1
|
Yu HC, Cui R, Chen MY, Du XY, Bai QR, Zhang SL, Guo JJ, Tong FC, Wu J. Regulation of Erythroid Differentiation via the HIF1α-NFIL3-PIM1 Signaling Axis Under Hypoxia. Antioxid Redox Signal 2024. [PMID: 38573002 DOI: 10.1089/ars.2023.0508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Aims: Erythropoiesis is controlled by several factors, including oxygen level under different circumstances. However, the role of hypoxia in erythroid differentiation and the underlying mechanisms are poorly understood. We studied the effect and mechanism of hypoxia on erythroid differentiation of K562 cells and observed the effect of hypoxia on early erythropoiesis of zebrafish. Results: Compared with normal oxygen culture, both hemin-induced erythroid differentiation of K562 cells and the early erythropoiesis of zebrafish were inhibited under hypoxic treatment conditions. Hypoxia-inducible factor 1 alpha (HIF1α) plays a major role in the response to hypoxia. Here, we obtained a stable HIF1α knockout K562 cell line using the CRISPR-Cas9 technology and further demonstrated that HIF1α knockout promoted hemin-induced erythroid differentiation of K562 cells under hypoxia. We demonstrated an HIF1-mediated induction of the nuclear factor interleukin-3 (NFIL3) regulated in K562 cells under hypoxia. Interestingly, a gradual decrease in NFIL3 expression was detected during erythroid differentiation of erythropoietin-induced CD34+ hematopoietic stem/progenitor cells (HSPCs) and hemin-induced K562 cells. Notably, erythroid differentiation was inhibited by enforced expression of NFIL3 under normoxia and was promoted by the knockdown of NFIL3 under hypoxia in hemin-treated K562 cells. In addition, a target of NFIL3, pim-1 proto-oncogene, serine/threonine kinase (PIM1), was obtained by RNA microarray after NFIL3 knockdown. PIM1 can rescue the inhibitory effect of NFIL3 on hemin-induced erythroid differentiation of K562 cells. Innovation and Conclusion: Our findings demonstrate that the HIF1α-NFIL3-PIM1 signaling axis plays an important role in erythroid differentiation under hypoxia. These results will provide useful clues for preventing the damage of acute hypoxia to erythropoiesis.
Collapse
Affiliation(s)
- Hai-Chuan Yu
- School of Medical Technology, Xinxiang Medical University, Xinxiang, China
| | - Rui Cui
- School of Medical Technology, Xinxiang Medical University, Xinxiang, China
| | - Meng-Yao Chen
- School of Medical Technology, Xinxiang Medical University, Xinxiang, China
| | - Xiao-Yan Du
- School of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Qi-Rong Bai
- School of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Shuang-Ling Zhang
- School of Medical Technology, Xinxiang Medical University, Xinxiang, China
| | - Jiao-Jie Guo
- School of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Fang-Chao Tong
- School of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Jiao Wu
- School of Pharmacy, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
2
|
Investigating the loss of major yolk proteins during the processing of sea cucumber (Apostichopus japonicus) using an MRM-based targeted proteomics strategy. Food Chem 2023; 404:134670. [DOI: 10.1016/j.foodchem.2022.134670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/09/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022]
|
3
|
Biological mass spectrometry analysis for traceability of production method and harvesting seasons of sea cucumber (Apostichopus japonicus). Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Sun J, Zheng J, Wang Y, Yang S, Yang J. The exogenous autophagy inducement alleviated the sea cucumber (Stichopus japonicus) autolysis with exposure to stress stimuli of ultraviolet light. