1
|
Wang L, Liu C, Chen J, He X, He H, Qin Q, Yang M. The role of largemouth bass NF-κB/p65: Inhibition of LMBV and activator of IL-18 promoter. FISH & SHELLFISH IMMUNOLOGY 2025; 158:110120. [PMID: 39832538 DOI: 10.1016/j.fsi.2025.110120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/06/2025] [Accepted: 01/10/2025] [Indexed: 01/22/2025]
Abstract
Nuclear factor-κB (NF-κB)/p65, a vital signaling molecule in the NF-κB pathway, participates in diverse physiological functions and host-virus interactions. However, the involvement of NF-κB/p65 in fish virus infection remains poorly understood. In this study, we explored the role of the p65 in virus infection and its impact on IL-18 regulation in largemouth bass (Micropterus salmoides). Bioinformatics analysis showed that the ORF sequence of Msp65 spanned 1941 bp, encoding 646 amino acids with two conserved functional domains, including RHD and IPT domain. Msp65 mRNA was presented in various tissues, with higher levels detected in the liver and gill. After exposure to largemouth bass virus (LMBV), red grouper nervous necrosis virus, lipopolysaccharide and poly (I:C), Msp65 expression was activated in vivo. In addition, the antiviral role of Msp65 were explored. In vitro, Msp65 overexpression hindered LMBV replication and formation of viral assembly site. In vivo, we found that disruption of Msp65 by using maslinic acid (MA) notably promoted the infectivity of LMBV, indicating its antiviral capabilities in largemouth bass. Besides, the downregulation of Msp65 suppressed the expression of inflammatory and interferon signaling molecules. Conversely, Msp65 overexpression boosted the activities of IFN-I, IFN-III and ISRE promoters, suggesting the positive regulation of Msp65 on interferon immune pathway. Furthermore, to unveil the regulatory role of Msp65 on MsIL-18, a promoter investigation was conducted. The luciferase reporter assay demonstrated that Msp65 positively influenced the expression of MsIL-18. Subsequent analysis suggested that the putative binding sites for MsIL-18 could potentially reside within the -228 to -203 bp of the MsIL-18 promoter. These findings illustrated that Msp65 involved in LMBV infection by modulating immune responses, presenting a novel insight into the antiviral mechanisms of p65 in bony fish.
Collapse
Affiliation(s)
- Liqun Wang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; College of Fishery, Guangdong Ocean University, Guangdong Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, 524088, China
| | - Cuiyu Liu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Jinpeng Chen
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Xin He
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Hongxi He
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511464, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519082, China.
| | - Min Yang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511464, China.
| |
Collapse
|
2
|
Hu F, Zhang Y, Liu Q, Wang Z. PurA facilitates Edwardsiella piscicida to escape NF-κB signaling activation. FISH & SHELLFISH IMMUNOLOGY 2022; 124:254-260. [PMID: 35395412 DOI: 10.1016/j.fsi.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/01/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
The host NF-κB signaling pathway plays critical role in defensing against bacterial infection. However, bacteria also evolve strategies to escape from host clearance. Edwardsiella piscicida is a threatening pathogen in aquaculture, while the molecular mechanism of E. piscicida in inhibiting NF-κB signaling remains largely unknown. Herein, using E. piscicida transposon insertion mutant library combined with a NF-κB luciferase reporter system, we identified forty-six genes of E. piscicida, which were involved in inhibiting the NF-κB signaling activation in vitro. Moreover, we further explored the top 10 significantly changed mutants through zebrafish larvae infection model and validated that six genes were involved in inhibiting NF-κB activation in vivo. Specifically, we identified the adenylosuccinate synthase mutated strain (ΔpurA) infection exhibited a robust activation of NF-κB signaling, along with higher expression of cxcl8a and cxcl8b to mediate the recruitment of neutrophils in vivo. Taken together, these results identified the key factors of E. piscicida in inhibiting NF-κB activation, which will contribute to better understanding the pathogenesis of this important pathogen.
