1
|
Lavrichenko DS, Chelebieva ES, Kladchenko ES. The mitochondrial membrane potential and the sources of reactive oxygen species in the hemocytes of the ark clam Anadara kagoshimensis under hypoosmotic stress. Comp Biochem Physiol B Biochem Mol Biol 2025; 276:111057. [PMID: 39662678 DOI: 10.1016/j.cbpb.2024.111057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/06/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024]
Abstract
To compensate for changes in cell volume caused by changes in salt concentration, mollusks use regulatory mechanisms such as the regulation of volume decrease (RVD). This may increase the rate of aerobic metabolism and lead to an increase in reactive oxygen species (ROS). This study examined the production of ROS in the mitochondria of Anadara kagoshiensis hemocytes, the effect of mitochondrial inhibitors on osmotic stability in hemocytes, and the dynamics of changes in ROS levels and mitochondrial membrane potential when RVD is activated under hypo-osmotic conditions. Hemocytes maintained at a control osmolarity of 460 mOsm l-1 showed significant decreases in ROS production following incubation with complex III inhibitors (S3QEL). Hypoosmotic shock stimulated RVD in all experimental groups. The cell volume increased by about 70 % immediately after osmolarity was reduced, and then decreased by about 40 % over the next 30 min. A reduction in osmolarity from about 460 to 200 mOsm l-1 significantly decreased ROS and mitochondrial potentials in A. kashimensis hemocyctes. Inhibitors of mitochondrial complexes did not affect changes in ROS or mitochondria potentials in A kashimiensis hemocytes under hypoosmotic conditions or in hemocyte volume regulation mechanisms.
Collapse
Affiliation(s)
- Daria S Lavrichenko
- Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky Ave, 14, Moscow 119991, Russia.
| | - Elina S Chelebieva
- Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky Ave, 14, Moscow 119991, Russia
| | - Ekaterina S Kladchenko
- Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky Ave, 14, Moscow 119991, Russia
| |
Collapse
|
2
|
Xu M, Fang W, Lin G, Zhu X, Lu J. Transcriptomic Responses and Larval-Stage Growth of Protandrous Yellowfin Seabream (Acanthopagrus Latus) to Different Polyethylene Microplastics Exposure. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:931-942. [PMID: 38896300 DOI: 10.1007/s10126-024-10334-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 06/07/2024] [Indexed: 06/21/2024]
Abstract
Polyethylene microplastics (PE-MPs) were widespread in the marine environment; thus, their influences on marine hermaphroditic fish cannot be ignored. This study intends to evaluate the adverse biological effects of two different sources of PE, identified by Raman spectroscopy, on protandrous yellowfin seabream (Acanthopagrus latus) larvae. Growth retardation, brain lesions, head/body length ratio increase, and neuroendocrine system disorders were found, and growth and neuroendocrine regulation-related genes such as sstr2, ghrb, irs1, UGT2B15, UGT2C1, drd4a, esr2b, hsd3b7, and hsd17b2 were identified. PE microbeads (100 μm) showed more severe tissue damage on fish, while environmental PE fibers (500-2500 μm) showed more imperceptible adverse effects. There were 218 DEGs up-regulated and 147 DEGs down-regulated in the environmental PE group, while 1284 (up) and 1267 (down) DEGs were identified in the virgin PE group. PE-MP stress influenced physiological processes like growth and neuroendocrine regulation and cholesterol-steroid metabolism, and caused tissue damage in the fish larvae. The study highlights the effects of environmental PE exposure on hermaphroditic protandrous fish.
Collapse
Affiliation(s)
- Meng Xu
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, People's Republic of China
| | - Wenyu Fang
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, People's Republic of China
| | - Genmei Lin
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, People's Republic of China
| | - Xiaoshan Zhu
- School of Ecology and Environment, Hainan University, Haikou, 570228, People's Republic of China
| | - Jianguo Lu
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, People's Republic of China.
- Southern Marine Science and Engineering Guangdong Laboratory, 519080, Zhuhai, People's Republic of China.
