1
|
Wei LS, Téllez-Isaías G, Abdul Kari Z, Tahiluddin AB, Wee W, Kabir MA, Abdul Hamid NK, Cheadoloh R. Role of Phytobiotics in Modulating Transcriptomic Profile in Carps: A Mini-Review. Biochem Genet 2024; 62:3285-3304. [PMID: 38167984 DOI: 10.1007/s10528-023-10606-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 11/16/2023] [Indexed: 01/05/2024]
Abstract
Carp is a key aquaculture species worldwide. The intensification of carp farming, aimed at meeting the high demand for protein sources for human consumption, has resulted in adverse effects such as poor water quality, increased stress, and disease outbreaks. While antibiotics have been utilized to mitigate these issues, their use poses risks to both public health and the environment. As a result, alternative and more sustainable practices have been adopted to manage the health of farmed carp, including the use of probiotics, prebiotics, phytobiotics, and vaccines to prevent disease outbreaks. Phytobiotics, being both cost-effective and abundant, have gained widespread acceptance. They offer various benefits in carp farming, such as improved growth performance, enhanced immune system, increased antioxidant capacity, stress alleviation from abiotic factors, and enhanced disease resistance. Currently, a focal point of research involves employing molecular approaches to assess the impacts of phytobiotics in aquatic animals. Gene expression, the process by which genetic information encoded is translated into function, along with transcription profiling, serves as a crucial tool for detecting changes in gene expression within cells. These changes provide valuable insights into the growth rate, immune system, and flesh quality of aquatic animals. This review delves into the positive impacts of phytobiotics on immune responses, growth, antioxidant capabilities, and flesh quality, all discerned through gene expression changes in carp species. Furthermore, this paper explores existing research gaps and outlines future prospects for the utilization of phytobiotics in aquaculture.
Collapse
Affiliation(s)
- Lee Seong Wei
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600, Jeli, Kelantan, Malaysia.
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600, Jeli, Kelantan, Malaysia.
| | | | - Zulhisyam Abdul Kari
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600, Jeli, Kelantan, Malaysia.
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600, Jeli, Kelantan, Malaysia.
| | - Albaris B Tahiluddin
- College of Fisheries, Mindanao State University-Tawi-Tawi College of Technology and Oceanography, Sanga-Sanga, 7500, Bongao, Tawi-Tawi, Philippines
- Department of Aquaculture, Institute of Science, Kastamonu University, 37200, Kastamonu, Türkiye
| | - Wendy Wee
- Center of Fundamental and Continuing Education, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | | | | | - Romalee Cheadoloh
- Faculty of Science Technology and Agriculture, Yala Rajabhat University, Yala Province, 133 Thetsaban 3 Rd, Sateng, Mueang, 95000, Thailand
| |
Collapse
|
2
|
Li Z, Zhuang J, Wang H, Cao J, Han Q, Luo Z, Li H, Wang C, Wang B, Li A. Gill lesions are the main cause of death in yellowfin seabream (Acanthopagrus latus) following infection with Amyloodinium ocellatum. Microb Pathog 2024; 194:106845. [PMID: 39121981 DOI: 10.1016/j.micpath.2024.106845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/17/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
Amyloodiniosis, caused by the ectoparasite Amyloodinium ocellatum, affects the healthy development of mariculture. This study used a local infection method to identify the pathogenic target organ responsible for the death of infected fish. Comparing the relationship between the abundance of trophonts in gills and skin with the mortality of infected fish using local infection showed that severe gill infections cause the mortality of infected fish. At the 40 % survival rate of infected fish, the parasite abundance in the gill was 14,167 ± 4371. The gill filaments of the infected fish were structurally disordered, with pronounced lesions associated with the presence of trophonts, such as epithelial cell degeneration and massive lymphocytic infiltration. However, the skin showed no obvious pathological changes. The TUNEL assay showed a significant presence of apoptotic cells concentrated in the area of A. ocellatum infection. The trophonts on the gills developed faster than those parasitising the skin and fins. Microbiome analysis revealed that at the phylum level, Proteobacteria, Bacteroidota, and Firmicutes are abundant in the skin, while Verrucomicrobiota, Bacteroidota, and Proteobacteria are abundant in the gills of A. latus. Furthermore, A. ocellatum infection significantly reduced (p < 0.05) the richness and diversity of the gill microbial community of A. latus. Infection by A. ocellatum increased the relative abundance of several putative pathogenic bacteria (Flavobacterium and Nocardia) in the gill and skin of A. latus, possibly increasing the likelihood of disease in the host. In conclusion, these results evidenced that severe gill infections by A. ocellatum cause mortality in infected fish, which clarifies the direction for exploring the pathogenesis of amyloodiniosis.
Collapse
Affiliation(s)
- Zhicheng Li
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, PR China
| | - Jingyu Zhuang
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, PR China
| | - Hebing Wang
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, PR China
| | - Jizhen Cao
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, PR China
| | - Qing Han
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, PR China
| | - Zhi Luo
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, PR China
| | - Han Li
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, PR China
| | - Chenxi Wang
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, PR China
| | - Baotun Wang
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, PR China
| | - Anxing Li
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, PR China.
| |
Collapse
|
3
|
Guo X, Huang W, Xu Y, Zhan Q, Sun P, Hu H. Metabolomic changes in Cryptocaryon irritans from Larimichthys crocea after exposure to copper plate. Front Cell Infect Microbiol 2024; 14:1424669. [PMID: 39006747 PMCID: PMC11239337 DOI: 10.3389/fcimb.2024.1424669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024] Open
Abstract
Cryptocaryon irritans is a highly detrimental parasite in mariculture, causing significant economic losses to the aquaculture industry of Larimichthys crocea. In recent years, copper and copper alloy materials have been used to kill parasites. In this study, the effect of copper plates on the tomont period of C. irritans was explored. The findings indicated that copper plates effectively eradicated tomonts, resulting in a hatching rate of 0. The metabolomic analysis revealed that a total of 2,663 differentially expressed metabolites (1,032 up-regulated and 1,631 down-regulated) were screened in the positive ion mode, and 2,199 differentially expressed metabolites (840 up-regulated and 1,359 down-regulated) were screened in the negative ion mode. L-arginine and L-aspartic acid could be used as potential biomarkers. Copper plate treatment affected 25 metabolic pathways in the tomont, most notably influencing histidine metabolism, retinol metabolism, the biosynthesis of phenylalanine, tyrosine, and tryptophan, as well as arginine and proline metabolism. It was shown that high concentrations of copper ions caused a certain degree of disruption to the metabolome of tomonts in C. irritans, thereby impacting their metabolic processes. Consequently, this disturbance ultimately leads to the rapid demise of tomonts upon exposure to copper plates. The metabolomic changes observed in this study elucidate the lethal impact of copper on C. irritans tomonts, providing valuable reference data for the prevention and control of C. irritans in aquaculture.
Collapse
Affiliation(s)
- Xiangyu Guo
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Wenlian Huang
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Yifan Xu
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Quanjun Zhan
- College of Animal Science, Zhejiang University, Hangzhou, China
| | - Peng Sun
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Haojie Hu
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
4
|
Liu H, Tan S, Han S, Liu X, Li Z, Wang N, Wu Z, Ma J, Shi K, Wang W, Sha Z. Effects of miR-722 on gene expression and alternative splicing in the liver of half-smooth tongue sole after infection with Vibrio anguillarum. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109275. [PMID: 38081443 DOI: 10.1016/j.fsi.2023.109275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/22/2023] [Accepted: 12/04/2023] [Indexed: 12/31/2023]
Abstract
MicroRNAs play crucial roles in various biological processes, including but not limited to differentiation, development, disease, and immunity. However, their immunoregulatory roles in half-smooth tongue sole are lacking. Our previous studies indicated that miR-722 could target C5aR1 to modulate the complement pathway to alleviate inflammatory response and even affect the mortality after the bacterial infection with Vibrio anguillarum. Driven by the purpose of revealing the underlying mechanisms, in this study, we investigated the effects of miR-722 on the gene expression and alternative splicing (AS) in the liver of half-smooth tongue sole after Vibrio anguillarum infection, with the approach of miR-722 overexpression/silencing and subsequent RNA-seq. Among the different comparisons, the I group (miR-722 inhibitor and V. anguillarum) versus blank control (PBS) exhibited the highest number of differentially expressed genes (DEGs), suggesting that the immune response was overactivated after inhibiting the miR-722. In addition, enrichment analyses were performed to reveal the functions of DEGs and differential AS (DAS) genes, reflecting the enrichment of RNA splicing and immune-related pathways including NF-κB and T cell receptor signaling pathway. Comparing the M group (miR-722 mimic and V. anguillarum) with the negative control (random sequence and V. anguillarum), two immune-related genes, cd48 and mapk8, were differentially expressed, of which mapk8 was also differentially spliced, indicating their importance in the immune response. Furthermore, representative gene analysis was performed, suggesting their corresponding functional changes due to AS. To verify the RNA-seq data, quantitative real-time PCR was employed with twenty pairs of primers for DEGs and DAS events. Overall, our results demonstrated that miR-722 could mediate the transcriptome-wide changes of gene expression and AS in half-smooth tongue sole, and provided insights into the regulatory role of miR-722 in immune responses, laying the foundation for further functional analyses and practical applications in aquaculture.
Collapse
Affiliation(s)
- Hongning Liu
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Suxu Tan
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Sen Han
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Xinbao Liu
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Zhujun Li
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Ningning Wang
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China; College of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Zhendong Wu
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Jie Ma
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Kunpeng Shi
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Wenwen Wang
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Zhenxia Sha
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
5
|
Mahapatra S, Ganguly B, Pani S, Saha A, Samanta M. A comprehensive review on the dynamic role of toll-like receptors (TLRs) in frontier aquaculture research and as a promising avenue for fish disease management. Int J Biol Macromol 2023; 253:126541. [PMID: 37648127 DOI: 10.1016/j.ijbiomac.2023.126541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/01/2023]
Abstract
Toll-like receptors (TLRs) represent a conserved group of germline-encoded pattern recognition receptors (PRRs) that recognize pathogen-associated molecular patterns (PAMPs) and play a crucial role in inducing the broadly acting innate immune response against pathogens. In recent years, the detection of 21 different TLR types in various fish species has sparked interest in exploring the potential of TLRs as targets for boosting immunity and disease resistance in fish. This comprehensive review offers the latest insights into the diverse facets of fish TLRs, highlighting their history, classification, architectural insights through 3D modelling, ligands recognition, signalling pathways, crosstalk, and expression patterns at various developmental stages. It provides an exhaustive account of the distinct TLRs induced during the invasion of specific pathogens in various fish species and delves into the disparities between fish TLRs and their mammalian counterparts, highlighting the specific contribution of TLRs to the immune response in fish. Although various facets of TLRs in some fish, shellfish, and molluscs have been described, the role of TLRs in several other aquatic organisms still remained as potential gaps. Overall, this article outlines frontier aquaculture research in advancing the knowledge of fish immune systems for the proper management of piscine maladies.
Collapse
Affiliation(s)
- Smruti Mahapatra
- Immunology Laboratory, Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture (ICAR-CIFA), Kausalyaganga, Bhubaneswar 751002, Odisha, India
| | - Bristy Ganguly
- Immunology Laboratory, Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture (ICAR-CIFA), Kausalyaganga, Bhubaneswar 751002, Odisha, India
| | - Saswati Pani
- Immunology Laboratory, Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture (ICAR-CIFA), Kausalyaganga, Bhubaneswar 751002, Odisha, India
| | - Ashis Saha
- Reproductive Biology and Endocrinology Laboratory, Fish Nutrition and Physiology Division, ICAR-Central Institute of Freshwater Aquaculture (ICAR-CIFA), Kausalyaganga, Bhubaneswar 751002, Odisha, India
| | - Mrinal Samanta
- Immunology Laboratory, Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture (ICAR-CIFA), Kausalyaganga, Bhubaneswar 751002, Odisha, India.
| |
Collapse
|
6
|
Ali S, Dawar FU, Ullah W, Hassan M, Ullah K, Zhao Z. Proteomic map of the differentially expressed proteins in the skin of Ctenopharyngodon idella against Aeromonas hydrophila infection. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2023; 5:100122. [PMID: 38023345 PMCID: PMC10652109 DOI: 10.1016/j.fsirep.2023.100122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
The skin mucus of fish is an important part of the innate immune system, which is poorly understood at the proteomic level. The study established a complete map of the proteins in the skin mucus of Ctenopharangdon idella (C. idella) and discussed the Differentially Expressed Proteins (DEPs) after Aeromonas hydrophila (A. hydrophila) infection. Using Label Free Liquid Chromatography-Mass Spectrometry (LC-MS/MS) analysis, a total of 126 proteins were identified as differentially expressed, 89 proteins of which were upregulated, and 37 proteins were downregulated. Functional annotations of DEPs showed that the upregulated proteins in the skin mucus of the treated group were mostly associated with complement system and cytoskeleton proteins, whereas downregulated proteins were associated with metabolism. The key upregulated immune proteins were transferrin variant C, lysozyme g, annexin A11, 26S proteasome non-ATPase regulatory subunit 8, hypothetical protein ROHU_000884, 60S ribosomal L7a, calpain-2 catalytic subunit-like protein, calpain-9-like protein, complement component C9, complement C3, cathepsin S, cathepsin Z, 14 kDa apolipo, heat shock protein and intelectin, whereas, leukocyte elastase inhibitor, annexin A11, C-factor-like protein, biotinidase isoform X1 and epidermal growth factor receptor substrate 15-like were the downregulated proteins. Moreover, we for the first-time report proteins such as coactosin, lamin-B2 and kelch 12, which were never reported in fish. Our study directly pointing out the possible immunological biomarkers in the skin mucus of C. idella after A. hydrophila treatment. Each of the protein we report in this study could be used as base to establish their mechanism of action during bacterial infection that may contribute to the strategies against bacterial prevention and control in fishes.
