1
|
Shen Z, Qi Y, Yu W, Li S, Liu Z, Li L, Zhu M, Gong C, Hu X. Grass Carp Reovirus (GCRV) infection activates the PERK-eIF2α pathway to promote the viral replication. FISH & SHELLFISH IMMUNOLOGY 2024; 155:110020. [PMID: 39528019 DOI: 10.1016/j.fsi.2024.110020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/16/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Grass carp reovirus (GCRV) belongs to the genus Aquareovirus and is responsible for causing serious hemorrhagic disease in grass carp (Ctenopharyngodon idella), characterized by high mortality rates. Numerous animal viruses have been shown to activate endoplasmic reticulum stress (ERS). However, the potential for GCRV infection to induce ERS and its implications for viral infection remain unclear. In this study, we demonstrated that GCRV infection induces ERS, activates the protein kinase R-like ER kinase (PERK) pathway, and inhibits both the inositol-requiring enzyme 1 (IRE1) and activating transcription factor 6 (ATF6) pathways within the unfolded protein response (UPR). Additionally, we modulated the levels of ERS and UPR pathways in CIK cells through drug treatment and small interfering RNAs (siRNAs). Our findings revealed that the onset of ERS accelerated GCRV infection, while the ATF6 and IRE1 pathways within the UPR negatively regulated GCRV infection. Conversely, the PERK pathway facilitated GCRV infection. Furthermore, we showed that GCRV infection induced oxidative stress, with the production of reactive oxygen species (ROS) being positively regulated by the PERK pathway and the downstream gene endoplasmic reticulum oxidoreductase-1α (ERO1α). Notably, ROS promoted GCRV infection. Collectively, our findings indicate that GCRV infection activates ERS, which in turn promotes viral infection through the PERK-ERO1α-ROS signaling pathway. Thus, the PERK pathway may serve as a novel antiviral target for the prevention of GCRV infection.
Collapse
Affiliation(s)
- Zeen Shen
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Yanling Qi
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Wenbin Yu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Song Li
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Zhuo Liu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Liuyang Li
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Min Zhu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Chengliang Gong
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China; Agricultural Biotechnology Research Institute, Agricultural Biotechnology, and Ecological Research Institute, Soochow University, Suzhou, 215123, China.
| | - Xiaolong Hu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China; Agricultural Biotechnology Research Institute, Agricultural Biotechnology, and Ecological Research Institute, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
2
|
Rasal KD, Kumar PV, Risha S, Asgolkar P, Harshavarthini M, Acharya A, Shinde S, Dhere S, Rasal A, Sonwane A, Brahmane M, Sundaray JK, Nagpure N. Genetic improvement and genomic resources of important cyprinid species: status and future perspectives for sustainable production. Front Genet 2024; 15:1398084. [PMID: 39364006 PMCID: PMC11446788 DOI: 10.3389/fgene.2024.1398084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 09/02/2024] [Indexed: 10/05/2024] Open
Abstract
Cyprinid species are the most cultured aquatic species around the world in terms of quantity and total value. They account for 25% of global aquaculture production and significantly contribute to fulfilling the demand for fish food. The aquaculture of these species is facing severe concerns in terms of seed quality, rising feed costs, disease outbreaks, introgression of exotic species, environmental impacts, and anthropogenic activities. Numerous researchers have explored biological issues and potential methods to enhance cyprinid aquaculture. Selective breeding is extensively employed in cyprinid species to enhance specific traits like growth and disease resistance. In this context, we have discussed the efforts made to improve important cyprinid aquaculture practices through genetic and genomic approaches. The recent advances in DNA sequencing technologies and genomic tools have revolutionized the understanding of biological research. The generation of a complete genome and other genomic resources in cyprinid species has significantly strengthened molecular-level investigations into disease resistance, growth, reproduction, and adaptation to changing environments. We conducted a comprehensive review of genomic research in important cyprinid species, encompassing genome, transcriptome, proteome, metagenome, epigenome, etc. This review reveals that considerable data has been generated for cyprinid species. However, the seamless integration of this valuable data into genetic selection programs has yet to be achieved. In the upcoming years, genomic techniques, gene transfer, genome editing tools are expected to bring a paradigm shift in sustainable cyprinid aquaculture production. The comprehensive information presented here will offer insights for the cyprinid aquaculture research community.
Collapse
Affiliation(s)
- Kiran D Rasal
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | | | - Shasti Risha
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - Prachi Asgolkar
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - M Harshavarthini
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - Arpit Acharya
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - Siba Shinde
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - Siyag Dhere
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - Avinash Rasal
- ICAR - Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - Arvind Sonwane
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - Manoj Brahmane
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - Jitendra K Sundaray
- ICAR - Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - Naresh Nagpure
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| |
Collapse
|
3
|
Zhu M, Sumana SL, Abdullateef MM, Falayi OC, Shui Y, Zhang C, Zhu J, Su S. CRISPR/Cas9 Technology for Enhancing Desirable Traits of Fish Species in Aquaculture. Int J Mol Sci 2024; 25:9299. [PMID: 39273247 PMCID: PMC11395652 DOI: 10.3390/ijms25179299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/18/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
Aquaculture, the world's fastest-growing food production sector, is critical for addressing food security concerns because of its potential to deliver high-quality, nutrient-rich supplies by 2050. This review assesses the effectiveness of CRISPR/Cas9 genome editing technology in enhancing desirable traits in fish species, including growth rates, muscle quality, disease resistance, pigmentation, and more. It also focuses on the potential effectiveness of the technology in allowing precise and targeted modifications of fish DNA to improve desirable characteristics. Many studies have reported successful applications of CRISPR/Cas9, such as knocking out reproductive genes to control reproduction and sex determination, enhancing feed conversion efficiency, and reducing off-target effects. Additionally, this technology has contributed to environmental sustainability by reducing nitrogen-rich waste and improving the nutritional composition of fish. However, the acceptance of CRISPR/Cas9 modified fish by the public and consumers is hindered by concerns regarding public perception, potential ecological impacts, and regulatory frameworks. To gain public approval and consumer confidence, clear communication about the editing process, as well as data on the safety and environmental considerations of genetically modified fish, are essential. This review paper discusses these challenges, provides possible solutions, and recommends future research on the integration of CRISPR/Cas9 into sustainable aquaculture practices, focusing on the responsible management of genetically modified fish to enable the creation of growth and disease-resistant strains. In conclusion, this review highlights the transformative potential of CRISPR/Cas9 technology in improving fish traits, while also considering the challenges and ethical considerations associated with sustainable and responsible practices in aquaculture.
