.
Collapse
Affiliation(s)
- Jian Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China; Deep Sea Research Center, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Li Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.
| |
Collapse
|
16
|
Martínez-Bueno M, Alarcón-Riquelme ME. Exploring Impact of Rare Variation in Systemic Lupus Erythematosus by a Genome Wide Imputation Approach. Front Immunol 2019; 10:258. [PMID: 30863397 PMCID: PMC6399402 DOI: 10.3389/fimmu.2019.00258] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 01/29/2019] [Indexed: 01/31/2023] Open
Abstract
The importance of low frequency and rare variation in complex disease genetics is difficult to estimate in patient populations. Genome-wide association studies are therefore, underpowered to detect rare variation. We have used a combined approach of genome-wide-based imputation with a highly stringent sequence kernel association (SKAT) test and a case-control burden test. We identified 98 candidate genes containing rare variation that in aggregate show association with SLE many of which have recognized immunological function, but also function and expression related to relevant tissues such as the joints, skin, blood or central nervous system. In addition we also find that there is a significant enrichment of genes annotated for disease-causing mutations in the OMIM database, suggesting that in complex diseases such as SLE, such mutations may be involved in subtle or combined phenotypes or could accelerate specific organ abnormalities found in the disease. We here provide an important resource of candidate genes for SLE.
Collapse
Affiliation(s)
- Manuel Martínez-Bueno
- Department of Medical Genomics, GENYO, Center for Genomics and Oncological Research Pfizer, University of Granada, Granada, Spain
| | - Marta E Alarcón-Riquelme
- Unit of Chronic Inflammation, Institute for Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
17
|
Huang Y, Zhang J, Liu J, Hu Y, Ni S, Yang Y, Yu Y, Huang X, Qin Q. Fish TRIM35 negatively regulates the interferon signaling pathway in response to grouper nodavirus infection. FISH & SHELLFISH IMMUNOLOGY 2017; 69:142-152. [PMID: 28823982 DOI: 10.1016/j.fsi.2017.08.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 08/07/2017] [Accepted: 08/16/2017] [Indexed: 06/07/2023]
Abstract
Tripartite motif-containing protein 35 (TRIM35) has been demonstrated to exert critical roles in cancer, cell death and other multiple cell processes. However, the precisely roles of TRIM35 during virus infection still remained largely unknown. In the current study, we cloned a TRIM35 gene from orange spotted grouper (EcTRIM35) and uncovered its roles in response to nodavirus infection. EcTRIM35 encoded a 456-aa protein which showed 65% and 32% identity to large yellow croaker (Larimichthys crocea) and human (Homo sapiens), respectively. Structure prediction and amino acid alignment analysis indicated that EcTRIM35 contained three conserved domains, including RING domain, B-BOX and SPRY domain. In healthy grouper, the high expression level of EcTRIM35 could be detected in liver, spleen and intestine. After infection with red-spotted grouper nervous necrosis (RGNNV) and Singapore grouper iridovirus (SGIV) in GS cells, the transcript of EcTRIM35 was significantly up-regulated with the infection time increased. Under fluorescence microscopy, the bright fluorescence aggregates were observed in EcTRIM35 transfected cells, but the fluorescence distribution was obviously altered in the EcTRIM35-ΔRING transfected cells. After incubation with RGNNV, the overexpression of EcTRIM35 in vitro significantly enhanced the viral replication, evidenced by the enhancement of cytopathic effect (CPE) severity and the up-regulation of the viral gene transcription. Moreover, the ectopic expression of EcTRIM35 significantly decreased the expression of interferon signaling molecules or effectors. Further studies elucidated that EcTRIM35 overexpression significantly weakened the MAVS-, MITA- or TBK1-induced interferon immune response, but showed no effects on MDA5-induced immune response. Thus, our results will shed new lights on the roles of fish TRIM35 in innate immune response against grouper virus infection.