Collapse
Affiliation(s)
- Shandana Ali
- Laboratory of Fisheries and Aquaculture, Department of Zoology, Kohat University of Science and Technology Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Farman Ullah Dawar
- Laboratory of Fisheries and Aquaculture, Department of Zoology, Kohat University of Science and Technology Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, 1 Xikang Road, Nanjing, Jiangsu,210098, China
| | - Waheed Ullah
- Department of Microbiology, Kohat University of Science and Technology Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Maizom Hassan
- Institute of System Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia
| | - Kalim Ullah
- Laboratory of Fisheries and Aquaculture, Department of Zoology, Kohat University of Science and Technology Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Zhe Zhao
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, 1 Xikang Road, Nanjing, Jiangsu,210098, China
| |
Collapse
|
7
|
Li A, Leng H, Li Z, Jin L, Sun K, Feng J. Temporal dynamics of the bat wing transcriptome: Insight into gene-expression changes that enable protection against pathogen. Virulence 2023; 14:2156185. [PMID: 36599840 PMCID: PMC9815227 DOI: 10.1080/21505594.2022.2156185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Skin acts as a mechanical barrier between the body and its surrounding environment and plays an important role in resistance to pathogens. However, we still know little regarding skin responses to physiological changes, particularly with regard to responses against potential pathogens. We herein executed RNA-seq on the wing of the Rhinolophus ferrumequinum to assess gene-expression variations at four physiological stages: pre-hibernation, hibernation (early-hibernation and late-hibernation), and post-hibernation, as well as the gene-expression patterns of infected and uninfected bats with the Pseudogymnoascus destructans (Pd). Our results showed that a greater number of differentially expressed genes between the more disparate physiological stages. Functional enrichment analysis showed that the down-regulated response pathways in hibernating bats included phosphorus metabolism and immune response, indicating metabolic suppression and decreased whole immune function. We also found up-regulated genes in post-hibernating bats that included C-type lectin receptor signalling, Toll-like receptor signalling pathway, and cell adhesion, suggesting that the immune response and skin integrity of the wing were improved after bats emerged from their hibernation and that this facilitated clearing Pd from the integument. Additionally, we found that the genes involved in cytokine or chemokine activity were up-regulated in late-hibernation compared to early-hibernation and that FOSB regulation of immune cell activation was differentially expressed in bats infected with Pd during late-hibernation, implying that the host's innate immune function was enhanced during late-hibernation so as to resist pathogenic infection. Our findings highlight the concept that maintenance of intrinsic immunity provides protection against pathogenic infections in highly resistant bats.
Collapse
Affiliation(s)
- Aoqiang Li
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China,School of Life Sciences, Central China Normal University, Wuhan, China
| | - Haixia Leng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Zhongle Li
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China,College of Life Science, Jilin Agricultural University, Changchun, China
| | - Longru Jin
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Keping Sun
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China,CONTACT Keping Sun
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China,College of Life Science, Jilin Agricultural University, Changchun, China,Jiang Feng
| |
Collapse
|
8
|
Mou CY, Zhang L, Zhao H, Huang ZP, Duan YL, Zhao ZM, Ke HY, Du J, Li Q, Zhou J. Single-nuclei RNA-seq reveals skin cell responses to Aeromonas hydrophila infection in Chinese longsnout catfish Leiocassis longirostris. Front Immunol 2023; 14:1271466. [PMID: 37908355 PMCID: PMC10613986 DOI: 10.3389/fimmu.2023.1271466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/25/2023] [Indexed: 11/02/2023] Open
Abstract
As the primary natural barrier that protects against adverse environmental conditions, the skin plays a crucial role in the innate immune response of fish, particularly in relation to bacterial infections. However, due to the diverse functionality and intricate anatomical and cellular composition of the skin, deciphering the immune response of the host is a challenging task. In this study, single nuclei RNA-sequencing (snRNA-seq) was performed on skin biopsies obtained from Chinese longsnout catfish (Leiocassis longirostris), comparing Aeromonas hydrophila-infected subjects to healthy control subjects. A total of 19,581 single nuclei cells were sequenced using 10x Genomics (10,400 in the control group and 9,181 in the treated group). Based on expressed unique transcriptional profiles, 33 cell clusters were identified and classified into 12 cell types including keratinocyte (KC), fibroblast (FB), endothelial cells (EC), secretory cells (SC), immune cells, smooth muscle cells (SMC), and other cells such as pericyte (PC), brush cell (BC), red blood cell (RBC), neuroendocrine cell (NDC), neuron cells (NC), and melanocyte (MC). Among these, three clusters of KCs, namely, KC1, KC2, and KC5 exhibited significant expansion after A. hydrophila infection. Analysis of pathway enrichment revealed that KC1 was primarily involved in environmental signal transduction, KC2 was primarily involved in endocrine function, and KC5 was primarily involved in metabolism. Finally, our findings suggest that neutrophils may play a crucial role in combating A. hydrophila infections. In summary, this study not only provides the first detailed comprehensive map of all cell types present in the skin of teleost fish but also sheds light on the immune response mechanism of the skin following A. hydrophila infection in Chinese longsnout catfish.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Qiang Li
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
| | - Jian Zhou
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
| |
Collapse
|
9
|
Sun P, Zhang D, Li N, Li XF, Ma YH, Li H, Tian Y, Wang T, Siddiquid SA, Sun WW, Zhang L, Shan XF, Wang CF, Qian AD, Zhang DX. Transcriptomic insights into the immune response of the intestine to Aeromonas veronii infection in northern snakehead (Channa argus). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114825. [PMID: 36989948 DOI: 10.1016/j.ecoenv.2023.114825] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/18/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Intestinal inflammation is a protective response that is implicated in bacterial enteritis triggered by gastrointestinal infection. The immune mechanisms elicited in teleost against the infection of Aeromonas veronii are largely unknown. In this study, we performed a de novo northern snakehead (Channa argus) transcriptome assembly using Illumina sequencing platform. On this basis we performed a comparative transcriptomic analysis of northern snakehead intestine from A. veronii-challenge and phosphate buffer solution (PBS)-challenge fish, and 2076 genes were up-regulated and 1598 genes were down-regulated in the intestines infected with A. veronii. The Gene Ontology (GO) enrichment analysis indicated that the differentially expressed genes (DEGs) were enriched to 27, 21 and 20 GO terms in biological process, cellular component, and molecular function, respectively. A Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that 420 DEGs were involved in 194 pathways. Moreover, 33 DEGs were selected for quantitative real-time PCR analysis to validate the RNA-seq data. The results reflected the consistency of the expression levels between qRT-PCR and RNA-seq data. In addition, a time-course analysis of the mRNA expression of 33 immune-related genes further indicated that the intestinal inflammation to A. veronii infection simultaneously regulated gene expression alterations. The present study provides transcriptome data of the teleost intestine, allowing us to understand the mechanisms of intestinal inflammation triggered by bacterial pathogens. DATA AVAILABILITY STATEMENT: All data supporting the findings of this study are available within the article and Supplementary files. The RNA-seq raw sequence data are available in NCBI short read archive (SRA) database under accession number PRJNA615958.
Collapse
Affiliation(s)
- Peng Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Di Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Na Li
- Ministry of Agriculture and Rural Affairs of Mudanjiang, Mudanjiang 157020, China
| | - Xiao-Fei Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yi-Han Ma
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Hui Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Ye Tian
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Tao Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | | | - Wu-Wen Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Lei Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Xiao-Feng Shan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Chun-Feng Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Ai-Dong Qian
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Dong-Xing Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
10
|
Jiang S, Huang X. Host responses against the fish parasitizing ciliate Cryptocaryon irritans. Parasite Immunol 2023; 45:e12967. [PMID: 36606416 DOI: 10.1111/pim.12967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/05/2022] [Accepted: 01/02/2023] [Indexed: 01/07/2023]
Abstract
The parasitic ciliate Cryptocaryon irritans, which infects almost all marine fish species occurring in both tropical and subtropical regions throughout the world. The disease, cryptocaryonosis, accounts for significant economic losses to the aquaculture industry. This review attempts to provide a comprehensive overview of the biology of the parasite, host-parasite interactions and both specific and non-specific host defense mechanisms are responsible for the protection of fish against challenge infections with this ciliate. Also, this article reflects the current interest in this subject area and the quest to develop an available vaccine against the disease. Due to the high frequency of clinical fish cryptocaryonosis, the study of fish immune responses to C. irritans provides an optimal experimental model for understanding immunity against extracellular protozoa.
Collapse
Affiliation(s)
- Shuiqing Jiang
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Xiaohong Huang
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| |
Collapse
|
11
|
Yang C, Shan B, Liu Y, Wang L, Liu M, Yao T, Sun D. Transcriptomic analysis of male three-spot swimming crab (Portunus sanguinolentus) infected with the parasitic barnacle Diplothylacus sinensis. FISH & SHELLFISH IMMUNOLOGY 2022; 128:260-268. [PMID: 35934240 DOI: 10.1016/j.fsi.2022.07.074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Diplothylacus sinensis is reported as an intriguing parasitic barnacle that can negatively affect the growth, molting, reproduction in several commercially important portunid crabs. To better understand the molecular mechanisms of host-parasite interactions, we characterized the gene expression profiles from the healthy and D. sinensis infected Portunus sanguinolentus by high-through sequence method. Totally, the transcriptomic analysis generated 52, 266, 600 and 51, 629, 604 high quality reads from the infected and control groups, respectively. The clean reads were assembled to 90,740 and 69,314 unigenes, with the average length of 760 bp and 709 bp, respectively. The expression analysis showed that 18,959 genes were significantly changed by the parasitism of D. sinensis, including 4769 activated genes and 14,190 suppressed genes. The differentially expressed genes were categorized into 258 KEGG pathways and 647 GO terms. The GO analysis mapped 13 DEGs related to immune system process and 32 DEGs related to immune response, respectively, suggesting a potential alteration of transcriptional expression patterns in complement cascades of P. sanguinolentus. Additionally, 4 representative molting-related genes were down-regulated in parasitized group, indicating D. sinensis infection appeared to suppress the producing of ecdysteroid hormones. In conclusion, the present study improves our understanding on parasite-host interaction mechanisms, which focuses the function of Ecdysone receptor, Toll-like receptor and cytokine receptor of crustacean crabs infestation with rhizocephalan parasites.
Collapse
Affiliation(s)
- Changping Yang
- Tropical Aquaculture Research and Development Center of South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Sanya, 572018, China; Key Laboratory of Marine Ranching, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China; Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Binbin Shan
- Key Laboratory of Marine Ranching, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Yan Liu
- Key Laboratory of Marine Ranching, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Liangming Wang
- Key Laboratory of Marine Ranching, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Manting Liu
- Key Laboratory of Marine Ranching, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Tuo Yao
- Key Laboratory of Marine Ranching, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Dianrong Sun
- Key Laboratory of Marine Ranching, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China.
| |
Collapse
|
12
|
Qiao X, Lu Y, Xu J, Deng N, Lai W, Wu Z, Lin H, Zhang Y, Lu D. Integrative analyses of mRNA and microRNA expression profiles reveal the innate immune mechanism for the resistance to Vibrio parahaemolyticus infection in Epinephelus coioides. Front Immunol 2022; 13:982973. [PMID: 36059501 PMCID: PMC9437975 DOI: 10.3389/fimmu.2022.982973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Vibrio parahaemolyticus, as one of the main pathogens of marine vibriosis, has brought huge losses to aquaculture. However, the interaction mechanism between V. parahaemolyticus and Epinephelus coioides remains unclear. Moreover, there is a lack of comprehensive multi-omics analysis of the immune response of grouper spleen to V. parahaemolyticus. Herein, E. coioides was artificially injected with V. parahaemolyticus, and it was found that the mortality was 16.7% in the early stage of infection, and accompanied by obvious histopathological lesions in the spleen. Furthermore, 1586 differentially expressed genes were screened by mRNA-seq. KEGG analysis showed that genes were significantly enriched in immune-related pathways, Acute-phase immune response, Apoptosis, Complement system and Cytokine-cytokine receptor interaction. As for miRNA-seq analysis, a total of 55 significantly different miRNAs were identified. Further functional annotation analysis indicated that the target genes of differentially expressed miRNAs were enriched in three important pathways (Phosphatidylinositol signaling system, Lysosome and Focal adhesions). Through mRNA-miRNA integrated analysis, 1427 significant miRNA–mRNA pairs were obtained and “p53 signaling pathway”, “Intestinal immune network for IgA production” were considered as two crucial pathways. Finally, miR-144-y, miR-497-x, novel-m0459-5p, miR-7133-y, miR-378-y, novel-m0440-5p and novel-m0084-3p may be as key miRNAs to regulate immune signaling pathways via the miRNA-mRNA interaction network. The above results suggest that the mRNA-miRNA integrated analysis not only sheds new light on the molecular mechanisms underlying the interaction between host and V. parahaemolyticus but also provides valuable and new insights into resistance to vibrio infection.
Collapse
Affiliation(s)
- Xifeng Qiao
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
- Guangzhou Laboratory, Guangzhou, China
| | - Yuyou Lu
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
| | - Jiachang Xu
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
| | - Niuniu Deng
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
| | - Wenjie Lai
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
| | - Ziyi Wu
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
| | - Haoran Lin
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- College of Ocean, Haikou, China
| | - Yong Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Yong Zhang, ; Danqi Lu,
| | - Danqi Lu
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Yong Zhang, ; Danqi Lu,
| |
Collapse
|
13
|
Wu S, Huang J, Li Y, Liu Z, Zhao L. Integrated Analysis of lncRNA and circRNA Mediated ceRNA Regulatory Networks in Skin Reveals Innate Immunity Differences Between Wild-Type and Yellow Mutant Rainbow Trout ( Oncorhynchus mykiss). Front Immunol 2022; 13:802731. [PMID: 35655786 PMCID: PMC9152293 DOI: 10.3389/fimmu.2022.802731] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 04/19/2022] [Indexed: 12/04/2022] Open
Abstract
Fish skin is a vital immune organ that forms the first protective barrier preventing entry of external pathogens. Rainbow trout is an important aquaculture fish species that is farmed worldwide. However, our knowledge of innate immunity differences between wild-type (WR_S) and yellow mutant rainbow trout (YR_S) remains limited. In this study, we performed whole transcriptome analysis of skin from WR_S and YR_S cultured in a natural flowing water pond. A total of 2448 mRNAs, 1630 lncRNAs, 22 circRNAs and 50 miRNAs were found to be differentially expressed (DE). Among these DEmRNAs, numerous key immune-related genes, including ifih1, dhx58, trim25, atp6v1e1, tap1, tap2, cd209, hsp90a.1, nlrp3, nlrc3, and several other genes associated with metabolism (gstp1, nampt, naprt and cd38) were identified. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of DEmRNAs revealed that many were significantly enriched in innate immune-related GO terms and pathways, including NAD+ADP-ribosyltransferase activity, complement binding, immune response and response to bacterium GO terms, and RIG-I-like receptor signaling, NOD-like receptor signaling and phagosome KEGG pathways. Furthermore, the immune-related competing endogenous RNA networks were constructed, from which we found that lncRNAs MSTRG.11484.2, MSTRG.32014.1 and MSTRG.29012.1 regulated at least three immune-related genes (ifih1, dhx58 and irf3) through PC-5p-43254_34, PC-3p-28352_70 and bta-miR-11987_L-1R-1_1ss8TA, and tap2 was regulated by two circRNAs (circRNA5279 and circRNA5277) by oni-mir-124a-2-p5_1ss13GA. The findings expand our understanding of the innate immune system of rainbow trout, and lay the foundation for further study of immune mechanisms and disease resistance breeding.
