1
|
Hu T, Wang Y, Wang Y, Cui H, Zhang J, Chen H, Wu B, Hao S, Chu CC, Wu Y, Zeng W. Production and evaluation of three kinds of vaccines against largemouth bass virus, and DNA vaccines show great application prospects. FISH & SHELLFISH IMMUNOLOGY 2024; 153:109841. [PMID: 39173984 DOI: 10.1016/j.fsi.2024.109841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/10/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024]
Abstract
Largemouth bass virus (LMBV) infections has resulted in high mortality and economic losses to the global largemouth bass industry and has seriously restricted the healthy development of the bass aquaculture industry. There are currently no antiviral therapies available for the control of this disease. In this study, we developed three types of vaccine against LMBV; whole virus inactivated vaccine (I), a subunit vaccine composed of the major viral capsid protein MCP (S) as well as an MCP DNA vaccine(D), These were employed using differing immunization and booster strategies spaced 2 weeks apart as follows: II, SS, DD and DS. We found that all vaccine groups induced humoral and cellular immune responses and protected largemouth bass from a lethal LMBV challenge to varying degrees and DD produced the best overall effect. Specifically, the levels of specific IgM in serum in all immunized groups were elevated and significantly higher than those in the control group. Moreover, the expression of humoral immunity (CD4 and IgM) and cellular immunity (MHCI-α) as well as cytokines (IL-1β) was increased, and the activity of immunity-related enzymes ACP, AKP, LZM, and T-SOD in the serum was significantly enhanced. In addition, the relative percent survival of fish following an LMBV lethal challenge 4 weeks after the initial immunizations were high for each group: DD(89.5 %),DS(63.2 %),SS(50 %) and II (44.7 %). These results indicated that the MCP DNA vaccine is the most suitable and promising vaccine candidate for the effective control of LMBV disease.
Collapse
Affiliation(s)
- Tianmei Hu
- School of Life Science and Engineering, Foshan University, Foshan, 528225, PR China
| | - Yaoda Wang
- School of Life Science and Engineering, Foshan University, Foshan, 528225, PR China
| | - Yuhui Wang
- School of Life Science and Engineering, Foshan University, Foshan, 528225, PR China
| | - Hongye Cui
- School of Life Science and Engineering, Foshan University, Foshan, 528225, PR China
| | - Jiping Zhang
- School of Life Science and Engineering, Foshan University, Foshan, 528225, PR China
| | - Haiyue Chen
- School of Life Science and Engineering, Foshan University, Foshan, 528225, PR China
| | - Baozhou Wu
- School of Life Science and Engineering, Foshan University, Foshan, 528225, PR China
| | - Shuguang Hao
- School of Life Science and Engineering, Foshan University, Foshan, 528225, PR China
| | - Chien Chi Chu
- School of Life Science and Engineering, Foshan University, Foshan, 528225, PR China
| | - Yali Wu
- Foshan Institute of Agricultural Sciences, Foshan, 528145, Guangdong, PR China
| | - Weiwei Zeng
- School of Life Science and Engineering, Foshan University, Foshan, 528225, PR China.
| |
Collapse
|
2
|
Mei J, Yang Q, Jiang L, Wang T, Li Y, Yu X, Wu Z. Immune protection of grass carp by oral vaccination with recombinant Bacillus methylotrophicus expressing the heterologous tolC gene. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109701. [PMID: 38878911 DOI: 10.1016/j.fsi.2024.109701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/06/2024] [Accepted: 06/13/2024] [Indexed: 06/19/2024]
Abstract
In the field of aquaculture, the enhancement of animal health and disease prevention is progressively being tackled using alternatives to antibiotics, including vaccines and probiotics. This study was designed to evaluate the potential of a recombinant Bacillus methylotrophicus, engineered to express the outer membrane channel protein TolC of Aeromonas hydrophila AH3 and the green fluorescent protein GFP, as an oral vaccine. Initially, the genes encoding tolC and GFP were cloned into a prokaryotic expression system, and anti-TolC mouse antiserum was generated. Subsequently, the tolC gene was subcloned into a modified pMDGFP plasmid, which was transformed into B. methylotrophicus WM-1 for protein expression. The recombinant B. methylotrophicus BmT was then administered to grass carp via co-feeding, and its efficacy as an oral vaccine was assessed. Our findings demonstrated successful expression of the 55 kDa TolC and 28 kDa GFP proteins, and the preparation of polyclonal antibodies with high specificity. The BmT exhibited stable expression of the GFP-TolC fusion protein and excellent genetic stability. Following oral immunization, significant elevations were observed in serum-specific IgM levels and the activities of acid phosphatase (ACP), alkaline phosphatase (AKP), superoxide dismutase (SOD), and lysozyme (LZM) in grass carp. Concurrently, significant upregulation of immune-related genes, including IFN-I, IL-10, IL-1β, TNF-α, and IgT, was noted in the intestines, head kidney, and spleen of the grass carp. Colonization tests further revealed that the BmT persisted in the gut of immunized fish even after a fasting period of 7 days. Notably, oral administration of BmT enhanced the survival rate of grass carp following A. hydrophila infection. These results suggest that the oral BmT vaccine developed in this study holds promise for future applications in aquaculture.