Collapse
Affiliation(s)
- Minli Zhu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Sahr Lamin Sumana
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | | | | | - Yan Shui
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Chengfeng Zhang
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Jian Zhu
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Shengyan Su
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| |
Collapse
|
4
|
Miklau M, Burn SJ, Eckerstorfer M, Dolezel M, Greiter A, Heissenberger A, Hörtenhuber S, Zollitsch W, Hagen K. Horizon scanning of potential environmental applications of terrestrial animals, fish, algae and microorganisms produced by genetic modification, including the use of new genomic techniques. Front Genome Ed 2024; 6:1376927. [PMID: 38938511 PMCID: PMC11208717 DOI: 10.3389/fgeed.2024.1376927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/01/2024] [Indexed: 06/29/2024] Open
Abstract
With scientific progress and the development of new genomic techniques (NGTs), the spectrum of organisms modified for various purposes is rapidly expanding and includes a wide range of taxonomic groups. An improved understanding of which newly developed products may be introduced into the market and released into the environment in the near and more distant future is of particular interest for policymakers, regulatory authorities, and risk assessors. To address this information need, we conducted a horizon scanning (HS) of potential environmental applications in four groups of organisms: terrestrial animals (excluding insects and applications with gene drives), fish, algae and microorganisms. We applied a formal scoping review methodology comprising a structured search of the scientific literature followed by eligibility screening, complemented by a survey of grey literature, and regulatory websites and databases. In all four groups of organisms we identified a broad range of potential applications in stages of basic as well as advanced research, and a limited number of applications which are on, or ready to be placed on, the market. Research on GM animals including fish is focused on farmed animals and primarily targets traits which increase performance, influence reproduction, or convey resistance against diseases. GM algae identified in the HS were all unicellular, with more than half of the articles concerning biofuel production. GM algae applications for use in the environment include biocontrol and bioremediation, which are also the main applications identified for GM microorganisms. From a risk assessor's perspective these potential applications entail a multitude of possible pathways to harm. The current limited level of experience and limited amount of available scientific information could constitute a significant challenge in the near future, for which risk assessors and competent authorities urgently need to prepare.
Collapse
Affiliation(s)
- Marianne Miklau
- Department of Landuse and Biosafety, Environment Agency Austria, Vienna, Austria
| | - Sarah-Joe Burn
- Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Michael Eckerstorfer
- Department of Landuse and Biosafety, Environment Agency Austria, Vienna, Austria
| | - Marion Dolezel
- Department of Landuse and Biosafety, Environment Agency Austria, Vienna, Austria
| | - Anita Greiter
- Department of Landuse and Biosafety, Environment Agency Austria, Vienna, Austria
| | | | - Stefan Hörtenhuber
- Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Werner Zollitsch
- Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Kristin Hagen
- Federal Agency for Nature Conservation, Division Assessment Synthetic Biology/Enforcement Genetic Engineering Act, Bonn, Germany
| |
Collapse
|
5
|
Orlova SY, Ruzina MN, Emelianova OR, Sergeev AA, Chikurova EA, Orlov AM, Mugue NS. In Search of a Target Gene for a Desirable Phenotype in Aquaculture: Genome Editing of Cyprinidae and Salmonidae Species. Genes (Basel) 2024; 15:726. [PMID: 38927661 PMCID: PMC11202958 DOI: 10.3390/genes15060726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Aquaculture supplies the world food market with a significant amount of valuable protein. Highly productive aquaculture fishes can be derived by utilizing genome-editing methods, and the main problem is to choose a target gene to obtain the desirable phenotype. This paper presents a review of the studies of genome editing for genes controlling body development, growth, pigmentation and sex determination in five key aquaculture Salmonidae and Cyprinidae species, such as rainbow trout (Onchorhynchus mykiss), Atlantic salmon (Salmo salar), common carp (Cyprinus carpio), goldfish (Carassius auratus), Gibel carp (Carassius gibelio) and the model fish zebrafish (Danio rerio). Among the genes studied, the most applicable for aquaculture are mstnba, pomc, and acvr2, the knockout of which leads to enhanced muscle growth; runx2b, mutants of which do not form bones in myoseptae; lepr, whose lack of function makes fish fast-growing; fads2, Δ6abc/5Mt, and Δ6bcMt, affecting the composition of fatty acids in fish meat; dnd mettl3, and wnt4a, mutants of which are sterile; and disease-susceptibility genes prmt7, gab3, gcJAM-A, and cxcr3.2. Schemes for obtaining common carp populations consisting of only large females are promising for use in aquaculture. The immobilized and uncolored zebrafish line is of interest for laboratory use.
Collapse
Affiliation(s)
- Svetlana Yu. Orlova
- Laboratory of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, 105187 Moscow, Russia; (S.Y.O.)
| | - Maria N. Ruzina
- Laboratory of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, 105187 Moscow, Russia; (S.Y.O.)
| | - Olga R. Emelianova
- Laboratory of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, 105187 Moscow, Russia; (S.Y.O.)
- Department of Biological Evolution, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Alexey A. Sergeev
- Laboratory of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, 105187 Moscow, Russia; (S.Y.O.)
| | - Evgeniya A. Chikurova
- Laboratory of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, 105187 Moscow, Russia; (S.Y.O.)
| | - Alexei M. Orlov
- Laboratory of Oceanic Ichthyofauna, Shirshov Institute of Oceanology, Russian Academy of Sciences, 117218 Moscow, Russia
- Laboratory of Behavior of Lower Vertebrates, Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 119071 Moscow, Russia
- Department of Ichthyology, Dagestan State University, 367000 Makhachkala, Russia
| | - Nikolai S. Mugue
- Laboratory of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, 105187 Moscow, Russia; (S.Y.O.)
- Laboratory of Genome Evolution and Speciation, Institute of Developmental Biology Russian Academy of Sciences, 117808 Moscow, Russia
| |
Collapse
|
6
|
Dolezel M, Lang A, Greiter A, Miklau M, Eckerstorfer M, Heissenberger A, Willée E, Züghart W. Challenges for the Post-Market Environmental Monitoring in the European Union Imposed by Novel Applications of Genetically Modified and Genome-Edited Organisms. BIOTECH 2024; 13:14. [PMID: 38804296 PMCID: PMC11130885 DOI: 10.3390/biotech13020014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024] Open
Abstract
Information on the state of the environment is important to achieve the objectives of the European Green Deal, including the EU's Biodiversity Strategy for 2030. The existing regulatory provisions for genetically modified organisms (GMOs) foresee an obligatory post-market environmental monitoring (PMEM) of potential adverse effects upon release into the environment. So far, GMO monitoring activities have focused on genetically modified crops. With the advent of new genomic techniques (NGT), novel GMO applications are being developed and may be released into a range of different, non-agricultural environments with potential implications for ecosystems and biodiversity. This challenges the current monitoring concepts and requires adaptation of existing monitoring programs to meet monitoring requirements. While the incorporation of existing biodiversity monitoring programs into GMO monitoring at the national level is important, additional monitoring activities will also be required. Using case examples, we highlight that monitoring requirements for novel GMO applications differ from those of GM crop plants previously authorized for commercial use in the European Union.