Collapse
Affiliation(s)
- Shenji Wu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jinqiang Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yongjuan Li
- College of Science, Gansu Agricultural University, Lanzhou, China
| | - Zhe Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Lu Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
14
|
Antigen Presentation and Autophagy in Teleost Adaptive Immunity. Int J Mol Sci 2022; 23:ijms23094899. [PMID: 35563287 PMCID: PMC9103719 DOI: 10.3390/ijms23094899] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 01/27/2023] Open
Abstract
Infectious diseases are a burden for aquaculture. Antigen processing and presentation (APP) to the immune effector cells that fight pathogens is key in the adaptive immune response. At the core of the adaptive immunity that appeared in lower vertebrates during evolution are the variable genes encoding the major histocompatibility complex (MHC). MHC class I molecules mainly present peptides processed in the cytosol by the proteasome and transported to the cell surface of all cells through secretory compartments. Professional antigen-presenting cells (pAPC) also express MHC class II molecules, which normally present peptides processed from exogenous antigens through lysosomal pathways. Autophagy is an intracellular self-degradation process that is conserved in all eukaryotes and is induced by starvation to contribute to cellular homeostasis. Self-digestion during autophagy mainly occurs by the fusion of autophagosomes, which engulf portions of cytosol and fuse with lysosomes (macroautophagy) or assisted by chaperones (chaperone-mediated autophagy, CMA) that deliver proteins to lysosomes. Thus, during self-degradation, antigens can be processed to be presented by the MHC to immune effector cells, thus, linking autophagy to APP. This review is focused on the essential components of the APP that are conserved in teleost fish and the increasing evidence related to the modulation of APP and autophagy during pathogen infection.
Collapse
|
15
|
Shen M, Jiang Z, Zhang K, Li C, Liu F, Hu Y, Zheng S, Zheng R. Transcriptome analysis of grass carp (Ctenopharyngodon idella) and Holland's spinibarbel (Spinibarbus hollandi) infected with Ichthyophthirius multifiliis. FISH & SHELLFISH IMMUNOLOGY 2022; 121:305-315. [PMID: 35031476 DOI: 10.1016/j.fsi.2022.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 12/23/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Ichthyophthirius multifiliis is a protozoan ciliate that causes white spot disease (also known as ichthyophthiriasis) in freshwater fish. Holland's spinibarbel (Spinibarbus hollandi) was less susceptible to white spot disease than grass carp (Ctenopharyngodon Idella). In this study, grass carp and Holland's spinibarbel are infected by I. multifiliis and the amount of infection is 10,000 theronts per fish. All grass carp died within 12 days after infection, and the survival rate of Holland's spinibarbel was more than 80%. In order to study the difference in sensitivity of these two fish species to I. multifiliis, transcriptome analysis was conducted using gill, skin, liver, spleen and head kidney of Holland's spinibarbel and grass carp at 48 h post-infection with I. multifiliis. A total of 489,296,696 clean reads were obtained by sequencing. A total of 105 significantly up-regulated immune-related genes were obtained by Gene Ontology (GO) classification and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis in grass carp. Cluster of differentiation 40 (CD40), cluster of differentiation 80 (CD 80), tumor necrosis factor-alpha (TNF-α), toll-like receptor 4 (TLR-4), interleukin 1 beta (IL-1β) and other inflammatory-related genes in grass carp were enriched in the cytokine-cytokine receptor interaction pathway and toll-like receptor pathway. In Holland's spinibarbel, a total of 46 significantly up-regulated immune-related genes were obtained by GO classification and KEGG pathway enrichment analysis. Immune-related genes, such as Immunoglobin heavy chain (IgH), cathepsin S (CTSS), complement C1q A chain (C1qA), complement component 3 (C3) and complement component (C9) were enriched in phagosome pathway, lysosome pathway and complement and coagulation concatenation pathway. C3 was significantly up-regulated in gill and head kidney. Fluorescence in situ hybridization (FISH) showed that the C3 gene was highly expressed in gill tissue of Holland's spinibarbel infected with I. multifiliis. A small amount of C3 gene was expressed in the gill arch of grass carp after infected with I. multifiliis. In conclusion, the severe inflammatory response in vivo after infecting grass carp with I. multifiliis might be the main cause of the death of grass carp. The extrahepatic expression of the gene of Holland's spinibarbel might play an important role in the immune defense against I. multifiliis.
Collapse
Affiliation(s)
- Minghao Shen
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Lab of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua, 321004, China.
| | - Zeyuan Jiang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Lab of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua, 321004, China.
| | - Kai Zhang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Lab of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua, 321004, China.
| | - Chenyang Li
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Lab of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua, 321004, China.
| | - Fangling Liu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Lab of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua, 321004, China.
| | - Yibing Hu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Lab of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua, 321004, China.
| | - Shanjian Zheng
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Lab of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua, 321004, China.
| | - Rongquan Zheng
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Lab of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua, 321004, China; Xinzhi College, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
16
|
Sun JL, Jiang T, Gu Y, Song FB, Wen X, Luo J. Differential immune and metabolic responses underlie differences in the resistance of Siganus oramin and Trachinotus blochii to Cryptocaryon irritans infection. FISH & SHELLFISH IMMUNOLOGY 2022; 120:166-179. [PMID: 34798286 DOI: 10.1016/j.fsi.2021.11.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
Numerous studies have demonstrated that Cryptocaryon irritans can efficiently propagate in golden pompano (Trachinotus blochii), especially under intensive high-density culture, which can lead to large-scale infection, bacterial invasion, and major economic losses. By contrast, Siganus oramin is less susceptible to C. irritans infection. Here, we artificially infected S. oramin and T. blochii with C. irritans. We then used RNA-seq to characterize the expression of genes in the gills of S. oramin and T. blochii at different times after infection, conducted bioinformatics analysis of relevant pathways, and compared the differentially expressed genes in the two species. The aim of this study was to enhance our understanding of host-parasite interactions to aid the development of effective prevention and treatment strategies for C. irritans. Infection with C. irritans induced the differential expression of a large number of genes in the gills of S. oramin, indicating that S. oramin may respond to C. irritans infection by modifying the expression of genes at the transcriptional level. Our research showed that the Toll-like receptor signaling pathway, Antigen processing and presentation, Complement and coagulation cascades, and Cytosolic DNA-sensing pathway are involved in the immune response of S. oramin and T. blochii to C. irritans infection. However, T. blochii has a weak ability to mobilize neutrophils to participate in defense against C. irritans infection and differs from S. oramin in its ability to induce specific immune responses. Because of gill tissue damage during infection, dissolved oxygen intake is reduced, which increases physiological and metabolic stress. The metabolic pathways of S. oramin and T. blochii significantly differed; specifically, the main pathways in S. oramin were related to glucose and lipid metabolism, and the main pathways in T. blochii were related to amino acid metabolism. This may reduce the efficiency of ATP biosynthesis in T. blochii and result in dysfunctional energy metabolism. Therefore, differential immune and metabolic responses underlie differences in the resistance of S. oramin and T. blochii to C. irritans.
Collapse
Affiliation(s)
- Jun Long Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 70228, China.
| | - Tian Jiang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 70228, China.
| | - Yue Gu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 70228, China.
| | - Fei Biao Song
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 70228, China.
| | - Xin Wen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 70228, China.
| | - Jian Luo
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 70228, China.
| |
Collapse
|
17
|
Mo ZQ, Wu HC, Hu YT, Lu ZJ, Lai XL, Chen HP, He ZC, Luo XC, Li YW, Dan XM. Transcriptomic analysis reveals innate immune mechanisms of an underlying parasite-resistant grouper hybrid (Epinephelus fuscogutatus × Epinephelus lanceolatus). FISH & SHELLFISH IMMUNOLOGY 2021; 119:67-75. [PMID: 34607009 DOI: 10.1016/j.fsi.2021.09.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
Hybridization is an artificial breeding strategy for generating potentially desirable offspring. Recently, a novel Hulong grouper hybrid (Epinephelus fuscogutatus × Epinephelus lanceolatus) yielded significant growth superiority over its parent. Improved innate immunity is considered as another desirable feature during hybridization. However, whether this Hulong grouper achieved disease resistance has not yet been revealed. In this study, we first examine the infection intensity of C. irritans in the Hulong grouper, and found that the Hulong grouper is less susceptible to C. irritans primary infection. A higher immobilization titer was found in the infected Hulong grouper at Day 2 when compared with the control grouper. Furthermore, severe hyperplasia was observed in the orange-spotted grouper, but not in the Hulong grouper's skin epidermis. To further understand the innate immune mechanism against C. irritans, we conducted a comparative transcriptome analysis of the Hulong grouper during the infection. There are 6464 differentially expressed genes (DEGs) identified in the skin between the control and infected Hulong grouper. This indicates that the innate immune components, such as the complement system, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, Interleukin 17 (IL-17) signaling pathway, and Toll-like receptor (TLR) signaling pathway were up-regulated during the infection. These results show that the C. irritans infection can induce a remarkable inflammatory response in the Hulong grouper. Moreover, a total of 75 pairs of orthologs with the ratio of nonsynonymous (Ka) to synonymous (Ks) substitutions >1, considered rapidly evolving genes (REGs), was identified between the Hulong and orange-spotted grouper. More critically, most REGs were enriched in the immune system, suggesting that rapid evolution of the immune system might occur in the Hulong grouper. These results provide a more comprehensive understanding of the innate immunity mechanism of the hybrid Hulong grouper.
Collapse
Affiliation(s)
- Ze-Quan Mo
- College of Marine Sciences, South China Agricultural University & Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong Province, China
| | - Hui-Cheng Wu
- College of Marine Sciences, South China Agricultural University & Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Ying-Tong Hu
- College of Marine Sciences, South China Agricultural University & Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Zi-Jun Lu
- College of Marine Sciences, South China Agricultural University & Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Xue-Li Lai
- College of Marine Sciences, South China Agricultural University & Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Hong-Ping Chen
- College of Marine Sciences, South China Agricultural University & Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Zhi-Chang He
- College of Marine Sciences, South China Agricultural University & Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Xiao-Chun Luo
- School of Bioscience and Biotechnology, South China University of Technology, Guangzhou, 510006, China
| | - Yan-Wei Li
- College of Marine Sciences, South China Agricultural University & Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| | - Xue-Ming Dan
- College of Marine Sciences, South China Agricultural University & Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
18
|
Mo Z, Jiang B, Lai X, Wu H, Luo X, Dan X, Li Y. Characterization and functional analysis of hybrid pearl gentian grouper (Epinephelus lanceolatus♂ × Epinephelus fuscoguttatus♀) complement C3 against Cryptocaryon irritans infection. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2021; 2:100032. [DOI: 10.1016/j.fsirep.2021.100032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 11/24/2022] Open
|
19
|
Shivam S, El-Matbouli M, Kumar G. Kinetics of Parasite-Specific Antibody and B-Cell-Associated Gene Expression in Brown Trout, Salmo trutta during Proliferative Kidney Disease. BIOLOGY 2021; 10:1244. [PMID: 34943159 PMCID: PMC8698486 DOI: 10.3390/biology10121244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 01/20/2023]
Abstract
Tetracapsuloides bryosalmonae, a myxozoan endoparasite often causes chronic infection in brown trout. Antiparasite immunity mediated by antibodies and B cells is known as an important determinant of host survival and parasite proliferation during chronic infections. Accordingly, studying their time course during proliferative kidney disease (PKD) might be helpful in improving our understanding of its chronic nature. Therefore, we conducted this study to examine parasite specific serum antibody and B-cell-mediated response in laboratory-infected brown trout at different time points. Brown trout were exposed to the spores of T. bryosalmonae, derived from infected bryozoans. Samples were collected at different time points and processed for indirect ELISA, histopathology, and qRT-PCR. T. bryosalmonae specific antibody was detected at 4 weeks post exposure (wpe) and it persisted until 17 wpe. Additionally, the expressions of C4A, CD34, CD79A, BLNK, CD74, BCL7, and CD22 were differentially regulated in the important immune organs, kidney and spleen. To our knowledge, this is the first study addressing anti-T. bryosalmonae antibody response in brown trout at different time points. The results from this study provide valuable insights into the processes leading to changes in B cell development, inflammation and antibody production during the course of PKD in brown trout.
Collapse
Affiliation(s)
- Saloni Shivam
- Clinical Division of Fish Medicine, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
- Central Marine Fisheries Research Institute, Karwar 581301, India
| | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Gokhlesh Kumar
- Clinical Division of Fish Medicine, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| |
Collapse
|
20
|
Zheng T, Song Z, Qiang J, Tao Y, Zhu H, Ma J, Xu P. Transport Stress Induces Skin Innate Immunity Response in Hybrid Yellow Catfish ( Tachysurus fulvidraco♀ × P. vachellii♂) Through TLR/NLR Signaling Pathways and Regulation of Mucus Secretion. Front Immunol 2021; 12:740359. [PMID: 34712228 PMCID: PMC8545808 DOI: 10.3389/fimmu.2021.740359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/28/2021] [Indexed: 12/14/2022] Open
Abstract
The transport of live fish is a necessary step for commercial production. The skin of teleost fish is the first non-specific immune barrier against exogenous stimuli, and it plays an important protective role under transport stress. Thus, the aim of this study was to explore the skin responses to transport stress in hybrid yellow catfish (Tachysurus fulvidraco♀ × Pseudobagrus vachellii♂) through transcriptome and biochemical analyses. Water samples were collected during a simulated transport treatment. Biochemical indexes and/or gene expression in blood, skin, and mucus in fish in control groups and transport-stress groups (0 h, 2 h, 4 h, 8 h, 16 h) were assayed. The levels of total ammonia-nitrogen and nitrite-nitrogen in the water increased with increasing transport time. Comparison of skin transcriptomes between the control group and the group subjected to 16 h of transport revealed 1547 differentially expressed genes (868 up-regulated and 679 down-regulated). The results of the transcriptome analysis were validated by analyses of the expression levels of selected genes by qRT-PCR. The results indicated that the toll-like receptors and nod-like receptors signaling pathways mediate the skin's immune response to transport stress: tlr9, mfn2, and ikbke were significantly up-regulated and nfkbia and map3k7cl were significantly down-regulated under transport stress. With increasing transport time, lysozyme activity and the immunoglobulin M content in skin mucus first increased and then decreased. The number of mucous cells peaked at 8 h of transport stress, and then decreased. The mucus cells changed from types II and IV to types I, II, III, and IV. The amounts of red and white blood cells and the levels of hemoglobin and hematocrit first increased and then decreased during 16 h of transport stress. Together, the results showed that the skin responds to transport stress by activating the immune signaling pathway and regulating mucus secretion. These findings have important biological significance for selecting strains that tolerate transport, as well as economic significance for optimizing the transport conditions for scaleless fish.
