1
|
Chen J, Jiang WD, Feng L, Wu P, Liu Y, Jin XW, Ren HM, Tang JY, Zhang RN, Zhou XQ. Myo-inositol: A potential game-changer in preventing gill cell death and alleviating "gill rot" in grass carp (Ctenopharyngodon idellus). FISH & SHELLFISH IMMUNOLOGY 2024; 153:109850. [PMID: 39179187 DOI: 10.1016/j.fsi.2024.109850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
Increasing evidence shows the potential threat of gill rot in freshwater fish culture. F. columnare is wide-spread in aquatic environments, which can cause fish gill rot and result in high mortality and losses of fish. This study investigated the effects of myo-inositol (MI) on the proliferation, structural integrity, and different death modes of grass carp (Ctenopharyngodon idella) gill epithelial cells, as well as its possible mechanism. 30 mg/L MI up-regulated CCK8 OD value and the protein level of solute carrier family 5A 3 (SLC5A3), and down-regulated the reactive oxygen species (ROS) content in gill cells and lactate dehydrogenase (LDH) release in the culture medium (P < 0.05). MI up-regulated the protein level of Beclin1, the protein level and fluorescence expression of microtubule-associated protein light chain 3B (LC3B) and down-regulated the protein level of sequestosome-1 (SQSTM1, also called p62) (P < 0.05). MI down-regulated the protein levels of Cysteine aspartate protease-1 (caspase-1), Gasdermin E (GSDME) and Cleaved interleukin 1 beta (IL-1β) (P < 0.05). MI up-regulated the protein level of caspase-8 (P < 0.05), but had no effect on apoptosis (P > 0.05). MI down-regulated the mRNA expressions and protein levels of tumor necrosis factor α (tnfα), TNF receptor 1 (tnfr1), receptor interacting protein 1 (ripk1), receptor interacting protein 3 (ripk3) and mixed lineage kinase domain-like protein (mlkl), and reduce the ratio of p-MLKL/MLKL (P < 0.05). The addition of MI or necrosulfonamide (NSA) alone, or the addition of MI after induction of necroptosis, significantly up-regulated the cell activity and the protein level of SLC5A3 in gill cells, and significantly reduced the LDH release in the culture medium and the intracellular ROS content, the number of necroptosis cells, the protein expression of TNFα, TNFR1 and RIPK1, and the ratio of p-RIPK3/RIPK3 and p-MLKL/MLKL (P < 0.05). It indicated MI induce autophagy may relate to Beclin1/LC3/p62 signaling pathway, inhibits pyroptosis may attribute to Caspase-1/GSDMD/IL-1β signaling pathway, and inhibits necroptosis via MLKL signaling pathway. However, MI had no effect on apoptosis.
Collapse
Affiliation(s)
- Jie Chen
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| | - Xiao-Wan Jin
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hong-Mei Ren
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jia-Yong Tang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Rui-Nan Zhang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China.
| |
Collapse
|
2
|
Stein HH. Review: Aspects of digestibility and requirements for minerals and vitamin D by growing pigs and sows. Animal 2024; 18 Suppl 1:101125. [PMID: 38575402 DOI: 10.1016/j.animal.2024.101125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 04/06/2024] Open
Abstract
Some of the biggest changes in mineral nutrition for pigs that have occurred due to recent research were caused by the understanding that there is a loss of endogenous Ca and P into the intestinal tract of pigs. This resulted in development of the concept of formulating diets based on standardized total tract digestibility (STTD) rather than apparent total tract digestibility because the values for STTD of these minerals are additive in mixed diets. There are, however, no recent summaries of research on digestibility and requirements of macro- and microminerals and vitamin D for pigs. Therefore, the objective of this review was to summarize selected results of research conducted over the last few decades to determine the digestibility and requirements of some minerals and vitamin D fed to sows and growing pigs. Benefits of microbial phytase in terms of increasing the digestibility of most minerals have been demonstrated. Negative effects on the growth performance of pigs of over-feeding Ca have also been demonstrated, and frequent analysis of Ca in complete diets and raw materials is, therefore, recommended. There is no evidence that current requirements for vitamin D for weanling or growing-finishing pigs are not accurate, but it is possible that gestating and lactating sows need more vitamin D than currently recommended. Vitamin D analogs and metabolites such as 1(OH)D3 and 25(OH)D3 have beneficial effects when added to diets for sows in combination with vitamin D3. Recent research on requirements for macrominerals other than Ca and P is scarce, but it is possible that Mg in diets containing low levels of soybean meal is marginal. Some of the chelated microminerals have increased digestibility compared with sulfate forms, and hydroxylated forms of Cu and Zn appear to be superior to sulfate or oxide forms. Likewise, dicopper oxide and Cu methionine hydroxy analog have a greater positive effect on the growth performance of growing pigs than copper sulfate. The requirement for Mn may need to be increased whereas there appears to be no benefits of providing Fe above current requirements. In conclusion, diets for pigs should be formulated based on values for STTD of Ca and P and there are negative effects of providing excess Ca in diets. It is possible vitamin D analogs and metabolites offer benefits over vitamin D3 in diets for sows. Likewise, chelated forms of microminerals or chemical forms of minerals other than sulfates or oxides may result in improved pig performance.