Collapse
Affiliation(s)
- Marion Dolezel
- Land Use & Biosafety Unit, Umweltbundesamt–Environment Agency Austria (EAA), Spittelauer Laende 5, 1090 Vienna, Austria; (A.G.); (M.M.); (M.E.); (A.H.)
| | - Andreas Lang
- Büro Lang, Hoernlehof, Gresgen 108, 79669 Zell im Wiesental, Germany;
- Research Group Environmental Geosciences, Department of Environmental Sciences, University of Basel, Bernoullistr. 30, 4056 Basel, Switzerland
| | - Anita Greiter
- Land Use & Biosafety Unit, Umweltbundesamt–Environment Agency Austria (EAA), Spittelauer Laende 5, 1090 Vienna, Austria; (A.G.); (M.M.); (M.E.); (A.H.)
| | - Marianne Miklau
- Land Use & Biosafety Unit, Umweltbundesamt–Environment Agency Austria (EAA), Spittelauer Laende 5, 1090 Vienna, Austria; (A.G.); (M.M.); (M.E.); (A.H.)
| | - Michael Eckerstorfer
- Land Use & Biosafety Unit, Umweltbundesamt–Environment Agency Austria (EAA), Spittelauer Laende 5, 1090 Vienna, Austria; (A.G.); (M.M.); (M.E.); (A.H.)
| | - Andreas Heissenberger
- Land Use & Biosafety Unit, Umweltbundesamt–Environment Agency Austria (EAA), Spittelauer Laende 5, 1090 Vienna, Austria; (A.G.); (M.M.); (M.E.); (A.H.)
| | - Eva Willée
- Division of Terrestrial Monitoring, Federal Agency for Nature Conservation (BfN), Konstantinstr. 110, 53179 Bonn, Germany (W.Z.)
| | - Wiebke Züghart
- Division of Terrestrial Monitoring, Federal Agency for Nature Conservation (BfN), Konstantinstr. 110, 53179 Bonn, Germany (W.Z.)
| |
Collapse
|
7
|
Puthumana J, Chandrababu A, Sarasan M, Joseph V, Singh ISB. Genetic improvement in edible fish: status, constraints, and prospects on CRISPR-based genome engineering. 3 Biotech 2024; 14:44. [PMID: 38249355 PMCID: PMC10796887 DOI: 10.1007/s13205-023-03891-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 12/17/2023] [Indexed: 01/23/2024] Open
Abstract
Conventional selective breeding in aquaculture has been effective in genetically enhancing economic traits like growth and disease resistance. However, its advances are restricted by heritability, the extended period required to produce a strain with desirable traits, and the necessity to target multiple characteristics simultaneously in the breeding programs. Genome editing tools like zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) are promising for faster genetic improvement in fishes. CRISPR/Cas9 technology is the least expensive, most precise, and well compatible with multiplexing of all genome editing approaches, making it a productive and highly targeted approach for developing customized fish strains with specified characteristics. As a result, the use of CRISPR/Cas9 technology in aquaculture is rapidly growing, with the main traits researched being reproduction and development, growth, pigmentation, disease resistance, trans-GFP utilization, and omega-3 metabolism. However, technological obstacles, such as off-target effects, ancestral genome duplication, and mosaicism in founder population, need to be addressed to achieve sustainable fish production. Furthermore, present regulatory and risk assessment frameworks are inadequate to address the technical hurdles of CRISPR/Cas9, even though public and regulatory approval is critical to commercializing novel technology products. In this review, we examine the potential of CRISPR/Cas9 technology for the genetic improvement of edible fish, the technical, ethical, and socio-economic challenges to using it in fish species, and its future scope for sustainable fish production.
Collapse
Affiliation(s)
- Jayesh Puthumana
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin, 16 Kerala India
| | - Aswathy Chandrababu
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin, 16 Kerala India
| | - Manomi Sarasan
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin, 16 Kerala India
| | - Valsamma Joseph
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin, 16 Kerala India
| | - I. S. Bright Singh
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin, 16 Kerala India
| |
Collapse
|
8
|
Kim C, Cnaani A, Kültz D. Removal of evolutionarily conserved functional MYC domains in a tilapia cell line using a vector-based CRISPR/Cas9 system. Sci Rep 2023; 13:12086. [PMID: 37495710 PMCID: PMC10371998 DOI: 10.1038/s41598-023-37928-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 06/29/2023] [Indexed: 07/28/2023] Open
Abstract
MYC transcription factors have critical roles in facilitating a variety of cellular functions that have been highly conserved among species during evolution. However, despite circumstantial evidence for an involvement of MYC in animal osmoregulation, mechanistic links between MYC function and osmoregulation are missing. Mozambique tilapia (Oreochromis mossambicus) represents an excellent model system to study these links because it is highly euryhaline and highly tolerant to osmotic (salinity) stress at both the whole organism and cellular levels of biological organization. Here, we utilize an O. mossambicus brain cell line and an optimized vector-based CRISPR/Cas9 system to functionally disrupt MYC in the tilapia genome and to establish causal links between MYC and cell functions, including cellular osmoregulation. A cell isolation and dilution strategy yielded polyclonal myca (a gene encoding MYC) knockout (ko) cell pools with low genetic variability and high gene editing efficiencies (as high as 98.2%). Subsequent isolation and dilution of cells from these pools produced a myca ko cell line harboring a 1-bp deletion that caused a frameshift mutation. This frameshift functionally inactivated the transcriptional regulatory and DNA-binding domains predicted by bioinformatics and structural analyses. Both the polyclonal and monoclonal myca ko cell lines were viable, propagated well in standard medium, and differed from wild-type cells in morphology. As such, they represent a new tool for causally linking myca to cellular osmoregulation and other cell functions.
Collapse
Affiliation(s)
- Chanhee Kim
- Department of Animal Sciences, University of California, Davis, CA, 95616, USA
| | - Avner Cnaani
- Department of Poultry and Aquaculture, Institute of Animal Sciences, Agricultural Research Organization, Volcani Center, 7528809, Rishon LeZion, Israel
| | - Dietmar Kültz
- Department of Animal Sciences, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
9
|
Douglas AJ, Todd LA, Katzenback BA. The amphibian invitrome: Past, present, and future contributions to our understanding of amphibian immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 142:104644. [PMID: 36708792 DOI: 10.1016/j.dci.2023.104644] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Many amphibian populations are declining worldwide, and infectious diseases are a leading cause. Given the eminent threat infectious diseases pose to amphibian populations, there is a need to understand the host-pathogen-environment interactions that govern amphibian susceptibility to disease and mortality events. However, using animals in research raises an ethical dilemma, which is magnified by the alarming rates at which many amphibian populations are declining. Thus, in vitro study systems such as cell lines represent valuable tools for furthering our understanding of amphibian immune systems. In this review, we curate a list of the amphibian cell lines established to date (the amphibian invitrome), highlight how research using amphibian cell lines has advanced our understanding of the amphibian immune system, anti-ranaviral defence mechanisms, and Batrachochytrium dendrobatidis replication in host cells, and offer our perspective on how future use of amphibian cell lines can advance the field of amphibian immunology.