Collapse
Affiliation(s)
- Tao Zheng
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Zhuo Song
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Jun Qiang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China.,Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Yifan Tao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Haojun Zhu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Junlei Ma
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Pao Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China.,Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| |
Collapse
|
21
|
Natnan ME, Mayalvanan Y, Jazamuddin FM, Aizat WM, Low CF, Goh HH, Azizan KA, Bunawan H, Baharum SN. Omics Strategies in Current Advancements of Infectious Fish Disease Management. BIOLOGY 2021; 10:1086. [PMID: 34827079 PMCID: PMC8614662 DOI: 10.3390/biology10111086] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 12/26/2022]
Abstract
Aquaculture is an important industry globally as it remains one of the significant alternatives of animal protein source supplies for humankind. Yet, the progression of this industry is being dampened by the increasing rate of fish mortality, mainly the outbreak of infectious diseases. Consequently, the regress in aquaculture ultimately results in the economy of multiple countries being affected due to the decline of product yields and marketability. By 2025, aquaculture is expected to contribute approximately 57% of fish consumption worldwide. Without a strategic approach to curb infectious diseases, the increasing demands of the aquaculture industry may not be sustainable and hence contributing to the over-fishing of wild fish. Recently, a new holistic approach that utilizes multi-omics platforms including transcriptomics, proteomics, and metabolomics is unraveling the intricate molecular mechanisms of host-pathogen interaction. This approach aims to provide a better understanding of how to improve the resistance of host species. However, no comprehensive review has been published on multi-omics strategies in deciphering fish disease etiology and molecular regulation. Most publications have only covered particular omics and no constructive reviews on various omics findings across fish species, particularly on their immune systems, have been described elsewhere. Our previous publication reviewed the integration of omics application for understanding the mechanism of fish immune response due to microbial infection. Hence, this review provides a thorough compilation of current advancements in omics strategies for fish disease management in the aquaculture industry. The discovery of biomarkers in various fish diseases and their potential advancement to complement the recent progress in combatting fish disease is also discussed in this review.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Syarul Nataqain Baharum
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor, Malaysia; (M.E.N.); (Y.M.); (F.M.J.); (W.M.A.); (C.-F.L.); (H.-H.G.); (K.A.A.); (H.B.)
| |
Collapse
|
22
|
Xie X, Jiang Y, Miao R, Huang J, Zhou L, Kong J, Yin F. The gill transcriptome reveals unique antimicrobial features that protect Nibea albiflora from Cryptocaryon irritans infection. JOURNAL OF FISH DISEASES 2021; 44:1215-1227. [PMID: 33913520 DOI: 10.1111/jfd.13382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
Cryptocaryonosis is the greatest threat to most teleost species among all parasitic diseases, causing mass loss to the marine aquaculture industry. Epidemiological investigation of teleost susceptibility to Cryptocaryon irritans infection revealed that yellow drum (Nibea albiflora) is highly resistant. In order to further understand the activation of the immune system in the gill, which is one of the main mucosal-associated lymphoid tissues and a target of parasites, transcriptome analysis of the yellow drum gill was performed. Gill samples were collected from fish challenged after 24 hr and 72 hr with theronts at a median death rate (2050 theronts per gram fish). Gene expression profiles showed that TLR5 was the only receptor that activated the downstream immune response. The infection activated complement cascade through alternative pathway and increased the expression of C5a anaphylatoxin chemotactic receptor 1. In addition, possible antimicrobial molecules, including lipoprotein and haptoglobin, which are responsible for trypanolysis in humans, were among the top significantly upregulated genes at 24 hr. After 72 hr, the expression of secreted immunoglobulin T-related genes was induced. These results suggested a rapid innate and adaptive immune response at the mucosal level. In conclusion, the results provide new perspectives on mucosal immune resistance in yellow drum against cryptocaryonosis and provide the possibility of mining resistance genes for future therapy.
Collapse
Affiliation(s)
- Xiao Xie
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture; School of Marine Sciences, Ningbo University, Ningbo, China
| | - Yunyan Jiang
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture; School of Marine Sciences, Ningbo University, Ningbo, China
| | - Rujiang Miao
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture; School of Marine Sciences, Ningbo University, Ningbo, China
| | - Jiashuang Huang
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture; School of Marine Sciences, Ningbo University, Ningbo, China
| | - Liyao Zhou
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture; School of Marine Sciences, Ningbo University, Ningbo, China
| | - Jindong Kong
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture; School of Marine Sciences, Ningbo University, Ningbo, China
| | - Fei Yin
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture; School of Marine Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
23
|
Cheng JX, Xia YQ, Liu YF, Liu PF, Liu Y. Transcriptome analysis in Takifugu rubripes and Dicentrarchus labrax gills during Cryptocaryon irritans infection. JOURNAL OF FISH DISEASES 2021; 44:249-262. [PMID: 33314157 DOI: 10.1111/jfd.13318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
Takifugu rubripes and Dicentrarchus labrax are important commercial fish in China that are under serious threat from Cryptocaryon irritans. C. irritans is a ciliated obligate parasite that causes marine white spot disease and leads to heavy economic losses. We analysed the transcriptome in the gills of T. rubripes and D. labrax to compare differentially expressed genes (DEGs) and pathways during infection with C. irritans. In total, we identified 6,901 and 35,736 DEGs from T. rubripes and D. labrax, respectively. All DEGs were annotated into GO terms; 6,901 DEGs from T. rubripes were assigned into 991 sub-categories, and 35,736 DEGs from D. labrax were assigned into 8,517 sub-categories. We mapped DEGs to the KEGG database and obtained 153 and 350 KEGG signalling pathways from T. rubripes and D. labrax, respectively. Immune-related categories included Toll-like receptors, MAPK, lysosome, C-type lectin receptor and NOD-like receptor signalling pathways were significantly enriched pathways. In immune-related signalling pathways, we found that AP-1, P38, IL-1β, HSP90 and PLA were significantly up-regulated DEGs in T. rubripes, but P38 and PLA were significantly down-regulated in D. labrax. In this study, transcriptome was used to analyse the difference between scaly and non-scaly fish infection by C. irritans, which not only provided a theoretical basis for the infection mechanism of C. irritans, but also laid a foundation for effectively inhibiting the occurrence of this disease. Our work provides further insight into the immune response of host resistance to C. irritans.
Collapse
Affiliation(s)
- Jian-Xin Cheng
- College of Life Science, Liaoning Normal University, Dalian, China
- Key Laboratory of Environment Controlled Aquaculture (KLECA), Ministry of Education, Dalian, China
| | - Yu-Qing Xia
- Key Laboratory of Environment Controlled Aquaculture (KLECA), Ministry of Education, Dalian, China
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Ya-Fang Liu
- Key Laboratory of Environment Controlled Aquaculture (KLECA), Ministry of Education, Dalian, China
- College of Marine Technology and Environment, Dalian Ocean University, Dalian, China
| | - Peng-Fei Liu
- Key Laboratory of Environment Controlled Aquaculture (KLECA), Ministry of Education, Dalian, China
- College of Marine Technology and Environment, Dalian Ocean University, Dalian, China
| | - Ying Liu
- Key Laboratory of Environment Controlled Aquaculture (KLECA), Ministry of Education, Dalian, China
- College of Marine Technology and Environment, Dalian Ocean University, Dalian, China
| |
Collapse
|
24
|
Cao Q, Wang H, Fan C, Sun Y, Li J, Cheng J, Chu P, Yin S. Environmental salinity influences the branchial expression of TCR pathway related genes based on transcriptome of a catadromous fish. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 38:100815. [PMID: 33610026 DOI: 10.1016/j.cbd.2021.100815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 11/17/2022]
Abstract
Environmental salinity not only affects the physiological processes such as osmoregulation and hormonal control, but also changes the immune system in fishes. Studies are limited in fish on the roles of the T cell receptor (TCR)-related genes in relation to changes in environmental salinity. A large group of salinity-challenged transcripts was obtained in gills of marbled eel (Anguilla marmorata). Moreover, bioinformatic ways were used to identify the enriched TCR pathway related genes which were significantly different expressed in fresh water (FW), brackish water (BW) and seawater (SW). Meanwhile, the RT-qPCR results were validated and consistent with the RNA-seq results. TCR a, TCR b, CD45, CD28, PI3K, LCK and LAT were up-regulated when the salinity increases in BW and SW, which connected with the related signaling pathways (Ras-MAPK and PKC pathway). CD4 and Zap70 were down-regulated when the salinity increases in BW and SW, which connected with the PLC pathway. The research offers a novel viewpoint to explore the immune pathways including the TCR pathway in fish based on transcriptome.
Collapse
Affiliation(s)
- Quanquan Cao
- College of Marine Science and Engineering, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang 222005, China
| | - Hongyu Wang
- College of Marine Science and Engineering, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang 222005, China
| | - Chengxu Fan
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng 475000, China
| | - Yiru Sun
- College of Marine Science and Engineering, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang 222005, China
| | - Jie Li
- College of Marine Science and Engineering, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang 222005, China
| | - Jinghao Cheng
- College of Marine Science and Engineering, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang 222005, China
| | - Peng Chu
- College of Marine Science and Engineering, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang 222005, China
| | - Shaowu Yin
- College of Marine Science and Engineering, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang 222005, China.
| |
Collapse
|
25
|
Byadgi O, Massimo M, Dirks RP, Pallavicini A, Bron JE, Ireland JH, Volpatti D, Galeotti M, Beraldo P. Innate immune-gene expression during experimental amyloodiniosis in European seabass (Dicentrarchus labrax). Vet Immunol Immunopathol 2021; 234:110217. [PMID: 33647857 DOI: 10.1016/j.vetimm.2021.110217] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 01/11/2021] [Accepted: 02/16/2021] [Indexed: 01/28/2023]
Abstract
The ectoparasite protozoan Amyloodinium ocellatum (AO) is the causative agent of amyloodiniosis in European seabass (ESB, Dicentrarchus labrax). There is a lack of information about basic molecular immune response mechanisms of ESB during AO infestation. Therefore, to compare gene expression between experimental AO-infested ESB tissues and uninfested ESB tissues (gills and head kidney) RNA-seq was adopted. The RNA-seq revealed multiple differentially expressed genes (DEG), namely 679 upregulated genes and 360 downregulated genes in the gills, and 206 upregulated genes and 170 downregulated genes in head kidney. In gills, genes related to the immune system (perforin, CC1) and protein binding were upregulated. Several genes involved in IFN related pathways were upregulated in the head kidney. Subsequently, to validate the DEG from amyloodiniosis, 26 ESB (mean weight 14 g) per tank in triplicate were bath challenged for 2 h with AO (3.5 × 106/tank; 70 dinospores/mL) under controlled conditions (26-28 °C and 34‰ salinity). As a control group (non-infested), 26 ESB per tank in triplicate were also used. Changes in the expression of innate immune genes in gills and head kidney at 2, 3, 5, 7 and 23 dpi were analysed using real-time PCR. The results indicated that the expression of cytokines (CC1, IL-8) and antimicrobial peptide (Hep) were strongly stimulated and reached a peak at 5 dpi in the early infestation stage, followed by a gradual reduction in the recovery stage (23 dpi). Noticeably, the immunoglobulin (IgM) expression was higher at 23 dpi compared to 7 dpi. Furthermore, in-situ hybridization showed positive signals of CC1 mRNA in AO infested gills compared to the control group. Altogether, chemokines were involved in the immune process under AO infestation and this evidence allows a better understanding of the immune response in European seabass during amyloodiniosis.
Collapse
Affiliation(s)
- Omkar Byadgi
- Section of Animal and Veterinary Sciences, Department of Agricultural, Food, Environmental and Animal Sciences (DI4A), University of Udine, 33100, Udine, Italy.
| | - Michela Massimo
- Section of Animal and Veterinary Sciences, Department of Agricultural, Food, Environmental and Animal Sciences (DI4A), University of Udine, 33100, Udine, Italy
| | - Ron P Dirks
- Future Genomics Technologies B.V., Leiden, the Netherlands
| | - Alberto Pallavicini
- Laboratory of Genetics, Department of Life Sciences, University of Trieste, Via Licio Giorgeri 5, 34126, Trieste, Italy; National Institute of Oceanography and Applied Geophysics, via Piccard 54, 34151, Trieste, Italy
| | - James E Bron
- Institute of Aquaculture, University of Stirling, Stirling, Scotland, UK
| | - Jacquie H Ireland
- Institute of Aquaculture, University of Stirling, Stirling, Scotland, UK
| | - Donatella Volpatti
- Section of Animal and Veterinary Sciences, Department of Agricultural, Food, Environmental and Animal Sciences (DI4A), University of Udine, 33100, Udine, Italy
| | - Marco Galeotti
- Section of Animal and Veterinary Sciences, Department of Agricultural, Food, Environmental and Animal Sciences (DI4A), University of Udine, 33100, Udine, Italy
| | - Paola Beraldo
- Section of Animal and Veterinary Sciences, Department of Agricultural, Food, Environmental and Animal Sciences (DI4A), University of Udine, 33100, Udine, Italy
| |
Collapse
|
26
|
Zhai S, Xiao Y, Tang Y, Wan Q, Guo S. Transcriptome of Edwardsiella anguillarum in vivo and in vitro revealed two-component system, ABC transporter and flagellar assembly are three pathways pathogenic to European eel (Anguilla anguilla). Microb Pathog 2021; 153:104801. [PMID: 33610715 DOI: 10.1016/j.micpath.2021.104801] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 02/07/2023]
Abstract
Edwardsiella anguillarum is one of the common bacterial pathogens for the cultivated eels in China. The aim of this study was to reveal the cause of E. anguillarum pathogenic to European eel (Anguilla anguilla) from the perspective of the transcriptome. In this study, we first prepared E. anguillarum cultured in vitro and analysed the whole transcriptome after extracting the total RNA. Then, eels were i.p injected with E. anguillarum, and total RNA were extracted from the liver of European eels 48 h after the infection. After sequencing the transcriptome, we obtained average 1.97 × 108 clean reads cultured in vitro and 1.36 × 105 clean reads located in vivo after annotating all reads into the genome of E. anguillarum. The whole transcriptome showed, compared to the E. anguillarum cultured in vitro, 503 significantly up and 657 significantly down-regulated different expressed genes (DEGs) were observed. KEGG analysis showed that 38 DEGs of Two-Component System, 41 DEGs of ABC transporter, and 10 DEGs flagellar assembly pathways were highly upregulated in E. anguillarum located in vivo. Then, we designed primers to analyse the up-regulated DEGs through qRT-PCR and confirmed some up-regulated DEGs. The results of this study provide important reference for the further study of pathogen-host interaction between E. anguillarum and European eel.
