1
|
Colás-Ruiz NR, Pintado-Herrera MG, Santonocito M, Salerno B, Tonini F, Lara-Martín PA, Hampel M. Bioconcentration, biotransformation, and transcriptomic impact of the UV-filter 4-MBC in the manila clam Ruditapes philippinarum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169178. [PMID: 38072265 DOI: 10.1016/j.scitotenv.2023.169178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/24/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023]
Abstract
Ultraviolet filters (UV-filters) are compounds extensively used in personal care products. These compounds are produced at increasing rates and discharged into marine ecosystems in unknown quantities and with no regulation, making them emerging contaminants. Among those, the UV-filter 4-Methylbenzylidene camphor (4-MBC) is used in a variety of personal care products such as sunscreens, soaps, or lipsticks. This high consumption has resulted in its presence in various environmental matrices at in concentrations ranging from ng to μg L-1. Very little is known, however, about the possible adverse effects in exposed non-target organisms. Our study presents novel data on the bioconcentration, toxicokinetics, and molecular effects of 4-MBC in a marine bivalve species of commercial interest, Ruditapes philippinarum (Manila clam). Organisms were exposed at two different concentrations (1.34 and 10.79 μg L-1) of 4-MBC for 7 days, followed by a 3-day depuration period (clean sea waters). Bioconcentration factors (BCF) were 3562 and 2229 L kg-1 for the low and high exposure concentrations, respectively, making this pollutant bioaccumulative according to REACH criteria. Up to six 4-MBC biotransformation products (BTPs)were identified, 2 of them for the first time. Transcriptomic analysis revealed between 658 and 1310 differently expressed genes (DEGs) after 4-MBC exposure. Functional and enrichment analysis of the DEGs showed the activation of the detoxification pathway to metabolize and excrete the bioconcentrated 4-MBC, which also involved energy depletion and caused an impact on the metabolism of carbohydrates and lipids and in the oxidative phosphorylation pathways. Oxidative stress and immune response were also evidenced through the activation of cathepsins and the complement system. Such elucidation of the mode of action of a ubiquitous pollutant such as 4-MBC at the molecular level is valuable both from an environmental point of view and for the sustainable production of Manila clam, one of the most cultivated mollusk species worldwide.
Collapse
Affiliation(s)
- Nieves R Colás-Ruiz
- Faculty of Marine and Environmental Sciences (CASEM), University of Cadiz, 11510 Puerto Real, Cadiz, Spain.
| | - Marina G Pintado-Herrera
- Faculty of Marine and Environmental Sciences (CASEM), University of Cadiz, 11510 Puerto Real, Cadiz, Spain
| | - Melania Santonocito
- Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI•MAR), Universidad de Cadiz, Av. República Saharaui s/n, 11510 Puerto Real, Cadiz, Spain
| | - Barbara Salerno
- Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI•MAR), Universidad de Cadiz, Av. República Saharaui s/n, 11510 Puerto Real, Cadiz, Spain
| | - Federico Tonini
- Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI•MAR), Universidad de Cadiz, Av. República Saharaui s/n, 11510 Puerto Real, Cadiz, Spain
| | - Pablo A Lara-Martín
- Faculty of Marine and Environmental Sciences (CASEM), University of Cadiz, 11510 Puerto Real, Cadiz, Spain
| | - Miriam Hampel
- Faculty of Marine and Environmental Sciences (CASEM), University of Cadiz, 11510 Puerto Real, Cadiz, Spain
| |
Collapse
|
2
|
Romero A, Novoa B, Figueras A. Genomic and transcriptomic identification of the cathepsin superfamily in the Mediterranean mussel Mytilus galloprovincialis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 127:104286. [PMID: 34619173 DOI: 10.1016/j.dci.2021.104286] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
Cathepsins are lysosomal enzymes that participate in important physiological processes, such as development, tissue remodelling, senescence and innate and adaptive immunity. The description of these proteins in molluscs is fragmented and incomplete. In the present work, we identified most of the cathepsin family members in the bivalve Mytilus galloprovincialis by screening published genomic and transcriptomic information. In this specie, the cathepsin family is composed of 41 proteins showing a high diversification of cathepsins D, L and F, not previously observed in other taxonomic groups. Specific set of cathepsins are constitutively expressed in the different mussel tissues. Transcriptomic analyses suggested coordinated activity of the different cathepsins and their sequential activation during larval development. Cathepsins also play an important role in the immune response of bivalves, and different immune pathways seem to be activated in response to Vibrio splendidus infection.
Collapse
Affiliation(s)
- Alejandro Romero
- Instituto de Investigaciones Marinas (CSIC), Eduardo Cabello 6, 36208, Vigo, Spain
| | - Beatriz Novoa
- Instituto de Investigaciones Marinas (CSIC), Eduardo Cabello 6, 36208, Vigo, Spain.
| | - Antonio Figueras
- Instituto de Investigaciones Marinas (CSIC), Eduardo Cabello 6, 36208, Vigo, Spain
| |
Collapse
|
3
|
Kwon H, Mohammed M, Franzén O, Ankarklev J, Smith RC. Single-cell analysis of mosquito hemocytes identifies signatures of immune cell subtypes and cell differentiation. eLife 2021; 10:66192. [PMID: 34318744 PMCID: PMC8376254 DOI: 10.7554/elife.66192] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 07/27/2021] [Indexed: 12/16/2022] Open
Abstract
Mosquito immune cells, known as hemocytes, are integral to cellular and humoral responses that limit pathogen survival and mediate immune priming. However, without reliable cell markers and genetic tools, studies of mosquito immune cells have been limited to morphological observations, leaving several aspects of their biology uncharacterized. Here, we use single-cell RNA sequencing (scRNA-seq) to characterize mosquito immune cells, demonstrating an increased complexity to previously defined prohemocyte, oenocytoid, and granulocyte subtypes. Through functional assays relying on phagocytosis, phagocyte depletion, and RNA-FISH experiments, we define markers to accurately distinguish immune cell subtypes and provide evidence for immune cell maturation and differentiation. In addition, gene-silencing experiments demonstrate the importance of lozenge in defining the mosquito oenocytoid cell fate. Together, our scRNA-seq analysis provides an important foundation for future studies of mosquito immune cell biology and a valuable resource for comparative invertebrate immunology.