Collapse
Affiliation(s)
- Alexander J Douglas
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Lauren A Todd
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Barbara A Katzenback
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.
| |
Collapse
|
10
|
Robinson NA, Robledo D, Sveen L, Daniels RR, Krasnov A, Coates A, Jin YH, Barrett LT, Lillehammer M, Kettunen AH, Phillips BL, Dempster T, Doeschl‐Wilson A, Samsing F, Difford G, Salisbury S, Gjerde B, Haugen J, Burgerhout E, Dagnachew BS, Kurian D, Fast MD, Rye M, Salazar M, Bron JE, Monaghan SJ, Jacq C, Birkett M, Browman HI, Skiftesvik AB, Fields DM, Selander E, Bui S, Sonesson A, Skugor S, Østbye TK, Houston RD. Applying genetic technologies to combat infectious diseases in aquaculture. REVIEWS IN AQUACULTURE 2023; 15:491-535. [PMID: 38504717 PMCID: PMC10946606 DOI: 10.1111/raq.12733] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/24/2022] [Accepted: 08/16/2022] [Indexed: 03/21/2024]
Abstract
Disease and parasitism cause major welfare, environmental and economic concerns for global aquaculture. In this review, we examine the status and potential of technologies that exploit genetic variation in host resistance to tackle this problem. We argue that there is an urgent need to improve understanding of the genetic mechanisms involved, leading to the development of tools that can be applied to boost host resistance and reduce the disease burden. We draw on two pressing global disease problems as case studies-sea lice infestations in salmonids and white spot syndrome in shrimp. We review how the latest genetic technologies can be capitalised upon to determine the mechanisms underlying inter- and intra-species variation in pathogen/parasite resistance, and how the derived knowledge could be applied to boost disease resistance using selective breeding, gene editing and/or with targeted feed treatments and vaccines. Gene editing brings novel opportunities, but also implementation and dissemination challenges, and necessitates new protocols to integrate the technology into aquaculture breeding programmes. There is also an ongoing need to minimise risks of disease agents evolving to overcome genetic improvements to host resistance, and insights from epidemiological and evolutionary models of pathogen infestation in wild and cultured host populations are explored. Ethical issues around the different approaches for achieving genetic resistance are discussed. Application of genetic technologies and approaches has potential to improve fundamental knowledge of mechanisms affecting genetic resistance and provide effective pathways for implementation that could lead to more resistant aquaculture stocks, transforming global aquaculture.
Collapse
Affiliation(s)
- Nicholas A. Robinson
- Nofima ASTromsøNorway
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
| | - Diego Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | | | - Rose Ruiz Daniels
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | | | - Andrew Coates
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
| | - Ye Hwa Jin
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | - Luke T. Barrett
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
- Institute of Marine Research, Matre Research StationMatredalNorway
| | | | | | - Ben L. Phillips
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
| | - Tim Dempster
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
| | - Andrea Doeschl‐Wilson
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | - Francisca Samsing
- Sydney School of Veterinary ScienceThe University of SydneyCamdenAustralia
| | | | - Sarah Salisbury
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | | | | | | | | | - Dominic Kurian
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | - Mark D. Fast
- Atlantic Veterinary CollegeThe University of Prince Edward IslandCharlottetownPrince Edward IslandCanada
| | | | | | - James E. Bron
- Institute of AquacultureUniversity of StirlingStirlingScotlandUK
| | - Sean J. Monaghan
- Institute of AquacultureUniversity of StirlingStirlingScotlandUK
| | - Celeste Jacq
- Blue Analytics, Kong Christian Frederiks Plass 3BergenNorway
| | | | - Howard I. Browman
- Institute of Marine Research, Austevoll Research Station, Ecosystem Acoustics GroupTromsøNorway
| | - Anne Berit Skiftesvik
- Institute of Marine Research, Austevoll Research Station, Ecosystem Acoustics GroupTromsøNorway
| | | | - Erik Selander
- Department of Marine SciencesUniversity of GothenburgGothenburgSweden
| | - Samantha Bui
- Institute of Marine Research, Matre Research StationMatredalNorway
| | | | | | | | | |
Collapse
|
11
|
Zhang Z, Wang J, Li J, Liu X, Liu L, Zhao C, Tao W, Wang D, Wei J. Establishment of an Integrated CRISPR/Cas9 Plasmid System for Simple and Efficient Genome Editing in Medaka In Vitro and In Vivo. BIOLOGY 2023; 12:biology12020336. [PMID: 36829610 PMCID: PMC9953409 DOI: 10.3390/biology12020336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023]
Abstract
Although CRISPR/Cas9 has been used in gene manipulation of several fish species in vivo, its application in fish cultured cells is still challenged and limited. In this study, we established an integrated CRISPR/Cas9 plasmid system and evaluated its efficiency of gene knock-out or knock-in at a specific site in medaka (Oryzias latipes) in vitro and in vivo. By using the enhanced green fluorescent protein reporter plasmid pGNtsf1, we demonstrate that pCas9-U6sgRNA driven by endogenous U6 promoter (pCas9-mU6sgRNA) mediated very high gene editing efficiency in medaka cultured cells, but not by exogenous U6 promoters. After optimizing the conditions, the gene editing efficiencies of eight sites targeting for four endogenous genes were calculated, and the highest was up to 94% with no detectable off-target. By one-cell embryo microinjection, pCas9-mU6sgRNA also mediated efficient gene knock-out in vivo. Furthermore, pCas9-mU6sgRNA efficiently mediated gene knock-in at a specific site in medaka cultured cells as well as embryos. Collectively, our study demonstrates that the genetic relationship of U6 promoter is critical to gene editing efficiency in medaka cultured cells, and a simple and efficient system for medaka genome editing in vitro and in vivo has been established. This study provides an insight into other fish genome editing and promotes gene functional analysis.