| |
Collapse
|
3
|
Escobar-Sierra C, Cañedo-Argüelles M, Vinyoles D, Lampert KP. Unraveling the molecular mechanisms of fish physiological response to freshwater salinization: A comparative multi-tissue transcriptomic study in a river polluted by potash mining. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124400. [PMID: 38906407 DOI: 10.1016/j.envpol.2024.124400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/23/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
Freshwater salinization is an escalating global environmental issue that threatens freshwater biodiversity, including fish populations. This study aims to uncover the molecular basis of salinity physiological responses in a non-native minnow species (Phoxinus septimaniae x P. dragarum) exposed to saline effluents from potash mines in the Llobregat River, Barcelona, Spain. Employing high-throughput mRNA sequencing and differential gene expression analyses, brain, gills, and liver tissues collected from fish at two stations (upstream and downstream of saline effluent discharge) were examined. Salinization markedly influenced global gene expression profiles, with the brain exhibiting the most differentially expressed genes, emphasizing its unique sensitivity to salinity fluctuations. Pathway analyses revealed the expected enrichment of ion transport and osmoregulation pathways across all tissues. Furthermore, tissue-specific pathways associated with stress, reproduction, growth, immune responses, methylation, and neurological development were identified in the context of salinization. Rigorous validation of RNA-seq data through quantitative PCR (qPCR) underscored the robustness and consistency of our findings across platforms. This investigation unveils intricate molecular mechanisms steering salinity physiological response in non-native minnows confronting diverse environmental stressors. This comprehensive analysis sheds light on the underlying genetic and physiological mechanisms governing fish physiological response in salinity-stressed environments, offering essential knowledge for the conservation and management of freshwater ecosystems facing salinization.
Collapse
Affiliation(s)
- Camilo Escobar-Sierra
- Institute of Zoology, Universität zu Köln Mathematisch-Naturwissenschaftliche Fakultät, Zülpicher Str. 47b, Köln, NRW, 50674, Germany.
| | - Miguel Cañedo-Argüelles
- FEHM-Lab, Institute of Environmental Assessment and Water Research (IDAEA), CSIC, Barcelona, Spain
| | - Dolors Vinyoles
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Avda. Diagonal 643, Barcelona, 08028, Catalonia, Spain
| | - Kathrin P Lampert
- Institute of Zoology, Universität zu Köln Mathematisch-Naturwissenschaftliche Fakultät, Zülpicher Str. 47b, Köln, NRW, 50674, Germany
| |
Collapse
|
4
|
Boamah GA, Huang Z, Ke C, You W, Ayisi CL, Amenyogbe E, Droepenu E. Preliminary analysis of pathways and their implications during salinity stress in abalone. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 50:101224. [PMID: 38430709 DOI: 10.1016/j.cbd.2024.101224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
Transcriptome sequencing has offered immense opportunities to study non-model organisms. Abalone is an important marine mollusk that encounters harsh environmental conditions in its natural habitat and under aquaculture conditions; hence, research that increases molecular information to understand abalone physiology and stress response is noteworthy. Accordingly, the study used transcriptome sequencing of the gill tissues of abalone exposed to low salinity stress. The aim is to explore some enriched pathways during salinity stress and the crosstalk and functions of the genes involved in the candidate biological processes for future further analysis of their expression patterns. The data suggest that abalone genes such as YAP/TAZ, Myc, Nkd, and Axin (involved in the Hippo signaling pathway) and PI3K/Akt, SHC, and RTK (involved in the Ras signaling pathways) might mediate growth and development. Thus, deregulation of the Hippo and Ras pathways by salinity stress could be a possible mechanism by which unfavorable salinities influence growth in abalone. Furthermore, PEPCK, GYS, and PLC genes (mediating the Glucagon signaling pathway) might be necessary for glucose homeostasis, reproduction, and abalone meat sensory qualities; hence, a need to investigate how they might be influenced by environmental stress. Genes such as MYD88, IRAK1/4, JNK, AP-1, and TRAF6 (mediating the MAPK signaling pathway) could be useful in understanding abalone's innate immune response to environmental stresses. Finally, the aminoacyl-tRNA biosynthesis pathway hints at the mechanism by which new raw materials for protein biosynthesis are mobilized for physiological processes and how abalone might respond to this process during salinity stress. Low salinity clearly regulated genes in these pathways in a time-dependent manner, as hinted by the heat maps. In the future, qRT-PCR verification and in-depth study of the various genes and proteins discussed would provide enormous molecular information resources for the abalone biology.
Collapse
Affiliation(s)
- Grace Afumwaa Boamah
- Department of Water Resources and Aquaculture Management, University of Environment and Sustainable Development, PMB, Somanya, Ghana.