Collapse
Affiliation(s)
- H H Stein
- Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA.
| |
Collapse
|
3
|
Oladosu OJ, Correia BSB, Grafl B, Liebhart D, Metges CC, Bertram HC, Daş G. 1H-NMR based-metabolomics reveals alterations in the metabolite profiles of chickens infected with ascarids and concurrent histomonosis infection. Gut Pathog 2023; 15:56. [PMID: 37978563 PMCID: PMC10655416 DOI: 10.1186/s13099-023-00584-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Gut infections of chickens caused by Ascaridia galli and Heterakis gallinarum are associated with impaired host performance, particularly in high-performing genotypes. Heterakis gallinarum is also a vector of Histomonas meleagridis that is often co-involved with ascarid infections. Here, we provide a first insight into the alteration of the chicken plasma and liver metabolome as a result of gastrointestinal nematode infections with concomitant histomonosis. 1H nuclear magnetic resonance (1H-NMR) based-metabolomics coupled with a bioinformatics analysis was applied to explore the variation in the metabolite profiles of the liver (N = 105) and plasma samples from chickens (N = 108) experimentally infected with A. galli and H. gallinarum (+H. meleagridis). This was compared with uninfected chickens at different weeks post-infection (wpi 2, 4, 6, 10, 14, 18) representing different developmental stages of the worms. RESULTS A total of 31 and 54 metabolites were quantified in plasma and aqueous liver extracts, respectively. Statistical analysis showed no significant differences (P > 0.05) in any of the 54 identified liver metabolites between infected and uninfected hens. In contrast, 20 plasma metabolites including, amino acids, sugars, and organic acids showed significantly elevated concentrations in the infected hens (P < 0.05). Alterations of plasma metabolites occurred particularly in wpi 2, 6 and 10, covering the pre-patent period of worm infections. Plasma metabolites with the highest variation at these time points included glutamate, succinate, trimethylamine-N-oxide, myo-inositol, and acetate. Differential pathway analysis suggested that infection induced changes in (1) phenylalanine, tyrosine, and tryptophan metabolism, (2) alanine, aspartate and glutamate metabolism; and 3) arginine and proline metabolism (Pathway impact > 0.1 with FDR adjusted P-value < 0.05). CONCLUSION In conclusion, 1H-NMR based-metabolomics revealed significant alterations in the plasma metabolome of high performing chickens infected with gut pathogens-A. galli and H. gallinarum. The alterations suggested upregulation of key metabolic pathways mainly during the patency of infections. This approach extends our understanding of host interactions with gastrointestinal nematodes at the metabolic level.
Collapse
Affiliation(s)
- Oyekunle John Oladosu
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology 'Oskar Kellner', Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | | | - Beatrice Grafl
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Dieter Liebhart
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Cornelia C Metges
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology 'Oskar Kellner', Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | | | - Gürbüz Daş
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology 'Oskar Kellner', Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
| |
Collapse
|
4
|
Watanabe K, Sato E, Mishima E, Moriya S, Sakabe T, Sato A, Fujiwara M, Fujimaru T, Ito Y, Taki F, Nagahama M, Tanaka K, Kazama JJ, Nakayama M. Changes in Metabolomic Profiles Induced by Switching from an Erythropoiesis-Stimulating Agent to a Hypoxia-Inducible Factor Prolyl Hydroxylase Inhibitor in Hemodialysis Patients: A Pilot Study. Int J Mol Sci 2023; 24:12752. [PMID: 37628932 PMCID: PMC10454178 DOI: 10.3390/ijms241612752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/07/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Hypoxia-inducible factor prolyl hydroxylase inhibitors (HIF-PHIs) are a new class of medications for managing renal anemia in patients with chronic kidney disease (CKD). In addition to their erythropoietic activity, HIF-PHIs exhibit multifaceted effects on iron and glucose metabolism, mitochondrial metabolism, and angiogenesis through the regulation of a wide range of HIF-responsive gene expressions. However, the systemic biological effects of HIF-PHIs in CKD patients have not been fully explored. In this prospective, single-center study, we comprehensively investigated changes in plasma metabolomic profiles following the switch from an erythropoiesis-stimulating agent (ESA) to an HIF-PHI, daprodustat, in 10 maintenance hemodialysis patients. Plasma metabolites were measured before and three months after the switch from an ESA to an HIF-PHI. Among 106 individual markers detected in plasma, significant changes were found in four compounds (erythrulose, n-butyrylglycine, threonine, and leucine), and notable but non-significant changes were found in another five compounds (inositol, phosphoric acid, lyxose, arabinose, and hydroxylamine). Pathway analysis indicated decreased levels of plasma metabolites, particularly those involved in phosphatidylinositol signaling, ascorbate and aldarate metabolism, and inositol phosphate metabolism. Our results provide detailed insights into the systemic biological effects of HIF-PHIs in hemodialysis patients and are expected to contribute to an evaluation of the potential side effects that may result from long-term use of this class of drugs.
Collapse
Affiliation(s)
- Kimio Watanabe
- Division of Nephrology and Hypertension, Fukushima Medical University, Fukushima 960-1295, Japan; (T.S.); (A.S.); (M.F.); (K.T.); (J.J.K.)