Collapse
Affiliation(s)
- Shaowei Zhai
- Jimei University Fisheries College / Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PR China, Xiamen, 361021, China
| | - YiQun Xiao
- Jimei University Fisheries College / Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PR China, Xiamen, 361021, China
| | - YiJun Tang
- Department of Chemistry, University of Wisconsin Oshkosh, 800 Algoma Blvd., Oshkosh, WI, USA
| | - Qijuan Wan
- Jimei University Fisheries College / Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PR China, Xiamen, 361021, China
| | - Songlin Guo
- Jimei University Fisheries College / Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PR China, Xiamen, 361021, China.
| |
Collapse
|
27
|
Najafpour B, Cardoso JCR, Canário AVM, Power DM. Specific Evolution and Gene Family Expansion of Complement 3 and Regulatory Factor H in Fish. Front Immunol 2020; 11:568631. [PMID: 33381109 PMCID: PMC7768046 DOI: 10.3389/fimmu.2020.568631] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/19/2020] [Indexed: 01/17/2023] Open
Abstract
The complement system comprises a large family of plasma proteins that play a central role in innate and adaptive immunity. To better understand the evolution of the complement system in vertebrates and the contribution of complement to fish immunity comprehensive in silico and expression analysis of the gene repertoire was made. Particular attention was given to C3 and the evolutionary related proteins C4 and C5 and to one of the main regulatory factors of C3b, factor H (Cfh). Phylogenetic and gene linkage analysis confirmed the standing hypothesis that the ancestral c3/c4/c5 gene duplicated early. The duplication of C3 (C3.1 and C3.2) and C4 (C4.1 and C4.2) was likely a consequence of the (1R and 2R) genome tetraploidization events at the origin of the vertebrates. In fish, gene number was not conserved and multiple c3 and cfh sequence related genes were encountered, and phylogenetic analysis of each gene generated two main clusters. Duplication of c3 and cfh genes occurred across the teleosts in a species-specific manner. In common, with other immune gene families the c3 gene expansion in fish emerged through a process of tandem gene duplication. Gilthead sea bream (Sparus aurata), had nine c3 gene transcripts highly expressed in liver although as reported in other fish, extra-hepatic expression also occurs. Differences in the sequence and protein domains of the nine deduced C3 proteins in the gilthead sea bream and the presence of specific cysteine and N-glycosylation residues within each isoform was indicative of functional diversity associated with structure. The diversity of C3 and other complement proteins as well as Cfh in teleosts suggests they may have an enhanced capacity to activate complement through direct interaction of C3 isoforms with pathogenic agents.
Collapse
Affiliation(s)
- Babak Najafpour
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Faro, Portugal
| | - João C R Cardoso
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Faro, Portugal
| | - Adelino V M Canário
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Faro, Portugal
| | - Deborah M Power
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Faro, Portugal
| |
Collapse
|
28
|
Bai J, Hu X, Lü A, Wang R, Liu R, Sun J, Niu Y. Skin transcriptome, tissue distribution of mucin genes and discovery of simple sequence repeats in crucian carp (Carassius auratus). JOURNAL OF FISH BIOLOGY 2020; 97:1542-1553. [PMID: 32885862 DOI: 10.1111/jfb.14524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/23/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
Crucian carp (Carassius auratus) is one of the major freshwater species and important food fish in China. Fish skin acts as the first line of defence against pathogens, yet its molecular and immune mechanism remains unclear. In this study, a de novo transcriptome assembly of C. auratus skin was performed with the Illumina Hiseq 2000 platform. A total of 49,154,776 clean reads were assembled, among which 60,824 (46.86%), 37,103 (28.59%), 43,269 (33.33%) unigenes were annotated against National Center for Biotechnology Information, Gene Onotology and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, respectively. KEGG Orthology categories were significantly involved in immune system (20.50%), signal transduction (18.04%) and mucosal mucin genes (e.g., muc2, muc5AC, muc5B, muc17, muc18). The high expression of muc18 gene was observed in brain; that of muc2 in intestine; and that of muc5AC in skin, liver, spleen, intestine and muscle. Moreover, the potential 28,928 simple sequence repeats with the three most abundant dinucleotide repeat motifs (AC/GT, AG/CT, AT/AT) were detected in C. auratus. To authors' knowledge, this is the first report to describe the transcriptome analysis of C. auratus skin, and the outcome of this study contributed to the understanding of mucosal immune response of the skin and molecular markers in cyprinid species.
Collapse
Affiliation(s)
- Jie Bai
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, China
| | - Xiucai Hu
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, China
| | - Aijun Lü
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, China
| | - Ruixia Wang
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, China
| | - Rongrong Liu
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, China
| | - Jingfeng Sun
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, China
| | - Yuchen Niu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
29
|
Zhou S, Liu Y, Dong J, Yang Q, Xu N, Yang Y, Gu Z, Ai X. Transcriptome analysis of goldfish (Carassius auratus) in response to Gyrodactylus kobayashii infection. Parasitol Res 2020; 120:161-171. [PMID: 33094386 DOI: 10.1007/s00436-020-06827-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 07/21/2020] [Indexed: 02/06/2023]
Abstract
Gyrodactylid monogeneans are widespread parasites of teleost fishes, and infection with these parasites results in high host morbidity and mortality in aquaculture. To comprehensively elucidate the immune mechanisms against Gyrodactylus kobayashii, the transcriptome profiles of goldfish (Carassius auratus) skin after challenge with G. kobayashii were first investigated using next-generation sequencing. Approximately 21 million clean reads per library were obtained, and the average percentage of these clean reads mapped to the reference genome was 82.25%. A total of 556 differentially expressed genes (DEGs), including 344 upregulated and 212 downregulated genes, were identified, and 380 DEGs were successfully annotated and assigned to 95 signaling pathways in Kyoto Encyclopedia of Genes and Genomes (KEGG). In addition, 14 pathways associated with immune response were identified mainly including mTOR signaling pathway, cytokine-cytokine receptor interaction, intestinal immune network for IgA production, toll-like receptor signaling pathway, and phagosome. Twelve genes were selected and validated using qRT-PCR. A similar trend of these genes between RNA-Seq and qRT-PCR was observed, indicating that RNA-Seq data was reliable. Besides, the ALP activity and NO content in serum were significantly higher in the infected goldfish compared with the non-infected goldfish. In summary, this study provides better understandings of immune defense mechanisms of goldfish against G. kobayashii, which will support future molecular research on gyrodactylids and facilitate the prevention and treatment of gyrodactylosis in aquaculture.
Collapse
Affiliation(s)
- Shun Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 8 Wuda Park Road 1, Wuhan, 430223, Hubei Province, China.,Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430223, China.,Hu Bei Province Engineering and Technology Research Center of Aquatic Product Quality and Safety, Wuhan, 430223, China
| | - Yongtao Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 8 Wuda Park Road 1, Wuhan, 430223, Hubei Province, China.,Hu Bei Province Engineering and Technology Research Center of Aquatic Product Quality and Safety, Wuhan, 430223, China
| | - Jing Dong
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 8 Wuda Park Road 1, Wuhan, 430223, Hubei Province, China.,Hu Bei Province Engineering and Technology Research Center of Aquatic Product Quality and Safety, Wuhan, 430223, China
| | - Qiuhong Yang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 8 Wuda Park Road 1, Wuhan, 430223, Hubei Province, China.,Hu Bei Province Engineering and Technology Research Center of Aquatic Product Quality and Safety, Wuhan, 430223, China
| | - Ning Xu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 8 Wuda Park Road 1, Wuhan, 430223, Hubei Province, China.,Hu Bei Province Engineering and Technology Research Center of Aquatic Product Quality and Safety, Wuhan, 430223, China
| | - Yibin Yang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 8 Wuda Park Road 1, Wuhan, 430223, Hubei Province, China.,Hu Bei Province Engineering and Technology Research Center of Aquatic Product Quality and Safety, Wuhan, 430223, China
| | - Zemao Gu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430223, China
| | - Xiaohui Ai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 8 Wuda Park Road 1, Wuhan, 430223, Hubei Province, China. .,Hu Bei Province Engineering and Technology Research Center of Aquatic Product Quality and Safety, Wuhan, 430223, China.
| |
Collapse
|
30
|
Valle A, Leiro JM, Pereiro P, Figueras A, Novoa B, Dirks RPH, Lamas J. Interactions between the Parasite Philasterides dicentrarchi and the Immune System of the Turbot Scophthalmus maximus. A Transcriptomic Analysis. BIOLOGY 2020; 9:biology9100337. [PMID: 33076342 PMCID: PMC7602577 DOI: 10.3390/biology9100337] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 12/16/2022]
Abstract
The present study analyses the interactions between Philasterides dicentrarchi (a ciliate parasite that causes high mortalities in cultured flatfish) and the peritoneal cells of the turbot Scophthalmus maximus during an experimental infection. The transcriptomic response was evaluated in the parasites and in the fish peritoneal cells, at 1, 2 and 4 h post-infection (hpi) in turbot injected intraperitoneally (ip) with 107 ciliates and at 12 and 48 hpi in turbot injected ip with 105 ciliates. Numerous genes were differentially expressed (DE) in P. dicentrarchi, relative to their expression in control ciliates (0 hpi): 407 (369 were up-regulated) at 1 hpi, 769 (415 were up-regulated) at 2 hpi and 507 (119 were up-regulated) at 4 hpi. Gene ontology (GO) analysis of the DE genes showed that the most representative categories of biological processes affected at 1, 2 and 4 hpi were biosynthetic processes, catabolic processes, biogenesis, proteolysis and transmembrane transport. Twelve genes of the ABC transporter family and eight genes of the leishmanolysin family were DE at 1, 2 and 4 hpi. Most of these genes were strongly up-regulated (UR), suggesting that they are involved in P. dicentrarchi infection. A third group of UR genes included several genes related to ribosome biogenesis, DNA transcription and RNA translation. However, expression of tubulins and tubulin associated proteins, such as kinesins or dyneins, which play key roles in ciliate division and movement, was down-regulated (DR). Similarly, genes that coded for lysosomal proteins or that participate in the cell cycle mitotic control, glycolysis, the Krebs cycle and/or in the electron transport chain were also DR. The transcriptomic analysis also revealed that in contrast to many parasites, which passively evade the host immune system, P. dicentrarchi strongly stimulated turbot peritoneal cells. Many genes related to inflammation were DE in peritoneal cells at 1, 2 and 4 hpi. However, the response was much lower at 12 hpi and almost disappeared completely at 48 hpi in fish that were able to kill P. dicentrarchi during the first few hpi. The genes that were DE at 1, 2 and 4 hpi were mainly related to the apoptotic process, the immune response, the Fc-epsilon receptor signalling pathway, the innate immune response, cell adhesion, cell surface receptors, the NF-kappaB signalling pathway and the MAPK cascade. Expression of toll-like receptors 2, 5 and 13 and of several components of NF-κB, MAPK and JAK/STAT signalling pathways was UR in the turbot peritoneal cells. Genes expressing chemokines and chemokine receptors, genes involved in prostaglandin and leukotriene synthesis, prostaglandins, leukotriene receptors, proinflammatory cytokines and genes involved in apoptosis were strongly UR during the first four hours of infection. However, expression of anti-inflammatory cytokines such as Il-10 and lipoxygenases with anti-inflammatory activity (i.e., arachidonate 15-lipoxygenase) were only UR at 12 and/or 48 hpi, indicating an anti-inflammatory state in these groups of fish. In conclusion, the present study shows the regulation of several genes in P. dicentrarchi during the early stages of infection, some of which probably play important roles in this process. The infection induced a potent acute inflammatory response, and many inflammatory genes were regulated in peritoneal cells, showing that the turbot uses all the protective mechanisms it has available to prevent the entry of the parasite.
Collapse
Affiliation(s)
- Alejandra Valle
- Department of Fundamental Biology, Institute of Aquaculture, Campus Vida, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - José Manuel Leiro
- Department of Microbiology and Parasitology, Laboratory of Parasitology, Institute of Research on Chemical and Biological Analysis, Campus Vida, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Patricia Pereiro
- Institute of Marine Research, Consejo Superior de Investigaciones Científicas-CSIC, 36208 Vigo, Spain; (P.P.); (A.F.); (B.N.)
| | - Antonio Figueras
- Institute of Marine Research, Consejo Superior de Investigaciones Científicas-CSIC, 36208 Vigo, Spain; (P.P.); (A.F.); (B.N.)
| | - Beatriz Novoa
- Institute of Marine Research, Consejo Superior de Investigaciones Científicas-CSIC, 36208 Vigo, Spain; (P.P.); (A.F.); (B.N.)
| | - Ron P. H. Dirks
- Future Genomics Technologies, Leiden BioScience Park, 2333 BE Leiden, The Netherlands;
| | - Jesús Lamas
- Department of Fundamental Biology, Institute of Aquaculture, Campus Vida, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain;
- Correspondence: ; Tel.: +34-88-181-6951; Fax: +34-88-159-6904
| |
Collapse
|
31
|
Konczal M, Ellison AR, Phillips KP, Radwan J, Mohammed RS, Cable J, Chadzinska M. RNA-Seq analysis of the guppy immune response against Gyrodactylus bullatarudis infection. Parasite Immunol 2020; 42:e12782. [PMID: 32738163 DOI: 10.1111/pim.12782] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 07/10/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022]
Abstract
Gyrodactylids are ubiquitous ectoparasites of teleost fish, but our understanding of the host immune response against them is fragmentary. Here, we used RNA-Seq to investigate genes involved in the primary response to infection with Gyrodactylus bullatarudis on the skin of guppies, Poecilia reticulata, an important evolutionary model, but also one of the most common fish in the global ornamental trade. Analysis of differentially expressed genes identified several immune-related categories, including IL-17 signalling pathway and Th17 cell differentiation, cytokine-cytokine receptor interaction, chemokine signalling pathway, NOD-like receptor signalling pathway, natural killer cell-mediated cytotoxicity and pathways involved in antigen recognition, processing and presentation. Components of both the innate and the adaptive immune responses play a role in response to gyrodactylid infection. Genes involved in IL-17/Th17 response were particularly enriched among differentially expressed genes, suggesting a significant role for this pathway in fish responses to ectoparasites. Our results revealed a sizable list of genes potentially involved in the teleost-gyrodactylid immune response.
Collapse
Affiliation(s)
- Mateusz Konczal
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Amy R Ellison
- School of Natural Sciences, Bangor University, Bangor, UK
| | - Karl P Phillips
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland.,Marine Institute, Furnace, Newport, Ireland.,School of Biological, Earth & Environmental Sciences, University College Cork, Cork, Ireland
| | - Jacek Radwan
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Ryan S Mohammed
- Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies Zoology Museum, St. Augustine, Trinidad and Tobago
| | - Joanne Cable
- School of Biosciences, Cardiff University, Cardiff, UK
| | - Magdalena Chadzinska
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| |
Collapse
|
32
|
Bai J, Hu X, Wang R, Lü A, Sun J. MicroRNA expression profile analysis of skin immune response in crucian carp (Carassius auratus) infected by Aeromonas hydrophila. FISH & SHELLFISH IMMUNOLOGY 2020; 104:673-685. [PMID: 32505719 DOI: 10.1016/j.fsi.2020.05.077] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
MicroRNAs (miRNAs) are non-coding RNA molecules that regulate gene expression in fish, but its regulatory mechanism of the skin mucosal immune response remains poorly understood. In order to investigate the immunological role of miRNAs, three sRNA libraries (mSC, mST1, mST2) from skin samples of crucian carp (Carassiusauratus) infected with Aeromonas hydrophila at three time points (0, 6 and 12 hpi) were constructed and examined using Illumina Hiseq 2000 platform. All of the identified miRNA, rRNA and tRNA were 69444 (13.39%), 29550 (5.70%) and 10704 (2.06%) in skin, respectively. At 6 and 12 hpi, 829 and 856 miRNAs were differentially expressed, respectively. Among these DEMs, 53 known and 10 novel miRNAs were all significantly differentially expressed during early infection (p < 0.01). GO and KEGG enrichment analyses revealed that 118111 target-genes were primarily involved in cellular process, metabolic process, biological regulation and stress response, such as antigen processing and presentation, complement and coagulation cascades, phagosome, MAPK, TLR, NF-κB and JAK-STAT signaling pathways. These results will help to elucidate the mechanism of miRNAs involved in the skin mucosal immune response of crucian carp against Aeromonas hydrophila infection.
