1
|
Li C, Ai H, Zhang B, Huang X, Li B. C-type lectin 9 participates in the immune response, development and reproduction of Tribolium castaneum. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 207:106223. [PMID: 39672654 DOI: 10.1016/j.pestbp.2024.106223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/18/2024] [Accepted: 11/24/2024] [Indexed: 12/15/2024]
Abstract
C-type lectins (CTLs), as a large family of pattern recognition receptors (PRRs), have been reported to be involved in bacterial infection, but the role of CTLs in development has been poorly understood in insects. The orthologues of Tribolium castaneum CTL9 (TcCTL9) have been identified among insects, but its functions were currently unclear. Therefore, we performed functional analysis of TcCTL9 in this study. Our results indicated that TcCTL9 could bind to bacteria through lipopolysaccharide and peptidoglycan, and agglutinate Gram-positive and Gram-positive bacteria in a Ca2+-dependent manner. Silencing TcCTL9 reduced the immune resistance to Staphylococcus aureus and Escherichia coli, decreased the expression of antimicrobial peptides and prophenoloxidase, and inhibited the phenoloxidase activity. These data suggested that TcCTL9 functioned in the immune response via the Toll and IMD pathways and prophenoloxidase system. During development, TcCTL9 had high expression in the periods of egg to larva and pupa to adult, and knockdown of TcCTL9 suppressed the metamorphosis, egg production and hatchability, and ovary development through ecdysone and juvenile hormone pathways in T. castaneum. This study comprehensively clarified the functions of TcCTL9 orthologues in insects and provided the theoretical basis for developing novel targets of pesticides.
Collapse
Affiliation(s)
- Chengjun Li
- College of Life Sciences, Nanjing Normal University, 210023 Nanjing, China
| | - Huayi Ai
- College of Life Sciences, Nanjing Normal University, 210023 Nanjing, China
| | - Biao Zhang
- College of Life Sciences, Nanjing Normal University, 210023 Nanjing, China
| | - Xiaoqiao Huang
- College of Life Sciences, Nanjing Normal University, 210023 Nanjing, China
| | - Bin Li
- College of Life Sciences, Nanjing Normal University, 210023 Nanjing, China.
| |
Collapse
|
2
|
Yao T, Tong Z, Lu J, Fu S, Cheng C, Ye L. A novel C-type lectin, perlucin, from the small abalone, Haliotis diversicolor involved in the innate immune defense against Vibrio harveyi infection. FISH & SHELLFISH IMMUNOLOGY 2024; 155:110029. [PMID: 39561913 DOI: 10.1016/j.fsi.2024.110029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 11/01/2024] [Accepted: 11/16/2024] [Indexed: 11/21/2024]
Abstract
C-type lectins (CTLs), a member of pattern recognition receptors, play an important role in the innate immunity by recognizing invading microorganisms. In this study, a novel perlucin gene (designated as HdPer 3), a typical CTLs was cloned and characterized from the small abalone Haliotis diversicolor. The open reading frame of HdPer 3 was 471 bp, encoding a protein of 156 amino acids that included a single carbohydrate-recognition domain. HdPer 3 was widely expressed in all tested tissues and developmental stage. HdPer 3 expression was significantly up-regulated after Vibrio harveyi infection, suggesting that HdPer 3 was activated in response to bacterial infection. The encapsulation ability of hemocytes could be significantly enhanced by the recombinant protein HdPer 3 (rHdPer 3). To understand the regulation mechanism of the HdPer 3, HdPer 3 was silenced in vivo by RNAi. Knocking down HdPer 3 decreased the hemocytes phagocytosis. Meanwhile, knocking down HdPer 3 can reduce the expression of 2 phagocytosis-related genes (Rab and Dynamin), TNF-α, and 2 MAPK pathway-related genes (MAPK-X1 and Ras) after V. harveyi infection. Moreover, HdPer 3 interference could increase the bacterial load in the hemolymph and the mortality of abalones after V. harveyi infection. All these results suggested that HdPer 3 played a crucial role in the defense against V. harveyi infection by recognizing bacterial pathogens and activating the expression of immune-related genes.
Collapse
Affiliation(s)
- Tuo Yao
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, China
| | - Zhengxin Tong
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, China; College of Marine Science and Environment, Dalian Ocean University, Dalian, 116023, China
| | - Jie Lu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, China
| | - Shengli Fu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, China
| | - Changhong Cheng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, China.
| | - Lingtong Ye
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, China.
| |
Collapse
|
3
|
Shi C, Lin TH, Qu C. The role of pattern recognition receptors in the innate immune system of Chinese mitten crab (Eriocheir sinensis). FISH & SHELLFISH IMMUNOLOGY 2024; 154:109946. [PMID: 39370020 DOI: 10.1016/j.fsi.2024.109946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/09/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
Eriocheir sinensis (Chinese mitten crab) is one of the main economic species in China, which has evolved an extremely sophisticated innate immune system to fend off disease invasions. However, bacterial and viral infections have caused significant financial losses for the E. sinensis aquaculture in recent years. Making well-informed judgments for the control microbial infections would require a thorough understanding and clarification of the intricate innate immune system of E. sinensis. Innate immunity is essential for the host's defense against invasive pathogens. Pattern recognition receptors (PRRs) initially recognize pathogen-associated molecular patterns (PAMPs) and trigger an innate immune response, causing the generation of inflammatory cytokine and promoting the clearance and control of pathogens. In E. sinensis, Toll/Toll-like receptors, lipopolysaccharide and β-1,3-glucan binding proteins, C-type lectins, galactoside-binding lectins, L-type lectins, scavenger receptors, and down syndrome cell adhesion molecules have been identified to be PRRs that are involved in the recognition of bacteria, fungi, and viruses. In this review, we give a comprehensive overview of the literature regarding PRRs' roles in the immunological defenses of E. sinensis, with the aim of providing clues to the mechanisms of innate immunity.