- Kidney Center, St Luke’s International Hospital, Tokyo 104-8560, Japan; (T.F.); (Y.I.); (F.T.); (M.N.); (M.N.)
| | - Emiko Sato
- Division of Clinical Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan;
| | - Eikan Mishima
- Division of Nephrology, Rheumatology and Endocrinology, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan;
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Shinobu Moriya
- Clinical Engineering Center, St Luke’s International Hospital, Tokyo 104-8560, Japan;
| | - Takuma Sakabe
- Division of Nephrology and Hypertension, Fukushima Medical University, Fukushima 960-1295, Japan; (T.S.); (A.S.); (M.F.); (K.T.); (J.J.K.)
| | - Atsuya Sato
- Division of Nephrology and Hypertension, Fukushima Medical University, Fukushima 960-1295, Japan; (T.S.); (A.S.); (M.F.); (K.T.); (J.J.K.)
| | - Momoko Fujiwara
- Division of Nephrology and Hypertension, Fukushima Medical University, Fukushima 960-1295, Japan; (T.S.); (A.S.); (M.F.); (K.T.); (J.J.K.)
| | - Takuya Fujimaru
- Kidney Center, St Luke’s International Hospital, Tokyo 104-8560, Japan; (T.F.); (Y.I.); (F.T.); (M.N.); (M.N.)
| | - Yugo Ito
- Kidney Center, St Luke’s International Hospital, Tokyo 104-8560, Japan; (T.F.); (Y.I.); (F.T.); (M.N.); (M.N.)
| | - Fumika Taki
- Kidney Center, St Luke’s International Hospital, Tokyo 104-8560, Japan; (T.F.); (Y.I.); (F.T.); (M.N.); (M.N.)
| | - Masahiko Nagahama
- Kidney Center, St Luke’s International Hospital, Tokyo 104-8560, Japan; (T.F.); (Y.I.); (F.T.); (M.N.); (M.N.)
| | - Kenichi Tanaka
- Division of Nephrology and Hypertension, Fukushima Medical University, Fukushima 960-1295, Japan; (T.S.); (A.S.); (M.F.); (K.T.); (J.J.K.)
| | - Junichiro James Kazama
- Division of Nephrology and Hypertension, Fukushima Medical University, Fukushima 960-1295, Japan; (T.S.); (A.S.); (M.F.); (K.T.); (J.J.K.)
| | - Masaaki Nakayama
- Kidney Center, St Luke’s International Hospital, Tokyo 104-8560, Japan; (T.F.); (Y.I.); (F.T.); (M.N.); (M.N.)
| |
Collapse
|
5
|
Sharma N, Watkins OC, Chu AHY, Cutfield W, Godfrey KM, Yong HEJ, Chan SY. Myo-inositol: a potential prophylaxis against premature onset of labour and preterm birth. Nutr Res Rev 2023; 36:60-68. [PMID: 34526164 PMCID: PMC7614523 DOI: 10.1017/s0954422421000299] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The incidence of preterm birth (PTB), delivery before 37 completed weeks of gestation, is rising in most countries. Several recent small clinical trials of myo-inositol supplementation in pregnancy, which were primarily aimed at preventing gestational diabetes, have suggested an effect on reducing the incidence of PTB as a secondary outcome, highlighting the potential role of myo-inositol as a preventive agent. However, the underlying molecular mechanisms by which myo-inositol might be able to do so remain unknown; these may occur through directly influencing the onset and progress of labour, or by suppressing stimuli that trigger or promote labour. This paper presents hypotheses outlining the potential role of uteroplacental myo-inositol in human parturition and explains possible underlying molecular mechanisms by which myo-inositol might modulate the uteroplacental environment and inhibit preterm labour onset. We suggest that a physiological decline in uteroplacental inositol levels to a critical threshold with advancing gestation, in concert with an increasingly pro-inflammatory uteroplacental environment, permits spontaneous membrane rupture and labour onset. A higher uteroplacental inositol level, potentially promoted by maternal myo-inositol supplementation, might affect lipid metabolism, eicosanoid production and secretion of pro-inflammatory chemocytokines that overall dampen the pro-labour uteroplacental environment responsible for labour onset and progress, thus reducing the risk of PTB. Understanding how and when inositol may act to reduce PTB risk would facilitate the design of future clinical trials of maternal myo-inositol supplementation and definitively address the efficacy of myo-inositol prophylaxis against PTB.
Collapse
Affiliation(s)
- Neha Sharma
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Oliver C Watkins
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Anne H Y Chu
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
| | - W Cutfield
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Keith M Godfrey
- MRC Lifecourse Epidemiology Centre and NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Hannah E J Yong
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
| | - Shiao-Yng Chan
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
| |
Collapse
|
6
|
Dietary Leucine Improves Fish Intestinal Barrier Function by Increasing Humoral Immunity, Antioxidant Capacity, and Tight Junction. Int J Mol Sci 2023; 24:ijms24054716. [PMID: 36902147 PMCID: PMC10003359 DOI: 10.3390/ijms24054716] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/13/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
This study attempted to evaluate the possible impact and mechanism of leucine (Leu) on fish intestinal barrier function. One hundred and five hybrid Pelteobagrus vachelli ♀ × Leiocassis longirostris ♂ catfish were fed with six diets in graded levels of Leu 10.0 (control group), 15.0, 20.0, 25.0, 30.0, 35.0, and 40.0 g/kg diet for 56 days. Results showed that the intestinal activities of LZM, ACP, and AKP and contents of C3, C4, and IgM had positive linear and/or quadratic responses to dietary Leu levels. The mRNA expressions of itnl1, itnl2, c-LZM, g-LZM, and β-defensin increased linearly and/or quadratically (p < 0.05). The ROS, PC, and MDA contents had a negative linear and/or quadratic response, but GSH content and ASA, AHR, T-SOD, and GR activities had positive quadratic responses to dietary Leu levels (p < 0.05). No significant differences on the CAT and GPX activities were detected among treatments (p > 0.05). Increasing dietary Leu level linearly and/or quadratically increased the mRNA expressions of CuZnSOD, CAT, and GPX1α. The GST mRNA expression decreased linearly while the GCLC and Nrf2 mRNA expressions were not significantly affected by different dietary Leu levels. The Nrf2 protein level quadratically increased, whereas the Keap1 mRNA expression and protein level decreased quadratically (p < 0.05). The translational levels of ZO-1 and occludin increased linearly. No significant differences were indicated in Claudin-2 mRNA expression and protein level. The transcriptional levels of Beclin1, ULK1b, ATG5, ATG7, ATG9a, ATG4b, LC3b, and P62 and translational levels of ULK1, LC3Ⅱ/Ⅰ, and P62 linearly and quadratically decreased. The Beclin1 protein level was quadratically decreased with increasing dietary Leu levels. These results suggested that dietary Leu could improve fish intestinal barrier function by increasing humoral immunity, antioxidative capacities, and tight junction protein levels.