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:3416-3424. [PMID: 34825382 DOI: 10.1002/jsfa.11689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/20/2021] [Accepted: 11/26/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Autolysis is the most important restrictive factor for the live sea cucumber trade and commercial transportation. Thus, it is essential to investigate the mechanism of autolysis activation or deactivation in the sea cucumber. In this study, monodansylcadaverine staining and Western blotting experiment methods indicated the implication of autophagy in the ultraviolet (UV) exposed sea cucumbers. The health condition was observed after the sea cucumbers (Stichopus japonicus) were gastric perfusion with autophagic inhibitor (3-methyladenine) or inducer (rapamycin) and exposure to UV light for half an hour. RESULTS The protein expressions of LC3-II and Atg5 appeared immediately after UV exposure and then vanished 1 h later. The autophagosome formation in coelomic fluid cells confirmed the autophagy appearance pattern of LC3-II and Atg5. The sea cucumber individuals maintained the health condition during the entire event of autophagy. The autophagic inhibitor along with UV exposure contributed to sea cucumber's swollen intestinal tissues, but the autophagic inducer functioned to alleviate and neutralize the UV effect. CONCLUSIONS The autophagy procedure analysis demonstrated that autophagy plays a role to maintain the health condition of sea cucumber during autolysis inducement. The autolysis of sea cucumber can be alleviated or postponed by the exogenous autophagy inducer and this finding would benefit the live sea cucumber transportation. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jinghe Sun
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Jie Zheng
- Liaoning Ocean and Fisheries Science Research Institute, Dalian, P. R. China
| | - Yanan Wang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Sheng Yang
- Biophysics & Molecular Biology, Roy J. Carver Department of Biochemistry, Iowa State University, Ames, IA, USA
| | - Jingfeng Yang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| |
Collapse
|
5
|
Tan J, Wang X, Wang L, Zhou X, Liu C, Ge J, Bian L, Chen S. Transcriptomic responses to air exposure stress in coelomocytes of the sea cucumber, Apostichopus japonicus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 42:100963. [PMID: 35131601 DOI: 10.1016/j.cbd.2022.100963] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 12/30/2021] [Accepted: 01/17/2022] [Indexed: 12/12/2022]
Abstract
During rearing in hatcheries and transportation to restocking sites, sea cucumbers are often exposed to air for several hours, which may depress their non-specific immunity and lead to mass mortality. We performed transcriptome analysis of Apostichopus japonicus coelomocytes after air exposure to identify stress-related genes and pathways. After exposure to air for 1 h, individuals were re-submerged in aerated seawater and coelomocytes were collected at 0, 1, 4, and 16 h (B, H1, H4, and H16, respectively). We identified 6148 differentially expressed genes, of which 3216 were upregulated and 2932 were downregulated. Many genes involved in the immune response, antioxidant defense, and apoptosis were highly induced in response to air exposure. Enrichment analysis of Gene Ontology terms showed that the most abundant terms in the biological process category were oxidation-reduction process, protein folding and phosphorylation, and receptor-mediated endocytosis for the comparison of H1 vs. B, H4 vs. H1, and H16 vs. H4, respectively. Kyoto Eecyclopedia of Genes and Genomes enrichment analysis showed that six pathways related to the metabolism of proteins, fats, and carbohydrates were shared among the three comparisons. These results indicated that sea cucumbers regulate the expression of genes related to the antioxidant system and energy metabolism to resist the negative effects of air exposure stress. These findings may be applied to optimize juvenile sea cucumber production, and facilitate molecular marker-assisted selective breeding of an anoxia-resistant strain.
Collapse
Affiliation(s)
- Jie Tan
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Xuejiang Wang
- Wuzhoufeng Agricultural Science and Technology Co., LTD, Yantai 264000, China.
| | - Liang Wang
- Yantai Marine Economic Research Institute, Yantai 264003, China.