| | - Zekun Huang
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, PR China
| | - Caihuan Ke
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, PR China
| | - Weiwei You
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, PR China
| | - Christian Larbi Ayisi
- Department of Water Resources and Aquaculture Management, University of Environment and Sustainable Development, PMB, Somanya, Ghana
| | - Eric Amenyogbe
- Department of Water Resources and Aquaculture Management, University of Environment and Sustainable Development, PMB, Somanya, Ghana
| | - Eric Droepenu
- Department of Water Resources and Aquaculture Management, University of Environment and Sustainable Development, PMB, Somanya, Ghana
| |
Collapse
|
5
|
Oto Y, Kuroki M, Iida M, Ito R, Nomura S, Watanabe K. A key evolutionary step determining osmoregulatory ability for freshwater colonisation in early life stages of fish. J Exp Biol 2023; 226:jeb246110. [PMID: 37767765 DOI: 10.1242/jeb.246110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023]
Abstract
Colonisation of freshwater habitats by marine animals is a remarkable evolutionary event that has enriched biodiversity in freshwater ecosystems. The acquisition of tolerance to hypotonic stress during early life stages is presumed to be essential for their successful freshwater colonisation, but very little empirical evidence has been obtained to support this idea. This study aimed to comprehend the evolutionary changes in osmoregulatory mechanisms that enhance larval freshwater tolerance in amphidromous fishes, which typically spend their larval period in marine (ancestral) habitats and the rest of their life history stages in freshwater (derived) habitats. We compared the life history patterns and changes in larval survivorship and gene expression depending on salinity among three congeneric marine-originated amphidromous goby species (Gymnogobius), which had been suggested to differ in their larval dependence on freshwater habitats. An otolith microchemical analysis and laboratory-rearing experiment confirmed the presence of freshwater residents only in G. urotaenia and higher larval survivorship of this species in the freshwater condition than in the obligate amphidromous G. petschiliensis and G. opperiens. Larval whole-body transcriptome analysis revealed that G. urotaenia from both amphidromous and freshwater-resident populations exhibited the greatest differences in expression levels of several osmoregulatory genes, including aqp3, which is critical for water discharge from their body during early fish development. The present results consistently support the importance of enhanced freshwater tolerance and osmoregulatory plasticity in larval fish to establish freshwater forms, and further identified key candidate genes for larval freshwater adaptation and colonisation in the goby group.
Collapse
Affiliation(s)
- Yumeki Oto
- Division of Biological Sciences, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto City, Kyoto Prefecture 606-8502, Japan
| | - Mari Kuroki
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo Metropolitan 113-8657, Japan
| | - Midori Iida
- Marine Biological Station, Sado Island Center for Ecological Sustainability, Niigata University, 87 Tassha, Sado City, Niigata Prefecture 952-2135, Japan
| | - Ryosuke Ito
- Division of Biological Sciences, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto City, Kyoto Prefecture 606-8502, Japan
| | - Shota Nomura
- Division of Biological Sciences, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto City, Kyoto Prefecture 606-8502, Japan
| | - Katsutoshi Watanabe
- Division of Biological Sciences, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto City, Kyoto Prefecture 606-8502, Japan
| |
Collapse
|
6
|
Liang Y, Zhu KC, You YZ, Guo HY, Chen HD, Liu BS, Zhang N, Dai YB, Zeng FR, Lin HY, Zhang DC. Molecular characterization of TNF-β and IFN-γ in yellowfin seabream (Acanthopagrus latus, Hottuyn, 1782) and their immune responses to density stress during transport. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 147:104747. [PMID: 37276930 DOI: 10.1016/j.dci.2023.104747] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/28/2023] [Accepted: 05/28/2023] [Indexed: 06/07/2023]
Abstract
The inflammatory cytokines TNF-β and IFN-γ are important mediators of the vertebrate inflammatory response and coordinators of the immune system in regard to NF-κB signalling pathways. In this study, the TNF-β and IFN-γ genes of yellowfin seabream, Acanthopagrus latus were identified, and the multiple sequence alignments, evolutionary relationships and gene expressions of the two genes were also determined. AlTNF-β contained a 762 bp open reading frame (ORF) encoding 253 amino acids, while AlIFN-γ contained a 582 bp ORF encoding 193 amino acids. An amino-acid sequence alignment analysis showed that these proteins have highly conserved transmembrane structural domains among teleosts. Moreover, AlTNF-β has a close affinity with TNF-β of yellowfin seabream while AlIFN-γ has a high evolutionary correlation with A. regius and Sparus aurata. In addition, the mRNAs of AlTNF-β and AlIFN-γ are widely expressed in various tissues. AlTNF-β is highly expressed in gill and intestinal tissues, and the mRNA levels of AlIFN-γ are higher in spleen, skin, and gill tissues than in other tissues. Under transportation density stress, the mRNA level of AlTNF-β was significantly elevated in the intestine of the high-density group, while AlTNF-β transcription in the gills did not vary significantly among the density groups. Furthermore, AlIFN-γ expression was increased in liver, intestinal, and gill tissues under high transportation density. The results of this study show that TNF-β and IFN-γ expression in yellowfin seabream is greatly affected by density stress. The density of 125 per bag for 4-5 cm fry or 1200 per bag for 1-2 cm fry is most suitable for the transportation of live fish. These results might provide a reference for further studies on the immunomodulatory response process and auxiliary function of immune stress of TNF and IFN genes in fish under density stress.