Collapse
|
7
|
Pan S, Yan X, Dong X, Li T, Suo X, Tan B, Zhang S, Li Z, Yang Y, Zhang H. The positive effects of dietary inositol on juvenile hybrid grouper (♀ Epinephelus fuscoguttatus × ♂ E. lanceolatu) fed high-lipid diets: Growthperformance, antioxidant capacity and immunity. FISH & SHELLFISH IMMUNOLOGY 2022; 126:84-95. [PMID: 35577318 DOI: 10.1016/j.fsi.2022.05.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/06/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
The objective of the present research was to assess the influence of inositol supplementation on growth performance, histological morphology of liver, immunity and expression of immune-related genes in juvenile hybrid grouper (♀ Epinephelus fuscoguttatus × ♂ E. lanceolatu). Hybrid grouper (initial weight 6.76 ± 0.34 g) were fed isonitrogenous and isolipidic diets (16%) with various inositol levels of 0.17 g/kg (J1, the control group), 0.62 g/kg (J2), 1.03 g/kg (J3), 1.78 g/kg (J4), 3.43 g/kg (J5), 6.59 g/kg (J6), respectively. The growth experiment lasted for 8 weeks. The results indicated that dietary inositol had a significant promoting effect on final mean body weight of the J5 and J6 groups and specific growth rate (SGR) of the J3, J4, J5 and J6 groups (P < 0.05). In the serum, superoxide dismutase (SOD) of the J4 group became significantly active compared with that of the control group (P < 0.05), while aspartate transaminase (AST), alanine transaminase (ALT) and alkaline phosphatase (AKP) activities in the inositol-treated groups showed distinctly decreased compared with those of the control group (P < 0.05). In the liver, dietary inositol could significantly increase the activities of SOD, catalase (CAT), lysozyme (LYZ) and the contents of total antioxidative capacity (T-AOC) and immunoglobulin M (IgM) (P < 0.05), and distinctly reduce the content of malondialdehyde (MDA) as well as reactive oxygen species (ROS) (P < 0.05). Compared with the control group, the damaged histological morphology of the liver was relieved and even returned to normal after an inositol increase (0.4-3.2 g/kg). In the liver, the remarkable up-regulation of SOD, CAT, glutathione peroxidase (GPX), heat shock protein70 (HSP70) and heat shock protein90 (HSP90) expression levels were stimulated by supply of inositol, while interleukin 6 (IL6), interleukin 8 (IL8) and transforming growth factor β (TGF-β) expression levels were down-regulated by supply of inositol. In head kidney, the mRNA of toll-like receptor 22 (TLR22), myeloid differentiation factor 88 (MyD88) and interleukin 1β (IL1β) expression levels were significantly down-regulated (P < 0.05), which could further lead to remarkable down-regulation of IL6 and tumor necrosis factor α (TNF-α) expression (P < 0.05). These results indicated that high-lipid diets with supply of inositol promoted growth, increased the antioxidant capacity, and suppressed the inflammation of the liver and head kidney by inhibiting the expression of pro-inflammation factors (IL6, IL8, TGF-β and TNF-α). In conclusion, these results indicated that dietary inositol promoted growth, improved antioxidant capacity and immunity of hybrid grouper fed high-lipid diets. Based on SGR, broken-line regression analysis showed that 1.66 g/kg inositol supply was recommended in high-lipid diets of juvenile grouper.
Collapse
Affiliation(s)
- Simiao Pan
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, Guangdong, 524088, China
| | - Xiaobo Yan
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, Guangdong, 524088, China
| | - Xiaohui Dong
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, Guangdong, 524088, China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong, 524000, China.
| | - Tao Li
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, Guangdong, 524088, China
| | - Xiangxiang Suo
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, Guangdong, 524088, China
| | - Beiping Tan
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, Guangdong, 524088, China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong, 524000, China
| | - Shuang Zhang
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, Guangdong, 524088, China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong, 524000, China
| | - Zhihao Li
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, Guangdong, 524088, China
| | - Yuanzhi Yang
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Haitao Zhang
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong, 524000, China
| |
Collapse
|
8
|
Hashemi Tari S, Sohouli MH, Lari A, Fatahi S, Rahideh ST. The effect of inositol supplementation on blood pressure: A systematic review and meta-analysis of randomized-controlled trials. Clin Nutr ESPEN 2021; 44:78-84. [PMID: 34330516 DOI: 10.1016/j.clnesp.2021.06.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/06/2021] [Accepted: 06/09/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Potential effects of inositol supplementation on blood pressure (BP) have been examined in several interventional studies. Nevertheless, findings in this context are controversial. Therefore, the current systematic review and meta-analysis aimed to comprehensively assess the impact of inositol supplementation on BP. METHODS Five online databases including Web of Science, Scopus, Embase, Cochrane, Google Scholar, and PubMed were systematically searched from inception to March 2020. We included all randomized clinical trials (RCTs) evaluating the effects of inositol supplementation on systolic blood pressure (SBP) and/or diastolic blood pressure (DBP) in humans. RESULTS The random-effects meta-analysis of 7 eligible RCTs demonstrated the significant decline in both SBP (WMD - 5.69 mmHg; 95% CI - 7.35 to - 4.02, P < 0.001) and DBP (WMD - 7.12 mmHg; 95% CI - 10.18 to - 4.05, P < 0.001) following supplementation with inositol. Subgroup analysis showed that studies performed in individuals with metabolic syndrome with a longer duration (>8 weeks) and a dose of 4000 mg resulted in a more effective reduction in SBP and DBP with acceptable homogeneity. CONCLUSIONS The current meta-analysis, indicated that supplementation with inositol significantly decrease SBP and DBP. Further large-scale RCTs with better design are needed to confirm these findings.