| | - Xiaoqun Zhou
- Yantai Marine Economic Research Institute, Yantai 264003, China
| | - Changlin Liu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Jianlong Ge
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Li Bian
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Siqing Chen
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| |
Collapse
|
6
|
Feng J, Zhang L, Tang X, Hu W, Zhou P. Major yolk protein from sea cucumber (Stichopus japonicus) attenuates acute colitis via regulation of microbial dysbiosis and inflammatory responses. Food Res Int 2022; 151:110841. [PMID: 34980380 DOI: 10.1016/j.foodres.2021.110841] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/28/2021] [Accepted: 11/27/2021] [Indexed: 11/15/2022]
Abstract
Inflammatory bowel disease afflicted individuals and most medications have adverse effects. The objection of this study is to investigate whether the major yolk protein (MYP) could aid in the remission of colitis. The function of MYP on acute colitis was assessed through a dextran sulfate sodium -induced colitis mice model. Compared to the model group, the anti-inflammatory cytokines increased significantly in the MYP group, whereas the pro-inflammatory cytokines were not significantly different between the model and treatment group. The results also showed that supplementation of MYP improved the shift in microbial community composition of mice with colitis induced by DSS. In addition, MYP supplementation enriched the contents of fecal short-chain fatty acids. The alleviation of MYP on the colitis was probably related to repair the dysbiosis state of colonic microbiota, which thus induced an increase in short-chain fatty acids level and secrete anti-inflammatory cytokines (IL-4 and IL-10). In sum, oral MYP may be a potential candidate for the attenuating of acute colitis.
Collapse
Affiliation(s)
- Jianhui Feng
- State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Lina Zhang
- State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China.
| | - Xue Tang
- State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Wei Hu
- Shandong Homey Aquatic Development CO., Rongcheng, Shandong Province 264000, China
| | - Peng Zhou
- State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China.
| |
Collapse
|
7
|
Huo D, Sun L, Sun J, Lin C, Liu S, Zhang L, Yang H. Emerging roles of circRNAs in regulating thermal and hypoxic stresses in Apostichopus japonicus (Echinodermata: Holothuroidea). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:112994. [PMID: 34839139 DOI: 10.1016/j.ecoenv.2021.112994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
Some sea cucumbers are economically and ecologically important, but they are threatened by thermal and hypoxic stress in changing oceanographic conditions. We construct circRNAs profiles, reveal circRNAs characters, and illustrate the potential regulatory roles of circRNAs in one commercially important species of sea cucumber, Apostichopus japonicus. Reads are distributed in intergenic (44.14%), exonic (48.26%) and intronic (7.60%) regions of the genome. A total of 1684 circRNAs were identified, and the most common spliced length is 269 nt in the present study. In three treatments (HT [thermal stress], LO [hypoxic stress], and HL [combined thermal and hypoxic stress]), 24, 27 and 27 differentially expressed (DE) circRNAs were identified, respectively. Five novel DE-circRNAs commonly occur in these treatments (novel_circ_0003311, novel_circ_0000229, novel_circ_0003944, novel_circ_0001458 and novel_circ_0000707), and based on them, potential circRNA-miRNA binding pairs were predicted. Sanger sequencing, RNase R treatment experiment and qPCR validation identified the accuracy of the circRNAs. Key circRNAs identified in the present study were covalently closed and were more stable under RNase R treatment than linear RNAs. Based on function analysis, circRNAs could regulate metabolic process, signal transduction, and ion responses in A. japonicus when exposed to thermal and hypoxic stress, and 'regulation of response to stimulus' is a common gene ontology (GO) term that is significantly enriched in each treatment; GO terms for 'DNA' and 'stress' are commonly enriched in heat-related treatments (HT and HL); and GO terms for 'protein' are commonly enriched in hypoxia-related treatments (LO and HL). When environmentally stressed, 'metabolism,' 'transport and catabolism,' 'membrane transport,' and 'signal transduction' were significantly responded in sea cucumber based on KEGG analysis. We provide insights into circRNA functions in stress regulation and lay a foundation for invertebrate circRNA research.
Collapse
Affiliation(s)
- Da Huo
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Lina Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China.