Collapse
Affiliation(s)
- Chenchen Shi
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Ta-Hui Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, 361102, China; Fujian Provincial Key Laboratory of Functional and Clinical Translational Medicine, Xiamen Medical College, Xiamen, Fujian, 361023, China.
| | - Chen Qu
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
4
|
Huo W, Qin L, Guo W, Zhang X, Xia X. Characteristics and functional analysis of a novel mannose receptor in Penaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2024; 153:109820. [PMID: 39117127 DOI: 10.1016/j.fsi.2024.109820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/03/2024] [Accepted: 08/06/2024] [Indexed: 08/10/2024]
Abstract
The mannose receptor (MR) plays a key role in the innate immune system as a pattern recognition receptor. Here, a novel type of mannose receptor, named PvMR2, was identified from Penaeus vannamei (P. vannamei). The PvMR2 coding sequence (CDS) obtained was 988 base pairs in length, encoding a protein consisting of 328 amino acids. This protein includes a signal peptide and two classical C-type lectin domains (CTLD). Quantitative real-time PCR showed that PvMR2 was distributed in all detected tissues, with the highest levels in the intestines and stomach. Following a bacterial challenge with Vibrio anguillarum (V. anguillarum), PvMR2 showed significant up-regulation in both the intestines and stomach of shrimp. To validate the function of PvMR2, recombinant proteins were extracted and purified using a His-tag. The resulting rPvMR2 demonstrated binding capability with lipopolysaccharides (LPS) and peptidoglycan (PGN) in a dose-dependent manner, affirming its binding affinity. The purified rPvMR2 demonstrated calcium-independent binding activity towards both Gram-positive bacteria (V. anguilliarum and Vibrio parahaemolyticus) and Gram-negative bacteria (Escherichia coli and Aeromonas Veronii). Antibacterial assays confirmed that rPvMR2 inhibits bacterial growth. Intestinal adhesion and adhesion inhibition experiments confirmed that the rPvMR2 can be used to reduce the adhesion capacity of harmful bacteria in the gut. Phagocytosis experiments have shown that rPvMR2 promotes phagocytosis in hemocytes and protects the host from external infection. Treatment with recombinant PvMR2 significantly bolstered bacterial clearance within the hemolymph and markedly augmented shrimp survival post-infection with V. anguillarum. These results suggest that PvMR2 has agglutination, growth inhibition, adhesion inhibition, clearance promotion, and phagocytosis effects on harmful bacteria, and plays a crucial role in the antimicrobial immune response of P. vannamei.
Collapse
Affiliation(s)
- Weiran Huo
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Lu Qin
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Wanwan Guo
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Xiaowen Zhang
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Xiaohua Xia
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China.
| |
Collapse
|
5
|
Ferchiou S, Caza F, Sinha K, Sauvageau J, St-Pierre Y. Assessing marine ecosystem health using multi-omic analysis of blue mussel liquid biopsies: A case study within a national marine park. CHEMOSPHERE 2024; 362:142714. [PMID: 38950751 DOI: 10.1016/j.chemosphere.2024.142714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024]
Abstract
Marine ecosystems are under escalating threats from myriad environmental stressors, necessitating a deeper understanding of their impact on biodiversity and the health of sentinel organisms. In this study, we carried out a spatiotemporal multi-omic analysis of liquid biopsies collected from mussels (Mytilus spp.) in marine ecosystems of a national park. We delved into the epigenomic, transcriptomic, glycomic, proteomic, and microbiomic profiles to unravel the intricate interplay between ecosystem biodiversity and mussels' biological response to their environments. Our analysis revealed temporal fluctuations in the alpha diversity of the circulating microbiome associated with human activities. Analysis of the hemolymphatic circulating cell-free DNA (ccfDNA) provided information on the biodiversity and the presence of potential pathogens. Epigenomic analysis revealed widespread hypomethylation sites within the mitochondrial (mtDNA). Comparative transcriptomic and glycomic analyses highlighted differences in metabolic pathways and genes associated with immune and wound healing functions. This study demonstrates the potential of multi-omic analysis of liquid biopsy in sentinel to provide a holistic view of human activities' environmental impacts on marine coastal ecosystems. Overall, this approach has the potential to enhance the effectiveness and efficiency of various conservation efforts, leading to more informed decision-making and better outcomes for biodiversity and ecosystem conservation.
Collapse
Affiliation(s)
- Sophia Ferchiou
- INRS-Center Armand-Frappier Santé Technologie, 531 Boul. des Prairies, Laval, QC, Canada, H7V 1B7
| | - France Caza
- INRS-Center Armand-Frappier Santé Technologie, 531 Boul. des Prairies, Laval, QC, Canada, H7V 1B7
| | - Kumardip Sinha
- Human Health Therapeutics, National Research Council, 100 Sussex Dr., K1N 5A2, Ottawa, Ontario, Canada
| | - Janelle Sauvageau
- Human Health Therapeutics, National Research Council, 100 Sussex Dr., K1N 5A2, Ottawa, Ontario, Canada
| | - Yves St-Pierre
- INRS-Center Armand-Frappier Santé Technologie, 531 Boul. des Prairies, Laval, QC, Canada, H7V 1B7.
| |
Collapse
|
6
|
Lin J, Wan H, Xue H, He Y, Peng B, Zhang Z, Wang Y. Transcriptomics reveals different response mechanisms of Litopenaeus vannamei hemocytes to injection of Vibrio parahaemolyticus and WSSV. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 50:101201. [PMID: 38340389 DOI: 10.1016/j.cbd.2024.101201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/21/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024]
Abstract
As the most important cultural crustacean species worldwide, studies about Pacific white shrimp (Litopenaeus vannamei) have received more attention. It has been well-documented that various pathogens could infect L. vannamei, resulting in huge economic losses. The studies about the responding mechanism of L. vannamei to sole pathogens such as Vibrio parahaemolyticus and white spot virus (WSSV) have been extensively reported, while the studies about the differently responding mechanisms remain unclear. In the present study, we identified the differently expressed genes (DEGs) of L. vannamei hemocytes post V. parahaemolyticus and WSSV infection with RNA-seq technology and compared the DEGs between the two groups. The results showed 2672 DEGs post the V. parahaemolyticus challenge (1079 up-regulated and 1593 down-regulated genes), while 1146 DEGs post the WSSV challenge (1067 up-regulated and 513 down-regulated genes). In addition, we screened the genes that simultaneously respond to WSSV and V. parahaemolyticus (434), solely respond to WSSV (1146), and V. parahaemolyticus challenge (2238), respectively. Six DEGs involved in innate immunity were quantified to validate the RNA-seq results, and the results confirmed the high consistency of both methods. Furthermore, we found plenty of innate immunity-related genes that responded to V. parahaemolyticus and WSSV infection, including pattern recognition receptors (PRRs), the proPO activating system, antimicrobial peptides (AMPs), and other immunity-related proteins. The results revealed that they were differently expressed after different pathogen challenges, demonstrating the complex and specific recognition systems involved in defending against the invasion of different pathogens in the environment. The present study improved our understanding of the molecular response of hemocytes of L. vannamei to V. parahaemolyticus and WSSV stimulation.