Collapse
Affiliation(s)
- Jie Bai
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, China
| | - Xiucai Hu
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, China
| | - Ruixia Wang
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, China
| | - Aijun Lü
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, China.
| | - Jingfeng Sun
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, China
| |
Collapse
|
33
|
Liu X, Yu Y, Maha IF, Kong J, Xie X, Yin F. Label-free quantitative proteomics analysis of skin of yellow drum (Nibea albiflora) reveals immune mechanism against Cryptocaryon irritans. FISH & SHELLFISH IMMUNOLOGY 2020; 101:284-290. [PMID: 32276037 DOI: 10.1016/j.fsi.2020.03.067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
To explore the resistance mechanism of locally infected skin of yellow drum (Nibea albiflora) against Cryptocaryon irritans infection, N. albiflora were infected with C. irritans at a median lethal concentration of 2050 theronts/g fish. Then, the skin of the infected group (24 hT and 72 hT) and the control group (24 hC and 72 hC) were sampled at 24 h and 72 h for quantitative proteomics analysis. A total of 643 proteins were identified, of which 61 proteins were significantly affected by interaction between time and infection, 83 and 119 proteins were significantly affected by the infection and time, respectively. In addition, 17, 61, 81 and 45 differentially expressed proteins (DEPs) were obtained from pairwise comparison (24 hT vs 24 hC, 72 hT vs 72 hC, 72 hT vs 24 hT and 72 hC vs 24 hC), respectively. DEPs in 24 hT vs 24 hC and 72 hT vs 72 hC were mainly enriched in Gene Ontology terms (transferase activity, protein folding and isomerase activity) and Kyoto Encyclopedia of Genes and Genomes pathways (biosynthesis of antibiotics, carbon metabolism and Citrate cycle). Among them, enriched DEPs were malate dehydrogenase 2 (MDH2), malate dehydrogenase 1 ab (MDH 1 ab), citrate synthase, etc. Immune-related DEPs such as complement component C3 and Cell division cycle 42 were involved in response to stimulus and signal transduction, etc. Also, DEPs such as collagen, heat shock protein 75 and MDH2 play a role in helping fish skin wounds to heal and provide energy. Furthermore, protein-protein interaction analysis indicated that 18 proteins such as MDH2, MDH 1 ab, complement C3 and collagen were interrelated. In conclusion, this study found that many proteins in N. albiflora contribute to resist against C. irritans and promote fish recovery.
Collapse
Affiliation(s)
- Xiao Liu
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, 315211, PR China
| | - Youbin Yu
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, 315211, PR China
| | - Ivon F Maha
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, 315211, PR China
| | - Jindong Kong
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, 315211, PR China
| | - Xiao Xie
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, 315211, PR China.
| | - Fei Yin
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, 315211, PR China.
| |
Collapse
|
34
|
Affiliation(s)
- Maria Rescigno
- Humanitas Clinical and Research Center (IRCCS), 20089 Rozzano, Milan, Italy, and Humanitas University, Department of Biomedical Sciences, 20090 Milan, Italy.
| |
Collapse
|
35
|
Bai H, Zhou T, Zhao J, Chen B, Pu F, Bai Y, Wu Y, Chen L, Shi Y, Ke Q, Yu X, Xu P. Transcriptome analysis reveals the temporal gene expression patterns in skin of large yellow croaker (Larimichthys crocea) in response to Cryptocaryon irritans infection. FISH & SHELLFISH IMMUNOLOGY 2020; 99:462-472. [PMID: 32070786 DOI: 10.1016/j.fsi.2020.02.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 02/10/2020] [Accepted: 02/14/2020] [Indexed: 06/10/2023]
Abstract
Large yellow croaker (Larimichthys crocea) is one of the most important mariculture fish in China. In the past decades, cryptocaryonosis caused by Cryptocryon irritans has led to huge economic losses, posing great threat to the healthy and sustainable development of L. crocea mariculture industry. As the largest immunologically active mucosal organ in fish, skin provides the first defense line against external pathogens. To better understand the gene expression dynamics, the large yellow croakers were artificially infected with C. irritans and their skin tissues were collected at 0 h, 24 h, 48 h, 72 h and 96 h post infection. The total RNA in the skin tissues were extracted and the transcriptome were sequenced. After sequencing, a total of 1,131, 311, 140 million high quality RNA-seq reads were collected. A set of 215, 473, 968, 1055 differentially expressed genes were identified at 24 h, 48 h, 72 h and 96 h post infection respectively. Further analysis clustered these DEGs into six profiles and 75 hub genes for six profiles were identified. Among these hub genes, 18 immune related genes including TLR5, TOPK, NFKBIZ, MAPK14A were identified post C. irritans infection. Cytokine-cytokine receptor interaction was the only pathway that significantly enriched at four timepoints post infection. This study provides an in-depth understanding of skin transcriptome variance of large yellow croaker after C. irritans infection, which would be helpful for further understanding of the molecular mechanism of L. crocea in response to C. irritans infection.
Collapse
Affiliation(s)
- Huaqiang Bai
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Tao Zhou
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Ji Zhao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Baohua Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Fei Pu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Yulin Bai
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Yidi Wu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Lin Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Yue Shi
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Qiaozhen Ke
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China; State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352130, China
| | - Xunkai Yu
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352130, China
| | - Peng Xu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China; State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352130, China; Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
36
|
Ji L, Sun G, Li X, Liu Y. Comparative transcriptome analysis reveals the mechanism of β-glucan in protecting rainbow trout (Oncorhynchus mykiss) from Aeromonas salmonicida infection. FISH & SHELLFISH IMMUNOLOGY 2020; 98:87-99. [PMID: 31866453 DOI: 10.1016/j.fsi.2019.12.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 12/05/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
To study the mechanism of β-glucan in immune protection, rainbow trout were fed diets with or without 0.2% β-glucan for 42 days and then infected with Aeromonas salmonicida. After that, spleen tissues were sampled on 4- and 6-days post infection (dpi). Transcriptome analysis was compared between control group (CG, without β-glucan addition) and 0.2% β-glucan group (BG). In CG vs BG, 378 and 406 DEGs were identified on 4 dpi and 6 dpi respectively; furthermore, 46 DEGs were shared on 4 dpi and 6 dpi, enriching in GO terms, such as complement activation, inflammatory response, and metabolic process. KEGG pathway analysis revealed that some DEGs in CG vs BG were involved in immune or metabolic signaling pathways such as complement and coagulation cascades, toll-like receptor signaling pathway, NF-κB signaling pathway, antigen processing and presentation, and platelet activation on 4 or 6 dpi. DEGs, such as fgg, fgb, f5, c9, c3, c5, tlr5, and myd88, were analyzed in CG vs BG on 4 dpi and 6 dpi, implying their potential roles in β-glucan-modulated immunity. These results are beneficial to understand the mechanism of β-glucan in resisting bacteria in fish.
Collapse
Affiliation(s)
- Liqin Ji
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; University of Chinese Academy of Sciences, Beijing, 100039, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Guoxiang Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Xian Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Ying Liu
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; School of Marine Science and Environment Engineering, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
37
|
Ma R, Yu Y, Liu X, Lei Y, Zhou S, Xie X, Jin S, Qian D, Yin F. Transcriptomic analysis of Nibea albiflora skin in response to infection by Cryptocaryon irritans. FISH & SHELLFISH IMMUNOLOGY 2020; 98:819-831. [PMID: 31751659 DOI: 10.1016/j.fsi.2019.11.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 06/10/2023]
Abstract
Massive infection caused by Cryptocaryon irritans is detrimental to the development of marine aquaculture. Recently, our lab found that Nibea albiflora has low sensitivity and low mortality to C. irritans infection. The present study was designed to investigate the mechanisms of the N. albiflora response to C. irritans infection by analyzing transcriptome changes in the skin. Skin samples of control and experimental groups with C. irritans infection were collected at 24 and 72 h (24 h control, 24 h post-infection, 72 h control, and 72 h post-infection). Three parallels were set for each group and sample time, and a total of 12 skin samples were collected for sequencing. Overall, 297,489,843 valid paired-end reads and 48,817 unigenes were obtained with an overall length of 59,010,494 nt. In pairwise comparisons, changes in expression occurred in 1621 (764 upregulated and 857 downregulated), 285 (180 upregulated and 105 downregulated), 993 (489 upregulated and 504 downregulated), and 37 (8 upregulated and 29 downregulated) genes at 24 h control vs 24 h post-infection, 72 h control vs 72 h post-infection, 24 h post-infection vs 72 h post-infection, and 24 h control vs 72 h control, respectively. Gene Ontology (GO) analysis of differentially expressed genes (DEGs) indicated that the number of genes enriched in GO sub-categories were ordered 24 h control vs 24 h post-infection > 24 h post-infection vs 72 h post-infection >72 h control vs 72 h post-infection > 24 h control vs 72 h control. Further analysis showed that immune-related GO terms (including immune system process, complement activation, and humoral immunity) were significantly enriched at both 72 h control vs 72 h post-infection and 24 h post-infection vs 72 h post-infection, but no immune-related GO terms were significantly enriched in the 24 h control vs 72 h control and at 24 h control vs 24 h post-infection, indicating that C. irritans infection mainly affected the physiological metabolism of N. albiflora at an early stage (24 h), and immune-related genes play an important role at a later stage (72 h) of infection. In KEGG pathway analysis, the complement and coagulation cascade pathway are involved in early infection. Hematopoietic cell lineage, natural killer (NK) cell-mediated cytotoxicity, and the intestinal immune network for IgA production are involved in later infection. Further analysis showed that the alternative pathway of complement and coagulation cascades plays an important role in the resistance of N. albiflora to early C. irritans infection. During late infection, CD34, IgM, and IgD were significantly upregulated in the hematopoietic cell lineage pathway. CCR9 was significantly downregulated, and IGH and PIGR were significantly upregulated in the intestinal immune network for IgA production. GZMB and IGH were significantly downregulated in NK cell-mediated cytotoxicity. These findings indicate that acquired immunity at the mRNA level was initiated during later infection. In addition, the IL-17 signaling pathway was enriched by downregulated DEGs at 24 h post-infection vs 72 h post-infection, suggesting the inflammatory response at 24 h was stronger than at 72 h and the invasion of the parasite has a greater impact on the host.
Collapse
Affiliation(s)
- Rongrong Ma
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Collaborative Innovation Centre for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, 818 Fenghua Road, Ningbo, 315211, PR China; School of Marine Sciences, Ningbo University, 169 South Qixing Road, Ningbo, 315832, PR China
| | - Youbin Yu
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Collaborative Innovation Centre for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, 818 Fenghua Road, Ningbo, 315211, PR China; School of Marine Sciences, Ningbo University, 169 South Qixing Road, Ningbo, 315832, PR China
| | - Xiao Liu
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Collaborative Innovation Centre for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, 818 Fenghua Road, Ningbo, 315211, PR China; School of Marine Sciences, Ningbo University, 169 South Qixing Road, Ningbo, 315832, PR China
| | - Yuhua Lei
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Collaborative Innovation Centre for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, 818 Fenghua Road, Ningbo, 315211, PR China; School of Marine Sciences, Ningbo University, 169 South Qixing Road, Ningbo, 315832, PR China
| | - Suming Zhou
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Collaborative Innovation Centre for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, 818 Fenghua Road, Ningbo, 315211, PR China; School of Marine Sciences, Ningbo University, 169 South Qixing Road, Ningbo, 315832, PR China
| | - Xiao Xie
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Collaborative Innovation Centre for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, 818 Fenghua Road, Ningbo, 315211, PR China; School of Marine Sciences, Ningbo University, 169 South Qixing Road, Ningbo, 315832, PR China
| | - Shan Jin
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Collaborative Innovation Centre for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, 818 Fenghua Road, Ningbo, 315211, PR China; School of Marine Sciences, Ningbo University, 169 South Qixing Road, Ningbo, 315832, PR China
| | - Dong Qian
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Collaborative Innovation Centre for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, 818 Fenghua Road, Ningbo, 315211, PR China; School of Marine Sciences, Ningbo University, 169 South Qixing Road, Ningbo, 315832, PR China
| | - Fei Yin
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Collaborative Innovation Centre for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, 818 Fenghua Road, Ningbo, 315211, PR China; School of Marine Sciences, Ningbo University, 169 South Qixing Road, Ningbo, 315832, PR China.
| |
Collapse
|
38
|
Qiao X, Li P, He J, Yu Z, Chen J, He L, Yu X, Lin H, Lu D, Zhang Y. Type F scavenger receptor expressed by endothelial cells (SREC)-II from Epinephelus coioides is a potential pathogen recognition receptor in the immune response to Vibrio parahaemolyticus infection. FISH & SHELLFISH IMMUNOLOGY 2020; 98:262-270. [PMID: 31899357 DOI: 10.1016/j.fsi.2019.12.086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 12/24/2019] [Accepted: 12/28/2019] [Indexed: 06/10/2023]
Abstract
Scavenger receptors play a central role in defending against infectious diseases in mammals. However, the function of SRECII remains unknown in teleost fish. In this study, type F scavenger receptor expressed by endothelial cells-II (SRECII) cDNA sequence was first identified from Epinephelus coioides, named EcSRECII, which contained an N-terminal signal peptide, eight EGF/EGF-like cysteine-rich motifs and a C-terminal low-complexity region. The gene location maps revealed that EcSRECII has the conservation of synteny among selected species. Subcellular localization showed that EcSRECII was mainly located in the cytoplasm in HEK293T cells and GS cells. In healthy E. coioides, EcSRECII mRNA was highly expressed in spleen, skin, gill, thymus and head kidney. The relative EcSRECII mRNA expression after Vibrio parahaemolyticus infection was significantly up-regulated at 12 h in spleen, head kidney and thymus, but downregulated at 1 d in skin and reduced at 3 d and 1 w in spleen. Furthermore, overexpression of EcSRECII activated NF-κB and IFN-β signaling pathway in vitro. Taken together, these results indicated that EcSRECII could be as the potential pathogen recognition receptor for involving in bacterial infection by regulating innate immunity responses in E. coioides.