| | - Jingchun Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Chenggang Lin
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Shilin Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Libin Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Hongsheng Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
8
|
Domínguez-Maqueda M, Cerezo IM, Tapia-Paniagua ST, De La Banda IG, Moreno-Ventas X, Moriñigo MÁ, Balebona MC. A Tentative Study of the Effects of Heat-Inactivation of the Probiotic Strain Shewanella putrefaciens Ppd11 on Senegalese Sole ( Solea senegalensis) Intestinal Microbiota and Immune Response. Microorganisms 2021; 9:microorganisms9040808. [PMID: 33921253 PMCID: PMC8070671 DOI: 10.3390/microorganisms9040808] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/02/2021] [Accepted: 04/09/2021] [Indexed: 12/02/2022] Open
Abstract
Concerns about safety, applicability and functionality associated with live probiotic cells have led to consideration of the use of non-viable microorganisms, known as paraprobiotics. The present study evaluated the effects of dietary administration of heat-inactivated cells of the probiotic strain Shewanella putrefaciens Ppd11 on the intestinal microbiota and immune gene transcription in Solea senegalensis. Results obtained were evaluated and compared to those described after feeding with viable Pdp11 cells. S. senegalensis specimens were fed with basal (control) diet or supplemented with live or heat inactivated (60 °C, 1 h) probiotics diets for 45 days. Growth improvement was observed in the group receiving live probiotics compared to the control group, but not after feeding with a probiotic heat-inactivated diet. Regarding immune gene transcription, no changes were observed for tnfα, il-6, lys-c1, c7, hsp70, and hsp90aa in the intestinal samples based on the diet. On the contrary, hsp90ab, gp96, cd4, cd8, il-1β, and c3 transcription were modulated after probiotic supplementation, though no differences between viable and heat-inactivated probiotic supplemented diets were observed. Modulation of intestinal microbiota showed remarkable differences based on the viability of the probiotics. Thus, higher diversity in fish fed with live probiotic cells, jointly with increased Mycoplasmataceae and Spirochaetaceae to the detriment of Brevinemataceae, was detected. However, microbiota of fish receiving heat-inactivated probiotic cells showed decreased Mycoplasmataceae and increased Brevinemataceae and Vibrio genus abundance. In short, the results obtained indicate that the viable state of Pdp11 probiotic cells affects growth performance and modulation of S. senegalensis intestinal microbiota. On the contrary, minor changes were detected in the intestinal immune response, being similar for fish receiving both, viable and inactivated probiotic cell supplemented diets, when compared to the control diet.
Collapse
Affiliation(s)
- Marta Domínguez-Maqueda
- Departamento de Química Inorgánica, Cristalografía y Mineralogía, Facultad de Ciencias, Campus de Teatinos s/n, Universidad de Málaga, 29071 Málaga, Spain; (I.M.C.); (S.T.T.-P.); (M.Á.M.); (M.C.B.)
- Correspondence:
| | - Isabel M. Cerezo
- Departamento de Química Inorgánica, Cristalografía y Mineralogía, Facultad de Ciencias, Campus de Teatinos s/n, Universidad de Málaga, 29071 Málaga, Spain; (I.M.C.); (S.T.T.-P.); (M.Á.M.); (M.C.B.)
| | - Silvana Teresa Tapia-Paniagua
- Departamento de Química Inorgánica, Cristalografía y Mineralogía, Facultad de Ciencias, Campus de Teatinos s/n, Universidad de Málaga, 29071 Málaga, Spain; (I.M.C.); (S.T.T.-P.); (M.Á.M.); (M.C.B.)
| | - Inés García De La Banda
- Spanish Institute of Oceanography, Oceanographic Center of Santander, 39080 Santander, Spain;
| | - Xabier Moreno-Ventas
- Ecological Area of Water and Environmental Sciences and Technics, University of Cantabria, 39005 Santander, Spain;
| | - Miguel Ángel Moriñigo
- Departamento de Química Inorgánica, Cristalografía y Mineralogía, Facultad de Ciencias, Campus de Teatinos s/n, Universidad de Málaga, 29071 Málaga, Spain; (I.M.C.); (S.T.T.-P.); (M.Á.M.); (M.C.B.)
| | - Maria Carmen Balebona
- Departamento de Química Inorgánica, Cristalografía y Mineralogía, Facultad de Ciencias, Campus de Teatinos s/n, Universidad de Málaga, 29071 Málaga, Spain; (I.M.C.); (S.T.T.-P.); (M.Á.M.); (M.C.B.)