Collapse
Affiliation(s)
- Feizi Hu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuanxing Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China
| | - Zhuang Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
3
|
Liu R, Liu X, Song M, Qi Y, Li H, Yang G, Shan S. Cyprinus carpio TRIF Participates in the Innate Immune Response by Inducing NF-κB and IFN Activation and Promoting Apoptosis. Front Immunol 2021; 12:725150. [PMID: 34504499 PMCID: PMC8421551 DOI: 10.3389/fimmu.2021.725150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/02/2021] [Indexed: 01/08/2023] Open
Abstract
TRIF, an important adaptor downstream of Toll-like receptor signaling, plays a critical role in the innate immune response. In this study, the full-length coding sequence of TRIF from common carp (Cyprinus carpio L.) was cloned and characterized. Bioinformatics analysis showed that common carp TRIF exhibited a conserved TIR domain and had the closest relationship with grass carp TRIF. Expression analysis revealed that TRIF was constitutively expressed in the examined tissues of common carp, with the highest expression in the spleen and the lowest expression in the head kidney, and could be upregulated under Aeromonas hydrophila and poly(I:C) stimulation in vivo and under poly(I:C), LPS, PGN, flagellin, and Pam3CSK4 stimulation in vitro. Laser confocal microscopy showed that common carp TRIF colocalized with the Golgi apparatus. A luciferase reporter assay showed that carp TRIF elicited the activity of ifn-1 and nf-κb through the C-terminal domain. Additionally, crystal violet staining and qPCR assays revealed that carp TRIF inhibited the replication of SVCV in epithelioma papulosum cyprini (EPC) cells. Then, the signaling downstream of carp TRIF was investigated. Coimmunoprecipitation and Western blotting analysis demonstrated that carp TRIF interacted with TBK1 and augmented the expression of TRAF6 and phosphorylation of TBK1. Overexpression of carp TRIF significantly enhanced the expression of interferon-stimulated genes and inflammatory cytokines. Furthermore, flow cytometric (FCM) analysis suggested that carp TRIF induced apoptosis through the activation of caspase-8. In summary, our study indicated that TRIF plays an essential role in the innate immune responses of common carp against bacterial and viral infection.
Collapse
Affiliation(s)
- Rongrong Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Xiaoye Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Meijiao Song
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Yue Qi
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Hua Li
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Guiwen Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Shijuan Shan
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
4
|
Zhou QL, Xia D, Pan L, Wang J, Chen Q, Ge X, Sun C, Miao L, Lin Y, Liu B. Molecular cloning and expression mechanism of Mnp65 in Megalobrama amblycephala response to Aeromonas hydrophilia challenge. Comp Biochem Physiol A Mol Integr Physiol 2021; 261:111046. [PMID: 34352395 DOI: 10.1016/j.cbpa.2021.111046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 01/11/2023]
Abstract
p65 is one of the important subunits of the inflammation-related transcription factor NF-κB. In the present study, we cloned and identified the p65 from Megalobrama amblycephala (Mnp65) by homologous cloning and RACE technique. The full-length Mnp65 cDNA consisted of 2331 bp, and included one open reading frame encoding a 604-amino acid putative protein. The protein sequence included a DNA binding motif, a well conserved N-terminal Rel-homology domain (RHD), and a C-terminal IG-like plexins transcription (IPT). Mnp65 was closely related with the other p65 proteins of Cypriniformes and clearly distinct from that of Perciformes and Salmoniformes in terms of sequence homology. Mnp65 homodimer may interact with IκBα in the IPT domain based on the predicted 3D structure of IκBα/Mnp65 complex. Mnp65 was ubiquitously expressed in M. amblycephala tissues, and the highest levels were detected in muscle and liver. Intragastric infection with Aeromonas hydrophila caused respiratory burst and cytokine storm from 8 h to 48 h, showing significantly higher level of respiratory burst activities and significantly high cytokines levels, such as TNF-α, IL-1β, IL-6, IL-8 etc., compared to 0 h. In addition, the bacterial challenge downregulated the IkBα, and upregulated Mnp65 and TNF-α in the liver. IkBα-Mnp65 was regulated by the negative feedback of cytokine storm, to increase IkBα and decrease Mnp65. Then cytokine storm was relieved at 96 h. Finally, severe intestinal inflammation was observed from 24 h to 48 h after infection, characterized by extensive villous necrosis, epithelial hyperplasia and lymphocyte infiltration, all of which were relieved at 96 h. Taken together, Mnp65 plays a crucial role in the physiological response of teleost fish to bacterial infection.