Collapse
Affiliation(s)
- Youhua Huang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jingcheng Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Jiaxin Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Yin Hu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Songwei Ni
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Ying Yang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Yepin Yu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Xiaohong Huang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
18
|
Luo K, Li Y, Xia L, Hu W, Gao W, Guo L, Tian G, Qi Z, Yuan H, Xu Q. Analysis of the expression patterns of the novel large multigene TRIM gene family (finTRIM) in zebrafish. FISH & SHELLFISH IMMUNOLOGY 2017; 66:224-230. [PMID: 28461211 DOI: 10.1016/j.fsi.2017.04.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/24/2017] [Accepted: 04/27/2017] [Indexed: 06/07/2023]
Abstract
Tripartite motif (TRIM) proteins are receiving increased research interest because of their roles in a wide range of cellular biological processes in innate immunity. In zebrafish (Danio rerio), the functions of the finTRIM (ftr) family are unclear. In the present study, we investigated the expression pattern of ftr12, ftr51, ftr67, ftr82, ftr83, and ftr84 in zebrafish for the first time. The results showed that ftr12, ftr67, and ftr84 are maternally expressed in the oocyte and highly expressed at the early stage (0-4 hpf) of embryo (P < 0.05), suggesting their involvement in the embryonic innate defense system. The ftr82 gene was highly expressed at 8 hpf (P < 0.05), which implied that the embryos could synthesize their own immunity-related mRNAs. However, ftr51 and ftr83 were highest at 8 hpf (2.33 and 51.53 relative to β-actin respectively) and might mediate embryonic development. The expression levels of ftr12, ftr51, and ftr67 were highest in the gill, intestines, and liver, respectively. Ftr82, ftr83, and ftr84 were predominantly expressed in the kidney, suggesting that these finTRIMs might play roles in both immunity and non-immunity-related tissue compartments. Zebrafish embryonic fibroblast (ZF4) cells were infected with Grass carp reovirus (GCRV) and Spring viremia of carp virus (SVCV). During GCRV infection, the expression of ftr12 was significantly upregulated from 12 h to 24 h; and ftr51 and ftr67 increased from 3 h to 12 h. The expressions of ftr82, ftr83, and ftr84 were only upregulated at 12 h, 12 h, and 24 h, respectively. All of these genes were significantly downregulated at 48 h (P < 0.05). Challenge with SVCV upregulated the expressions of ftr12 and ftr51 at 12 h and 48 h (P < 0.05), respectively, and ftr67 reached its highest expression level at 3 h. ftr82 showed only a slight upregulation at 6 h and 48 h, and ftr83 and ftr84 were consecutively increased, reaching their highest levels at 12 h (P < 0.05). Meanwhile, ftr67 and ftr83 were significantly downregulated at 48 h (P < 0.05). Our research demonstrated that ftr12, ftr51, ftr67, ftr82, ftr83, and ftr84 probably have important roles in innate immune responses and in non-immunity-related tissues.
Collapse
Affiliation(s)
- Kai Luo
- Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Jingzhou 434020, China
| | - Youshen Li
- Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Jingzhou 434020, China
| | - Lihai Xia
- Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Jingzhou 434020, China
| | - Wei Hu
- Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Jingzhou 434020, China; School of Animal Science, Yangtze University, Jingzhou 434020, China
| | - Weihua Gao
- Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Jingzhou 434020, China; School of Animal Science, Yangtze University, Jingzhou 434020, China
| | - Liwei Guo
- Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Jingzhou 434020, China
| | - Guangming Tian
- Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Jingzhou 434020, China
| | - Zhitao Qi
- Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Jingzhou 434020, China
| | - Hanwen Yuan
- College of Marine and Biotechnology, Guangxi University for Nationalities, Nanning, Guangxi 530006, China; Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Nanning, Guangxi 530006, China.
| | - Qiaoqing Xu
- Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Jingzhou 434020, China; School of Animal Science, Yangtze University, Jingzhou 434020, China.
| |
Collapse
|
19
|
Luo K, Li Y, Ai K, Xia L, Zhang J, Hu W, Gao W, Guo L, Qi Z, Yuan H, Xu Q. Bioinformatics and expression analysis of finTRIM genes in grass carp, Ctenopharyngodon idella. FISH & SHELLFISH IMMUNOLOGY 2017; 66:217-223. [PMID: 28476675 DOI: 10.1016/j.fsi.2017.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 04/20/2017] [Accepted: 05/01/2017] [Indexed: 06/07/2023]
Abstract
The tripartite motifs (TRIMs) constitute a large family of proteins containing a Really Interesting New Gene (RING) domain, a B-box domain and coiled-coil region followed by different C-terminal domains. TRIM proteins play multiple roles in various cellular processes, including cell growth, differentiation, apoptosis and antiviral immunity. Fish novel large multigene TRIM genes (finTRIM/ftr) appear only in teleosts and play a vital role in antiviral responses. Phylogenetic analysis revealed the existence of different subsets of novel fish TRIM 14 genes (finTRIM14/ftr14), ftr51, ftr67, ftr72, ftr82, ftr83, and ftr99 in grass carp (Ctenopharyngodon idella), suggesting lineage-specific diversification events. Therefore, the number of finTRIM genes varies greatly among species. The ftr genes in grass carp, which are closely related to zebrafish and possess various evolutionary branches, have evolved faster than human TRIMs. The predicted protein domains were almost identical RING zinc finger domains, with the exception of ftr72, the B-box domain (excluding ftr67, ftr82, ftr83), and the B30.2 domain, which evolved under positive selection (with the exception of ftr67, and ftr72). The genes were predominantly expressed in the spleen, gill and head kidney. These findings indicate that the ftr genes in grass carp are involved diverse cellular processes, including innate immune responses.