Collapse
Affiliation(s)
- Jing Mei
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Aquatic Biodiversity Protection Research Center, Southwest University, Chongqing, 400715, China
| | - Qinglin Yang
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Aquatic Biodiversity Protection Research Center, Southwest University, Chongqing, 400715, China
| | - Liyan Jiang
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Aquatic Biodiversity Protection Research Center, Southwest University, Chongqing, 400715, China
| | - Tao Wang
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Aquatic Biodiversity Protection Research Center, Southwest University, Chongqing, 400715, China
| | - Yanhong Li
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Aquatic Biodiversity Protection Research Center, Southwest University, Chongqing, 400715, China
| | - Xiaobo Yu
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Aquatic Biodiversity Protection Research Center, Southwest University, Chongqing, 400715, China
| | - Zhengli Wu
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Aquatic Biodiversity Protection Research Center, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
3
|
Zhang M, Chen X, Xue M, Jiang N, Li Y, Fan Y, Zhang P, Liu N, Xiao Z, Zhang Q, Zhou Y. Oral Vaccination of Largemouth Bass (Micropterus salmoides) against Largemouth Bass Ranavirus (LMBV) Using Yeast Surface Display Technology. Animals (Basel) 2023; 13:ani13071183. [PMID: 37048441 PMCID: PMC10093309 DOI: 10.3390/ani13071183] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/20/2023] [Accepted: 03/25/2023] [Indexed: 03/31/2023] Open
Abstract
Largemouth bass ranavirus (LMBV) infects largemouth bass, leading to significant mortality and economic losses. There are no safe and effective drugs against this disease. Oral vaccines that directly target the intestinal mucosal immune system play an important role in resisting pathogens. Herein, the B subunit of Escherichia coli heat-labile enterotoxin (LTB, a mucosal immune adjuvant) and the LMBV main capsid protein (MCP) were expressed using Saccharomyces cerevisiae surface display technology. The yeast-prepared oral vaccines were named EBY100-OMCP and EBY100-LTB-OMCP. The candidate vaccines could resist the acidic intestinal environment. After 7 days of continuous oral immunization, indicators of innate and adaptive immunity were measured on days 1, 7, 14, 21, 28, 35, and 42. High activities of immune enzymes (T-SOD, AKP, ACP, and LZM) in serum and intestinal mucus were detected. IgM in the head kidney was significantly upregulated (EBY100-OMCP group: 3.8-fold; BY100-LTB-OMCP group: 4.3-fold). IgT was upregulated in the intestines (EBY100-OMCP group: 5.6-fold; EBY100-LTB-OMCP group: 6.7-fold). Serum neutralizing antibody titers of the two groups reached 1:85. Oral vaccination protected against LMBV infection. The relative percent survival was 52.1% (EBY100-OMCP) and 66.7% (EBY100-LTB-OMCP). Thus, EBY100-OMCP and EBY100-LTB-OMCP are promising and effective candidate vaccines against LMBV infection.
