1
|
Lee SB, Lee KL, Kim SW, Jung WJ, Park DS, Lee S, Giri SS, Kim SG, Jo SJ, Park JH, Hwang MH, Park EJ, Seo JP, Kim BY, Park SC. Novel Gammaherpesvirus Infections in Narrow-Ridged Finless Porpoise ( Neophocaena asiaeorientalis) and False Killer Whales ( Pseudorca crassidens) in the Republic of Korea. Viruses 2024; 16:1234. [PMID: 39205209 PMCID: PMC11359890 DOI: 10.3390/v16081234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
A female narrow-ridged finless porpoise (Neophocaena asiaeorientalis) stranded on a beach on Jeju Island showed epithelial proliferative skin lesions on its body. Two false killer whales (Pseudorca crassidens), caught using nets near Gangneung and Samcheok, respectively, had multiple plaques on their penile epidermis. Histological examination of the epidermis revealed that all the lesions had common features, including accentuated rete pegs, ballooning changes, and eosinophilic intranuclear inclusion (INI) bodies. Based on the histopathological results, herpesvirus infection was suspected, and thus further analysis was conducted using herpesvirus-specific primers. Based on nested polymerase chain reaction (PCR) tests using the herpesvirus-detectable primers, the PCR products demonstrated two fragments: a 222-base-pair (bp) sequence of the DNA polymerase gene, SNUABM_CeHV01, showing 96.4% identity with a bottlenose dolphin herpesvirus from the Jeju narrow-ridged finless porpoise; and a 222 bp sequence of the DNA polymerase gene, SNUABM_CeHV02, showing 95.95% identity with the same bottlenose dolphin herpesvirus from the Gangneung and Samcheok false killer whales. The significance of this study lies in its ability to demonstrate the existence of novel cetacean herpesviruses in South Korean seawater, representing an important step forward in studying potentially harmful pathogens that affect endangered whale and dolphin populations.
Collapse
Affiliation(s)
- Sung Bin Lee
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; (S.B.L.); (W.J.J.); (D.S.P.); (S.S.G.); (S.J.J.); (J.H.P.); (M.H.H.); (E.J.P.)
| | - Kyung Lee Lee
- Cetacean Research Institute, National Institute of Fisheries Science, Ulsan 44780, Republic of Korea;
| | - Sang Wha Kim
- College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Republic of Korea;
| | - Won Joon Jung
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; (S.B.L.); (W.J.J.); (D.S.P.); (S.S.G.); (S.J.J.); (J.H.P.); (M.H.H.); (E.J.P.)
| | - Da Sol Park
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; (S.B.L.); (W.J.J.); (D.S.P.); (S.S.G.); (S.J.J.); (J.H.P.); (M.H.H.); (E.J.P.)
| | - Seyoung Lee
- College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Republic of Korea; (S.L.); (J.-p.S.)
| | - Sib Sankar Giri
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; (S.B.L.); (W.J.J.); (D.S.P.); (S.S.G.); (S.J.J.); (J.H.P.); (M.H.H.); (E.J.P.)
| | - Sang Guen Kim
- Department of Biological Sciences, Kyonggi University, Suwon 16227, Republic of Korea;
| | - Su Jin Jo
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; (S.B.L.); (W.J.J.); (D.S.P.); (S.S.G.); (S.J.J.); (J.H.P.); (M.H.H.); (E.J.P.)
| | - Jae Hong Park
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; (S.B.L.); (W.J.J.); (D.S.P.); (S.S.G.); (S.J.J.); (J.H.P.); (M.H.H.); (E.J.P.)
| | - Mae Hyun Hwang
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; (S.B.L.); (W.J.J.); (D.S.P.); (S.S.G.); (S.J.J.); (J.H.P.); (M.H.H.); (E.J.P.)
| | - Eun Jae Park
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; (S.B.L.); (W.J.J.); (D.S.P.); (S.S.G.); (S.J.J.); (J.H.P.); (M.H.H.); (E.J.P.)
| | - Jong-pil Seo
- College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Republic of Korea; (S.L.); (J.-p.S.)
| | - Byung Yeop Kim
- Department of Marine Industry and Maritime Police, College of Ocean Science, Jeju National University, Jeju 63243, Republic of Korea
| | - Se Chang Park
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; (S.B.L.); (W.J.J.); (D.S.P.); (S.S.G.); (S.J.J.); (J.H.P.); (M.H.H.); (E.J.P.)