Collapse
Affiliation(s)
- Zeming Zhang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Jie Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
- Sichuan Province Yuechi Middle School, Guang’an 638300, China
| | - Jianeng Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xiang Liu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Lei Liu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Changle Zhao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Wenjing Tao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
- Correspondence: (D.W.); (J.W.)
| | - Jing Wei
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
- Correspondence: (D.W.); (J.W.)
| |
Collapse
|
12
|
Wani AK, Akhtar N, Singh R, Prakash A, Raza SHA, Cavalu S, Chopra C, Madkour M, Elolimy A, Hashem NM. Genome centric engineering using ZFNs, TALENs and CRISPR-Cas9 systems for trait improvement and disease control in Animals. Vet Res Commun 2023; 47:1-16. [PMID: 35781172 DOI: 10.1007/s11259-022-09967-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/24/2022] [Indexed: 01/27/2023]
Abstract
Livestock is an essential life commodity in modern agriculture involving breeding and maintenance. The farming practices have evolved mainly over the last century for commercial outputs, animal welfare, environment friendliness, and public health. Modifying genetic makeup of livestock has been proposed as an effective tool to create farmed animals with characteristics meeting modern farming system goals. The first technique used to produce transgenic farmed animals resulted in random transgene insertion and a low gene transfection rate. Therefore, genome manipulation technologies have been developed to enable efficient gene targeting with a higher accuracy and gene stability. Genome editing (GE) with engineered nucleases-Zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) regulates the targeted genetic alterations to facilitate multiple genomic modifications through protein-DNA binding. The application of genome editors indicates usefulness in reproduction, animal models, transgenic animals, and cell lines. Recently, CRISPR/Cas system, an RNA-dependent genome editing tool (GET), is considered one of the most advanced and precise GE techniques for on-target modifications in the mammalian genome by mediating knock-in (KI) and knock-out (KO) of several genes. Lately, CRISPR/Cas9 tool has become the method of choice for genome alterations in livestock species due to its efficiency and specificity. The aim of this review is to discuss the evolution of engineered nucleases and GETs as a powerful tool for genome manipulation with special emphasis on its applications in improving economic traits and conferring resistance to infectious diseases of animals used for food production, by highlighting the recent trends for maintaining sustainable livestock production.
Collapse
Affiliation(s)
- Atif Khurshid Wani
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab, 144411, India
| | - Nahid Akhtar
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab, 144411, India
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab, 144411, India
| | - Ajit Prakash
- Department of Biochemistry and Biophysics, University of North Carolina, 120 Mason Farm Road, CB# 7260, 3093 Genetic Medicine, Chapel Hill, NC, 27599-2760, USA
| | - Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P -ta 1Decembrie 10, 410073, Oradea, Romania
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab, 144411, India
| | - Mahmoud Madkour
- Animal Production Department, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Ahmed Elolimy
- Animal Production Department, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Nesrein M Hashem
- Department of Animal and Fish Production, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, 21545, Egypt.
| |
Collapse
|
13
|
Zhu M, Zhang Y, Pan J, Tong X, Zhang X, Hu X, Gong C. Grass Carp Reovirus triggers autophagy enhancing virus replication via the Akt/mTOR pathway. FISH & SHELLFISH IMMUNOLOGY 2022; 128:148-156. [PMID: 35921937 DOI: 10.1016/j.fsi.2022.07.069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 07/12/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
Autophagy impacts the replication cycle of many viruses. Grass Carp Reovirus (GCRV) is an agent that seriously affects the development of the grass carp aquaculture industry. The role of autophagy in GCRV infection is not clearly understood. In this study, we identified that GCRV infection triggered autophagy in CIK cells, which was demonstrated by transmission electron microscopy, the conversion of LC3B I to LC3B II and the level of autophagy substrate p62. Furthermore, we found that GCRV infection activated Akt-mTOR signaling pathway, and the conversion of LC3B I to LC3B II was increased by inhibiting mTOR with rapamycin (Rap) but decreased by activating Akt with insulin. We then assessed the effects of autophagy on GCRV replication. We found that inducing autophagy with Rap promoted GCRV proliferation but inhibiting autophagy with 3 MA or CQ inhibited GCRV replication in CIK cells. Moreover, it was found that enhancing Akt-mTOR activity by insulin, GCRV VP7 protein and viral titers of GCRV were decreased. Collectively, these results indicated that GCRV infection induced autophagy involved in GCRV replication via the Akt-mTOR signal pathway. Thus, new insights into GCRV pathogenesis and antiviral treatment strategies are provided.
Collapse
Affiliation(s)
- Min Zhu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China; Agricultural Biotechnology Research Institute, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China
| | - Yunshan Zhang
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Jun Pan
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Xinyu Tong
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Xing Zhang
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Xiaolong Hu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China; Agricultural Biotechnology Research Institute, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China.
| | - Chengliang Gong
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China; Agricultural Biotechnology Research Institute, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
14
|
Luo M, Wang J, Dong Z, Wang C, Lu G. CRISPR-Cas9 sgRNA design and outcome assessment: Bioinformatics tools and aquaculture applications. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2021.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
15
|
Pan Q, Luo J, Jiang Y, Wang Z, Lu K, Chen T. Efficient gene editing in a medaka ( Oryzias latipes) cell line and embryos by SpCas9/tRNA-gRNA. J Zhejiang Univ Sci B 2022; 23:74-83. [PMID: 35029089 PMCID: PMC8758932 DOI: 10.1631/jzus.b2100343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 06/09/2021] [Indexed: 11/11/2022]
Abstract
Generation of mutants with clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) is commonly carried out in fish species by co-injecting a mixture of Cas9 messenger RNA (mRNA) or protein and transcribed guide RNA (gRNA). However, the appropriate expression system to produce functional gRNAs in fish embryos and cells is rarely present. In this study, we employed a poly-transfer RNA (tRNA)-gRNA (PTG) system driven by cytomegalovirus (CMV) promoter to target the medaka (Oryzias latipes) endogenous gene tyrosinase(tyr) or paired box 6.1 (pax6.1) and illustrated its function in a medaka cell line and embryos. The PTG system was combined with the CRISPR/Cas9 system under high levels of promoter to successfully induce gene editing in medaka. This is a valuable step forward in potential application of the CRISPR/Cas9 system in medaka and other teleosts.
Collapse
Affiliation(s)
- Qihua Pan
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fisheries College, Jimei University, Xiamen 361021, China
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Junzhi Luo
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuewen Jiang
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhi Wang
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Ke Lu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Tiansheng Chen
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fisheries College, Jimei University, Xiamen 361021, China.
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
16
|
Karavolias NG, Horner W, Abugu MN, Evanega SN. Application of Gene Editing for Climate Change in Agriculture. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.685801] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Climate change imposes a severe threat to agricultural systems, food security, and human nutrition. Meanwhile, efforts in crop and livestock gene editing have been undertaken to improve performance across a range of traits. Many of the targeted phenotypes include attributes that could be beneficial for climate change adaptation. Here, we present examples of emerging gene editing applications and research initiatives that are aimed at the improvement of crops and livestock in response to climate change, and discuss technical limitations and opportunities therein. While only few applications of gene editing have been translated to agricultural production thus far, numerous studies in research settings have demonstrated the potential for potent applications to address climate change in the near future.