Collapse
|
4
|
Kembou-Ringert JE, Steinhagen D, Readman J, Daly JM, Adamek M. Tilapia Lake Virus Vaccine Development: A Review on the Recent Advances. Vaccines (Basel) 2023; 11:vaccines11020251. [PMID: 36851129 PMCID: PMC9961428 DOI: 10.3390/vaccines11020251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Tilapia tilapinevirus (or tilapia lake virus, TiLV) is a recently emerging virus associated with a novel disease affecting and decimating tilapia populations around the world. Since its initial identification, TiLV has been reported in 17 countries, often causing mortalities as high as 90% in the affected populations. To date, no therapeutics or commercial vaccines exist for TiLV disease control. Tilapia exposed to TiLV can develop protective immunity, suggesting that vaccination is achievable. Given the important role of vaccination in fish farming, several vaccine strategies are currently being explored and put forward against TiLV but, a comprehensive overview on the efficacy of these platforms is lacking. We here present these approaches in relation with previously developed fish vaccines and discuss their efficacy, vaccine administration routes, and the various factors that can impact vaccine efficacy. The overall recent advances in TiLV vaccine development show different but promising levels of protection. The field is however hampered by the lack of knowledge of the biology of TiLV, notably the function of its genes. Further research and the incorporation of several approaches including prime-boost vaccine regimens, codon optimization, or reverse vaccinology would be beneficial to increase the effectiveness of vaccines targeting TiLV and are further discussed in this review.
Collapse
Affiliation(s)
- Japhette E. Kembou-Ringert
- Department of Infection, Immunity and Inflammation, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
- Correspondence: (J.E.K.-R.); (M.A.)
| | - Dieter Steinhagen
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - John Readman
- Department of Infection, Immunity and Inflammation, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Janet M. Daly
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Mikolaj Adamek
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
- Correspondence: (J.E.K.-R.); (M.A.)
| |
Collapse
|
5
|
Wang L, Yang M, Luo S, Yang G, Lu X, Lu J, Chen J. Oral Vaccination of Recombinant Saccharomyces cerevisiae Expressing ORF132 Induces Protective Immunity against Cyprinid Herpesvirus-2. Vaccines (Basel) 2023; 11:vaccines11010186. [PMID: 36680030 PMCID: PMC9861155 DOI: 10.3390/vaccines11010186] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
Cyprinid herpesvirus 2 (CyHV-2) is the etiological agent of herpesviral hematopoietic necrosis (HVHN) disease, which causes serious economic losses in the crucian carp culture industry. In this study, by displaying ORF132 on the surface of Saccharomyces cerevisiae cells (named EBY100/pYD1-ORF132), we evaluated the protective efficacy of oral administration against CyHV-2 infection. Intense innate and adaptive immune responses were evoked in both mucosal and systemic tissues after oral vaccination with EBY100/pYD1-ORF132. Importantly, oral vaccination provided significant protection for crucian carp post CyHV-2 infection, resulting in a relative percent survival (RPS) of 64%. In addition, oral administration suppressed the virus load and relieved histological damage in selected tissues. Our results indicated that surface-displayed ORF132 on S. cerevisiae could be used as potential oral vaccine against CyHV-2 infection.
Collapse
Affiliation(s)
- Licong Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Maoxia Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Sheng Luo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Guanjun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Xinjiang Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Jianfei Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo 315211, China
- Correspondence: (J.L.); (J.C.)
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo 315211, China
- Correspondence: (J.L.); (J.C.)
| |
Collapse
|
6
|
Austriaco N. Yeast oral vaccines against infectious diseases. Front Microbiol 2023; 14:1150412. [PMID: 37138614 PMCID: PMC10149678 DOI: 10.3389/fmicb.2023.1150412] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/31/2023] [Indexed: 05/05/2023] Open
Abstract
Vaccines that are delivered orally have several advantages over their counterparts that are administered via injection. Despite the advantages of oral delivery, however, approved oral vaccines are currently limited either to diseases that affect the gastrointestinal tract or to pathogens that have a crucial life cycle stage in the gut. Moreover, all of the approved oral vaccines for these diseases involve live-attenuated or inactivated pathogens. This mini-review summarizes the potential and challenges of yeast oral vaccine delivery systems for animal and human infectious diseases. These delivery systems utilize whole yeast recombinant cells that are consumed orally to transport candidate antigens to the immune system of the gut. This review begins with a discussion of the challenges associated with oral administration of vaccines and the distinct benefits offered by whole yeast delivery systems over other delivery systems. It then surveys the emerging yeast oral vaccines that have been developed over the past decade to combat animal and human diseases. In recent years, several candidate vaccines have emerged that can elicit the necessary immune response to provide significant protection against challenge by pathogen. They serve as proof of principle to show that yeast oral vaccines hold much promise.