Collapse
Affiliation(s)
- Qun-Lan Zhou
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Shanshui East Road No. 9, Wuxi, Jiangsu 214081, PR China; Wuxi Fisheries College, Nanjing Agricultural University, Shanshui East Road No. 9, Wuxi, Jiangsu 214081, PR China
| | - Dong Xia
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Shanshui East Road No. 9, Wuxi, Jiangsu 214081, PR China
| | - Liangkun Pan
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Shanshui East Road No. 9, Wuxi, Jiangsu 214081, PR China
| | - Jingyuan Wang
- Nanjing Alpha Feed Biological Technology Co., Ltd., Binhuai Avenue No.9, Nanjing, Jiangsu 211200, PR China
| | - Qian Chen
- Wuxi Fisheries College, Nanjing Agricultural University, Shanshui East Road No. 9, Wuxi, Jiangsu 214081, PR China
| | - Xianping Ge
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Shanshui East Road No. 9, Wuxi, Jiangsu 214081, PR China; Wuxi Fisheries College, Nanjing Agricultural University, Shanshui East Road No. 9, Wuxi, Jiangsu 214081, PR China
| | - Cunxin Sun
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Shanshui East Road No. 9, Wuxi, Jiangsu 214081, PR China
| | - Linghong Miao
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Shanshui East Road No. 9, Wuxi, Jiangsu 214081, PR China; Wuxi Fisheries College, Nanjing Agricultural University, Shanshui East Road No. 9, Wuxi, Jiangsu 214081, PR China
| | - Yan Lin
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Shanshui East Road No. 9, Wuxi, Jiangsu 214081, PR China
| | - Bo Liu
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Shanshui East Road No. 9, Wuxi, Jiangsu 214081, PR China; Wuxi Fisheries College, Nanjing Agricultural University, Shanshui East Road No. 9, Wuxi, Jiangsu 214081, PR China.
| |
Collapse
|
5
|
Wang Z, Zheng N, Liang J, Wang Q, Zu X, Wang H, Yuan H, Zhang R, Guo S, Liu Y, Zhou J. Emodin resists to Cyprinid herpesvirus 3 replication via the pathways of Nrf2/Keap1-ARE and NF-κB in the ornamental koi carp (Cyprinus carpio haematopterus). Comp Biochem Physiol C Toxicol Pharmacol 2021; 246:109023. [PMID: 33647480 DOI: 10.1016/j.cbpc.2021.109023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/14/2021] [Accepted: 02/16/2021] [Indexed: 12/14/2022]
Abstract
Cyprinid herpesvirus 3 (CyHV-3) causes high mortality in carp. Emodin has been shown of the effects of antioxidant, anti-inflammatory and antiviral. In present study, we investigated the preventive effects and mechanism of emodin on CyHV-3 infection. The ornamental koi carp (Cyprinus carpio haematopterus) were intraperitoneally injected with emodin (10 mg/kg, 20 mg/kg, or 40 mg/kg). 72 h later, an intraperitoneal injection of CyHV-3 was administered, and collected the samples one week later to detect the antioxidant parameters, antioxidant genes, inflammatory genes and to perform histopathology assays. The results showed that emodin significantly suppressed CyHV-3 replication (P < 0.05), improved the koi survival rate and slowed the damage caused by CyHV-3. Emodin treatment increased the antioxidant activity and decreased the lipid peroxidation level of the koi. Compared to the CyHV-3 group, emodin treatment resulted in the same antioxidant parameters after CyHV-3 infection. Emodin treatment activated the Nuclear factorery throid 2-related factor 2/Kelch-like ECH-associated protein 1-antioxidatant response element (Nrf2/Keap1-ARE) pathway and upregulated the expression of heme oxygenase 1 (HO-1), superoxide dismutase (SOD), and catalase (CAT) in the hepatopancreas after CyHV-3 infection. Emodin activated the nuclear factor kappa-B (NF-κB) pathway and decreased the expression of interleukin-6 (IL-6), interleukin-8 (IL-8), and tumour necrosis factor-α (TNF-α) in the koi induced by CyHV-3. In conclusion, emodin treatment can suppress CyHV-3 replication and reduce the mortality of koi caused by CyHV-3. Emodin improves antioxidant function, relieves oxidative stress and inflammation cytokines via Nrf2/Keap1-ARE and NF-κB pathways, and protects against the adverse effects induced by CyHV-3.