Collapse
|
17
|
Okoli AS, Blix T, Myhr AI, Xu W, Xu X. Sustainable use of CRISPR/Cas in fish aquaculture: the biosafety perspective. Transgenic Res 2021; 31:1-21. [PMID: 34304349 PMCID: PMC8821480 DOI: 10.1007/s11248-021-00274-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/03/2021] [Indexed: 12/18/2022]
Abstract
Aquaculture is becoming the primary source of seafood for human diets, and farmed fish aquaculture is one of its fastest growing sectors. The industry currently faces several challenges including infectious and parasitic diseases, reduced viability, fertility reduction, slow growth, escapee fish and environmental pollution. The commercialization of the growth-enhanced AquAdvantage salmon and the CRISPR/Cas9-developed tilapia (Oreochromis niloticus) proffers genetic engineering and genome editing tools, e.g. CRISPR/Cas, as potential solutions to these challenges. Future traits being developed in different fish species include disease resistance, sterility, and enhanced growth. Despite these notable advances, off-target effect and non-clarification of trait-related genes among other technical challenges hinder full realization of CRISPR/Cas potentials in fish breeding. In addition, current regulatory and risk assessment frameworks are not fit-for purpose regarding the challenges of CRISPR/Cas notwithstanding that public and regulatory acceptance are key to commercialization of products of the new technology. In this study, we discuss how CRISPR/Cas can be used to overcome some of these limitations focusing on diseases and environmental release in farmed fish aquaculture. We further present technical limitations, regulatory and risk assessment challenges of the use of CRISPR/Cas, and proffer research strategies that will provide much-needed data for regulatory decisions, risk assessments, increased public awareness and sustainable applications of CRISPR/Cas in fish aquaculture with emphasis on Atlantic salmon (Salmo salar) breeding.
Collapse
Affiliation(s)
- Arinze S Okoli
- GenØk -Centre for Biosafety, SIVA Innovation Centre, Tromsø, Norway.
| | - Torill Blix
- GenØk -Centre for Biosafety, SIVA Innovation Centre, Tromsø, Norway.,The Norwegian College of Fishery Science, The Arctic University of Norway (UiT), Tromsø, Norway
| | - Anne I Myhr
- GenØk -Centre for Biosafety, SIVA Innovation Centre, Tromsø, Norway
| | - Wenteng Xu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Xiaodong Xu
- Qingdao Vland Biotech Company Group, Qingdao, 266061, China
| |
Collapse
|
18
|
Zoppo M, Okoniewski N, Pantelyushin S, Vom Berg J, Schirmer K. A ribonucleoprotein transfection strategy for CRISPR/Cas9-mediated gene editing and single cell cloning in rainbow trout cells. Cell Biosci 2021; 11:103. [PMID: 34082820 PMCID: PMC8176604 DOI: 10.1186/s13578-021-00618-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/25/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The advent of the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 technology marked the beginning of a new era in the field of molecular biology, allowing the efficient and precise creation of targeted mutations in the genome of every living cell. Since its discovery, different gene editing approaches based on the CRISPR/Cas9 technology have been widely established in mammalian cell lines, while limited knowledge is available on genetic manipulation in fish cell lines. In this work, we developed a strategy to CRISPR/Cas9 gene edit rainbow trout (Oncorhynchus mykiss) cell lines and to generate single cell clone-derived knock-out cell lines, focusing on the phase I biotransformation enzyme encoding gene, cyp1a1, and on the intestinal cell line, RTgutGC, as example. RESULTS Ribonucleoprotein (RNP) complexes, consisting of the Cas9 protein and a fluorescently labeled crRNA/tracrRNA duplex targeting the cyp1a1 gene, were delivered via electroporation. A T7 endonuclease I (T7EI) assay was performed on flow cytometry enriched transfected cells in order to detect CRISPR-mediated targeted mutations in the cyp1a1 locus, revealing an overall gene editing efficiency of 39%. Sanger sequencing coupled with bioinformatic analysis led to the detection of multiple insertions and deletions of variable lengths in the cyp1a1 region directed by CRISPR/Cas9 machinery. Clonal isolation based on the use of cloning cylinders was applied, allowing to overcome the genetic heterogeneity created by the CRISPR/Cas9 gene editing. Using this method, two monoclonal CRISPR edited rainbow trout cell lines were established for the first time. Sequencing analysis of the mutant clones confirmed the disruption of the cyp1a1 gene open reading frame through the insertion of 101 or 1 base pair, respectively. CONCLUSIONS The designed RNP-based CRISPR/Cas9 approach, starting from overcoming limitations of transfection to achieving a clonal cell line, sets the stage for exploiting permanent gene editing in rainbow trout, and potentially other fish cells, for unprecedented exploration of gene function.
Collapse
Affiliation(s)
- Marina Zoppo
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland.
| | - Nicole Okoniewski
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland
| | - Stanislav Pantelyushin
- Institute of Laboratory Animal Science, University of Zurich, 8952, Schlieren, Switzerland
| | - Johannes Vom Berg
- Institute of Laboratory Animal Science, University of Zurich, 8952, Schlieren, Switzerland
| | - Kristin Schirmer
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland.,ENAC, EPF Lausanne, 1015, Lausanne, Switzerland.,Department of Environmental Systems Science, ETH Zürich, 8092, Zürich, Switzerland
| |
Collapse
|
19
|
Abstract
Intermuscular bones (IBs) are slender linear bones embedded in muscle, which ossify from tendons through a process of intramembranous ossification, and only exist in basal teleosts. IBs are essential for fish swimming, but they present a choking risk during human consumption, especially in children, which can lead to commercial risks that have a negative impact on the aquaculture of these fish. In this review, we discuss the morphogenesis and functions of IBs, including their underlying molecular mechanisms, as well as the advantages and disadvantages of different methods for IB studies and techniques for breeding and generating IB-free fish lines. This review reveals that the many key genes involved in tendon development, osteoblast differentiation, and bone formation, e.g., scxa, msxC, sost, twist, bmps, and osterix, also play roles in IB development. Thus, this paper provides useful information for the breeding of new fish strains without IBs via genome editing and artificial selection.