Collapse
|
7
|
Liu Z, Ma Y, Hao L. Characterization of three novel cell lines derived from the brain of spotted sea bass: Focusing on cell markers and susceptibility toward iridoviruses. FISH & SHELLFISH IMMUNOLOGY 2022; 130:175-185. [PMID: 36028055 DOI: 10.1016/j.fsi.2022.08.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Despite tens of cell lines originating from fish brain tissue have been constructed, little is known about the definite cell types they belong to. Whether fish cell lines derived from the brain shares similar characteristics is not well-answered yet. Here, we constructed three cell lines designated as LMB-S, LMB-M, LMB-L using brain tissue of spotted sea bass (Lateolabrax maculatus). Among them, LMB-L was identified as astroglia-like cells considering the high expression of GFAP, DCX, PTX, S100b, which are regarded as astrocyte-specific or astrocyte-associated cell markers. LMB-M exhibited smooth muscle-like features showing strong expression of LMOD1, SLAMP, M-cadherin, MGP, which are confirmed as muscle-restricted or myogenesis-involved cell markers. Although LMB-S was not definitely identified, it appeared an activation of WNT/β-catenin pathway. Besides the distinct expression profiles of cell markers, the three cell lines also presented differences in transfection efficiency and susceptibility to iridovirus infection. Relying on the established cell lines, a novel megalocytivirus, named LMIV (Lateolabrax maculatus iridovirus), was first isolated from diseased spotted sea bass. Genetic analysis of major capsid protein (MCP) and adenosine triphosphatase (ATPase) manifested that LMIV was clearly distinguishable from other representative teleost iridoviruses. Further investigations revealed that LMIV could replicate most efficiently in LMB-L cells obtaining the highest viral load (2.16 × 1010 copy/mL). By contrast, LMB-S cells gave rise to the highest viral load up to 3.86 × 108 copy/mL, when the three cell lines were infected with MRV, a newly emerged ranavirus. Moreover, LMIV infection caused lots of cells to be detached from monolayers, generating adherent and non-adherent cells. An opposite expression profiling of type I IFN pathway-related genes (JAK1, STAT1, STAT2, IRF9, Mx1) was found between adherent and non-adherent cells. Combined with the analysis of MCP gene expression, it is speculated that inhibiting type I IFN pathway in non-adherent cells allowed the facilitation of virus duplication. Taken together, the present study broadens our understanding about the diversity of cell lines derived from fish brain tissue and screening cells more susceptible to virus is not only meaningful for the development of vaccine, but also provide clues for further clarification of cell-iridovirus interactions.
Collapse
Affiliation(s)
- Zhenxing Liu
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, 510640, China; Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, PR China, Guangzhou, 510640, China; Collaborative Innovation Center of GDAAS, China.
| | - Yanping Ma
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, 510640, China; Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, PR China, Guangzhou, 510640, China; Collaborative Innovation Center of GDAAS, China
| | - Le Hao
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, 510640, China; Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, PR China, Guangzhou, 510640, China; Collaborative Innovation Center of GDAAS, China
| |
Collapse
|
8
|
Development of an attenuated vaccine against Koi Herpesvirus Disease (KHVD) suitable for oral administration and immersion. NPJ Vaccines 2022; 7:106. [PMID: 36068296 PMCID: PMC9448810 DOI: 10.1038/s41541-022-00525-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 08/05/2022] [Indexed: 12/02/2022] Open
Abstract
Since the end of the1990ies, Cyprinid herpesvirus 3 (also known as koi herpesvirus, KHV) has caused mass mortality events of koi and common carp all over the globe. This induced a high economic impact, since the KHV disease cannot be cured up to now, but only prevented by vaccination. Unfortunately, there is only one commercial vaccine available which is not approved in most countries. Therefore, there is an urgent need for new, safe and available vaccines. In this study, a live attenuated vaccine virus was generated by cell culture passages of virulent KHV, and shown to protect carp or koi after immersion or oral application against wild type challenge. An advantage of boost immunization was demonstrated, especially after oral application. Vaccination induced no or mild clinical signs and protecting antibodies have been measured. Additionally, the vaccine virus allowed differentiation of infected from vaccinated animals (DIVA) by PCR. The attenuation of the newly generated vaccine was tracked down to a partial deletion of open reading frame 150. This was confirmed by the generation of engineered ORF150 deletion mutants of wild-type KHV which exhibited a similar attenuation in vivo.