Collapse
Affiliation(s)
- Jiaming Lin
- College of Marine Biology, Xiamen Ocean Vocational College, Xiamen 361100, China; Xiamen Key Laboratory of Intelligent Fishery, Xiamen 361100, China
| | - Haifu Wan
- Fisheries College, Jimei University, Xiamen 361021, China; Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Xiamen 361021, China
| | - Haibo Xue
- College of Marine Biology, Xiamen Ocean Vocational College, Xiamen 361100, China; Xiamen Key Laboratory of Intelligent Fishery, Xiamen 361100, China
| | - Yibin He
- College of Marine Biology, Xiamen Ocean Vocational College, Xiamen 361100, China; Xiamen Key Laboratory of Intelligent Fishery, Xiamen 361100, China
| | - Bohao Peng
- Fisheries College, Jimei University, Xiamen 361021, China; Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Xiamen 361021, China
| | - Ziping Zhang
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yilei Wang
- Fisheries College, Jimei University, Xiamen 361021, China; Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Xiamen 361021, China.
| |
Collapse
|
7
|
Yang X, Wang B, Jiang K, Xu K, Zhong C, Liu M, Wang L. The combined analysis of transcriptomics and metabolomics reveals the mechanisms by which dietary quercetin regulates growth and immunity in Penaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109579. [PMID: 38648996 DOI: 10.1016/j.fsi.2024.109579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/09/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
As a potent antioxidant, the flavonoid compound quercetin (QUE) has been widely used in the farming of aquatic animals. However, there are fewer reports of the beneficial effects, especially in improving immunity of Penaeus vannamei by QUE. The aim of this study was to investigate the effects of dietary QUE on growth, apoptosis, antioxidant and immunity of P. vannamei. It also explored the potential mechanisms of QUE in improving the growth and immunity of P. vannamei. P. vannamei were fed diets with QUE for 60 days. The results revealed that QUE (0.5 or 1.0 g/kg) ameliorated the growth, and the expressions of genes related to apoptosis, antioxidant, and immunity. The differentially expressed genes (DEGs) and differential metabolites (DMs) obtained through transcriptomics and metabolomics, respectively, enriched in pathways related to nutritional metabolism such as lipid metabolism, amino acid metabolism, and carbohydrate metabolism. After QUE addition, especially at 0.5 g/kg, DEGs were enriched into the functions of response to stimulus and antioxidant activity, and the pathways of HIF-1 signaling pathway, C-type lectin receptor signaling pathway, Toll-like receptor signaling pathway, and FoxO signaling pathway. In conclusion, dietary QUE can ameliorate growth, apoptosis, antioxidant and immunity of P. vannamei, the appropriate addition amount was 0.5 g/kg rather than 1.0 g/kg. Regulations of QUE on nutrient metabolism and immune-related pathways, and bioactive metabolites, were important factors for improving the aforementioned abilities in P. vannamei.
Collapse
Affiliation(s)
- Xuanyi Yang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Baojie Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Keyong Jiang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Kefeng Xu
- Qingdao Aquatic Organisms Quality Evaluation and Utilization Engineering Research Center, Marine Science Research Institute of Shandong Province, Qingdao, China
| | - Chen Zhong
- Qingdao Aquatic Organisms Quality Evaluation and Utilization Engineering Research Center, Marine Science Research Institute of Shandong Province, Qingdao, China
| | - Mei Liu
- Qingdao Aquatic Organisms Quality Evaluation and Utilization Engineering Research Center, Marine Science Research Institute of Shandong Province, Qingdao, China.
| | - Lei Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
8
|
Li L, Li X, Zeng L, Wang Z, Deng N, Huang P, Hou J, Jian S, Zhao D. Molecular mechanism of the NOS/NOX regulation of antibacterial activity in Eriocheir sinensis. Comp Biochem Physiol B Biochem Mol Biol 2024; 271:110945. [PMID: 38278206 DOI: 10.1016/j.cbpb.2024.110945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 01/28/2024]
Abstract
To elucidate the role of nitric oxide synthase (NOS), which produces the free radical nitric oxide (NO), and nicotinamide adenine dinucleotide phosphate oxidase (NOX), which produces the superoxide anion (O2-), in the innate immunity of Eriocheir sinensis, the full lengths of the NOS and NOX genes were cloned via rapid amplification of the cDNA ends and then expressed in the prokaryotic form to obtain the recombinant proteins, NOS-HIS and NOX-HIS. Through bacterial binding and stimulation experiments, the molecular mechanisms of NOS and NOX in the innate immunity of E. sinensis were explored. Based on the results, NOS and NOX were 5900 bp and 4504 bp long, respectively, and were evolutionarily conserved. Quantitative real-time PCR revealed that NOS and NOX were expressed in all studied tissues, and both were expressed in the highest amounts in hemocytes. NOS-HIS and NOX-HIS could bind to bacteria with different binding powers; their binding ability to gram-positive bacteria was higher than that of binding to gram-negative bacteria. After stimulation with Aeromonas hydrophila, NOS expression was significantly up-regulated at 3, 6, and 48 h, and NOX expression was significantly down-regulated at 3, 12, 24, and 48 h. After bacterial stimulation, the NOS enzyme activity in the serum of E. sinensis was also significantly up-regulated at 6 and 48 h, and the NOX enzyme activity was significantly down-regulated at 12 and 48 h, aligning with the gene expression trend. Moreover, the related free radical molecules, NO, O2-, and H2O2, tended to decrease after bacterial stimulation. Overall, the gene expression and enzyme activity of NOS and NOX had been changed respectively, and the contents of a series of free radical molecules (NO, O2- and H2O2) were induced in E. sinensis after bacterial stimulation, which then exert antibacterial immunity.