| |
Collapse
|
9
|
Li X, Wang C, Li N, Gao Y, Ju Z, Liao G, Xiong D. Combined Effects of Elevated Temperature and Crude Oil Pollution on Oxidative Stress and Apoptosis in Sea Cucumber ( Apostichopus japonicus, Selenka). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18020801. [PMID: 33477823 PMCID: PMC7832845 DOI: 10.3390/ijerph18020801] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 01/15/2023]
Abstract
Currently, global climate change and oil pollution are two main environmental concerns for sea cucumber (Apostichopus japonicus) aquaculture. However, no study has been conducted on the combined effects of elevated temperature and oil pollution on sea cucumber. Therefore, in the present study, we treated sea cucumber with elevated temperature (26 °C) alone, water-accommodated fractions (WAF) of Oman crude oil at an optimal temperature of 16 °C, and Oman crude oil WAF at an elevated temperature of 26 °C for 24 h. Results showed that reactive oxygen species (ROS) level and total antioxidant capacity in WAF at 26 °C treatment were higher than that in WAF at 16 °C treatment, as evidenced by 6.03- and 1.31-fold-higher values, respectively. Oxidative damage assessments manifested that WAF at 26 °C treatment caused much severer oxidative damage of the biomacromolecules (including DNA, proteins, and lipids) than 26 °C or WAF at 16 °C treatments did. Moreover, compared to 26 °C or WAF at 16 °C treatments, WAF at 26 °C treatment induced a significant increase in cellular apoptosis by detecting the caspase-3 activity. Our results revealed that co-exposure to elevated temperature and crude oil could simulate higher ROS levels and subsequently cause much severer oxidative damage and cellular apoptosis than crude oil alone on sea cucumber.
Collapse
Affiliation(s)
- Xishan Li
- National Marine Environmental Monitoring Center, Dalian 116023, China; (X.L.); (N.L.); (Z.J.)
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China; (C.W.); (D.X.)
- State Environmental Protection Key Laboratory of Coastal Ecosystem, Dalian 116023, China
| | - Chengyan Wang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China; (C.W.); (D.X.)
| | - Nan Li
- National Marine Environmental Monitoring Center, Dalian 116023, China; (X.L.); (N.L.); (Z.J.)
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China; (C.W.); (D.X.)
| | - Yali Gao
- School of Marine Engineering, Jimei University, Xiamen 361021, China;
| | - Zhonglei Ju
- National Marine Environmental Monitoring Center, Dalian 116023, China; (X.L.); (N.L.); (Z.J.)
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China; (C.W.); (D.X.)
| | - Guoxiang Liao
- National Marine Environmental Monitoring Center, Dalian 116023, China; (X.L.); (N.L.); (Z.J.)
- State Environmental Protection Key Laboratory of Coastal Ecosystem, Dalian 116023, China
- Correspondence: ; Tel.: +86-0411-8478-3810
| | - Deqi Xiong
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China; (C.W.); (D.X.)
| |
Collapse
|
10
|
Characterizing the phospholipid composition of six edible sea cucumbers by NPLC-Triple TOF-MS/MS. J Food Compost Anal 2020. [DOI: 10.1016/j.jfca.2020.103626] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
11
|
Chang CC, Lu YC, Wang CC, Ko TL, Chen JR, Wang W, Chen YL, Wang YW, Chang TH, Hsu HF, Houng JY. Antrodia cinnamomea Extraction Waste Supplementation Promotes Thermal Stress Tolerance and Tissue Regeneration Ability of Zebrafish. Molecules 2020; 25:molecules25184213. [PMID: 32937928 PMCID: PMC7571120 DOI: 10.3390/molecules25184213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/08/2020] [Accepted: 09/12/2020] [Indexed: 12/11/2022] Open
Abstract
Antrodia cinnamomea (AC) has been shown to have anti-inflammatory, anti-tumor, and immunomodulation activities. It is estimated that hundreds of metric tons of AC extraction waste (ACEW) are produced per year in Taiwan. This study aims to assess the feasibility of applying ACEW as feed supplement in the aquaculture industry. ACEW significantly inhibited the growth of microorganisms in the water tank, by around 39.4% reduction on the fifth day with feed supplemented of 10% ACEW. The feed conversion efficiency of zebrafish with 10% ACEW supplementation for 30 days was 1.22-fold compared to that of the control. ACEW dramatically improved the tolerances of zebrafish under the heat and cold stresses. When at water temperature extremes of 38 °C or 11 °C, compared to the 100% mortality rate in the control group, the 10% ACEW diet group still had 91.7% and 83.3% survival rates, respectively. In a caudal fin amputation test, the fin recovery of zebrafish was increased from 68.4% to 93% with 10% ACEW diet after 3-week regeneration. ACEW effectively down-regulated the gene expression of TNF-α, IL-1β, IL-6, and IL-10, and up-regulated the gene expression of IL-4/13A. Additionally, the supplement of ACEW in the feed can maintain and prevent the fish’s body weight from dropping too much under enteritis. Taken together, ACEW has beneficial potential in aquaculture.