Collapse
|
9
|
Adamek M, Matras M, Rebl A, Stachnik M, Falco A, Bauer J, Miebach AC, Teitge F, Jung-Schroers V, Abdullah M, Krebs T, Schröder L, Fuchs W, Reichert M, Steinhagen D. Don't Let It Get Under Your Skin! - Vaccination Protects the Skin Barrier of Common Carp From Disruption Caused by Cyprinid Herpesvirus 3. Front Immunol 2022; 13:787021. [PMID: 35173716 PMCID: PMC8842664 DOI: 10.3389/fimmu.2022.787021] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/11/2022] [Indexed: 12/14/2022] Open
Abstract
Vaccination is the best form of protecting fish against viral diseases when the pathogen cannot be contained by biosecurity measures. Vaccines based on live attenuated viruses seem to be most effective for vaccination against challenging pathogens like Cyprinid herpesvirus 3. However, there are still knowledge gaps how these vaccines effectively protect fish from the deadly disease caused by the epitheliotropic CyHV-3, and which aspects of non-direct protection of skin or gill integrity and function are important in the aquatic environment. To elucidate some elements of protection, common carp were vaccinated against CyHV-3 using a double deletion vaccine virus KHV-T ΔDUT/TK in the absence or presence of a mix of common carp beta-defensins 1, 2 and 3 as adjuvants. Vaccination induced marginal clinical signs, low virus load and a minor upregulation of cd4, cd8 and igm gene expression in vaccinated fish, while neutralisation activity of blood serum rose from 14 days post vaccination (dpv). A challenge infection with CyHV-3 induced a severe disease with 80-100% mortality in non-vaccinated carp, while in vaccinated carp, no mortality was recorded and the virus load was >1,000-fold lower in the skin, gill and kidney. Histological analysis showed strongest pathological changes in the skin, with a complete destruction of the epidermis in non-vaccinated carp. In the skin of non-vaccinated fish, T and B cell responses were severely downregulated, inflammation and stress responses were increased upon challenge, whereas vaccinated fish had boosted neutrophil, T and B cell responses. A disruption of skin barrier elements (tight and adherence junction, desmosomes, mucins) led to an uncontrolled increase in skin bacteria load which most likely exacerbated the inflammation and the pathology. Using a live attenuated virus vaccine, we were able to show that increased neutrophil, T and B cell responses provide protection from CyHV-3 infection and lead to preservation of skin integrity, which supports successful protection against additional pathogens in the aquatic environment which foster disease development in non-vaccinated carp.
Collapse
Affiliation(s)
- Mikolaj Adamek
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Marek Matras
- Laboratory of Fish Diseases, National Veterinary Research Institute, Pulawy, Poland
| | - Alexander Rebl
- Fish Genetics Unit, Research Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Dummerstorf, Germany
| | - Magdalena Stachnik
- Laboratory of Fish Diseases, National Veterinary Research Institute, Pulawy, Poland
| | - Alberto Falco
- Institute of Research, Development, and Innovation in Healthcare Biotechnology in Elche (IDiBE), Miguel Hernández University (UMH), Elche, Spain
| | - Julia Bauer
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Anne-Carina Miebach
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Felix Teitge
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Verena Jung-Schroers
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Muhammad Abdullah
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Torben Krebs
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Lars Schröder
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Walter Fuchs
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Michal Reichert
- Laboratory of Fish Diseases, National Veterinary Research Institute, Pulawy, Poland
| | - Dieter Steinhagen
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
10
|
Lee PT, Yamamoto FY, Low CF, Loh JY, Chong CM. Gut Immune System and the Implications of Oral-Administered Immunoprophylaxis in Finfish Aquaculture. Front Immunol 2022; 12:773193. [PMID: 34975860 PMCID: PMC8716388 DOI: 10.3389/fimmu.2021.773193] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/23/2021] [Indexed: 12/13/2022] Open
Abstract
The gastrointestinal immune system plays an important role in immune homeostasis regulation. It regulates the symbiotic host-microbiome interactions by training and developing the host's innate and adaptive immunity. This interaction plays a vital role in host defence mechanisms and at the same time, balancing the endogenous perturbations of the host immune homeostasis. The fish gastrointestinal immune system is armed with intricate diffused gut-associated lymphoid tissues (GALTs) that establish tolerance toward the enormous commensal gut microbiome while preserving immune responses against the intrusion of enteric pathogens. A comprehensive understanding of the intestinal immune system is a prerequisite for developing an oral vaccine and immunostimulants in aquaculture, particularly in cultured fish species. In this review, we outline the remarkable features of gut immunity and the essential components of gut-associated lymphoid tissue. The mechanistic principles underlying the antigen absorption and uptake through the intestinal epithelial, and the subsequent immune activation through a series of molecular events are reviewed. The emphasis is on the significance of gut immunity in oral administration of immunoprophylactics, and the different potential adjuvants that circumvent intestinal immune tolerance. Comprehension of the intestinal immune system is pivotal for developing effective fish vaccines that can be delivered orally, which is less labour-intensive and could improve fish health and facilitate disease management in the aquaculture industry.