Collapse
Affiliation(s)
- Yu Liang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, PR China
| | - Ke-Cheng Zhu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, 510300, Guangzhou, Guangdong Province, PR China; Sanya Tropical Fisheries Research Institute, Sanya, 572018, China
| | - Ying-Zhe You
- Zhangzhou Aquatic Technology Promotion Station, 363000, Zhangzhou, Fujian Province, PR China
| | - Hua-Yang Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, 510300, Guangzhou, Guangdong Province, PR China; Sanya Tropical Fisheries Research Institute, Sanya, 572018, China
| | - He-Dong Chen
- Zhangzhou Aquatic Technology Promotion Station, 363000, Zhangzhou, Fujian Province, PR China
| | - Bao-Suo Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, 510300, Guangzhou, Guangdong Province, PR China; Sanya Tropical Fisheries Research Institute, Sanya, 572018, China
| | - Nan Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, 510300, Guangzhou, Guangdong Province, PR China; Sanya Tropical Fisheries Research Institute, Sanya, 572018, China
| | - Yan-Bin Dai
- Zhangzhou Aquatic Technology Promotion Station, 363000, Zhangzhou, Fujian Province, PR China
| | - Fan-Rong Zeng
- Zhangzhou Aquatic Technology Promotion Station, 363000, Zhangzhou, Fujian Province, PR China
| | - Huan-Yang Lin
- Zhangzhou Marine Environmental Monitoring Center, 363000, Zhangzhou, Fujian Province, PR China
| | - Dian-Chang Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, 510300, Guangzhou, Guangdong Province, PR China; Sanya Tropical Fisheries Research Institute, Sanya, 572018, China.
| |
Collapse
|
7
|
Zhang S, Duan Y, Zhong L, Liu H, Wang M, Chen X. Using comparative transcriptome analysis to identify molecular response mechanisms to salinity stress in channel catfish (Ictalurus punctatus). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:121911. [PMID: 37328123 DOI: 10.1016/j.envpol.2023.121911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/18/2023]
Abstract
Channel catfish (Ictalurus punctatus) are an important global aquaculture species. To explore gene expression patterns and identify adaptive molecular mechanisms in catfish during salinity stress, we performed growth comparison and comparative transcriptome sequencing on liver tissue. Our study revealed that salinity stress has a significant impact on the growth, survival, and antioxidant system of channel catfish. 927 and 1356 significant DEGs were identified in L vs. C group and H vs. C group. Gene Ontology (GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses suggested that both high and low salinity stress affected gene expression related to oxygen carrier activity, hemoglobin complex, and oxygen transport pathways, and also amino acid metabolism, immune responses, and energy and fatty acid metabolism in catfish. Among mechanisms, amino acid metabolism genes were significantly up-regulated in the low salt stress group, immune response genes were significantly up-regulated in the high salt stress group, and fatty acid metabolism genes were significantly up-regulated in both groups. These results provided a platform for unraveling steady-state regulatory mechanisms in channel catfish under salinity stress, and may limit the impact of extreme salinity changes on catfish during aquaculture practices.
Collapse
Affiliation(s)
- Shiyong Zhang
- National Genetic Breeding Center of Channel Catfish, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, 210017, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, 210014, China.
| | - Yongqiang Duan
- National Genetic Breeding Center of Channel Catfish, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, 210017, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Liqiang Zhong
- National Genetic Breeding Center of Channel Catfish, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, 210017, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, 210014, China
| | - Hongyan Liu
- National Genetic Breeding Center of Channel Catfish, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, 210017, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, 210014, China
| | - Minghua Wang
- National Genetic Breeding Center of Channel Catfish, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, 210017, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, 210014, China
| | - Xiaohui Chen
- National Genetic Breeding Center of Channel Catfish, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, 210017, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, 210014, China
| |
Collapse
|
8
|
Morshed SM, Lee TH. The role of the microbiome on fish mucosal immunity under changing environments. FISH & SHELLFISH IMMUNOLOGY 2023:108877. [PMID: 37302678 DOI: 10.1016/j.fsi.2023.108877] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/13/2023]
Abstract
The environment is crucial for fish as their mucosal surfaces face continuous challenges in the water. Fish mucosal surfaces harbor the microbiome and mucosal immunity. Changes in the environment could affect the microbiome, thus altering mucosal immunity. Homeostasis between the microbiome and mucosal immunity is crucial for the overall health of fish. To date, very few studies have investigated mucosal immunity and its interaction with the microbiome in response to environmental changes. Based on the existing studies, we can infer that environmental factors can modulate the microbiome and mucosal immunity. However, we need to retrospectively examine the existing literature to investigate the possible interaction between the microbiome and mucosal immunity under specific environmental conditions. In this review, we summarize the existing literature on the effects of environmental changes on the fish microbiome and mucosal immunity. This review mainly focuses on temperature, salinity, dissolved oxygen, pH, and photoperiod. We also point out a gap in the literature and provide directions to go further in this research field. In-depth knowledge about mucosal immunity-microbiome interaction will also improve aquaculture practices by reducing loss during environmental stressful conditions.