Collapse
Affiliation(s)
- Sogol Hashemi Tari
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hassan Sohouli
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran; Student Research Committee, Faculty of Public Health Branch, Iran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Lari
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Somaye Fatahi
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Seyedeh Tayebeh Rahideh
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Wang S, Meng F, Liu Y, Xia S, Wang R. Exogenous inositol ameliorates the effects of acute ammonia toxicity on intestinal oxidative status, immune response, apoptosis, and tight junction barriers of great blue-spotted mudskippers (Boleophthalmus pectinirostris). Comp Biochem Physiol C Toxicol Pharmacol 2021; 240:108911. [PMID: 33075492 DOI: 10.1016/j.cbpc.2020.108911] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/22/2020] [Accepted: 09/27/2020] [Indexed: 01/12/2023]
Abstract
Ammonia toxicity can disrupt the intestinal health of aquatic animals. It is important to find substances that alleviate these adverse effects. The present study explored the possible protective role of myo-inositol (MI) in ammonia-induced toxicity in the fish intestine. Great blue-spotted mudskippers (Boleophthalmus pectinirostris) accumulated in artificial seawater (15‰ salinity, n = 600) were randomly selected and intraperitoneally injected with NaCl (0.68%) or MI (2.5 mg/g fish in 0.68% NaCl) then exposed to artificial seawater alone (NaCl and MI group) or seawater containing 57.025 mmol/L ammonium chloride (NH3 and NH3 + MI group). After a 24-h experiment, it showed that ammonia exposure down-regulated the mRNA expression levels of intestinal barrier function proteins (Zo-1, Ocln, Cldn-5, Cldn-12, and Cldn-15) and anti-inflammatory cytokines (Tgf-β and Il-10) while the acute ammonia stress up-regulated the apoptosis genes (p53, Bax, Caspase-3, and Caspase-9) and pro-inflammatory cytokines (Tnf-α and Il-1β). Furthermore, ammonia challenge also induced oxidative stress, as the malondialdehyde and the protein carbonyl contents were increased. In addition, ammonia stress down-regulated the antioxidant enzymes (Cu/Zn-Sod, Cat, Gpx, and Gst) activities as well as their gene transcription levels. The administration of the exogenous myo-inositol greatly ameliorated the ammonia-induced changes in redox capacity, immune response, apoptosis, inflammation, and tight junction barrier function to levels similar to those of the NaCl group. Furthermore, fish injected with MI alone showed no significant changes compared with the NaCl group. Taken together, pretreatment with myo-inositol had no obvious side-effects and effectively protected the mudskippers' intestine from the toxicity caused by acute ammonia stress.
Collapse
Affiliation(s)
- Shidong Wang
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Fanxing Meng
- School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| | - Yang Liu
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Silei Xia
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Rixin Wang
- School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
10
|
Alleviation of the Adverse Effect of Dietary Carbohydrate by Supplementation of Myo-Inositol to the Diet of Nile Tilapia ( Oreochromis niloticus). Animals (Basel) 2020; 10:ani10112190. [PMID: 33238508 PMCID: PMC7700398 DOI: 10.3390/ani10112190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/20/2020] [Accepted: 11/20/2020] [Indexed: 11/16/2022] Open
Abstract
This study investigated the effect of dietary myo-inositol (MI) on alleviating the adverse effect of the high carbohydrate diet in Nile tilapia (Oreochromis niloticus). Six diets contained either low carbohydrate (LC 30%) or high carbohydrate (HC 45%) with three levels of MI supplementation (0, 400 and 1200 mg/kg diet) to each level of the carbohydrate diet. After an 8-week trial, the fish fed 400 mg/kg MI under HC levels had the highest weight gain and fatness, but the fish fed 1200 mg/kg MI had the lowest hepatosomatic index, visceral index and crude lipid in the HC group. The diet of 1200 mg/kg MI significantly decreased triglyceride content in the serum and liver compared with those fed the MI supplemented diets regardless of carbohydrate levels. Dietary MI decreased triglyceride accumulation in the liver irrespective of carbohydrate levels. The content of malondialdehyde decreased with increasing dietary MI at both carbohydrate levels. Fish fed 1200 mg/kg MI had the highest glutathione peroxidase, superoxide dismutase, aspartate aminotransferase and glutamic-pyruvic transaminase activities. The HC diet increased the mRNA expression of key genes involved in lipid synthesis (DGAT, SREBP, FAS) in the fish fed the diet without MI supplementation. Dietary MI significantly under expressed fatty acid synthetase in fish fed the HC diets. Moreover, the mRNA expression of genes related to lipid catabolism (CPT, ATGL, PPAR-α) was significantly up-regulated with the increase of dietary MI levels despite dietary carbohydrate levels. The gene expressions of gluconeogenesis, glycolysis and MI biosynthesis were significantly down-regulated, while the expression of the pentose phosphate pathway was up-regulated with the increase of MI levels. This study indicates that HC diets can interrupt normal lipid metabolism and tend to form a fatty liver in fish. Dietary MI supplement can alleviate lipid accumulation in the liver by diverging some glucose metabolism into the pentose phosphate pathway and enhance the antioxidant capacity in O. niloticus.