Collapse
Affiliation(s)
- Hyeogsun Kwon
- Department of Entomology, Iowa State University, Ames, United States
| | - Mubasher Mohammed
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Oscar Franzén
- Integrated Cardio Metabolic Centre, Department of Medicine, Karolinska Institutet, Novum, Huddinge, Sweden
| | - Johan Ankarklev
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.,Microbial Single Cell Genomics facility, SciLifeLab, Biomedical Center (BMC) Uppsala University, Uppsala, Sweden
| | - Ryan C Smith
- Department of Entomology, Iowa State University, Ames, United States
| |
Collapse
|
4
|
Li Y, Zhang L, Li R, Zhang M, Li Y, Wang H, Wang S, Bao Z. Systematic identification and validation of the reference genes from 60 RNA-Seq libraries in the scallop Mizuhopecten yessoensis. BMC Genomics 2019; 20:288. [PMID: 30975074 PMCID: PMC6460854 DOI: 10.1186/s12864-019-5661-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 03/31/2019] [Indexed: 12/15/2022] Open
Abstract
Background Reverse transcription quantitative PCR (RT-qPCR) is widely used for gene expression analysis in various organisms. Its accuracy largely relies on the stability of reference genes, making reference gene selection a vital step in RT-qPCR experiments. However, previous studies in mollusks only focused on the reference genes widely used in vertebrates. Results In this study, we conducted the transcriptome-wide identification of reference genes in the bivalve mollusk Mizuhopecten yessoensis based on 60 transcriptomes covering early development, adult tissues and gonadal development. A total of 964, 1210 and 2097 candidate reference genes were identified, respectively, resulting in a core set of 568 genes. Functional enrichment analysis showed that these genes are significantly overrepresented in Gene Ontology (GO) terms or Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways related to ribosomes, energy production, etc. Six genes (RS23, EF1A, NDUS4, SELR1, EIF3F, and OLA1) were selected from the candidate genes for RT-qPCR validation, together with 6 commonly used reference genes (ACT, CYTC, HEL, EF1B, GAPDH and RPL16). Stability analyses using geNorm, NormFinder and the comparative delta-Ct method revealed that the new candidate reference genes are more stable than the traditionally used genes, and ACT and CYTC are not recommended under either of the three circumstances. There was a significant correlation between the Ct of RT-qPCR and the log2(TPM) of RNA-Seq data (Ct = − 0.94 log2(TPM) + 29.67, R2 = 0.73), making it easy to estimate the Ct values from transcriptome data prior to RT-qPCR experiments. Conclusion Our study represents the first transcriptome-wide identification of reference genes for early development, adult tissues, and gonadal development in the Yesso scallop and will benefit gene expression studies in other bivalve mollusks. Electronic supplementary material The online version of this article (10.1186/s12864-019-5661-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yajuan Li
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, 5 Yushan Road, Qingdao, China
| | - Lingling Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, 5 Yushan Road, Qingdao, China. .,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Ruojiao Li
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, 5 Yushan Road, Qingdao, China
| | - Meiwei Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, 5 Yushan Road, Qingdao, China
| | - Yangping Li
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, 5 Yushan Road, Qingdao, China
| | - Hao Wang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, 5 Yushan Road, Qingdao, China
| | - Shi Wang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, 5 Yushan Road, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, 5 Yushan Road, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
5
|
Wang M, Wang B, Liu M, Jiang K, Wang L. Comparative study of β-thymosin in two scallop species Argopecten irradians and Chlamys farreri. FISH & SHELLFISH IMMUNOLOGY 2019; 86:516-524. [PMID: 30468890 DOI: 10.1016/j.fsi.2018.11.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/15/2018] [Accepted: 11/19/2018] [Indexed: 06/09/2023]
Abstract
The β-thymosin (Tβ) proteins participate in numerous biological processes, such as cell proliferation and differentiation, anti-inflammatory and antimicrobial mechanism. To date, Tβ proteins have been well studied in vertebrates, especially mammals. While limited Tβ or Tβ-like proteins have been reported in invertebrates. Moreover, rare information of Tβ or Tβ-like proteins is available in scallop species yet. In the present study, two Tβ homologues, AiTβ and CfTβ, were identified and characterized from two scallop species bay scallop Argopecten irradians and Zhikong scallop Chlamys farreri. They were both 41 amino acid peptide and contained one THY domain, a highly conserved actin-binding motif and two conserved helix forming regions. Tissue distribution and expression profiles of their mRNA transcripts were roughly similar yet different in detail, while their recombinant proteins exhibited different immunomodulation activity on the downstream immune parameters. These results collectively indicated that the function of Tβ family in scallop were functionally differentiated.
Collapse
Affiliation(s)
- Mengqiang Wang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Research Platform for Marine Molecular Biotechnology, National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Baojie Wang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Mei Liu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Keyong Jiang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Lei Wang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, National Laboratory for Marine Science and Technology, Qingdao, 266237, China; CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266400, China.
| |
Collapse
|