Collapse
Affiliation(s)
- Chi-Chang Chang
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan; (C.-C.C.); (Y.-C.L.); (C.-C.W.); (T.-L.K.)
- Department of Obstetrics & Gynecology, E-Da Hospital, Kaohsiung 82445, Taiwan;
| | - Yung-Chuan Lu
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan; (C.-C.C.); (Y.-C.L.); (C.-C.W.); (T.-L.K.)
- Division of Endocrinology and Metabolism, Department of Internal Medicine, E-Da Hospital, Kaohsiung 82445, Taiwan
| | - Chih-Chun Wang
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan; (C.-C.C.); (Y.-C.L.); (C.-C.W.); (T.-L.K.)
- Department of Otolaryngology, E-Da Hospital, Kaohsiung 82445, Taiwan
| | - Tsui-Ling Ko
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan; (C.-C.C.); (Y.-C.L.); (C.-C.W.); (T.-L.K.)
| | - Jung-Ren Chen
- Department of Biological Science and Technology, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan; (J.-R.C.); (W.W.)
| | - Wei Wang
- Department of Biological Science and Technology, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan; (J.-R.C.); (W.W.)
| | - Ya-Ling Chen
- Department of Obstetrics & Gynecology, E-Da Hospital, Kaohsiung 82445, Taiwan;
| | - Yu-Wen Wang
- Department of Nutrition, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan; (Y.-W.W.); (H.-F.H.)
| | - Tzu-Hsien Chang
- Department of Chemical Engineering, I-Shou University, Kaohsiung 82445, Taiwan;
| | - Hsia-Fen Hsu
- Department of Nutrition, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan; (Y.-W.W.); (H.-F.H.)
| | - Jer-Yiing Houng
- Department of Nutrition, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan; (Y.-W.W.); (H.-F.H.)
- Department of Chemical Engineering, I-Shou University, Kaohsiung 82445, Taiwan;
- Correspondence: ; Tel.: +886-7-6151100 (ext. 7915)
| |
Collapse
|
12
|
Liang W, Zhang W, Lv Z, Li C. 4-Hydroxyphenylpyruvate dioxygenase from sea cucumber Apostichopus japonicus negatively regulates reactive oxygen species production. FISH & SHELLFISH IMMUNOLOGY 2020; 101:261-268. [PMID: 32276034 DOI: 10.1016/j.fsi.2020.04.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 06/11/2023]
Abstract
As a wide distribution molecule, 4-hydroxyphenylpyruvate dioxygenase (4-HPPD) catalyzes the second step in the tyrosine catabolism pathway. This process commonly occurs in all aerobic life forms. The broad distribution of these metabolites suggests that they have an important role in many organisms. A portion of the 4-HPPD homology sequence was also identified in Apostichopus japonicus transcriptome. However, the functional roles of A. japonicus 4-HPPD remain unclear. In the current study, a 4-HPPD homolog was cloned from A. japonicus (designated as AjHPPD). The nucleotide sequence analysis showed that the open reading frame of AjHPPD was 1149 bp and encoded a 382-amino-acid residue polyprotein with glyoxalase_4 (residues 20-133) and glyoxalase (residues 180-335) domains. The spatial expression analysis revealed that AjHPPD was ubiquitously expressed in all examined tissues with large-magnitude in the respiratory tree and was minimally expressed in coelomocytes. Compared with a control group, the significant increase in transcription of AjHPPD mRNA in the Vibrio splendidus-challenged sea cucumber was 2.10-fold (p < 0.01) at 48 h and returned to the normal level at 72 and 96 h. Similarly, compared with a control group, the significant increase in the transcription of AjHPPD mRNA was 3.36-fold (p < 0.01) at 24 h after stimulation with 10 mg mL-1 of LPS. On the one hand, silencing AjHPPD in vitro could inhibit the expression of pentose phosphate pathway (PPP) flux enzyme glucose-6-phosphate dehydrogenase (G6PD) at the mRNA level and prevent the clearance of reactive oxygen species (ROS) in sea cucumbers. On the other hand, interference of AjHPPD by using specific siRNA can result in the significant promotion of coelomocyte apoptosis with a 1.61-fold increase in vitro. AjHPPD negatively regulated ROS levels by modulating tyrosine catabolism on AjG6PD expression and coelomocyte apoptosis in response to pathogen infection.