Collapse
|
11
|
Zhu J, Tang L, Qiao S, Wang L, Feng Y, Wang L, Wu Q, Ding P, Zhang Z, Li L. Low-dose methylmercury exposure impairs the locomotor activity of zebrafish: Role of intestinal inositol metabolism. ENVIRONMENTAL RESEARCH 2020; 190:110020. [PMID: 32777273 DOI: 10.1016/j.envres.2020.110020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
Methylmercury (MeHg) is a ubiquitous environmental toxicant with neurotoxic effects. Although its neurotoxicity had been more studied, the role of gut microbiota remains unclear. In this study, adult zebrafish and larvae were exposed to MeHgCl at the dose of 0, 1 and 10 ng/mL. MeHgCl exposure impaired the locomotor activity via upregulation of apoptosis and autophagy related genes in the brain. Intestinal and cerebral metabolome indicated that phosphatidylinositol signaling system and inositol phosphate metabolism pathways were significantly impacted in adult zebrafish upon MeHgCl exposure. The levels of myo-inositol (MI) in the intestine and brain were decreased and positively correlated. 16 S rRNA sequencing data from adult zebrafish showed that MeHgCl exposure also shifted the structure of gut microbiota and reduced the relative abundance of Bacteroidetes and Proteobacteria, which were further identified at genus level as Aeromonas and Cetobacterium. Further functional analysis indicated that MeHgCl disrupted inositol phosphate metabolism of gut microbiota. Notably, MI supplementation restored the impairment of locomotor activity and inhibited the upregulation of apoptosis and autophagy related genes, such as bcl-2 and atg5. Thus, this study not only revealed the key role of gut microbiota in MeHgCl-mediated neurotoxicity but also gave new insights into antagonizing its toxicity.
Collapse
Affiliation(s)
- Jun Zhu
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, PR China
| | - Lei Tang
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, PR China
| | - Shanlei Qiao
- Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, PR China
| | - Lijuan Wang
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, PR China
| | - Yiming Feng
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, PR China
| | - Li Wang
- Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, PR China
| | - Qian Wu
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, PR China
| | - Ping Ding
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, 410078, PR China
| | - Zhan Zhang
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, PR China; Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, PR China.
| | - Lei Li
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, PR China; Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, PR China.
| |
Collapse
|
12
|
Cui W, Ma A. Transcriptome analysis provides insights into the effects of myo-inositol on the turbot Scophthalmus maximus. FISH & SHELLFISH IMMUNOLOGY 2020; 106:691-704. [PMID: 32711153 DOI: 10.1016/j.fsi.2020.07.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023]
Abstract
Myo-inositol is an essential vitamin for most animals, and it can modulate multiple physiological functions. In this study, we performed transcriptome gene expression profiling of gill tissue from turbot Scophthalmus maximus fed different concentrations of myo-inositol (0, 300, 600, 900, 1200 mg/kg). Results of expression tendency analysis, Weighted Gene Co-Expression Network Analysis (WGCNA), integrated transcriptome analyses, and KEGG annotation analysis of all differentially expressed genes (DEGs) demonstrated that the cytokine-cytokine receptor interaction played a core role in effects of myo-inositol on turbot, which was followed by the Jak-STAT signaling pathway. The results of qRT-PCR also showed myo-inositol mediated the gene expression of the cytokine-cytokine receptor interaction and the Jak-STAT signaling pathway in turbot. The ELISA assay indicated that myo-inositol affected the concentration change of interleukins (IL-2 and IL-10). Consequently, the interleukins associated with immune functions in the cytokine-cytokine receptor interaction played a core role in the effects of myo-inositol on turbot, which was followed by the Jak-STAT signaling pathway. Additionally, 10 hub genes associated with myo-inositol-traits were identified via WGCNA.
Collapse
Affiliation(s)
- Wenxiao Cui
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; College of Fisheries and Life Science, Shanghai Ocean University, Ministry of Education, Shanghai, 201306, China
| | - Aijun Ma
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
13
|
You R, Wang L, Shi C, Chen H, Zhang S, Hu M, Tao Y. Efficient production of myo-inositol in Escherichia coli through metabolic engineering. Microb Cell Fact 2020; 19:109. [PMID: 32448266 PMCID: PMC7247202 DOI: 10.1186/s12934-020-01366-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/15/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The biosynthesis of high value-added compounds using metabolically engineered strains has received wide attention in recent years. Myo-inositol (inositol), an important compound in the pharmaceutics, cosmetics and food industries, is usually produced from phytate via a harsh set of chemical reactions. Recombinant Escherichia coli strains have been constructed by metabolic engineering strategies to produce inositol, but with a low yield. The proper distribution of carbon flux between cell growth and inositol production is a major challenge for constructing an efficient inositol-synthesis pathway in bacteria. Construction of metabolically engineered E. coli strains with high stoichiometric yield of inositol is desirable. RESULTS In the present study, we designed an inositol-synthesis pathway from glucose with a theoretical stoichiometric yield of 1 mol inositol/mol glucose. Recombinant E. coli strains with high stoichiometric yield (> 0.7 mol inositol/mol glucose) were obtained. Inositol was successfully biosynthesized after introducing two crucial enzymes: inositol-3-phosphate synthase (IPS) from Trypanosoma brucei, and inositol monophosphatase (IMP) from E. coli. Based on starting strains E. coli BW25113 (wild-type) and SG104 (ΔptsG::glk, ΔgalR::zglf, ΔpoxB::acs), a series of engineered strains for inositol production was constructed by deleting the key genes pgi, pfkA and pykF. Plasmid-based expression systems for IPS and IMP were optimized, and expression of the gene zwf was regulated to enhance the stoichiometric yield of inositol. The highest stoichiometric yield (0.96 mol inositol/mol glucose) was achieved from recombinant strain R15 (SG104, Δpgi, Δpgm, and RBSL5-zwf). Strain R04 (SG104 and Δpgi) reached high-density in a 1-L fermenter when using glucose and glycerol as a mixed carbon source. In scaled-up fed-batch bioconversion in situ using strain R04, 0.82 mol inositol/mol glucose was produced within 23 h, corresponding to a titer of 106.3 g/L (590.5 mM) inositol. CONCLUSIONS The biosynthesis of inositol from glucose in recombinant E. coli was optimized by metabolic engineering strategies. The metabolically engineered E. coli strains represent a promising method for future inositol production. This study provides an essential reference to obtain a suitable distribution of carbon flux between glycolysis and inositol synthesis.