Collapse
Affiliation(s)
- Zhuoyu Wang
- College of Life Sciences, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Nan Zheng
- College of Animal Sciences, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Jie Liang
- College of Animal Sciences, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Qiuju Wang
- College of Animal Sciences, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Xiujie Zu
- Jilin Academy of Fishery Sciences, Changchun, Jilin 130033, China
| | - Hao Wang
- College of Animal Sciences, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Haiyan Yuan
- Jilin Province Fishery Technology Extension Station, Jilin 130012, China
| | - Ruixue Zhang
- Jilin Province Fishery Technology Extension Station, Jilin 130012, China
| | - Shanshan Guo
- College of Animal Sciences, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Yanhui Liu
- Jilin Academy of Fishery Sciences, Changchun, Jilin 130033, China
| | - Jingxiang Zhou
- College of Animal Sciences, Jilin Agricultural University, Changchun, Jilin 130118, China.
| |
Collapse
|
6
|
Zhou M, Wang B, Lin Y, Zhang C, Cao H. Molecular cloning, functional characterization and expression analysis of P65 subunit in response to GCRV infection in rare minnow (Gobiocypris rarus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 113:103786. [PMID: 32735959 DOI: 10.1016/j.dci.2020.103786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 06/28/2020] [Accepted: 06/28/2020] [Indexed: 06/11/2023]
Abstract
P65, the all-important subunit of the transcription factor NF-κB, plays an important role in the regulation of immune response. In this study, the cDNA of P65 subunit of rare minnow Gobiocypris rarus (GrP65) was cloned, and its expression patterns and functional role in rare minnow were investigated. The GrP65cDNA encodes a polypeptide of 573 amino acids, containing a well-conserved Rel-homology domain (RHD). The amino acid sequence analysis showed that GrP65 shared 81% and 69% identity to the grass carp (Ctenopharyngodon idella) and human (Homo sapiens) orthologous, respectively. Phylogenetic analysis revealed that GrP65 clustered with homologues from other teleosts. Cellular distribution anallysis demonstrated that GrP65 was located in the cytoplasm and nucleus. Quantitative real-time PCR analysis showed that GrP65 was ubiquitously expressed in all examined tissues, but especially highly in liver. Temporal expression analysis in vivo showed that the expression levels of GrP65 were significantly up-regulated in liver in response to GCRV infection, which suggested that GrP65 might play a crucial role in recognition and responses to GCRV infection in fish. In addition, GrP65 activated several interferon (IFN) promoters and induced the expression of downstream IFN-stimulated genes (ISGs). Furthermore, overexpression of P65 remarkably decreased the GCRV proliferation, while knockdown of P65 obtained opposite effects. In summary, we systematically characterized GrP65 and demonstrated its role in the innate immune response to GCRV infections.
Collapse
Affiliation(s)
- Man Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bing Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yusheng Lin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuang Zhang
- Chongqing Fishery Sciences Research Institute, Chongqing, 400020, China
| | - Hong Cao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
7
|
Yang M, Jinpeng C, Wang Y, Wang Q, Wang S, Wei S, Qin Q. Nuclear factor kappa B/p65 plays a positive role in peroxisome proliferator-activated receptor δ expression in orange-spotted grouper Epinephelus coioides. FISH & SHELLFISH IMMUNOLOGY 2020; 102:101-107. [PMID: 32259581 DOI: 10.1016/j.fsi.2020.03.060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/23/2020] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
The transcription factor nuclear factor kappa B (NF-κB) is a critical regulator of immune and inflammatory responses with crucial roles in various pathophysiologic conditions involving cell survival and death. Recent studies in mammals showed that NF-κB was also involved in peroxisome proliferator-activated receptors (PPARs)-mediated immune responses However, the mechanism by which NF-κB regulates PPARδ in teleosts remains unclear. In the present study, we analyzed the potential role of NF-κB/p65 (Ecp65) in the immune response stimulated by various pathogens in the grouper Epinephelus coioides. Ecp65 expression was significantly induced soon after infection with lipopolysaccharide, nervous necrosis virus, poly(I:C), and zymosan A. We also analyzed the promoter to determine the regulatory effect of Ecp65 on PPARδ expression, using progressive EcPPARδ promoter deletion mutations. Among the five truncated mutants, the luciferase reporter activity of the PPARδ-5 promoter region was highest in response to Ecp65, indicating that the core p65-binding region was located in the PPARδ-5 promoter region (+122 bp to +383 bp). Mutation analyses indicated that the luciferase reporter activity of the EcPPARδ promoter was dramatically decreased by mutation of the M3 (+305 bp to +324 bp) and M4 (+346 bp to +365 bp) binding sites, respectively. We further confirmed that Ecp65 bound to the M3 and M4 binding sites in the 5'-untranslated region of EcPPARδ by electrophoretic mobility shift assay. Finally, overexpression of Ecp65 in vitro notably promoted the transcription of EcPPARδ, interferon-related genes, and several inflammatory cytokines. This study demonstrated that Ecp65 plays an important role in modulating the innate immune responses in groupers. These results also further our understanding of the mechanisms involved in the transcriptional regulation of PPARs by p65 in bony fish.