Collapse
Affiliation(s)
- Po-Tsang Lee
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Fernando Y Yamamoto
- Thad Cochran National Warmwater Aquaculture Center, Mississippi Agriculture and Forestry Experiment Station, Mississippi State University, Stoneville, MS, United States
| | - Chen-Fei Low
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Jiun-Yan Loh
- Centre of Research for Advanced Aquaculture (CORAA), UCSI University, Cheras, Malaysia
| | - Chou-Min Chong
- Aquatic Animal Health and Therapeutics Laboratory (AquaHealth), Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
11
|
Mugimba KK, Byarugaba DK, Mutoloki S, Evensen Ø, Munang’andu HM. Challenges and Solutions to Viral Diseases of Finfish in Marine Aquaculture. Pathogens 2021; 10:pathogens10060673. [PMID: 34070735 PMCID: PMC8227678 DOI: 10.3390/pathogens10060673] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 11/16/2022] Open
Abstract
Aquaculture is the fastest food-producing sector in the world, accounting for one-third of global food production. As is the case with all intensive farming systems, increase in infectious diseases has adversely impacted the growth of marine fish farming worldwide. Viral diseases cause high economic losses in marine aquaculture. We provide an overview of the major challenges limiting the control and prevention of viral diseases in marine fish farming, as well as highlight potential solutions. The major challenges include increase in the number of emerging viral diseases, wild reservoirs, migratory species, anthropogenic activities, limitations in diagnostic tools and expertise, transportation of virus contaminated ballast water, and international trade. The proposed solutions to these problems include developing biosecurity policies at global and national levels, implementation of biosecurity measures, vaccine development, use of antiviral drugs and probiotics to combat viral infections, selective breeding of disease-resistant fish, use of improved diagnostic tools, disease surveillance, as well as promoting the use of good husbandry and management practices. A multifaceted approach combining several control strategies would provide more effective long-lasting solutions to reduction in viral infections in marine aquaculture than using a single disease control approach like vaccination alone.
Collapse
Affiliation(s)
- Kizito K. Mugimba
- Department of Biotechnical and Diagnostic Sciences, College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala P.O. Box 7062, Uganda;
- Correspondence: (K.K.M.); (H.M.M.); Tel.: +256-772-56-7940 (K.K.M.); +47-98-86-86-83 (H.M.M.)
| | - Denis K. Byarugaba
- Department of Biotechnical and Diagnostic Sciences, College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala P.O. Box 7062, Uganda;
| | - Stephen Mutoloki
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 369, 0102 Oslo, Norway; (S.M.); (Ø.E.)
| | - Øystein Evensen
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 369, 0102 Oslo, Norway; (S.M.); (Ø.E.)
| | - Hetron M. Munang’andu
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 369, 0102 Oslo, Norway
- Correspondence: (K.K.M.); (H.M.M.); Tel.: +256-772-56-7940 (K.K.M.); +47-98-86-86-83 (H.M.M.)