Collapse
Affiliation(s)
- Ran You
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China.,Chinese Academy of Sciences Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lei Wang
- Chinese Academy of Sciences Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Congrong Shi
- Chinese Academy of Sciences Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao Chen
- Chinese Academy of Sciences Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shasha Zhang
- Chinese Academy of Sciences Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Meirong Hu
- Chinese Academy of Sciences Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yong Tao
- Chinese Academy of Sciences Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China. .,College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
14
|
He P, Jiang WD, Liu XA, Feng L, Wu P, Liu Y, Jiang J, Tan BP, Yang QH, Kuang SY, Tang L, Zhou XQ. Dietary biotin deficiency decreased growth performance and impaired the immune function of the head kidney, spleen and skin in on-growing grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2020; 97:216-234. [PMID: 31857225 DOI: 10.1016/j.fsi.2019.12.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 12/06/2019] [Accepted: 12/13/2019] [Indexed: 06/10/2023]
Abstract
The aim of this study was to investigate the effects of dietary biotin deficiency on the growth performance and immune function of the head kidney, spleen and skin in on-growing grass carp (Ctenopharyngodon idella). A total of 540 on-growing grass carp (117.11 ± 0.48 g) were fed six diets containing increasing levels of biotin (0.012, 0.110, 0.214, 0.311, 0.427 and 0.518 mg/kg diet) for 70 days. Subsequently, a challenge experiment was performed by infecting them with Aeromonas hydrophila for six days. Our results showed that compared with the appropriate biotin level, (1) biotin deficiency (0.012 mg/kg diet) reduced the activities of lysozyme (LZ) and acid phosphatase (ACP), decreased the contents of complement 3 (C3), C4 and immunoglobulin M (IgM), as well as reduced the mRNA levels of antimicrobial peptides in the head kidney, spleen and skin of on-growing grass carp; (2) biotin deficiency reduced the mRNA levels of anti-microbial substances: liver-expressed antimicrobial peptide (LEAP) -2A, LEAP-2B, hepcidin, β-defensin-1 and mucin 2 in the head kidney, spleen and skin of on-growing grass carp; (3) biotin deficiency increased the mRNA levels of pro-inflammatory cytokines interleukin 1β (IL-1β), IL-6, IL-8, IL-12p40, IL-15, IL-17D, tumour necrosis factor α (TNF-α) and interferon γ2 (IFN-γ2) partially in association with nuclear factor-kappa B (NF-κB) signalling and reduced anti-inflammatory IL-4/13A, IL-10, IL-11 and transforming growth factor β1 (TGF-β1) mRNA levels partially in association with target of rapamycin (TOR) signalling in the head kidney, spleen and skin of on-growing grass carp. Interestingly, biotin deficiency had no effect on the expression of IL-12p35, IL-4/13B, TGF-β2, 4E-BP1 (skin only) or IKKα in the head kidney, spleen and skin of on-growing grass carp. In conclusion, the results indicated that biotin deficiency impaired the immune function of the head kidney, spleen and skin in fish. Finally, based on the percent weight gain (PWG), the ability to prevent skin haemorrhages and lesions, the LZ activity in the head kidney and the C4 content in the spleen, the optimal dietary biotin levels for on-growing grass carp (117-534 g) were estimated as 0.210, 0.230, 0.245 and 0.238 mg/kg diet, respectively.
Collapse
Affiliation(s)
- Peng He
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Xiang-An Liu
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Bei-Ping Tan
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Qi-Hui Yang
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China.
| |
Collapse
|
15
|
Ma A, Cui W, Wang X, Zhang W, Liu Z, Zhang J, Zhao T. Osmoregulation by the myo-inositol biosynthesis pathway in turbot Scophthalmus maximus and its regulation by anabolite and c-Myc. Comp Biochem Physiol A Mol Integr Physiol 2019; 242:110636. [PMID: 31846703 DOI: 10.1016/j.cbpa.2019.110636] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 12/08/2019] [Accepted: 12/12/2019] [Indexed: 12/12/2022]
Abstract
The induction of the myo-inositol biosynthesis (MIB) pathway in euryhaline fishes is an important component of the cellular response to osmotic challenge. The MIPS and IMPA1 genes were sequenced in turbot and found to be highly conserved in phylogenetic evolution, especially within the fish species tested. Under salinity stress in turbot, both MIPS and IMPA1 showed adaptive expression, a turning point in the level of expression occurred at 12 h in all tissues tested. We performed an RNAi assay mediated by long fragment dsRNA prepared by transcription in vitro. The findings demonstrated that knockdown of the MIB pathway weakened the function of gill osmotic regulation, and may induce a genetic compensation response in the kidney and gill to maintain physiological function. Even though the gill and kidney conducted stress reactions or compensatory responses to salinity stress, this inadequately addressed the consequences of MIB knockdown. Therefore, the survival time of turbot under salinity stress after knockdown was obviously less than that under seawater, especially under low salt stress. Pearson's correlation analysis between gene expression and dietary myo-inositol concentration indicated that the MIB pathway had a remarkable negative feedback control, and the dynamic equilibrium mediated by negative feedback on the MIB pathway played a crucial role in osmoregulation in turbot. An RNAi assay with c-Myc in vivo and the use of a c-Myc inhibitor (10058-F4) in vitro demonstrated that c-Myc was likely to positively regulate the MIB pathway in turbot.