Collapse
Affiliation(s)
- Syed Monzur Morshed
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan; The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Tsung-Han Lee
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan; The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan.
| |
Collapse
|
9
|
Lin YL, Zhu ZX, Ai CH, Xiong YY, De Liu T, Lin HR, Xia JH. Transcriptome and DNA Methylation Responses in the Liver of Yellowfin Seabream Under Starvation Stress. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:150-160. [PMID: 36445545 DOI: 10.1007/s10126-022-10188-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/23/2022] [Indexed: 06/16/2023]
Abstract
Fish suffer from starvation due to environmental risks such as extreme weather in the wild and due to insufficient feedings in farms. Nutrient problems from short-term or long-term starvation conditions can result in stress-related health problems for fish. Yellowfin seabream (Acanthopagrus latus) is an important marine economic fish in China. Understanding the molecular responses to starvation stress is vital for propagation and culturing yellowfin seabream. In this study, the transcriptome and genome-wide DNA methylation levels in the livers of yellowfin seabream under 14-days starvation stress were analyzed. One hundred sixty differentially expressed genes (DEGs) by RNA-Seq analysis and 737 differentially methylated-related genes by whole genome bisulfite sequencing analysis were identified. GO and KEGG pathway enrichment analysis found that energy metabolism-related pathways such as glucose metabolism and lipid metabolism were in response to starvation. Using bisulfite sequencing PCR, we confirmed the presence of CpG methylation differences within the regulatory region of a DEG ppargc1a in response to 14-days starvation stress. This study revealed the molecular responses of livers in response to starvation stress at the transcriptomic and whole genome DNA methylation levels in yellowfin seabream.
Collapse
Affiliation(s)
- Yi Long Lin
- College of Life Sciences, State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Zong Xian Zhu
- College of Life Sciences, State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Chun Hui Ai
- College of Life Sciences, State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Ying Ying Xiong
- College of Life Sciences, State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Tong De Liu
- College of Life Sciences, State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Hao Ran Lin
- College of Life Sciences, State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Jun Hong Xia
- College of Life Sciences, State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, People's Republic of China.
| |
Collapse
|
10
|
Carneiro MDD, García-Mesa S, Sampaio LA, Planas M. Implications of Salinity and Acidic Environments on Fitness and Oxidative Stress Parameters in Early Developing Seahorses Hippocampus reidi. Animals (Basel) 2022; 12:ani12223227. [PMID: 36428453 PMCID: PMC9686857 DOI: 10.3390/ani12223227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
Water acidification affects aquatic species, both in natural environmental conditions and in ex situ rearing production systems. The chronic effects of acidic conditions (pH 6.5 vs. pH 8.0) in seahorses (Hippocampus spp.) are not well known, especially when coupled with salinity interaction. This study investigated the implications of pH on the growth and oxidative stress in the seahorse Hippocampus reidi (Ginsburg, 1933), one of the most important seahorse species in the ornamental trade. Two trials were carried out in juveniles (0-21 and 21-50 DAR-days after the male's pouch release) reared under acid (6.5) and control (8.0) pH, both in brackish water (BW-salinity 11) and seawater (SW-salinity 33). In the first trial (0-21 DAR), there was no effect of pH on the growth of seahorses reared in SW, but the survival rate was higher for juveniles raised in SW at pH 6.5. However, the growth and survival of juveniles reared in BW were impaired at pH 6.5. Compared to SW conditions, the levels of superoxide dismutase and DT-diaphorase, as well as the oxidative stress index, increased for juveniles reared in BW. In the second trial, seahorse juveniles were reared in SW at pH 8.0, and subsequently kept for four weeks (from 21 to 50 DAR) at pH 6.5 and 8.0. The final survival rates and condition index were similar in both treatments. However, the growth under acidic conditions was higher than at pH 8.0. In conclusion, this study highlights that survival, growth, and oxidative status condition was enhanced in seahorse juveniles reared in SW under acidic conditions (pH = 6.5). The concurrent conditions of acidic pH (6.5) and BW should be avoided due to harmful effects on the fitness and development of seahorse juveniles.
Collapse
Affiliation(s)
- Mario D. D. Carneiro
- Department of Ecology and Marine Resources, Institute of Marine Research (CSIC), 36208 Vigo, Spain
- Laboratório de Piscicultura Estuarina e Marinha, Instituto de Oceanografia, Universidade Federal do Rio Grande–FURG, Rio Grande 96210-030, Brazil
- Correspondence: (M.D.D.C.); (M.P.); Tel.: +34-986214457 (M.P.)
| | - Sergio García-Mesa
- Department of Zoology, University of Granada, Campus Universitario de Fuentenueva, 18071 Granada, Spain
| | - Luis A. Sampaio
- Laboratório de Piscicultura Estuarina e Marinha, Instituto de Oceanografia, Universidade Federal do Rio Grande–FURG, Rio Grande 96210-030, Brazil
| | - Miquel Planas
- Department of Ecology and Marine Resources, Institute of Marine Research (CSIC), 36208 Vigo, Spain
- Correspondence: (M.D.D.C.); (M.P.); Tel.: +34-986214457 (M.P.)