| |
Collapse
|
2
|
Saito H, Minami S, Yuguchi M, Shitara A, Kondo H, Kato G, Sano M. Effect of temperature on the protective efficacy of a live attenuated vaccine against herpesviral haematopoietic necrosis in goldfish. JOURNAL OF FISH DISEASES 2024; 47:e13906. [PMID: 38115621 DOI: 10.1111/jfd.13906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/27/2023] [Accepted: 12/02/2023] [Indexed: 12/21/2023]
Abstract
The live attenuated vaccine P7-P8 strain against herpesviral haematopoietic necrosis, which is caused by cyprinid herpesvirus 2 (CyHV-2), exhibits high protective efficacy in goldfish at 25°C, the predominant temperature for this disease; however, the effect of water temperature during the vaccination period on efficacy has not been determined. In this study, an in vitro experiment revealed that the vaccine strain grew between 15 and 30°C in the goldfish cell line RyuF-2. Subsequent in vivo efficacy tests were conducted with vaccination temperatures ranging from 15 to 30°C. During the vaccination period, organs were sampled to determine the vaccine growth dynamics. Blood plasma was collected to assess anti-CyHV-2 antibody titres. The protective efficacy of the vaccine at 15, 20, 25, and 30°C after subsequent virulent CyHV-2 challenge resulted in a relative percentage survival of 73.3%, 77.8%, 100%, and 77.8%, respectively, which indicated that the vaccine is effective over this temperature range. The vaccine virus load in the spleen was lowest at 15°C (103.7 DNA copies/mg) and highest at 25°C (106.5 DNA copies/mg). This indicates that the vaccine virus load over 104 DNA copies/mg may elicit sufficient acquired immunity. No significant differences in antibody titre were observed between groups, which suggests that cell-mediated immunity can be fundamentally involved in protection.
Collapse
Affiliation(s)
- Hiroaki Saito
- Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Shungo Minami
- Saitama Fisheries Research Institute, Saitama, Japan
| | - Manami Yuguchi
- Yatomi Station, Freshwater Resources Research Center, Aichi Fisheries Research Institute, Aichi, Japan
| | - Aiko Shitara
- Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Hidehiro Kondo
- Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Goshi Kato
- Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Motohiko Sano
- Tokyo University of Marine Science and Technology, Tokyo, Japan
| |
Collapse
|
3
|
He B, Sridhar A, Streiff C, Deketelaere C, Zhang H, Gao Y, Hu Y, Pirotte S, Delrez N, Davison AJ, Donohoe O, Vanderplasschen AFC. In Vivo Imaging Sheds Light on the Susceptibility and Permissivity of Carassius auratus to Cyprinid Herpesvirus 2 According to Developmental Stage. Viruses 2023; 15:1746. [PMID: 37632088 PMCID: PMC10459324 DOI: 10.3390/v15081746] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Cyprinid herpesvirus 2 (CyHV-2) is a virus that causes mass mortality in economically important Carassius spp. However, there have been no comprehensive studies into host susceptibility or permissivity with respect to developmental stage, and the major portal of viral entry into the host is still unclear. To help bridge these knowledge gaps, we developed the first ever recombinant strain of CyHV-2 expressing bioluminescent and fluorescent reporter genes. Infection of Carassius auratus hosts with this recombinant by immersion facilitated the exploitation of various in vivo imaging techniques to establish the spatiotemporal aspects of CyHV-2 replication at larval, juvenile, and adult developmental stages. While less susceptible than later developmental stages, larvae were most permissive to CyHV-2 replication, leading to rapid systemic infection and high mortality. Permissivity to CyHV-2 decreased with advancing development, with adults being the least permissive and, thus, also exhibiting the least mortality. Across all developmental stages, the skin was the most susceptible and permissive organ to infection at the earliest sampling points post-infection, indicating that it represents the major portal of entry into these hosts. Collectively these findings provide important fundamental insights into CyHV-2 pathogenesis and epidemiology in Carassius auratus with high relevance to other related economically important virus-host models.
Collapse
Affiliation(s)
- Bo He
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium; (B.H.); (A.S.); (C.S.); (C.D.); (H.Z.); (Y.G.); (Y.H.); (S.P.); (N.D.); (O.D.)
| | - Arun Sridhar
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium; (B.H.); (A.S.); (C.S.); (C.D.); (H.Z.); (Y.G.); (Y.H.); (S.P.); (N.D.); (O.D.)
| | - Cindy Streiff
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium; (B.H.); (A.S.); (C.S.); (C.D.); (H.Z.); (Y.G.); (Y.H.); (S.P.); (N.D.); (O.D.)
| | - Caroline Deketelaere
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium; (B.H.); (A.S.); (C.S.); (C.D.); (H.Z.); (Y.G.); (Y.H.); (S.P.); (N.D.); (O.D.)
| | - Haiyan Zhang
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium; (B.H.); (A.S.); (C.S.); (C.D.); (H.Z.); (Y.G.); (Y.H.); (S.P.); (N.D.); (O.D.)
| | - Yuan Gao
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium; (B.H.); (A.S.); (C.S.); (C.D.); (H.Z.); (Y.G.); (Y.H.); (S.P.); (N.D.); (O.D.)
| | - Yunlong Hu
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium; (B.H.); (A.S.); (C.S.); (C.D.); (H.Z.); (Y.G.); (Y.H.); (S.P.); (N.D.); (O.D.)
| | - Sebastien Pirotte
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium; (B.H.); (A.S.); (C.S.); (C.D.); (H.Z.); (Y.G.); (Y.H.); (S.P.); (N.D.); (O.D.)
| | - Natacha Delrez
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium; (B.H.); (A.S.); (C.S.); (C.D.); (H.Z.); (Y.G.); (Y.H.); (S.P.); (N.D.); (O.D.)
| | - Andrew J. Davison
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK;
| | - Owen Donohoe
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium; (B.H.); (A.S.); (C.S.); (C.D.); (H.Z.); (Y.G.); (Y.H.); (S.P.); (N.D.); (O.D.)