Collapse
Affiliation(s)
- Bo Li
- Cave Fish Development and Evolution Research Group, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Yuan-Wei Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Yunnan Key Laboratory of Plateau Fish Breeding, Yunnan Engineering Research Center for Plateau-Lake Health and Restoration, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Xiao Liu
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Li Ma
- Cave Fish Development and Evolution Research Group, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China. E-mail:
| | - Jun-Xing Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Yunnan Key Laboratory of Plateau Fish Breeding, Yunnan Engineering Research Center for Plateau-Lake Health and Restoration, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China. E-mail:
| |
Collapse
|
20
|
Effective CRISPR/Cas9-based genome editing in large yellow croaker (Larimichthys crocea). AQUACULTURE AND FISHERIES 2021. [DOI: 10.1016/j.aaf.2021.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
21
|
An efficient vector-based CRISPR/Cas9 system in an Oreochromis mossambicus cell line using endogenous promoters. Sci Rep 2021; 11:7854. [PMID: 33846462 PMCID: PMC8041756 DOI: 10.1038/s41598-021-87068-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 03/23/2021] [Indexed: 02/01/2023] Open
Abstract
CRISPR/Cas9 gene editing is effective in manipulating genetic loci in mammalian cell cultures and whole fish but efficient platforms applicable to fish cell lines are currently limited. Our initial attempts to employ this technology in fish cell lines using heterologous promoters or a ribonucleoprotein approach failed to indicate genomic alteration at targeted sites in a tilapia brain cell line (OmB). For potential use in a DNA vector approach, endogenous tilapia beta Actin (OmBAct), EF1 alpha (OmEF1a), and U6 (TU6) promoters were isolated. The strongest candidate promoter determined by EGFP reporter assay, OmEF1a, was used to drive constitutive Cas9 expression in a modified OmB cell line (Cas9-OmB1). Cas9-OmB1 cell transfection with vectors expressing gRNAs driven by the TU6 promoter achieved mutational efficiencies as high as 81% following hygromycin selection. Mutations were not detected using human and zebrafish U6 promoters demonstrating the phylogenetic proximity of U6 promoters as critical when used for gRNA expression. Sequence alteration to TU6 improved mutation rate and cloning efficiency. In conclusion, we report new tools for ectopic expression and a highly efficient, economical system for manipulation of genomic loci and evaluation of their causal relationship with adaptive cellular phenotypes by CRISPR/Cas9 gene editing in fish cells.
Collapse
|
22
|
Chuang YF, Phipps AJ, Lin FL, Hecht V, Hewitt AW, Wang PY, Liu GS. Approach for in vivo delivery of CRISPR/Cas system: a recent update and future prospect. Cell Mol Life Sci 2021; 78:2683-2708. [PMID: 33388855 PMCID: PMC11072787 DOI: 10.1007/s00018-020-03725-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/19/2020] [Accepted: 11/26/2020] [Indexed: 12/14/2022]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) system provides a groundbreaking genetic technology that allows scientists to modify genes by targeting specific genomic sites. Due to the relative simplicity and versatility of the CRISPR/Cas system, it has been extensively applied in human genetic research as well as in agricultural applications, such as improving crops. Since the gene editing activity of the CRISPR/Cas system largely depends on the efficiency of introducing the system into cells or tissues, an efficient and specific delivery system is critical for applying CRISPR/Cas technology. However, there are still some hurdles remaining for the translatability of CRISPR/Cas system. In this review, we summarized the approaches used for the delivery of the CRISPR/Cas system in mammals, plants, and aquacultures. We further discussed the aspects of delivery that can be improved to elevate the potential for CRISPR/Cas translatability.
Collapse
Affiliation(s)
- Yu-Fan Chuang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, 518055, China
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
| | - Andrew J Phipps
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Fan-Li Lin
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, 518055, China
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
| | - Valerie Hecht
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
| | - Alex W Hewitt
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC, Australia
| | - Peng-Yuan Wang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, 518055, China.
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, VIC, Australia.
| | - Guei-Sheung Liu
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia.
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC, Australia.
- Aier Eye Institute, Changsha, Hunan, China.
| |
Collapse
|
23
|
Abstract
Gene editing offers opportunities to solve fish farming sustainability issues that presently hampers expansion of the aquaculture industry. In for example Atlantic salmon farming, there are now two major bottlenecks limiting the expansion of the industry. One is the genetic impact of escaped farmed salmon on wild populations, which is considered the most long-term negative effect on the environment. Secondly and the utmost acute problem is the fish parasite salmon lice, which is currently causing high lethality in wild salmonids due to high concentrations of the parasite in the sea owing to sea cage salmon farming. There are also sustainability issues associated with increased use of vegetable-based ingredients as replacements for marine products in fish feed. This transition comes at the expense of the omega-3 content both in fish feed and the fish filet of the farmed fish. Reduced fish welfare represents another obstacle, and robust farmed fish is needed to avoid negative stress associated phenotypes such as cataract, bone and fin deformities, precocious maturity and higher disease susceptibility. Gene editing could solve some of these problems as genetic traits can be altered positively to reach phenotype of interest such as for example disease resistance and increased omega-3 production.
Collapse
|
24
|
Zhou Y, Jiang N, Fan Y, Zhou Y, Xu C, Liu W, Zeng L. Identification, expression profiles and antiviral activities of a type I IFN from gibel carp Carassius auratus gibelio. FISH & SHELLFISH IMMUNOLOGY 2019; 91:78-86. [PMID: 31039439 DOI: 10.1016/j.fsi.2019.04.063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 06/09/2023]
Abstract
Type I interferons, as a class of multipotent cytokines, play a key role in host antiviral immune responses. In this study, a type I IFN coding gene of gibel carp, Carassius auratus gibelio, CagIFNa was cloned and sequenced. The full-length cDNA sequence of CagIFNa consists of 724 nucleotides that encode a predicted protein of 183 amino acids. CagIFNa has two highly conserved cysteine residues in the deduced protein, which is mostly conserved in the fish group I type I IFNs. CagIFNa was identified as a member of the IFNa subgroup of group I type I IFNs by phylogenetic analysis. CagIFNa transcripts were detected in all investigated tissues with higher levels in the liver, intestine, spleen and head kidney of gibel carp. Following injection with Cyprinid herpesvirus 2 (CyHV-2), CagIFNa gene expression was significantly inhibited in the spleen but delayed and then increased in head kidneys. Similarly, while CagIFNa expression was rapidly induced in gibel carp brain (GiCB) cells by poly I:C stimulation and its high induction level was delayed following CyHV-2 infection. CagIFNa overexpression in GiCB cells drastically reduced virus CPE and titer. Furthermore, several genes associated with type I IFN signaling pathway including IRF3, IRF7, IRF9, STAT1, Mx1 and PKR were induced in GiCB cells overexpressing CagIFNa upon CyHV-2 infection. These results show that CagIFNa plays a role in antiviral immune system in gibel carp.
Collapse
Affiliation(s)
- Yongze Zhou
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, PR China; Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, PR China
| | - Nan Jiang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, PR China
| | - Yuding Fan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, PR China
| | - Yong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, PR China
| | - Chen Xu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, PR China
| | - Wenzhi Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, PR China
| | - Lingbing Zeng
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, PR China; Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, PR China.
| |
Collapse
|
25
|
Gratacap RL, Wargelius A, Edvardsen RB, Houston RD. Potential of Genome Editing to Improve Aquaculture Breeding and Production. Trends Genet 2019; 35:672-684. [PMID: 31331664 DOI: 10.1016/j.tig.2019.06.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/21/2019] [Accepted: 06/26/2019] [Indexed: 02/02/2023]
Abstract
Aquaculture is the fastest growing food production sector and is rapidly becoming the primary source of seafood for human diets. Selective breeding programs are enabling genetic improvement of production traits, such as disease resistance, but progress is limited by the heritability of the trait and generation interval of the species. New breeding technologies, such as genome editing using CRISPR/Cas9 have the potential to expedite sustainable genetic improvement in aquaculture. Genome editing can rapidly introduce favorable changes to the genome, such as fixing alleles at existing trait loci, creating de novo alleles, or introducing alleles from other strains or species. The high fecundity and external fertilization of most aquaculture species can facilitate genome editing for research and application at a scale that is not possible in farmed terrestrial animals.