| |
Collapse
|
11
|
Duan Y, Zhang W, Chen X, Wang M, Zhong L, Liu J, Bian W, Zhang S. Genome-wide identification and expression analysis of mitogen-activated protein kinase (MAPK) genes in response to salinity stress in channel catfish (Ictalurus punctatus). JOURNAL OF FISH BIOLOGY 2022; 101:972-984. [PMID: 35818162 DOI: 10.1111/jfb.15158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
The mitogen-activated protein kinase (MAPK) gene family has been systematically described in several fish species, but less so in channel catfish (Ictalurus punctatus), which is an important global aquaculture species. In this study, 16 MAPK genes were identified in the channel catfish genome and classified into three subfamilies based on phylogenetic analysis, including six extracellular signal regulated kinase (ERK) genes, six p38-MAPK genes and four C-Jun N-terminal kinase (JNK) genes. All MAPK genes were distributed unevenly across 10 chromosomes, of which three (IpMAPK8, IpMAPK12 and IpMAPK14) underwent teleost-specific whole genome duplication during evolution. Gene expression profiles in channel catfish during salinity stress were analysed using transcriptome sequencing and qRT-PCR (quantitative reverse transcription PCR). Results from reads per kilobase million (RPKM) analysis showed IpMAPK13, IpMAPK14a and IpMAPK14b genes were differentially expressed when compared with other genes between treatment and control groups. Furthermore, three of these genes were validated by qRT-PCR, of which IpMAPK14a expression levels were significantly upregulated in treatment groups (high and low salinity) when compared with the control group, with the highest expression levels in the low salinity group (P < 0.05). Therefore, IpMAPK14a may have important response roles to salinity stress in channel catfish.
Collapse
Affiliation(s)
- Yongqiang Duan
- National Genetic Breeding Center of Channel Catfish, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Wenping Zhang
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, China
| | - Xiaohui Chen
- National Genetic Breeding Center of Channel Catfish, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
| | - Minghua Wang
- National Genetic Breeding Center of Channel Catfish, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
| | - Liqiang Zhong
- National Genetic Breeding Center of Channel Catfish, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
| | - Ju Liu
- National Genetic Breeding Center of Channel Catfish, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
| | - Wenji Bian
- National Genetic Breeding Center of Channel Catfish, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, China
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
| | - Shiyong Zhang
- National Genetic Breeding Center of Channel Catfish, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
| |
Collapse
|
12
|
Lu J, Gao D, Sims Y, Fang W, Collins J, Torrance J, Lin G, Xie J, Liu J, Howe K. Chromosome-level Genome Assembly of Acanthopagrus latus Provides Insights into Salinity Stress Adaptation of Sparidae. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:655-660. [PMID: 35394576 DOI: 10.1007/s10126-022-10119-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
The yellowfin seabream, Acanthopagrus latus, is widely distributed throughout the Indo-West Pacific. This species, as a euryhaline Sparidae fish, inhabits in coastal environments with large and frequent salinity fluctuation. So the A. latus can be considered as an ideal species for elucidating the evolutionary mechanism of salinity stress adaption on teleost fish species. Here, a chromosome-scale assembly of A. latus was obtained with PacBio and Hi-C hybrid sequencing strategy. The final assembly genome of A. latus is 685.14 Mbp. The values of contig N50 and scaffold N50 are 14.88 Mbp and 30.72 Mbp, respectively. 29,227 genes were successfully predicted for A. latus in total. Then, the comparative genomics and phylogenetic analysis were employed for investigating the different osmoregulation strategies of salinity stress adaption on multiple whole genome scale of Sparidae species. The highly accurate chromosomal information provides the important genome resources for understanding the osmoregulation evolutionary pattern of the euryhaline Sparidae species.
Collapse
Affiliation(s)
- Jianguo Lu
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China.
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, Guangdong, 510275, China.
- Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai, China.
| | - Dong Gao
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Ying Sims
- Wellcome Sanger Institute, Cambridge, UK
| | - Wenyu Fang
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | | | | | - Genmei Lin
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Jingui Xie
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Jian Liu
- School of Computer Science, Nankai University, Tianjin, China
| | | |
Collapse
|
13
|
Integrated Omics Approaches Revealed the Osmotic Stress-Responsive Genes and Microbiota in Gill of Marine Medaka. mSystems 2022; 7:e0004722. [PMID: 35285678 PMCID: PMC9040874 DOI: 10.1128/msystems.00047-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This is the first study using the transcriptome and 16S rRNA gene sequencing to report the hypotonic responsive genes in gill cells and the compositions of gill microbiota in marine medaka. The overlapped glycosaminoglycan- and chitin-related pathways suggest host-bacterium interaction in fish gill during osmotic stress.