| |
Collapse
|
12
|
Li Y, Ma Y, Hao L, Ma J, Liang Z, Liu Z, Ke H, Li Y. Characterization of a novel brain cell line from Jian carp (Cyprinus carpio var. Jian). FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:439-449. [PMID: 33409805 DOI: 10.1007/s10695-020-00923-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
Jian carp (Cyprinus carpio var. Jian) is an economically important cultured fish in China. Currently, it is facing threats from infectious diseases including koi herpesvirus (KHV). Here, we established a new cell line, designated CCB-J, derived from the brain tissue of the Jian carp. CCB-J cells grew well in Leibovitz's L-15 medium containing 20% fetal bovine serum at 25 °C and have been subcultured for more than 60 passages. At the 30th passage, analysis showed that the number of chromosomes was 100, which is identical to that of other carp variants. Sequencing of the 18S ribosomal DNA confirmed that CCB-J originated from Jian carp. After transfection with the pEGFP-N1 plasmid, green fluorescence was observed in CCB-J. The replication of KHV in CCB-J cells was confirmed by RT-PCR and transmission electron microscopy. The viral titers of KHV in CCB-J cells and CCB cells, which have been widely used in the study of KHV, reached 103.9 and 101.8 median tissue culture infectious dose (TCID50/mL), respectively, within 14 days. The result of TaqMan PCR revealed that CCB-J cells were more sensitive to KHV than CCB cells. Meanwhile, a cytopathic effect (CPE) was also observed in the CCB-J cells in a shorter time post-infection compared with CCB cells. In summary, the CCB-J cell line will be a useful tool in the study of viral pathogenesis and vaccine research.
Collapse
Affiliation(s)
- Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yanping Ma
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, 510640, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, PRC, Guangzhou, 510640, China
| | - Le Hao
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, 510640, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, PRC, Guangzhou, 510640, China
| | - Jiangyao Ma
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, 510640, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, PRC, Guangzhou, 510640, China
| | - Zhiling Liang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, 510640, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, PRC, Guangzhou, 510640, China
| | - Zhenxing Liu
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, 510640, China.
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, PRC, Guangzhou, 510640, China.
| | - Hao Ke
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, 510640, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, PRC, Guangzhou, 510640, China
| | - Yugu Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
13
|
Muñoz-Atienza E, Díaz-Rosales P, Tafalla C. Systemic and Mucosal B and T Cell Responses Upon Mucosal Vaccination of Teleost Fish. Front Immunol 2021; 11:622377. [PMID: 33664735 PMCID: PMC7921309 DOI: 10.3389/fimmu.2020.622377] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/29/2020] [Indexed: 12/14/2022] Open
Abstract
The development of mucosal vaccines against pathogens is currently a highly explored area of research in both humans and animals. This is due to the fact that mucosal vaccines have the potential to best elicit protective responses at these mucosal surfaces, which represent the frontline of host defense, thus blocking the pathogen at its initial replication sites. However, in order to provide an efficient long-lasting protection, these mucosal vaccines have to be capable of eliciting an adequate systemic immune response in addition to local responses. In aquaculture, the need for mucosal vaccines has further practical implications, as these vaccines would avoid the individual manipulation of fish out of the water, being beneficial from both an economic and animal welfare point of view. However, how B and T cells are organized in teleost fish within these mucosal sites and how they respond to mucosally delivered antigens varies greatly when compared to mammals. For this reason, it is important to establish which mucosally delivered antigens have the capacity to induce strong and long-lasting B and T cell responses. Hence, in this review, we have summarized what is currently known regarding the adaptive immune mechanisms that are induced both locally and systemically in fish after mucosal immunization through different routes of administration including oral and nasal vaccination, anal intubation and immersion vaccination. Finally, based on the data presented, we discuss how mucosal vaccination strategies could be improved to reach significant protection levels in these species.
Collapse
Affiliation(s)
- Estefanía Muñoz-Atienza
- Fish Immunology and Pathology Laboratory, Animal Health Research Centre (CISA-INIA), Madrid, Spain
| | - Patricia Díaz-Rosales
- Fish Immunology and Pathology Laboratory, Animal Health Research Centre (CISA-INIA), Madrid, Spain
| | - Carolina Tafalla
- Fish Immunology and Pathology Laboratory, Animal Health Research Centre (CISA-INIA), Madrid, Spain
| |
Collapse
|