Collapse
Affiliation(s)
- Weikang Liang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, PR China
| | - Weiwei Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, PR China
| | - Zhimeng Lv
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, PR China
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China.
| |
Collapse
|
13
|
Park K, Han EJ, Ahn G, Kwak IS. Effects of combined stressors to cadmium and high temperature on antioxidant defense, apoptotic cell death, and DNA methylation in zebrafish (Danio rerio) embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 716:137130. [PMID: 32045767 DOI: 10.1016/j.scitotenv.2020.137130] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/21/2020] [Accepted: 02/03/2020] [Indexed: 05/12/2023]
Abstract
Fish are frequently affected by environmental stressors, such as temperature changes and heavy metal exposure, in aquatic ecosystems. In this study, we evaluated the combined effects of cadmium (Cd) toxicity and temperature (rearing temperature of 26 °C and heat stress at 34 °C) on zebrafish (Danio rerio) embryos. The survival and heart rates of zebrafish embryos decreased at relatively high Cd concentrations of 0.07 and 0.1 mg L-1. Abnormal morphology was induced by exposure to a combination of Cd toxicity and heat stress. The yolk sac edema size was not significantly different between the control- and Cd-treated groups. Cd exposure induced reactive oxygen species (ROS) production and cell death in the live zebrafish. High temperature (34 °C) triggered Cd-induced cell death and intracellular ROS production to a greater extent than the rearing temperature of 26 °C. Transcriptional levels of six genes-CAT, SOD, p53, BAX, Dnmt1, and Dnmt3b-were investigated. The mRNA expression of CAT and SOD, molecular indicators of oxidative stress, was increased significantly at 34 °C after Cd exposure. The mRNA expression of CAT was more sensitive to temperature than that of SOD in Cd-treated zebrafish. p53 and BAX, apoptosis-related genes, were upregulated upon combined exposure to high temperature and Cd. In addition, at 34 °C, the expression of Dnmt1 and Dnmt3b transcripts, markers of DNA methylation, was increased upon exposure of zebrafish to all concentrations of Cd. Overall, these results suggest that high temperature facilitates the potential role of Cd toxicity in the transcriptional regulation of genes involved in the antioxidant system, apoptosis, and DNA methylation.
Collapse
Affiliation(s)
- Kiyun Park
- Fisheries Science Institute, Chonnam National University, Yeosu 59626, South Korea
| | - Eui Jeong Han
- Department of Marine Bio-food Science, College of Fisheries and Ocean Sciences, Chonnam National University, 500-749, South Korea
| | - Ginnae Ahn
- Department of Marine Bio-food Science, College of Fisheries and Ocean Sciences, Chonnam National University, 500-749, South Korea
| | - Ihn-Sil Kwak
- Fisheries Science Institute, Chonnam National University, Yeosu 59626, South Korea; Faculty of Marine Technology, Chonnam National University, Yeosu 550-749, South Korea.
| |
Collapse
|