Collapse
|
14
|
Lin G, Li S, Huang J, Gao D, Lu J. Hypoosmotic stress induced functional alternations of intestinal barrier integrity, inflammatory reactions, and neurotransmission along gut-brain axis in the yellowfin seabream (Acanthopagrus latus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1725-1738. [PMID: 34480680 DOI: 10.1007/s10695-021-01011-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
The gut-brain axis plays a major role in multiple metabolic regulation processes, but studies regarding its responses to environmental stress in fish are still limited. In this study, we performed transcriptome sequencing analysis and enzyme-linked immunosorbent assay (ELISA) in yellowfin seabream (Acanthopagrus latus) exposed to environments with different water salinity (freshwater: 0 ppt; low-saline water: 3 ppt; brackish water: 6 ppt). According to transcriptome analysis, 707 and 1477 genes were identified as differentially expressed genes (DEGs) between freshwater and brackish water treatments in the brain and gut, respectively. Brain DEGs were significantly enriched into a set of Gene Ontology terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways associated with signal transduction, most of which were downregulated. Gut DEGs were enriched into a neurotransmission-relevant KEGG pathway tryptophan metabolism, and the downregulated DEGs were enriched into the KEGG pathway focal adhesion. ELISA demonstrated significant physiological responses of the brain and gut across treatments, as determined by the concentrations of tight junction protein ZO-2, interleukin 1β, and serotonin. Under hypoosmotic stress, the functions of the gut-brain axis are altered via impairment of intestinal barrier integrity, by disturbance of gut-brain neurotransmission, and through tissue-damaging inflammatory reactions. Our work identified candidate genes which showed significantly differential expression in the gut-brain axis when yellowfin seabream encountered hypoosmotic stress, which could shed lights on the understanding of the potential osmotic regulation mechanisms of the gut-brain axis in teleost.
Collapse
Affiliation(s)
- Genmei Lin
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Shizhu Li
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Junrou Huang
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Dong Gao
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Jianguo Lu
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China.
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, 510275, Guangdong, China.
- Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai, 519000, China.
| |
Collapse
|
15
|
Gill physiological and transcriptomic response of the threatened freshwater mussel Solenaia oleivora to salinity shift. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 40:100913. [PMID: 34662852 DOI: 10.1016/j.cbd.2021.100913] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/25/2021] [Accepted: 09/03/2021] [Indexed: 01/16/2023]
Abstract
Solenaia oleivora, a freshwater shellfish endemic to China, is becoming one of the most threatened freshwater mussels owing to water pollution, habitat fragmentation, and overfishing. Hence, exploring its response to different environmental factors is important for its conservation. In this work, we investigated the physiological and transcriptomic response of S. oleivora to increased salinity. We found that increased salinity caused the death of S. oleivora. High salinity caused shrinking and deformation of gill filaments, reduced gill cilia, and induced cell apoptosis in gills. The activities of superoxide dismutase (SOD), catalase (CAT), acid phosphatase (ACP), alkaline phosphatase (AKP), as well as glutathione (GSH) content were increased at the beginning of salinity stress (3-12 h), while SOD and ACP activities decreased at 48 h. Transcriptome data revealed that high salinity stress (48 h) induced 766 differentially expressed genes (DEGs). Among these DEGs, the majority of the stress response and ion transport-related genes were up-regulated, while most of the immune-related genes were down-regulated. In conclusion, these findings suggest that the antioxidant and immune functions of S. oleivora can be inhibited by high salinity, which may be one of the main reasons for its low survival rate under conditions of increasing salinity.
Collapse
|
16
|
Bal A, Panda F, Pati SG, Das K, Agrawal PK, Paital B. Modulation of physiological oxidative stress and antioxidant status by abiotic factors especially salinity in aquatic organisms. Comp Biochem Physiol C Toxicol Pharmacol 2021; 241:108971. [PMID: 33421636 DOI: 10.1016/j.cbpc.2020.108971] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/10/2020] [Accepted: 12/29/2020] [Indexed: 12/19/2022]
Abstract
Exposure to a variety of environmental factors such as temperature, pH, oxygen and salinity may influence the oxidative status in aquatic organisms. The present review article focuses on the modulation of oxidative stress with reference to the generation of reactive oxygen species (ROS) in aquatic animals from different phyla. The focus of the review article is to explore the plausible mechanisms of physiological changes occurring in aquatic animals due to altered salinity in terms of oxidative stress. Apart from the seasonal variations in salinity, global warming and anthropogenic activities have also been found to influence oxidative health status of aquatic organisms. These effects are discussed with an objective to develop precautionary measures to protect the diversity of aquatic species with sustainable conservation. Comparative analyses among different aquatic species suggest that salinity alone or in combination with other abiotic factors are intricately associated with modulation in oxidative stress in a species-specific manner in aquatic animals. Osmoregulation under salinity stress in relation to energy demand and supply are also discussed. The literature survey of >50 years (1960-2020) indicates that oxidative stress status and comparative analysis of redox modulation have evolved from the analysis of various biotic and/or abiotic factors to the study of cellular signalling pathways in these aquatic organisms.