Collapse
Affiliation(s)
- Xifeng Qiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Pingchao Li
- Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, 510530, PR China
| | - Jianan He
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Zeshu Yu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Jiaxing Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Liangge He
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Xue Yu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Haoran Lin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, PR China; College of Ocean, Hainan University, Haikou, 570228, PR China
| | - Danqi Lu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China.
| | - Yong Zhang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, PR China; Southern Marine Science and Engineering Guangdong Laboratory (ZhanJiang), Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, PR China.
| |
Collapse
|
39
|
Sudhagar A, Ertl R, Kumar G, El-Matbouli M. Transcriptome profiling of posterior kidney of brown trout, Salmo trutta, during proliferative kidney disease. Parasit Vectors 2019; 12:569. [PMID: 31783772 PMCID: PMC6884850 DOI: 10.1186/s13071-019-3823-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/21/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Tetracapsuloides bryosalmonae is a myxozoan parasite which causes economically important and emerging proliferative kidney disease (PKD) in salmonids. Brown trout, Salmo trutta is a native fish species of Europe, which acts as asymptomatic carriers for T. bryosalmonae. There is only limited information on the molecular mechanism involved in the kidney of brown trout during T. bryosalmonae development. We employed RNA sequencing (RNA-seq) to investigate the global transcriptome changes in the posterior kidney of brown trout during T. bryosalmonae development. METHODS Brown trout were exposed to the spores of T. bryosalmonae and posterior kidneys were collected from both exposed and unexposed control fish. cDNA libraries were prepared from the posterior kidney and sequenced. Bioinformatics analysis was performed using standard pipeline of quality control, reference mapping, differential expression analysis, gene ontology, and pathway analysis. Quantitative real time PCR was performed to validate the transcriptional regulation of differentially expressed genes, and their correlation with RNA-seq data was statistically analyzed. RESULTS Transcriptome analysis identified 1169 differentially expressed genes in the posterior kidney of brown trout, out of which 864 genes (74%) were upregulated and 305 genes (26%) were downregulated. The upregulated genes were associated with the regulation of immune system process, vesicle-mediated transport, leucocyte activation, and transport, whereas the downregulated genes were associated with endopeptidase regulatory activity, phosphatidylcholine biosynthetic process, connective tissue development, and collagen catabolic process. CONCLUSION To our knowledge, this is the first RNA-seq based transcriptome study performed in the posterior kidney of brown trout during active T. bryosalmonae development. Most of the upregulated genes were associated with the immune system process, whereas the downregulated genes were associated with other metabolic functions. The findings of this study provide insights on the immune responses mounted by the brown trout on the developing parasite, and the host molecular machineries modulated by the parasite for its successful multiplication and release.
Collapse
Affiliation(s)
- Arun Sudhagar
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria
- Central Institute of Fisheries Education, Rohtak Centre, Rohtak, Haryana India
| | - Reinhard Ertl
- VetCore Facility for Research, University of Veterinary Medicine, Vienna, Austria
| | - Gokhlesh Kumar
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria
| | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
40
|
Wang R, Hu X, Lü A, Liu R, Sun J, Sung YY, Song Y. Transcriptome analysis in the skin of Carassius auratus challenged with Aeromonas hydrophila. FISH & SHELLFISH IMMUNOLOGY 2019; 94:510-516. [PMID: 31541778 DOI: 10.1016/j.fsi.2019.09.039] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 09/07/2019] [Accepted: 09/14/2019] [Indexed: 06/10/2023]
Abstract
Skin plays an important role in the innate immune responses of fish, particularly towards bacterial infection. To understand the molecular mechanism of mucosal immunity of fish during bacterial challenge, a de novo transcriptome assembly of crucian carp Carassius auratus skin upon Aeromonas hydrophila infection was performed, the latter with Illumina Hiseq 2000 platform. A total of 118111 unigenes were generated and of these, 9693 and 8580 genes were differentially expressed at 6 and 12 h post-infection, respectively. The validity of the transcriptome results of eleven representative genes was verified by quantitative real-time PCR (qRT-PCR) analysis. A comparison with the transcriptome profiling of zebrafish skin to A. hydrophila with regards to the mucosal immune responses revealed similarities in the complement system, chemokines, heat shock proteins and the acute-phase response. GO and KEGG enrichment pathway analyses displayed the significant immune responses included TLR, MAPK, JAK-STAT, phagosome and three infection-related pathways (ie., Salmonella, Vibrio cholerae and pathogenic Escherichia coli) in skin. To our knowledge, this study is the first to describe the transcriptome analysis of C. auratus skin during A. hydrophila infection. The outcome of this study contributed to the understanding of the mucosal defense mechanisms in cyprinid species.
Collapse
Affiliation(s)
- Ruixia Wang
- College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Xiucai Hu
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, China
| | - Aijun Lü
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, China.
| | - Rongrong Liu
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, China
| | - Jingfeng Sun
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, China
| | - Yeong Yik Sung
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, China; Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Yajiao Song
- College of Fisheries, Henan Normal University, Xinxiang, 453007, China; Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, China
| |
Collapse
|
41
|
Zhao Y, Liu X, Sato H, Zhang Q, Li A, Zhang J. RNA-seq analysis of local tissue of Carassius auratus gibelio with pharyngeal myxobolosis: Insights into the pharyngeal mucosal immune response in a fish-parasite dialogue. FISH & SHELLFISH IMMUNOLOGY 2019; 94:99-112. [PMID: 31476388 DOI: 10.1016/j.fsi.2019.08.076] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 06/10/2023]
Abstract
The lack of practical control measures for pharyngeal myxobolosis is becoming an important limiting factor for the sustainable development of the gibel carp (Carassius auratus gibelio) culture industry in China. Myxobolus honghuensis has been identified as the causative agent of this pandemic disease, which exclusively infects the pharynx of gibel carp, a potential important mucosal lymphoid-associated tissue (MLAT). Myxozoa generally initiate invasion through the mucosal tissues of fish, where some of them also complete their sporogonial stages. However, the pharynx-associated immune responses of teleost against myxosporeans infection remain unknown. Here, a de novo transcriptome assembly of the pharynx of gibel carp naturally infected with M. honghuensis was performed for the first time, using RNA-seq. Comparative analysis of severely infected and mildly infected pharyngeal tissues (SI group and MI group) from the same fish individuals and control pharyngeal tissues (C group) from the uninfected fish was carried out to investigate the potential mucosal immune function of the fish pharynx, and characterize the panoramic picture of pharynx local mucosal immune responses of gibel carp against the M. honghuensis infection. A total of 242,341 unigenes were obtained and pairwise comparison resulted in 13,009 differentially-expressed genes (DEGs) in the SI/C group comparison, 6014 DEGs in the MI/C group comparison, and 9031 DEGs in the SI/MI group comparison. Comprehensive analysis showed that M. honghuensis infection elicited a significant parasite load-dependent alteration of the expression of numerous innate and adaptive immune-related genes in the local lesion tissue. Innate immune molecules, including mucins, toll-like receptors, C-type lectin, serum amyloid A, cathepsins and complement components were significantly up-regulated in the SI group compared with the C group. Up-regulation of genes involved in apoptosis signaling pathway and the IFN-mediated immune system were found in the SI group, suggesting these two pathways played a crucial role in innate immune response to M. honghuensis infection. Up-regulation of chemokines and chemokine receptors and the induction of the leukocyte trans-endothelial migration pathways in the severely and mildly infected pharynx suggested that many leucocytes were recruited to the local infected sites to mount a strong mucosal immune responses against the myxosporean infection. Up-regulation of CD3D, CD22, CD276, IL4/13A, GATA3, arginase 2, IgM, IgT and pIgR transcripts provided strong evidences for the presence of T/B cells and specific mucosal immune responses at local sites with M. honghuensis infection. Our results firstly demonstrated the mucosal function of the teleost pharynx and provided evidences of intensive local immune defense responses against this mucosa-infecting myxosporean in the gibel carp pharynx. Pharyngeal myxobolosis was shaped by a prevailing anti-inflammatory response pattern during the advanced infection stages. Further understanding of the functional roles of fish immune molecules involved in the initial invasion and/or final sporogony site may facilitate future development of control strategies for this myxobolosis.
Collapse
Affiliation(s)
- Yuanli Zhao
- Key Laboratory of Aquaculture Diseases Control, Ministry of Agriculture and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiuhua Liu
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Hiroshi Sato
- Laboratory of Parasitology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Qianqian Zhang
- Key Laboratory of Aquaculture Diseases Control, Ministry of Agriculture and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Aihua Li
- Key Laboratory of Aquaculture Diseases Control, Ministry of Agriculture and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jinyong Zhang
- Key Laboratory of Aquaculture Diseases Control, Ministry of Agriculture and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China; Laboratory of Parasitology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan.
| |
Collapse
|
42
|
Maha IF, Xie X, Zhou S, Yu Y, Liu X, Zahid A, Lei Y, Ma R, Yin F, Qian D. Skin metabolome reveals immune responses in yellow drum Nibea albiflora to Cryptocaryon irritans infection. FISH & SHELLFISH IMMUNOLOGY 2019; 94:661-674. [PMID: 31521785 DOI: 10.1016/j.fsi.2019.09.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/28/2019] [Accepted: 09/12/2019] [Indexed: 06/10/2023]
Abstract
The yellow drum Nibea albiflora is less susceptible to Cryptocaryon irritans infection than is the case with other marine fishes such as Larimichthys crocea, Lateolabrax japonicus, and Pagrus major. To investigate further their resistance mechanism, we infected the N. albiflora with the C. irritans at a median lethal concentration of 2050 theronts/g fish. The skins of the infected and the uninfected fishes were sampled at 24 h and 72 h followed by an extensive analysis of metabolism. The study results revealed that there were 2694 potential metabolites. At 24 h post-infection, 12 metabolites were up-regulated and 17 were down-regulated whereas at 72 h post-infection, 22 metabolites were up-regulated and 26 were down-regulated. Pathway enrichment analysis shows that the differential enriched pathways were higher at 24 h with 22 categories and 58 subcategories (49 up, 9 down) than at 72 h whereby the differential enriched pathways were 6 categories and 8 subcategories (4 up, 4 down). In addition, the principal component analysis (PCA) plot shows that at 24 h the metabolites composition of infected group were separately clustered to uninfected group while at 72 h the metabolites composition in infected group were much closer to uninfected group. This indicated that C. irritans caused strong metabolic stress on the N. albiflora at 24 h and restoration of the dysregulated metabolic state took place at 72 h of infection. Also, at 72 h post infection a total of 17 compounds were identified as potential biomarkers. Furthermore, out of 2694 primary metabolites detected, 23 metabolites could be clearly identified and semi quantified with a known identification number and assigned into 66 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Most of the enriched KEGG pathways were mainly from metabolic pathway classes, including the metabolic pathway, biosynthesis of secondary metabolites, taurine and hypotaurine metabolism, purine metabolism, linoleic acid metabolism, phenylalanine, tyrosine and tryptophan biosynthesis. Others were glyoxylate and dicarboxylate metabolism, glutathione metabolism, and alanine, aspartate, and glutamate metabolism. Moreover, out of the identified metabolites, only 6 metabolites were statistically differentially expressed, namely, L -glutamate (up-regulated) at 24 h was important for energy and precursor for other glutathiones and instruments of preventing oxidative injury; 15-hydroxy- eicosatetraenoic acid (15-HETE), (S)-(-)-2-Hydroxyisocaproic acid, and adenine (up-regulated) at 72 h were important for anti-inflammatory and immune responses during infection; others were delta-valerolactam and betaine which were down-regulated compared to uninfected group at 72 h, might be related to immure responses including stimulation of immune system such as production of antibodies. Our results therefore further advance our understanding on the immunological regulation of N. albiflora during immune response against infections as they indicated a strong relationship between skin metabolome and C. irritans infection.
Collapse
Affiliation(s)
- Ivon F Maha
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Collaborative Innovation Centre for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, 818 Fenghua Road, Ningbo, 315211, PR China; School of Marine Sciences, Ningbo University, 169 South Qixing Road, Ningbo, 315832, PR China
| | - Xiao Xie
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Collaborative Innovation Centre for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, 818 Fenghua Road, Ningbo, 315211, PR China; School of Marine Sciences, Ningbo University, 169 South Qixing Road, Ningbo, 315832, PR China
| | - Suming Zhou
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Collaborative Innovation Centre for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, 818 Fenghua Road, Ningbo, 315211, PR China; School of Marine Sciences, Ningbo University, 169 South Qixing Road, Ningbo, 315832, PR China
| | - Youbin Yu
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Collaborative Innovation Centre for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, 818 Fenghua Road, Ningbo, 315211, PR China; School of Marine Sciences, Ningbo University, 169 South Qixing Road, Ningbo, 315832, PR China
| | - Xiao Liu
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Collaborative Innovation Centre for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, 818 Fenghua Road, Ningbo, 315211, PR China; School of Marine Sciences, Ningbo University, 169 South Qixing Road, Ningbo, 315832, PR China
| | - Aysha Zahid
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Collaborative Innovation Centre for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, 818 Fenghua Road, Ningbo, 315211, PR China; School of Marine Sciences, Ningbo University, 169 South Qixing Road, Ningbo, 315832, PR China
| | - Yuhua Lei
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Collaborative Innovation Centre for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, 818 Fenghua Road, Ningbo, 315211, PR China; School of Marine Sciences, Ningbo University, 169 South Qixing Road, Ningbo, 315832, PR China
| | - Rongrong Ma
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Collaborative Innovation Centre for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, 818 Fenghua Road, Ningbo, 315211, PR China; School of Marine Sciences, Ningbo University, 169 South Qixing Road, Ningbo, 315832, PR China
| | - Fei Yin
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Collaborative Innovation Centre for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, 818 Fenghua Road, Ningbo, 315211, PR China; School of Marine Sciences, Ningbo University, 169 South Qixing Road, Ningbo, 315832, PR China.
| | - Dong Qian
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Collaborative Innovation Centre for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, 818 Fenghua Road, Ningbo, 315211, PR China; School of Marine Sciences, Ningbo University, 169 South Qixing Road, Ningbo, 315832, PR China.
| |
Collapse
|
43
|
Wu XM, Cao L, Hu YW, Chang MX. Transcriptomic characterization of adult zebrafish infected with Streptococcus agalactiae. FISH & SHELLFISH IMMUNOLOGY 2019; 94:355-372. [PMID: 31533079 DOI: 10.1016/j.fsi.2019.09.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/12/2019] [Accepted: 09/15/2019] [Indexed: 06/10/2023]
Abstract
Streptococcus agalactiae is a major aquaculture pathogen infecting various saltwater and freshwater fish. To better understand the mechanism of the immune responses to S. agalactiae in wildtype zebrafish, the transcriptomic profiles of two organs containing mucosal-associated lymphoid tissues from S. agalactiae-infected and non-infected groups were obtained using RNA-seq techniques. In the intestines, 6735 and 12908 differently expressed genes (DEGs) were identified at 24 hpi and 48 hpi, respectively. Among 66 and 116 significantly enriched pathways, 15 and 21 pathways were involved in immune system or signal transduction at 24 hpi and 48 hpi, respectively. A number of genes involved in Toll-like receptor signaling pathway, RIG-I-like receptor signaling pathway, NOD-like receptor signaling pathway, T cell receptor signaling pathway, B cell receptor signaling pathway, Antigen processing and presentation, NF-kappa B signaling pathway and PI3K-Akt signaling pathway were significantly downregulated. In the skins, 3113 and 4467 DEGs were identified at 24 hpi and 48 hpi, respectively. Among 24 and 56 significantly enriched pathways, 4 and 13 pathways were involved in immune system or signal transduction at 24 hpi and 48 hpi, respectively. More immune-related signaling pathways including Leukocyte transendothelial migration, Cytokine-cytokine receptor interaction, PI3K-Akt signaling pathway, IL-17 signaling pathway, MAPK signaling pathway, TNF signaling pathway, Complement and coagulation cascades, Hematopoietic cell lineage and Jak-STAT signaling pathway were differently enriched for upregulated DEGs at 48 hpi, which were completely different from that in the intestines. Furthmore, comparative transcriptome analysis revealed that the downregulated 1618 genes and upregulated 1622 genes existed both at 24 hpi and 48 hpi for the intestine samples. In the skins, the downregulated 672 genes and upregulated 428 genes existed both at 24 hpi and 48 hpi. Three pathways related to immune processes were significantly enriched for downregulated DEGs both in the intestines and skins collected at 24 hpi and 48 hpi, which included Antigen processing and presentation, Intestinal immune network for IgA production and Hematopoietic cell lineage. Interaction network analysis of DEGs identified the main DEGs in the sub-network of complement and coagulation cascades both in the intestines and skins. Twenty of DEGs involved in complement and coagulation cascades were further validated by Real-time quantitative PCR. Altogether, the results obtained in this study will provide insight into the immune response of zebrafish against S. agalactiae XQ-1 infection in fatal conditions, and reveal the discrepant expression pattern of complement and coagulation cascades in the intestines and skins.