Collapse
Affiliation(s)
- Linjie Li
- Key Laboratory for Aquatic Germplasm Innovation and Utilization of Jiangxi Province, School of Life Sciences, Nanchang University, Jiangxi 330031, China; Laboratory of Aquatic Animal Healthy Breeding, Chongqing Research Institute of Nanchang University, Chongqing 400037, China
| | - Xiaoyong Li
- Department of Animal Husbandry and Aquatic Technology Extension and Application, Jiangxi Agricultural Technology Extension Center, Jiangxi 330046, China.
| | - Liugen Zeng
- Nanchang Academy of Agricultural Sciences, Jiangxi 330038, China
| | - Ziyu Wang
- Key Laboratory for Aquatic Germplasm Innovation and Utilization of Jiangxi Province, School of Life Sciences, Nanchang University, Jiangxi 330031, China; Laboratory of Aquatic Animal Healthy Breeding, Chongqing Research Institute of Nanchang University, Chongqing 400037, China
| | - Nan Deng
- Key Laboratory for Aquatic Germplasm Innovation and Utilization of Jiangxi Province, School of Life Sciences, Nanchang University, Jiangxi 330031, China; Laboratory of Aquatic Animal Healthy Breeding, Chongqing Research Institute of Nanchang University, Chongqing 400037, China
| | - Peiying Huang
- Key Laboratory for Aquatic Germplasm Innovation and Utilization of Jiangxi Province, School of Life Sciences, Nanchang University, Jiangxi 330031, China; Laboratory of Aquatic Animal Healthy Breeding, Chongqing Research Institute of Nanchang University, Chongqing 400037, China
| | - Jiahao Hou
- Key Laboratory for Aquatic Germplasm Innovation and Utilization of Jiangxi Province, School of Life Sciences, Nanchang University, Jiangxi 330031, China; Laboratory of Aquatic Animal Healthy Breeding, Chongqing Research Institute of Nanchang University, Chongqing 400037, China
| | - Shaoqin Jian
- Key Laboratory for Aquatic Germplasm Innovation and Utilization of Jiangxi Province, School of Life Sciences, Nanchang University, Jiangxi 330031, China; Laboratory of Aquatic Animal Healthy Breeding, Chongqing Research Institute of Nanchang University, Chongqing 400037, China
| | - Daxian Zhao
- Key Laboratory for Aquatic Germplasm Innovation and Utilization of Jiangxi Province, School of Life Sciences, Nanchang University, Jiangxi 330031, China; Laboratory of Aquatic Animal Healthy Breeding, Chongqing Research Institute of Nanchang University, Chongqing 400037, China.
| |
Collapse
|
9
|
Wang L, Zheng M, Liu J, Jin Z, Wang C, Gao M, Zhang H, Zhang X, Xia X. LDLa containing C-type lectin mediates phagocytosis of V.anguillarum and regulates immune effector genes in shrimp. FISH & SHELLFISH IMMUNOLOGY 2024; 145:109361. [PMID: 38185393 DOI: 10.1016/j.fsi.2024.109361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/09/2024]
Abstract
C-type lectins (CTLs) function as pattern recognition receptors (PRRs) by recognizing invading microorganisms, thereby triggering downstream immune events against infected pathogens. In this study, a novel CTL containing a low-density lipoprotein receptor class A (LDLa) domain was obtained from Litopenaeus vannamei, designed as LvLDLalec. Stimulation by the bacterial pathogen Vibrio anguillarum (V. anguillarum) resulted in remarkable up-regulation of LvLDLalec, as well as release of LvLDLalec into hemolymph. The rLvLDLalec protein possessed broad-spectrum bacterial binding and agglutinating activities, as well as hemocyte attachment ability. Importantly, LvLDLalec facilitated the bacterial clearance in shrimp hemolymph and protected shrimp from bacterial infection. Further studies revealed that LvLDLalec promoted hemocytes phagocytosis against V. anguillarum and lysosomes were involved in the process. Meanwhile, LvLDLalec participated in humoral immunity through activating and inducing nuclear translocation of Dorsal to regulate phagocytosis-related genes and antimicrobial peptides (AMPs) genes, thereby accelerated the removal of invading pathogens in vivo and improved the survival rate of L. vannamei. These results unveil that LvLDLalec serves as a PRR participate in cellular and humoral immunity exerting opsonin activity to play vital roles in the immune regulatory system of L. vannamei.
Collapse
Affiliation(s)
- Liuen Wang
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Meimei Zheng
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Jisheng Liu
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Zeyu Jin
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Cui Wang
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Miaomiao Gao
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Hongwei Zhang
- Department of Nature Resources, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Xiaowen Zhang
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, 453007, China; Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, Henan Normal University, Xinxiang, 453007, China; The Observation and Research Field Station of Taihang Mountain Forest Ecosystems of Henan Province, Xinxiang, 453007, Henan, China.
| | - Xiaohua Xia
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, 453007, China.
| |
Collapse
|
10
|
Zhang X, Guan J, Zou M, He P, Zhang L, Chen Y, Li W, Wang D, Yu E, Zhong F, Zhu P, Yan X, Xu Y, Luo B, Huang T, Jiang L, Wei P, Peng J. Whole genome sequencing of Crassostrea ariakensis (Mollusca: Ostreidae) and C. hongkongensis expands understandings of stress resistance in sessile oysters. Genomics 2024; 116:110757. [PMID: 38061482 DOI: 10.1016/j.ygeno.2023.110757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
To understand the environmental adaptations among sessile bivalves lacking adaptive immunity, a series of analyses were conducted, with special emphasis on the widely distributed C. ariakensis. Employing Pacbio sequencing and Hi-C technologies, whole genome for each of a C. ariakensis (southern China) and C. hongkongensis individual was generated, with the contig N50 reaching 6.2 and 13.0 Mb, respectively. Each genome harbored over 30,000 protein-coding genes, with approximately half of each genome consisting of repeats. Genome alignment suggested possible introgression between C. gigas and C. ariakensis (northern China), and re-sequencing data corroborated this result and indicated significant gene flow between C. gigas and C. ariakensis. These introgressed candidates, well-represented by genes related to immunity and osmotic pressure, may be associated with environmental stresses. Gene family dynamics modeling suggested immune-related genes were well represented among the expanded genes in C. ariakensis. These outcomes could be attributed to the spread of C. ariakensis.