Collapse
Affiliation(s)
- Kai Luo
- Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Jingzhou 434020, China
| | - Youshen Li
- Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Jingzhou 434020, China
| | - Kete Ai
- Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Jingzhou 434020, China
| | - Lihai Xia
- Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Jingzhou 434020, China
| | - Jinxiong Zhang
- Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Jingzhou 434020, China
| | - Wei Hu
- Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Jingzhou 434020, China; School of Animal Science, Yangtze University, Jingzhou 434020, China
| | - Weihua Gao
- Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Jingzhou 434020, China; School of Animal Science, Yangtze University, Jingzhou 434020, China
| | - Liwei Guo
- Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Jingzhou 434020, China
| | - Zhitao Qi
- Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Jingzhou 434020, China
| | - Hanwen Yuan
- College of Marine and Biotechnology, Guangxi University for Nationalities, Nanning, Guangxi 530006, China; Guangxi Colleges and Universities Key Laboratory of Utilization of Microbial and Botanical Resources, Guangxi University for Nationalities, Nanning, Guangxi 530006, China.
| | - Qiaoqing Xu
- Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Jingzhou 434020, China; School of Animal Science, Yangtze University, Jingzhou 434020, China.
| |
Collapse
|
20
|
Langevin C, Aleksejeva E, Houel A, Briolat V, Torhy C, Lunazzi A, Levraud JP, Boudinot P. FTR83, a Member of the Large Fish-Specific finTRIM Family, Triggers IFN Pathway and Counters Viral Infection. Front Immunol 2017; 8:617. [PMID: 28603526 PMCID: PMC5445110 DOI: 10.3389/fimmu.2017.00617] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/10/2017] [Indexed: 12/25/2022] Open
Abstract
Tripartite motif (TRIM) proteins are involved in various cellular functions and constitute key factors of the antiviral innate immune response. TRIM proteins can bind viral particles directly, sending them to degradation by the proteasome, or ubiquitinate signaling molecules leading to upregulation of innate immunity. TRIM proteins are present in across metazoans but are particularly numerous in vertebrates where genes comprising a B30.2 domain have been often duplicated. In fish, a TRIM subset named finTRIM is highly diversified, with large gene numbers and clear signatures of positive selection in the B30.2 domain suggesting they may be involved in antiviral mechanisms. finTRIM provides a beautiful model to investigate the primordial implication of B30.2 TRIM subsets in the arsenal of vertebrate antiviral defenses. We show here that ftr83, a zebrafish fintrim gene mainly expressed in the gills, skin and pharynx, encodes a protein affording a potent antiviral activity. In vitro, overexpression of FTR83, but not of its close relative FTR82, induced IFN and IFN-stimulated gene expression and afforded protection against different enveloped and non-enveloped RNA viruses. The kinetics of IFN induction paralleled the development of the antiviral activity, which was abolished by a dominant negative IRF3 mutant. In the context of a viral infection, FTR83 potentiated the IFN response. Expression of chimeric proteins in which the B30.2 domain of FTR83 and the non-protective FTR82 had been exchanged, showed that IFN upregulation and antiviral activity requires both the Ring/BBox/Coiled coil domain (supporting E3 ubiquitin ligase) and the B30.2 domain of FTR83. Finally, loss of function experiments in zebrafish embryos confirms that ftr83 mediates antiviral activity in vivo. Our results show that a member of the largest TRIM subset observed in fish upregulates type I IFN response and afford protection against viral infections, supporting that TRIMs are key antiviral factors across vertebrates.
Collapse
Affiliation(s)
| | - Elina Aleksejeva
- INRA, Virologie et Immunologie Moléculaires, Jouy-en-Josas, France
| | - Armel Houel
- INRA, Virologie et Immunologie Moléculaires, Jouy-en-Josas, France
| | - Valérie Briolat
- Institut Pasteur, Unité Macrophages et Développement de l’Immunité, Paris, France
- CNRS, URA 2578, Paris, France
| | - Corinne Torhy
- INRA, Virologie et Immunologie Moléculaires, Jouy-en-Josas, France
| | - Aurélie Lunazzi
- INRA, Virologie et Immunologie Moléculaires, Jouy-en-Josas, France
| | - Jean-Pierre Levraud
- Institut Pasteur, Unité Macrophages et Développement de l’Immunité, Paris, France
- CNRS, URA 2578, Paris, France
| | - Pierre Boudinot
- INRA, Virologie et Immunologie Moléculaires, Jouy-en-Josas, France
| |
Collapse
|