- Bioscience Research Institute, Technological University of the Shannon, Athlone N37 HD68, Co. Westmeath, Ireland
| | - Alain F. C. Vanderplasschen
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium; (B.H.); (A.S.); (C.S.); (C.D.); (H.Z.); (Y.G.); (Y.H.); (S.P.); (N.D.); (O.D.)
| |
Collapse
|
4
|
Dai C, Zheng J, Qi L, Deng P, Wu M, Li L, Yuan J. Chronic stress boosts systemic inflammation and compromises antiviral innate immunity in Carassius gibel. Front Immunol 2023; 14:1105156. [PMID: 36814911 PMCID: PMC9939519 DOI: 10.3389/fimmu.2023.1105156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/26/2023] [Indexed: 02/08/2023] Open
Abstract
It is generally considered that stress causes decreased immune function and render fish vulnerable to infection and diseases. However, the molecular mechanisms between stress responses and susceptibility to infections, especially viral diseases, in fish remain unknown. Understanding and monitoring the biological consequences and mechanisms underlying stress responses in fish may contribute to the improvement of animal welfare and production efficiency. In this study, long-term exposure to a variety of stressors, including chasing, overcrowding, restraint stress, and air exposure mimicking chronic stresses, in aquaculture practices was conducted in Carassius gibel to investigate the consequences of chronic stress on inflammation and antiviral capability. With the continuation of stimulation, experimental fish gradually became insensitive to the stress of net chasing and feeding with the accompaniment of upregulated gene expressed in the HPI axis and elevated levels of stress hormones. As expected, stress-induced hyperglycaemia with a decrease in the insulin signaling pathway and altered gene expression in glycolysis and gluconeogenesis, suggesting the disturbance of glycometabolism. Importantly, a link between intestinal homoeostasis and systemic low-grade inflammation in stressed C. gibel was observed, implying crosstalk among the brain, intestine, and other organs. Furthermore, the compromised antiviral capability with impaired antiviral innate immunity in stressed fish was confirmed by RNA sequencing and infection with Cyprinid herpesvirus 2 (CyHV-2), promoting the understanding of enhanced susceptibility to viral infection in stressed fish.
Collapse
Affiliation(s)
- Caijiao Dai
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- National Aquatic Animal Diseases Para-reference Laboratory, Huazhong Agricultural University (HZUA), Wuhan, China
| | - Jianduo Zheng
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Hubei Engineering Research Center for Aquatic Animal Diseases Control and Prevention, Huazhong Agricultural University, Wuhan, China
| | - Lin Qi
- Department of Consultation, Tianbin Ruicheng Environmental Technology Engineering Co., LTD, Tianjin, China
| | - Ping Deng
- Fisheries Science Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Mengke Wu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Lijuan Li
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- National Aquatic Animal Diseases Para-reference Laboratory, Huazhong Agricultural University (HZUA), Wuhan, China
| | - Junfa Yuan
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- National Aquatic Animal Diseases Para-reference Laboratory, Huazhong Agricultural University (HZUA), Wuhan, China
- Hubei Engineering Research Center for Aquatic Animal Diseases Control and Prevention, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
5
|
Complete Genome and Molecular Characterization of a New Cyprinid Herpesvirus 2 (CyHV-2) SH-01 Strain Isolated from Cultured Crucian Carp. Viruses 2022; 14:v14092068. [PMID: 36146873 PMCID: PMC9503944 DOI: 10.3390/v14092068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Cyprinid herpesvirus 2 (CyHV-2) is a causative factor of herpesviral hematopoietic necrosis (HVHN) in farmed crucian carp (Carassius carassius) and goldfish (Carassius auratus). In this study, we analyzed the genomic characteristics of a new strain, CyHV-2 SH-01, isolated during outbreaks in crucian carp at a local fish farm near Shanghai, China. CyHV-2 SH-01 exhibited a high sensitivity to goldfish and crucian carp in our previous research. The complete genome of SH-01 is 290,428 bp with 154 potential open reading frames (ORFs) and terminal repeat (TR) regions at both ends. Compared to the sequenced genomes of other CyHVs, Carassius auratus herpesvirus (CaHV) and Anguillid herpesvirus 1 (AngHV-1), several variations were found in SH-01, including nucleotide mutations, deletions, and insertions, as well as gene duplications, rearrangements, and horizontal transfers. Overall, the genome of SH-01 shares 99.60% of its identity with that of ST-J1. Genomic collinearity analysis showed that SH-01 has a high degree of collinearity with another three CyHV-2 isolates, and it is generally closely related to CaHV, CyHV-1, and CyHV-3, although it contains many differences in locally collinear blocks (LCBs). The lowest degree of collinearity was found with AngHV-1, despite some homologous LCBs, indicating that they are evolutionarily the most distantly related. The results provide new clues to better understand the CyHV-2 genome through sequencing and sequence mining.
Collapse
|