Collapse
Affiliation(s)
- Xingzhi Zhang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Key Laboratory of Comprehensive Development and Utilization of Aquatic Germplasm Resources of China (Guangxi) and ASEAN (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangxi Academy of Fisheries Sciences, Nanning 530021, China
| | - Junliang Guan
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Key Laboratory of Comprehensive Development and Utilization of Aquatic Germplasm Resources of China (Guangxi) and ASEAN (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangxi Academy of Fisheries Sciences, Nanning 530021, China
| | - Ming Zou
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Pingping He
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Key Laboratory of Comprehensive Development and Utilization of Aquatic Germplasm Resources of China (Guangxi) and ASEAN (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangxi Academy of Fisheries Sciences, Nanning 530021, China
| | - Li Zhang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Key Laboratory of Comprehensive Development and Utilization of Aquatic Germplasm Resources of China (Guangxi) and ASEAN (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangxi Academy of Fisheries Sciences, Nanning 530021, China
| | - Yongxian Chen
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Key Laboratory of Comprehensive Development and Utilization of Aquatic Germplasm Resources of China (Guangxi) and ASEAN (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangxi Academy of Fisheries Sciences, Nanning 530021, China.
| | - Wei Li
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Key Laboratory of Comprehensive Development and Utilization of Aquatic Germplasm Resources of China (Guangxi) and ASEAN (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangxi Academy of Fisheries Sciences, Nanning 530021, China
| | - Dapeng Wang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Key Laboratory of Comprehensive Development and Utilization of Aquatic Germplasm Resources of China (Guangxi) and ASEAN (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangxi Academy of Fisheries Sciences, Nanning 530021, China
| | - Ermeng Yu
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Key Laboratory of Comprehensive Development and Utilization of Aquatic Germplasm Resources of China (Guangxi) and ASEAN (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangxi Academy of Fisheries Sciences, Nanning 530021, China.
| | | | - Peng Zhu
- Beibu Gulf University, Qinzhou 535000, China
| | - Xueyu Yan
- Beibu Gulf University, Qinzhou 535000, China.
| | - Youhou Xu
- Beibu Gulf University, Qinzhou 535000, China
| | - Bang Luo
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Key Laboratory of Comprehensive Development and Utilization of Aquatic Germplasm Resources of China (Guangxi) and ASEAN (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangxi Academy of Fisheries Sciences, Nanning 530021, China
| | - Ting Huang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Key Laboratory of Comprehensive Development and Utilization of Aquatic Germplasm Resources of China (Guangxi) and ASEAN (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangxi Academy of Fisheries Sciences, Nanning 530021, China
| | - Linyuan Jiang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Key Laboratory of Comprehensive Development and Utilization of Aquatic Germplasm Resources of China (Guangxi) and ASEAN (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangxi Academy of Fisheries Sciences, Nanning 530021, China.
| | - Pinyuan Wei
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Key Laboratory of Comprehensive Development and Utilization of Aquatic Germplasm Resources of China (Guangxi) and ASEAN (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangxi Academy of Fisheries Sciences, Nanning 530021, China.
| | - Jinxia Peng
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Key Laboratory of Comprehensive Development and Utilization of Aquatic Germplasm Resources of China (Guangxi) and ASEAN (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangxi Academy of Fisheries Sciences, Nanning 530021, China.
| |
Collapse
|
11
|
Liao Q, Lei F, Zhang N, Miao J, Tong R, Li Y, Pan L. The immunotoxicity mechanism of hemocytes in Chlamys farreri incubated with noradrenaline and benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide alone or in combination. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109278. [PMID: 38072136 DOI: 10.1016/j.fsi.2023.109278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/26/2023] [Accepted: 12/05/2023] [Indexed: 12/31/2023]
Abstract
Benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE) is the active intermediate metabolite of benzo[a]pyrene (B[a]P) and is considered the ultimate immunotoxicant. The neuroendocrine immunoregulatory network of bivalves is affected under pollutant stress. Besides, bivalves are frequently affected by pollutants in marine environments, yet the combined effects of neuroendocrine factors and detoxification metabolites on bivalves under pollutant stress and the signal pathways that mediate this immunoregulation are not well understood. Therefore, we incubated the hemocytes of Chlamys farreri with the neuroendocrine factor noradrenaline (NA) and the B[a]P detoxification metabolite BPDE, alone or in combination, to examine the immunotoxic effects of NA and BPDE on the hemocytes in C. farreri. Furthermore, the effects of NA and BPDE on the hemocyte signal transduction pathway were investigated by assessing potential downstream targets. The results revealed that NA and BPDE, alone or in combination, resulted in a significant decrease in phagocytic activity, bacteriolytic activity and the total hemocyte count. In addition, the immunotoxicity induced by BPDE was further exacerbated by co-treatment with NA, and the two showed synergistic effects. Analysis of signaling pathway factors showed that NA activated G proteins by binding to α-AR, which transmitted information to the Ca2+-NF-κB signaling pathway to regulate the expression of phagocytosis-associated proteins and regulated cytokinesis through the cAMP signaling pathway. BPDE could activate PTK and affect phagocytosis and cytotoxicity proteins through Ca2+-NF-κB signal pathway, also affect the regulation of phagocytosis and cytotoxicity by inhibiting the AC-cAMP-PKA pathway to down-regulate the expression of NF-κB and CREB. In addition, BPDE and NA may affect the immunity of hemocytes by down-regulating phagocytosis-related proteins through inhibition of the lectin pathway, while regulating the expression of cytotoxicity-related proteins through the C-type lectin. In summary, immune parameters were suppressed through Ca2+ and cAMP dependent pathways exposed to BPDE and the immunosuppressive effects were enhanced by the neuroendocrine factor NA.
Collapse
Affiliation(s)
- Qilong Liao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Fengjun Lei
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Ning Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Jingjing Miao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Ruixue Tong
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Yaobing Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China.
| |
Collapse
|
12
|
Wang Y, Liu A, Huang Y, Lu L, Guo S, Ye H. Role of crustacean female sex hormone in regulating immune response in the mud crab, Scylla paramamosain. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109094. [PMID: 37774904 DOI: 10.1016/j.fsi.2023.109094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 09/13/2023] [Accepted: 09/16/2023] [Indexed: 10/01/2023]
Abstract
Crustacean female sex hormone (CFSH) is responsible for sexual differentiation in crustaceans. The CFSH exhibited an interleukin-17 domain homologous to vertebrate IL-17, a family of inflammatory cytokines that play vital roles in immune defense. However, the immunoregulation of CFSH in crustaceans is a mystery. Therefore, this study aimed to investigate the immune regulatory roles of CFSH and CFSHR in the mud crab Scylla paramamosain. This study's immunofluorescence result revealed that Sp-CFSHR was highly expressed in granulocytes and semi-granulocytes but had moderate expression in hyalinocytes. The expression level of Sp-CFSH transcript in eyestalk ganglia and Sp-CFSHR in hemocytes were significantly up-regulated by the Poly (I:C) stimulation but significantly down-regulated in response to the lipopolysaccharide (LPS) stimulation. In our study, in vitro experiment exhibited that the nuclear transcription factors NF-κB signaling molecules (Sp-Dorsal and Sp-Relish), Sp-STAT, apoptosis-related gene Sp-IAP, and phagocytosis related gene (Sp-Rab5) expressions were significantly increased in hemocytes by recombinant CFSH (rCFSH) in vitro, but the pro-inflammatory cytokine gene (Sp-IL-16) expression was significantly suppressed. Finally, the rCFSH injection significantly up-regulated Sp-Dorsal, Sp-Relish, Sp-IAP, Sp-Caspase, Sp-ALF2, and C-type lectin (Sp-CTL-B) expressions in hemocytes as well as enhanced the bacterial clearance of the mud crab. In conclusion, our results suggested that CFSH may be a counterpart of vertebrate IL-17 in crustaceans that can enhance innate immunity to defense against Vibrionaceae infection via the NF-κB and/or JAK-STAT signaling pathways. This study provides the first evidence that CFSH is involved in the immunoregulation in crustaceans and enriches the insight of neuroendocrine-immune regulatory system, which providing new ideas for disease prevention in the mud crab industry.