Collapse
Affiliation(s)
- Min Yang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Chen Jinpeng
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Yuxin Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Qing Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Shaowen Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Shina Wei
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Qiwei Qin
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China.
| |
Collapse
|
8
|
Zheng Z, Bian Y, Zhang Y, Ren G, Li G. Metformin activates AMPK/SIRT1/NF-κB pathway and induces mitochondrial dysfunction to drive caspase3/GSDME-mediated cancer cell pyroptosis. Cell Cycle 2020; 19:1089-1104. [PMID: 32286137 PMCID: PMC7217368 DOI: 10.1080/15384101.2020.1743911] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/14/2020] [Accepted: 03/08/2020] [Indexed: 02/06/2023] Open
Abstract
Pyroptosis is a form of programmed cell death initiated by inflammasomes and is critical for immunity. SIRT1, a NAD+-dependent deacetylase, plays multiple roles in inflammatory response and immunity. Metformin can activate SIRT1 to participate in different biological processes and exert its anticancer effects. However, the mechanism by which metformin activates SIRT1 to drive cancer cell pyroptosis has not been reported. In this study, we treated cancer cells with metformin for diverse periods of time (0-24 h) and found that cell viability was decreased obviously. Interestingly, pyroptosis occurred when cancer cells were treated with metformin for the indicated time (4, 8 and 12 h), which was elucidated by the cell swelling and bubbles blowing in the membrane. Metformin also increased the release of lactate dehydrogenase (LDH, an indication of pyroptotic cell cytotoxicity) remarkably. The underlying mechanisms were that metformin enhanced AMPK/SIRT1 pathway and further increased NF-κB p65 expression to stimulate Bax activation and cytochrome c release, triggering caspase3 cleavage of GSDME, which is a characteristic pyroptotic marker. Depletion of SIRT1 inhibited metformin-induced these protein expression, revealing that metformin promotes AMPK/SIRT1/NF-κB signaling to drive cancer cell pyroptosis. Meantime, metformin induced mitochondrial dysfunction to trigger activation of caspase3 and generation of GSDME-N. Moreover, mitochondrial dysfunction activated AMPK/SIRT1 pathway to cause pyroptotic death upon metformin treatment. This research firstly reveals that metformin as a sensitizer amplifies AMPK/SIRT1/NF-κB signaling to induce caspase3/GSDME-mediated cancer cell pyroptosis. Induction of cellular pyroptosis by metformin is considered as a novel therapeutic option against various cancers.
Collapse
Affiliation(s)
- Zhaodi Zheng
- Shandong Provincial Key Laboratory of Animal Resistant, School of Life Sciences, Shandong Normal University, Jinan, China
| | - Yan Bian
- Shandong Provincial Key Laboratory of Animal Resistant, School of Life Sciences, Shandong Normal University, Jinan, China
| | - Yang Zhang
- Shandong Provincial Key Laboratory of Animal Resistant, School of Life Sciences, Shandong Normal University, Jinan, China
| | - Guanghui Ren
- Shandong Provincial Key Laboratory of Animal Resistant, School of Life Sciences, Shandong Normal University, Jinan, China
| | - Guorong Li
- Shandong Provincial Key Laboratory of Animal Resistant, School of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
9
|
Bian Y, Wei J, Zhao C, Li G. Natural Polyphenols Targeting Senescence: A Novel Prevention and Therapy Strategy for Cancer. Int J Mol Sci 2020; 21:ijms21020684. [PMID: 31968672 PMCID: PMC7013714 DOI: 10.3390/ijms21020684] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/14/2020] [Accepted: 01/17/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer is one of the most serious diseases endangering human health. In view of the side effects caused by chemotherapy and radiotherapy, it is necessary to develop low-toxic anti-cancer compounds. Polyphenols are natural compounds with anti-cancer properties and their application is a considerable choice. Pro-senescence therapy is a recently proposed anti-cancer strategy and has been shown to effectively inhibit cancer. It is of great significance to clarify the mechanisms of polyphenols on tumor suppression by inducing senescence. In this review, we delineated the characteristics of senescent cells, and summarized the mechanisms of polyphenols targeting tumor microenvironment and inducing cancer cell senescence for cancer prevention and therapy. Although many studies have shown that polyphenols effectively inhibit cancer by targeting senescence, it warrants further investigation in preclinical and clinical studies.
Collapse
|