Collapse
Affiliation(s)
- Remi L Gratacap
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| | - Anna Wargelius
- Institute of Marine Research, PO Box 1870, Nordnes, NO-5817 Bergen, Norway
| | | | - Ross D Houston
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK.
| |
Collapse
|
26
|
Production of a mutant of large-scale loach Paramisgurnus dabryanus with skin pigmentation loss by genome editing with CRISPR/Cas9 system. Transgenic Res 2019; 28:341-356. [PMID: 31183663 DOI: 10.1007/s11248-019-00125-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/23/2019] [Indexed: 02/06/2023]
Abstract
CRISPR/Cas9 system has been developed as a highly efficient genome editing technology to specifically induce mutations in a few aquaculture species. In this study, we described induction of targeted gene (namely tyrosinase, tyr) mutations in large-scale loach Paramisgurnus dabryanus, an important aquaculture fish species and a potential model organism for studies of intestinal air-breathing function, using the CRISPR/Cas9 system. Tyr gene in large-scale loach was firstly cloned and then its expressions were investigated. Two guide RNAs (gRNAs) were designed and separately transformed with Cas9 in the loach. 89.4% and 96.1% of injected loach juveniles respectively displayed a graded loss of pigmentation for the two gRNAs, in other words, for target 1 and target 2. We classified the injected loach juveniles into five groups according to their skin color phenotypes, including four albino groups and one wild-type-like group. And one of them was clear albino group, which was of high ornamental and commercial value. More than 50 clones for each albino transformant with a visible phenotype in each target were randomly selected and sequenced. Results obtained here showed that along with the increase of pigmentation, wild-type alleles appeared in the injected loach juveniles more often and insertion/deletion alleles less frequently. This study demonstrated that CRISPR/Cas9 system could be practically performed to modify large-scale loach tyr to produce an albino mutant of high ornamental and commercial value, and for the first time showed successful use of the CRISPR/Cas9 system for genome editing in a Cobitidae species.
Collapse
|
27
|
Octavera A, Yoshizaki G. Production of donor-derived offspring by allogeneic transplantation of spermatogonia in Chinese rosy bitterling†. Biol Reprod 2018; 100:1108-1117. [DOI: 10.1093/biolre/ioy236] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/08/2018] [Accepted: 11/14/2018] [Indexed: 12/19/2022] Open
Affiliation(s)
- Anna Octavera
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Goro Yoshizaki
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| |
Collapse
|
28
|
ITGB1b-Deficient Rare Minnows Delay Grass Carp Reovirus (GCRV) Entry and Attenuate GCRV-Triggered Apoptosis. Int J Mol Sci 2018; 19:ijms19103175. [PMID: 30326628 PMCID: PMC6214113 DOI: 10.3390/ijms19103175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/08/2018] [Accepted: 10/14/2018] [Indexed: 02/07/2023] Open
Abstract
Integrin β-1 (ITGB1) is a transmembrane protein belonging to the integrin family and it plays an important role in viral entry. In this study, the itgb1b gene of the rare minnow, Gobiocypris rarus, was cloned and analyzed. To investigate the possible role of itgb1b on grass carp reovirus (GCRV) infection, we generated an ITGB1b-deficient rare minnow (ITGB1b-/-) using the CRISPR/Cas9 system. Following stimulation with GCRV, the survival time of the -ITGB1b-/- rare minnows was extended in comparison to the wild-type minnows. Moreover, the relative copy number of GCRV and the level of clathrin-mediated endocytosis-associated and apoptosis-related gene expression in the ITGB1b-/- rare minnows was significantly lower than that of the wild-type minnows. These results suggested that the absence of itgb1b reduced viral entry efficiency and the expression of apoptosis-related genes. Moreover, the data suggested that itgb1b played an important role in mediating the entry of viruses into the cells via clathrin. Therefore, these findings provide novel insight into the function of itgb1b in the process of GCRV infection.
Collapse
|
29
|
Liu Q, Yuan Y, Zhu F, Hong Y, Ge R. Efficient genome editing using CRISPR/Cas9 ribonucleoprotein approach in cultured Medaka fish cells. Biol Open 2018; 7:bio.035170. [PMID: 30072445 PMCID: PMC6124564 DOI: 10.1242/bio.035170] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Gene editing with CRISPR/Cas9 is a powerful tool to study the function of target genes. Although this technology has demonstrated wide efficiency in many species, including fertilized zebrafish and medaka fish embryos when microinjected, its application to achieve efficient gene editing in cultured fish cells have met some difficulty. Here, we report an efficient and reliable approach to edit genes in cultured medaka (Oryzias latipes) fish cells using pre-formed gRNA-Cas9 ribonucleoprotein (RNP) complex. Both medaka fish haploid and diploid cells were transfected with the RNP complex by electroporation. Efficient gene editing was demonstrated by polymerase chain reaction (PCR) amplification of the target gene from genomic DNA and heteroduplex mobility assay carried out with polyacrylamide gel electrophoresis (PAGE). The heteroduplex bands caused by RNP cleavage and non-homologous end joining could be readily detected by PAGE. DNA sequencing confirmed that these heteroduplex bands contains the mutated target gene sequence. The average gene editing efficiency in haploid cells reached 50%, enabling us to generate a clonal cell line with ntrk3b gene mutation for further study. This RNP transfection method also works efficiently in diploid medaka cells, with the highest mutation efficiency of 61.5%. The specificity of this synthetic RNP CRISPR/Cas9 approach was verified by candidate off-target gene sequencing. Our result indicated that transfection of pre-formed gRNA-Cas9 RNP into fish cells is efficient and reliable to edit target genes in cultured medaka fish cells. This method will be very useful for gene function studies using cultured fish cells.
Collapse
Affiliation(s)
- Qizhi Liu
- Department of Biological Sciences, National University of Singapore, 117543, Singapore
| | - Yongming Yuan
- Department of Biological Sciences, National University of Singapore, 117543, Singapore
| | - Feng Zhu
- Department of Biological Sciences, National University of Singapore, 117543, Singapore
| | - Yunhan Hong
- Department of Biological Sciences, National University of Singapore, 117543, Singapore
| | - Ruowen Ge
- Department of Biological Sciences, National University of Singapore, 117543, Singapore
| |
Collapse
|