Collapse
Affiliation(s)
- Abhipsa Bal
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar-751003, India
| | - Falguni Panda
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar-751003, India
| | - Samar Gourav Pati
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar-751003, India
| | - Kajari Das
- Department of Biotechnology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar-751003, India
| | - Pawan Kumar Agrawal
- Main Building, Odisha University of Agriculture and Technology, Bhubaneswar-751003, India
| | - Biswaranjan Paital
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar-751003, India.
| |
Collapse
|
17
|
Lin G, Zheng M, Li S, Xie J, Fang W, Gao D, Huang J, Lu J. Response of gut microbiota and immune function to hypoosmotic stress in the yellowfin seabream (Acanthopagrus latus). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 745:140976. [PMID: 32736105 DOI: 10.1016/j.scitotenv.2020.140976] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/09/2020] [Accepted: 07/12/2020] [Indexed: 06/11/2023]
Abstract
Osmotic stress is associated with heightened immune functions and altered microbiota in the fish intestine. In this study, we explored the effects of hypoosmotic stress on the intestine of euryhaline yellowfin seabream (Acanthopagrus latus) after acute exposure to brackish water, low-saline water, and freshwater environments. The results showed that hypoosmotic stress reshaped the composition of the microbial community and altered the gene expression in the intestine. Probiotics Lactobacillus and Pseudomonas showed higher relative abundance in a brackish water environment, whereas pathogenic bacteria, including Vibrio and Aeromonas, were more abundant in the freshwater environment. At the transcriptional level, osmoregulation-related genes were identified as up/down regulated differentially expressed genes (DEGs) as well as a series of immune-related DEGs associated with pathogen recognition, antimicrobial ability, pro-inflammatory cytokines, cell apoptosis, and antioxidant defense. Physiological analysis showed that Na+ K+-ATPase activity was significantly inhibited by hypoosmotic stress in freshwater. Meanwhile, the intestinal antioxidant defense system of yellowfin seabream was challenged. Correlation network analysis demonstrated the close interactions among intestinal microbes, differentially expressed genes, and physiological parameters. This study provides the critical insights into the function of the intestine fish encountering hypoosmotic stress.
Collapse
Affiliation(s)
- Genmei Lin
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Min Zheng
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Shizhu Li
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Jingui Xie
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Wenyu Fang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Dong Gao
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Jing Huang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Jianguo Lu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China.
| |
Collapse
|
18
|
Li S, Lin G, Fang W, Huang P, Gao D, Huang J, Xie J, Lu J. Gonadal Transcriptome Analysis of Sex-Related Genes in the Protandrous Yellowfin Seabream ( Acanthopagrus latus). Front Genet 2020; 11:709. [PMID: 32765585 PMCID: PMC7378800 DOI: 10.3389/fgene.2020.00709] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022] Open
Abstract
Yellowfin seabream (Acanthopagrus latus), a protandrous hermaphroditic fish, is a good model for studying the mechanism of sex reversal. However, limited knowledge is known about the genetic information related to reproduction and sex differentiation in this species. Here, we performed de novo transcriptome sequencing analysis of the testis, ovotestis, and ovary to identify sex-related genes in yellowfin seabream. The results assembled 71,765 unigenes in which 16,126 and 17,560 unigenes were differentially expressed in the ovotestis and ovary compared to the testis, respectively. The most differentially expressed gene (DEG)-enriched Kyoto Encyclopedia of Genes and Genomes and GO pathways were closely associated with the synthesis of sex steroid hormones. Functional analyses identified 55 important sex-related DEGs, including 32 testis-biased DEGs (dmrt1, amh, and sox9, etc.), 20 ovary-biased DEGs (cyp19a, foxl2, and wnt4, etc.), and 3 ovotestis-biased DEGs (lhb, dmrt2, and foxh1). Furthermore, the testis-specific expression of dmrt1 and the brain-pituitary-ovary axis expression of foxl2 were characterized, suggesting that they might play important roles in sex differentiation in yellowfin seabream. Our present work provided an important molecular basis for elucidating the mechanisms underlying sexual transition and reproductional regulation in yellowfin seabream.
Collapse
Affiliation(s)
- Shizhu Li
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Genmei Lin
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Wenyu Fang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Peilin Huang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Dong Gao
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Jing Huang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Jingui Xie
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Jianguo Lu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| |
Collapse
|