Collapse
Affiliation(s)
- Aijun Ma
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| | - Wenxiao Cui
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; College of Fisheries and Life Science, Shanghai Ocean University, Ministry of Education, Shanghai 201306, China
| | - Xinan Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; College of Fisheries and Life Science, Shanghai Ocean University, Ministry of Education, Shanghai 201306, China
| | - Wei Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Zhifeng Liu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Jinsheng Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; College of Fisheries and Life Science, Shanghai Ocean University, Ministry of Education, Shanghai 201306, China
| | - Tingting Zhao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; College of Fisheries and Life Science, Shanghai Ocean University, Ministry of Education, Shanghai 201306, China
| |
Collapse
|
16
|
Gonzalez-Uarquin F, Rodehutscord M, Huber K. Myo-inositol: its metabolism and potential implications for poultry nutrition-a review. Poult Sci 2019; 99:893-905. [PMID: 32036985 PMCID: PMC7587644 DOI: 10.1016/j.psj.2019.10.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/26/2019] [Accepted: 10/06/2019] [Indexed: 12/11/2022] Open
Abstract
Myo-inositol (MI) has gained relevance in physiology research during the last decade. As a constituent of animal cells, MI was proven to be crucial in several metabolic and regulatory processes. Myo-inositol is involved in lipid signaling, osmolarity, glucose, and insulin metabolism. In humans and rodents, dietary MI was assessed to be important for health so that MI supplementation appeared to be a valuable alternative for treatment of several diseases as well as for improvements in metabolic performance. In poultry, there is a lack of evidence not only related to specific species-linked metabolic processes but also about the effects of dietary MI on performance and health. This review intends to provide information about the meaning of dietary MI in animal metabolism as well as to discuss potential implications of dietary MI in poultry health and performance with the aim to identify open questions in poultry research.
Collapse
Affiliation(s)
| | - Markus Rodehutscord
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany
| | - Korinna Huber
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany.
| |
Collapse
|
17
|
Titania nanotubes promote osteogenesis via mediating crosstalk between macrophages and MSCs under oxidative stress. Colloids Surf B Biointerfaces 2019; 180:39-48. [DOI: 10.1016/j.colsurfb.2019.04.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/10/2019] [Accepted: 04/15/2019] [Indexed: 12/22/2022]
|
18
|
Zheng Y, Wu W, Hu G, Qiu L, Bing X, Chen J. Varieties of immunity activities and gut contents in tilapia with seasonal changes. FISH & SHELLFISH IMMUNOLOGY 2019; 90:466-476. [PMID: 31004800 DOI: 10.1016/j.fsi.2019.04.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/04/2019] [Accepted: 04/11/2019] [Indexed: 06/09/2023]
Abstract
We performed 16S rDNA sequencing of tilapia fecal samples to analyze changes in tilapia gut contents after cultivation of the fish in the presence of sandwich-like floating beds of Chinese medicinal herbs (5 and 10% planting-areas; 5% Polygonum cuspidatum). The interactive effects between water quality and blood and hepatic pro- and anti-inflammatory concentrations were also assessed. Our results showed that the water quality (i.e., NO3--N, NO2--N, TP removal rates) improved, and the abundance of Chloroflexi and Cyanobacteria increased. The abundance of Bacteroidetes, Verrucomicrobia, Saccharibacteria, and Actinobacteria showed both significant seasonal decreases and increases in the presence of P. cuspidatum (increases in August and decreases in July). Fish blood and hepatic IL-10 and IFN-γ levels (together with fish sampled in September) significantly increased in the P. cuspidatum group sampled in August, while those of TNF-α (10% sandwich-like, P. cuspidatum), IL-1β (P. cuspidatum), IL-8 (5% sandwich-like in September, S905S) significantly decreased. Heat shock proteins 60 and 70 levels significantly increased in the P. cuspidatum group, and complement C3 and C4 concentrations significantly increased in S905S. This study demonstrated that enhanced immunity through the regulation of pro- and anti-inflammatory proteins was sustained throughout development until harvest, particularly in fish grown with P. cuspidatum.
Collapse
Affiliation(s)
- Yao Zheng
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, No. 9 Shanshui East Rd., Wuxi, Jiangsu, 214081, China
| | - Wei Wu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, No. 9 Shanshui East Rd., Wuxi, Jiangsu, 214081, China
| | - Gengdong Hu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, No. 9 Shanshui East Rd., Wuxi, Jiangsu, 214081, China
| | - Liping Qiu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, No. 9 Shanshui East Rd., Wuxi, Jiangsu, 214081, China
| | - Xuwen Bing
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, No. 9 Shanshui East Rd., Wuxi, Jiangsu, 214081, China.
| | - Jiazhang Chen
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, No. 9 Shanshui East Rd., Wuxi, Jiangsu, 214081, China.
| |
Collapse
|