Collapse
Affiliation(s)
- Yanan Wang
- College of Fisheries, Jimei University, Xiamen, 361021, China
| | - An Liu
- College of Fisheries, Jimei University, Xiamen, 361021, China
| | - Yuzhen Huang
- College of Fisheries, Jimei University, Xiamen, 361021, China
| | - Li Lu
- College of Fisheries, Jimei University, Xiamen, 361021, China
| | - Songlin Guo
- College of Fisheries, Jimei University, Xiamen, 361021, China.
| | - Haihui Ye
- College of Fisheries, Jimei University, Xiamen, 361021, China.
| |
Collapse
|
13
|
Liao Z, Liu F, Wang Y, Fan X, Li Y, He J, Buttino I, Yan X, Zhang X, Shi G. Transcriptomic response of Mytilus coruscus mantle to acute sea water acidification and shell damage. Front Physiol 2023; 14:1289655. [PMID: 37954445 PMCID: PMC10639161 DOI: 10.3389/fphys.2023.1289655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023] Open
Abstract
Mytilus coruscus is an economically important marine calcifier living in the Yangtze River estuary sea area, where seasonal fluctuations in natural pH occur owing to freshwater input, resulting in a rapid reduction in seawater pH. In addition, Mytilus constantly suffers from shell fracture or injury in the natural environment, and the shell repair mechanisms in mussels have evolved to counteract shell injury. Therefore, we utilized shell-complete and shell-damaged Mytilus coruscus in this study and performed transcriptomic analysis of the mantle to investigate whether the expression of mantle-specific genes can be induced by acute seawater acidification and how the mantle responds to acute acidification during the shell repair process. We found that acute acidification induced more differentially expressed genes than shell damage in the mantle, and the biomineralization-related Gene Ontology terms and KEGG pathways were significantly enriched by these DEGs. Most DEGs were upregulated in enriched pathways, indicating the activation of biomineralization-related processes in the mussel mantle under acute acidification. The expression levels of some shell matrix proteins and antimicrobial peptides increased under acute acidification and/or shell damage, suggesting the molecular modulation of the mantle for the preparation and activation of the shell repairing and anti-infection under adverse environmental conditions. In addition, morphological and microstructural analyses were performed for the mantle edge and shell cross-section, and changes in the mantle secretory capacity and shell inner film system induced by the two stressors were observed. Our findings highlight the adaptation of M. coruscus in estuarine areas with dramatic fluctuations in pH and may prove instrumental in its ability to survive ocean acidification.
Collapse
Affiliation(s)
- Zhi Liao
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Fei Liu
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Ying Wang
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Xiaojun Fan
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Yingao Li
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Jianyu He
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Isabella Buttino
- Italian Institute for Environmental Protection and Research (ISPRA), Livorno, Italy
| | - Xiaojun Yan
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Xiaolin Zhang
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Ge Shi
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| |
Collapse
|
14
|
Luo T, Ren X, Fan L, Guo C, Zhang B, Bi J, Guan S, Ning M. Identification of two galectin-4 proteins (PcGal4-L and PcGal4-L-CRD) and their function in AMP expression in Procambarus clarkii. FISH & SHELLFISH IMMUNOLOGY 2023; 141:109040. [PMID: 37648118 DOI: 10.1016/j.fsi.2023.109040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023]
Abstract
Galectins, a family of lectins that bind to β-galactoside, possess conserved carbohydrate recognition domains (CRDs) and play a crucial role in recognizing and eliminating pathogens in invertebrates. Two galectin-4 genes (PcGal4) isoforms, named PcGal4-L and PcGal4-L-CRD, were cloned from the cDNA library of Procambarus clarkia in our study. PcGal4-L contains an open reading frame (ORF, 1089 bp), which encodes a protein consisting of 362 amino acids including a single CRD and six low complexity regions. The full-length cDNA of PcGal4-L-CRD contains a 483 bp ORF that encodes a protein of 160 amino acids, with a single CRD and a low-complexity region. The difference between the two PcGal4 isoforms is that PcGal4-L has 202 additional amino acids after the CRD compared to the PcGal4-L-CRD. These two isoforms are grouped together with other galectins from crustaceans through phylogenetic analysis. Further study revealed that total PcGal4 (including PcGal4-L and PcGal4-L-CRD) was primarily expressed in the muscle, gills and intestine. The mRNA levels of total PcGal4 in gills and hemocytes were significantly induced after challenge with Aeromonas hydrophila. Both recombinant PcGal4-L and its spliced isoform, PcGal4-L-CRD, could directly bind to lipopolysaccharides, peptidoglycan and five tested microorganisms, inducing a wide spectrum of microbial agglutination. The spliced isoform PcGal4-L-CRD showed a stronger binding ability than PcGal4-L. In addition, when the PcGal4 was knockdown, transcriptions of seven antimicrobial peptides (AMPs) genes (ALF5, ALF6, ALF8, CRU1, CRU2, CRU3 and CRU4) in gills and seven AMPs genes (ALF5, ALF6, ALF8, ALF9, CRU1, CRU3 and CRU4) in hemocytes were significantly decreased. Meanwhile, the survival rate of P. clarkii decreased in the PcGal4-dsRNA group. In summary, these results indicate that PcGal4 can mediate the innate immunity in P. clarkii by bacterial recognition and agglutination, as well as regulating AMP expression, thus recognition and understanding of the functions of galectin in crustaceans in immune resistance.