Collapse
Affiliation(s)
- Xiao Man Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, China; University of Chinese Academy of Sciences, Beijing, China
| | - Lu Cao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yi Wei Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, China; University of Chinese Academy of Sciences, Beijing, China
| | - Ming Xian Chang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, China; Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan, Hubei Province, China; The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
44
|
Jiang B, Du JJ, Li YW, Ma P, Hu YZ, Li AX. Transcriptome analysis provides insights into molecular immune mechanisms of rabbitfish, Siganus oramin against Cryptocaryon irritans infection. FISH & SHELLFISH IMMUNOLOGY 2019; 88:111-116. [PMID: 30797068 DOI: 10.1016/j.fsi.2019.02.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 12/18/2018] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
The rabbitfish Siganus oramin is resistant to the ciliate parasite Cryptocaryon irritans. L-amino acid oxidase (LAAO) protein from rabbitfish can kill C. irritans in vitro, however, other immune defence mechanisms against C. irritans remains unknown. Here, we generated transcriptomes of rabbitfish skin at 12 h post infection (PI) by C. irritans. The transcriptomes contained 238, 504, 124 clean reads were obtained and then assembled into 258,869 unigenes with an average length of 621 bp and an N50 of 833 bp. Among them, we obtained 418 differentially expressed genes (DEGs) in the skin of rabbitfish under C. irritans infection and control conditions, including 336 significantly up-regulated genes and 82 significantly down-regulated genes. Seven immune-related categories with 32 differentially expressed immune genes were obtained using Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. DEGs included innate immune molecules, such as LAAO, antimicrobial peptide, lysozyme g, as well as complement components, chemokines and chemokine receptors, NOD-like receptor/Toll-like receptor signaling pathway molecules, antigen processing and T/B cell activation and proliferation molecules. We further validated the expression results of nine immune-related DEGs using quantitative real-time PCR. This study provides new insights into the early immune response of a host that is resistant to C. irritans.
Collapse
Affiliation(s)
- Biao Jiang
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Lab for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong Province, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, Shandong Province, PR China
| | - Jia-Jia Du
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Lab for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong Province, PR China
| | - Yan-Wei Li
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Pan Ma
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Lab for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong Province, PR China
| | - Ya-Zhou Hu
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Lab for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong Province, PR China
| | - An-Xing Li
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Lab for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong Province, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, Shandong Province, PR China.
| |
Collapse
|
45
|
Syahputra K, Kania PW, Al-Jubury A, Jafaar RM, Dirks RP, Buchmann K. Transcriptomic analysis of immunity in rainbow trout (Oncorhynchus mykiss) gills infected by Ichthyophthirius multifiliis. FISH & SHELLFISH IMMUNOLOGY 2019; 86:486-496. [PMID: 30513380 DOI: 10.1016/j.fsi.2018.11.075] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 11/22/2018] [Accepted: 11/30/2018] [Indexed: 06/09/2023]
Abstract
The parasite Ichthyophthirius multifiliis infecting skin, fins and gills of a wide range of freshwater fish species, including rainbow trout, is known to induce a protective immune response in the host. Although a number of studies have reported activation of several immune genes in infected fish host, the immune response picture is still considered incomplete. In order to address this issue, a comparative transcriptomic analysis was performed on infected versus uninfected rainbow trout gills and it showed that a total of 3352 (7.2%) out of 46,585 identified gene sequences were significantly regulated after parasite infection. Of differentially expressed gene sequences, 1796 genes were up-regulated and 1556 genes were down-regulated. These were classified into 61 Gene Ontology (GO) terms and mapped to 282 reference canonical pathways in the Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Infection of I. multifiliis induced a clear differential expression of immune genes, related to both innate and adaptive immunity. A total of 268 (6.86%) regulated gene sequences were known to take part in 16 immune-related pathways. These involved pathways related to the innate immunity such as the Chemokine signaling pathway, Platelet activation, Toll-like receptor signaling pathway, NOD-like receptor signaling pathway, and Leukocyte transendothelial migration. Elevated transcription of genes encoding the TLR 8 gene and chemokines (CCL4, CCL19, CCL28, CXCL8, CXCL11, CXCL13, CXCL14) was recorded indicating their roles in recognition of I. multifiliis and subsequent induction of the inflammatory response, respectively. A number of upregulated genes in infected gills were associated with antigen processing/presentation and T and B cell receptor signaling (including B cell marker CD22 involved in B cell development). Overall the analysis supports the notion that I. multifiliis induces a massive and varied innate response upon which a range of adaptive immune responses are established which may contribute to the long lasting protection of immunized rainbow trout.
Collapse
Affiliation(s)
- Khairul Syahputra
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark.
| | - Per W Kania
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Azmi Al-Jubury
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Rzgar M Jafaar
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Ron P Dirks
- Future Genomics Technologies B.V., Leiden, the Netherlands
| | - Kurt Buchmann
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
46
|
Li Y, Xu W, Li X, Jiang H, She Q, Han Z, Li X, Chen Q. Comparative transcriptome analysis of Chinese grass shrimp (Palaemonetes sinensis) infected with isopod parasite Tachaea chinensis. FISH & SHELLFISH IMMUNOLOGY 2018; 82:153-161. [PMID: 30107262 DOI: 10.1016/j.fsi.2018.08.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/31/2018] [Accepted: 08/07/2018] [Indexed: 06/08/2023]
Abstract
Parasitic isopods negatively affect reproduction and ingestion in several commercially important crustaceans; however, little is known about such parasite-host interactions. Therefore, we performed high-throughput sequencing of cDNA samples from Chinese grass shrimp Palaemonetes sinensis infected by parasitic isopod Tachaea chinensis and a non-infected control. We randomly assembled 46,858,882 and 41,110,746 clean reads from the parasitized and control groups, respectively. From these, we identified 1323 differentially expressed genes (DEGs) (p < 0.05), of which 702 were up-regulated and 621 were down-regulated after T. chinensis infection, respectively. The up-regulated genes were enriched in 'ribosome', 'purine metabolism', and 'pyrimidine metabolism' signalling pathways, suggesting altered host nucleotide metabolite levels, possibly through the action of intracellular parasites transported by T. chinensis. Additionally, 14 representative DEGs involved in reproduction were down-regulated after parasitisation, indicating T. chinensis causes cascading effects in P. sinensis. Overall, parasitisation appeared to affect host immune response, metabolism, and gonadal development. In conclusion, the present study improves our understanding on the molecular mechanisms underlying interactions between isopod parasites and their crustacean hosts.
Collapse
Affiliation(s)
- Yingdong Li
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Dongling Road 120, Shenyang 110866, China.
| | - Weibin Xu
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Dongling Road 120, Shenyang 110866, China
| | - Xin Li
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Dongling Road 120, Shenyang 110866, China
| | - Hongbo Jiang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Dongling Road 120, Shenyang 110866, China
| | - Qiuxin She
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Dongling Road 120, Shenyang 110866, China
| | - Zhibin Han
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Dongling Road 120, Shenyang 110866, China
| | - Xiaodong Li
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Dongling Road 120, Shenyang 110866, China
| | - Qijun Chen
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Dongling Road 120, Shenyang 110866, China
| |
Collapse
|
47
|
Immunity, feed, and husbandry in fish health management of cultured Epinephelus fuscoguttatus with reference to Epinephelus coioides. AQUACULTURE AND FISHERIES 2018. [DOI: 10.1016/j.aaf.2018.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
48
|
Sudhagar A, Kumar G, El-Matbouli M. Transcriptome Analysis Based on RNA-Seq in Understanding Pathogenic Mechanisms of Diseases and the Immune System of Fish: A Comprehensive Review. Int J Mol Sci 2018; 19:ijms19010245. [PMID: 29342931 PMCID: PMC5796193 DOI: 10.3390/ijms19010245] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 01/08/2018] [Accepted: 01/10/2018] [Indexed: 12/12/2022] Open
Abstract
In recent years, with the advent of next-generation sequencing along with the development of various bioinformatics tools, RNA sequencing (RNA-Seq)-based transcriptome analysis has become much more affordable in the field of biological research. This technique has even opened up avenues to explore the transcriptome of non-model organisms for which a reference genome is not available. This has made fish health researchers march towards this technology to understand pathogenic processes and immune reactions in fish during the event of infection. Recent studies using this technology have altered and updated the previous understanding of many diseases in fish. RNA-Seq has been employed in the understanding of fish pathogens like bacteria, virus, parasites, and oomycetes. Also, it has been helpful in unraveling the immune mechanisms in fish. Additionally, RNA-Seq technology has made its way for future works, such as genetic linkage mapping, quantitative trait analysis, disease-resistant strain or broodstock selection, and the development of effective vaccines and therapies. Until now, there are no reviews that comprehensively summarize the studies which made use of RNA-Seq to explore the mechanisms of infection of pathogens and the defense strategies of fish hosts. This review aims to summarize the contemporary understanding and findings with regard to infectious pathogens and the immune system of fish that have been achieved through RNA-Seq technology.
Collapse
Affiliation(s)
- Arun Sudhagar
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna 1210, Austria.
- Central Institute of Fisheries Education, Rohtak Centre, Haryana 124411, India.
| | - Gokhlesh Kumar
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna 1210, Austria.
| | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna 1210, Austria.
| |
Collapse
|
49
|
Yin F, Qian D. Transcriptomic analysis reveals the key immune-related signalling pathways of Sebastiscus marmoratus in response to infection with the parasitic ciliate Cryptocaryon irritans. Parasit Vectors 2017; 10:576. [PMID: 29157267 PMCID: PMC5697091 DOI: 10.1186/s13071-017-2508-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 10/30/2017] [Indexed: 11/12/2022] Open
Abstract
Background False kelpfish (Sebastiscus marmoratus) is one of the target species in artificial breeding in China, and is susceptible to infection by Cryptocaryon irritans, which is an obligate parasitic ciliate that lives in the epithelium of the fish gills, skin and fins. Here, we sought to understand the mechanisms of molecular immunity of S. marmoratus against C. irritans infection. Methods We carried out an extensive analysis of the transcriptome of S. marmoratus immune-related tissues. A paired-end library was constructed from the cDNA synthesized using a Genomic Sample Prep Kit. Five normalized cDNA libraries were constructed using RNA from the control group and the four groups of C. irritans-infected fish. The libraries were sequenced on an Illumina Mi-Seq platform, and functional annotation of the transcriptome was performed using bioinformatics software. Results The data produced a total of 149,983,397 clean reads from five cDNA libraries constructed from S. marmoratus immune-related tissues. A total of 33,291 unigenes were assembled with an average length of 1768 bp. In eggNOG (Evolutionary Genealogy of Genes: non-supervised orthologous groups) categories, 333 unigenes (0.94%) were assigned to defense mechanisms. In the immune system process sub-categories of gene ontology (GO) enrichment analysis, with the passage of time post-infection, the number of differentially expressed genes (DEGs) was reduced from 24 h to 48 h but then increased from 72 h to 96 h. Specifically, the immune-related differentially expressed genes (IRDEGs), which belong to the KEGG (Kyoto encyclopedia of genes and genomes) pathways, such as the complement and coagulation cascades, chemokine signalling pathways and toll-like receptor signalling pathways were mainly observed at 24 h post-infection. Conclusions Infection with C. irritans resulted in a large number of DEGs in the immune-related tissues of S. marmoratus. The rapid and significant response of the S. marmoratus immune signalling pathways following C. irritans infection may be associated with their involvement in the immune process. Electronic supplementary material The online version of this article (10.1186/s13071-017-2508-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fei Yin
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, China.,Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, 315211, China
| | - Dong Qian
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, China. .,Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
50
|
Jiang B, Li YW, Hu YZ, Luo HL, Li AX. Characterization and expression analysis of six interleukin-17 receptor genes in grouper (Epinephelus coioides) after Cryptocaryon irritans infection. FISH & SHELLFISH IMMUNOLOGY 2017; 69:46-51. [PMID: 28811226 DOI: 10.1016/j.fsi.2017.08.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/05/2017] [Accepted: 08/11/2017] [Indexed: 06/07/2023]
Abstract
Interleukin-17 receptors (IL17Rs) mediate the activation of several downstream signal pathways to induce inflammatory response and contribute to the pathology of many autoimmune diseases. In this study, six IL17Rs (IL17RA1, RA2, RB, RC, RD and RE) were cloned and characterized from Epinephelus coioides, an orange-spotted grouper. Multiple sequence alignment and structural analysis revealed that all members of IL17Rs were low in sequence identity with each other. But their structures were conservative in grouper, which contain signal peptide, extracellular FNIII domain (IL17RA1/RA2/RB) or IL-17_R_N domain (IL17RC/RD/RE), transmembrane domain and SEFIR domain in their intracellular region. The analysis of tissue distribution showed these six genes were ubiquitously and differentially expressed in all major types of tissues. What's more, it is interesting to find their high expression in immune tissues (liver, gill, skin and thymus). IL17RA1 and IL17RA2 were significantly down-regulated at all time-points in gill and spleen after Cryptocaryon irritans infection, however, there was no significant change in other grouper IL17Rs. It suggests that the C. irritans may escape from the host immunity or the host prevents serious inflammation by inhibiting the expression of ILl7Rs.
Collapse
Affiliation(s)
- Biao Jiang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong Province, PR China
| | - Yan-Wei Li
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China
| | - Ya-Zhou Hu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong Province, PR China
| | - Heng-Li Luo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong Province, PR China
| | - An-Xing Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong Province, PR China.
| |
Collapse
|