Collapse
Affiliation(s)
- Tingyi Luo
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Xianfeng Ren
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Lixia Fan
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Changying Guo
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Bingchun Zhang
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Jingxiu Bi
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Shuai Guan
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Mingxiao Ning
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.
| |
Collapse
|
15
|
Lei F, Zhang N, Miao J, Tong R, Li Y, Pan L. Potential pathway and mechanisms underlining the immunotoxicity of benzo[a]pyrene to Chlamys farreri. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:97128-97146. [PMID: 37582894 DOI: 10.1007/s11356-023-29016-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/24/2023] [Indexed: 08/17/2023]
Abstract
The long-distance migration of polycyclic aromatic hydrocarbons (PAHs) promotes their release into the marine environment, posing a serious threat to marine life. Studies have shown that PAHs have significant immunotoxicity effects on bivalves, but the exact mechanism of immunotoxicity remains unclear. This paper aims to investigate the effects of exposure to 0.4, 2, and 10 μg/L of benzo(a)pyrene (B[a]P) on the immunity of Chlamys farreri under environmental conditions, as well as the potential molecular mechanism. Multiple biomarkers, including phagocytosis rate, metabolites, neurotoxicity, oxidative stress, DNA damage, and apoptosis, were adopted to assess these effects. After exposure to 0.4, 2, and 10 μg/L B[a]P, obvious concentration-dependent immunotoxicity was observed, indicated by a decrease in the hemocyte index (total hemocyte count, phagocytosis rate, antibacterial and bacteriolytic activity). Analysis of the detoxification metabolic system in C. farreri revealed that B[a]P produced B[a]P-7,8-diol-9,10-epoxide (BPDE) through metabolism, which led to an increase in the expression of protein tyrosine kinase (PTK). In addition, the increased content of neurotransmitters (including acetylcholine, γ -aminobutyric acid, enkephalin, norepinephrine, dopamine, and serotonin) and related receptors implied that B[a]P might affect immunity through neuroendocrine system. The changes in signal pathway factors involved in immune regulation indicated that B[a]P interfered with Ca2+ and cAMP signal transduction via the BPDE-PTK pathway or neuroendocrine pathway, resulting in immunosuppression. Additionally, B[a]P induced the increase in reactive oxygen species (ROS) content and DNA damage, as well as an upregulation of key genes in the mitochondrial pathway and death receptor pathway, leading to the increase of apoptosis rate. Taken together, this study comprehensively investigated the detoxification metabolic system, neuroendocrine system, and cell apoptosis to explore the toxic mechanism of bivalves under B[a]P stress.
Collapse
Affiliation(s)
- Fengjun Lei
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Ning Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Jingjing Miao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Ruixue Tong
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Yaobing Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
16
|
Feng J, Huang Y, Huang M, Luo J, Que L, Yang S, Jian J. A novel perlucin-like protein (PLP) protects Litopenaeus vannamei against Vibrio harveyi infection. FISH & SHELLFISH IMMUNOLOGY 2023; 139:108932. [PMID: 37414305 DOI: 10.1016/j.fsi.2023.108932] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/25/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
C-type lectins (CTLs), as pattern recognition receptors (PRRs), play an important role in the innate immunity of Litopenaeus vannamei. In this study, a novel CTL, named perlucin-like protein (PLP), was identified from L. vannamei, which shared homology sequences of PLP from Penaeus monodon. PLP from L. vannamei was expressed in the hepatopancreas, eyestalk, muscle and brain and could be activated in the tissues (hepatopancreas, muscle, gill and intestine) after infection with the pathogen Vibrio harveyi. Bacteria (Vibrio alginolyticus, V. parahaemolyticus, V. harveyi, Streptococcus agalactiae and Bacillus subtilis) could be bound and agglutinated by the PLP recombinant protein in a Ca2+-dependent manner. Moreover, PLP could stabilise the expression of the immune-related genes (ALF, SOD, HSP70, Toll4 and IMD) and apoptosis gene (Caspase2). The RNAi of PLP could remarkably affect the expression of antioxidant gene, antimicrobial peptide genes, other CTLs, apoptosis genes, Toll signaling pathways, and IMD signaling pathways. Moreover, PLP reduced the bacterial load in the hepatopancreas. These results suggested that PLP was involved in the innate immune response against V. harveyi infection by recognising bacterial pathogens and activating the expression of immune-related and apoptosis genes.
Collapse
Affiliation(s)
- Jiamin Feng
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Yongxiong Huang
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Meiling Huang
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Junliang Luo
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Liwen Que
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Shiping Yang
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China.
| | - Jichang Jian
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China.
| |
Collapse
|
17
|
Bi J, Wang Y, Gao R, Liu P, Jiang Y, Gao L, Li B, Song Q, Ning M. Functional Analysis of a CTL-X-Type Lectin CTL16 in Development and Innate Immunity of Tribolium castaneum. Int J Mol Sci 2023; 24:10700. [PMID: 37445878 DOI: 10.3390/ijms241310700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/23/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
C-type lectins (CTLs) are a class of proteins containing carbohydrate recognition domains (CRDs), which are characteristic modules that recognize various glycoconjugates and function primarily in immunity. CTLs have been reported to affect growth and development and positively regulate innate immunity in Tribolium castaneum. However, the regulatory mechanisms of TcCTL16 proteins are still unclear. Here, spatiotemporal analyses displayed that TcCTL16 was highly expressed in late pupae and early adults. TcCTL16 RNA interference in early larvae shortened their body length and narrowed their body width, leading to the death of 98% of the larvae in the pupal stage. Further analysis found that the expression level of muscle-regulation-related genes, including cut, vestigial, erect wing, apterous, and spalt major, and muscle-composition-related genes, including Myosin heavy chain and Myosin light chain, were obviously down-regulated after TcCTL16 silencing in T. castaneum. In addition, the transcription of TcCTL16 was mainly distributed in the hemolymph. TcCTL16 was significantly upregulated after challenges with lipopolysaccharides, peptidoglycans, Escherichia coli, and Staphylococcus aureus. Recombinant CRDs of TcCTL16 bind directly to the tested bacteria (except Bacillus subtilis); they also induce extensive bacterial agglutination in the presence of Ca2+. On the contrary, after TcCTL16 silencing in the late larval stage, T. castaneum were able to develop normally. Moreover, the transcript levels of seven antimicrobial peptide genes (attacin2, defensins1, defensins2, coleoptericin1, coleoptericin2, cecropins2, and cecropins3) and one transcription factor gene (relish) were significantly increased under E. coli challenge and led to an increased survival rate of T. castaneum when infected with S. aureus or E. coli, suggesting that TcCTL16 deficiency could be compensated for by increasing AMP expression via the IMD pathways in T. castaneum. In conclusion, this study found that TcCTL16 could be involved in developmental regulation in early larvae and compensate for the loss of CTL function by regulating the expression of AMPs in late larvae, thus laying a solid foundation for further studies on T. castaneum CTLs.
Collapse
Affiliation(s)
- Jingxiu Bi
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yutao Wang
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Rui Gao
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Pingxiang Liu
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yuying Jiang
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Lei Gao
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Qisheng Song
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, USA
| | - Mingxiao Ning
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| |
Collapse
|
18
|
Luo J, Chen Y, Huang Y, Feng J, Yuan Y, Jian J, Cai S, Yang S. A novel C-type lectin for Litopenaeus vannamei involved in the innate immune response against Vibrio infection. FISH & SHELLFISH IMMUNOLOGY 2023; 135:108621. [PMID: 36803777 DOI: 10.1016/j.fsi.2023.108621] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/11/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
C-type lectins (CTLs), as a member of pattern recognition receptors, play a vital role in the innate immune response of invertebrates to eliminate micro-invaders. In this study, a novel CTL of Litopenaeus vannamei, namely, LvCTL7, was successfully cloned, with an open reading frame of 501 bp and a capability to encode 166 amino acids. Blast analysis showed that the amino acid sequence similarity between LvCTL7 and MjCTL7 (Marsupenaeus japonicus) was 57.14%. LvCTL7 was mainly expressed in hepatopancreas, muscle, gill and eyestalk. Vibrio harveyi can significantly affect LvCTL7 expression level in hepatopancreases, gills, intestines and muscles (p < 0.05). LvCTL7 recombinant protein can bind to Gram-positive bacteria (Bacillus subtilis) and Gram-negative bacteria (Vibrio parahaemolyticus and V. harveyi). It can cause the agglutination of V. alginolyticus and V. harveyi, but it had no effect on Streptococcus agalactiae and B. subtilis. The expression levels of SOD, CAT, HSP 70, Toll 2, IMD and ALF genes in the challenge group added with LvCTL7 protein were more stable than those in the direct challenge group (p < 0.05). Moreover, knockdown of LvCTL7 by double-stranded RNA interference downregulated the expression levels of genes (ALF, IMD and LvCTL5) that protect against bacterial infection (p < 0.05). These results indicated that LvCTL7 had microbial agglutination and immunoregulatory activity, and it was involved in the innate immune response against Vibrio infection in L. vannamei.
Collapse
Affiliation(s)
- Junliang Luo
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Yanghui Chen
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Yongxiong Huang
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Jiamin Feng
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Yunhao Yuan
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Jichang Jian
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Shuanghu Cai
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Shiping Yang
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, China.
| |
Collapse
|
19
|
Dong F, Zheng M, Wang H, Jing C, He J, Liu S, Zhang W, Hu F. Comparative transcriptome analysis reveals immunotoxicology induced by three organic UV filters in Manila clam (Ruditapes philippinarum). MARINE POLLUTION BULLETIN 2022; 185:114313. [PMID: 36327937 DOI: 10.1016/j.marpolbul.2022.114313] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/06/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Benzophenone-3 (BP-3), 4-methyl-benzylidene camphor (4-MBC) and 2-ethyl-hexyl-4-trimethoxycinnamate (EHMC) are commonly used organic ultraviolet (UV) filters and are frequently detected in water environments. In the present study, we studied the potential adverse impacts of UV filter exposures in Ruditapes philippinarum by investigating transcriptomic profiles and non-specific immune enzyme activities. Transcriptome analysis showed that more genes were differentially regulated in EHMC-treated group, and down-regulated genes (2009) were significantly more than up-regulated ones (410) at day 7. Function annotation revealed that pathways "immune system", "cell growth and death" and "infectious diseases" were significantly enriched. Generally, combined qPCR and biochemical analyses demonstrated that short-term exposure to low dose of UV filters could activate immune responses, whereas the immune system would be restrained after prolonged exposure. Taken together, the present study firstly demonstrated the immunotoxicology induced by BP-3, 4-MBC and EHMC on R. philippinarum, indicating their potential threats to the survival of marine bivalves.
Collapse
Affiliation(s)
- Feilong Dong
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mengyan Zheng
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hongkai Wang
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chen Jing
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiabo He
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shangshu Liu
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Weini Zhang
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fengxiao Hu
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
20
|
Dai L, Xiong Z, Hou D, Wang Y, Li T, Long X, Chen H, Sun C. Pathogenicity and transcriptome analysis of a strain of Vibrio owensii in Fenneropenaeus merguiensis. FISH & SHELLFISH IMMUNOLOGY 2022; 130:194-205. [PMID: 36087819 DOI: 10.1016/j.fsi.2022.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Vibrio is an important conditional pathogen in shrimp aquaculture. This research reported a dominant bacteria strain E1 isolated from a shrimp tank with the method of biofloc culture, which was further identified as Vibrio owensii. To understand the interaction between V. owensii and the host shrimp, we studied the pathogenicity of the V. owensii and the molecular mechanisms of the Fenneropenaeus merguiensis immunity during the Vibrio invasion. Drug susceptibility tests showed that V. owensii was resistant to antibiotics streptomycin oxacillin, tetracycline, minocycline, and aztreonam, but highly sensitive to cefazolin, cefotaxime, and ciprofloxacin, and moderately sensitive to cefotaxime, ampicillin, and piperacillin. Lethal concentration 50 (LC50) test was performed to evaluate the toxicity of V. owensii to F. merguiensis. The LC50 of V. owensii infected F. merguiensis after 24, 48, 72, 96, 120, 144 and 168 h were 1.21 × 107, 1.68 × 106, 6.36 × 105, 2.15 × 105, 7.58 × 104, 5.55 × 104 and 4.33 × 104 CFU/mL. In order to explore the molecular response mechanism of F. merguiensis infected with V. owensii, the hepatopancreas of F. merguiensis were sequenced at 24 hpi and 48 hpi, and a total 40,181 of unigenes were obtained. Through comparative transcriptomic analysis, 86 differentially expressed genes (DEGs) (including 38 up-regulated DEGs, and 48 down-regulated DEGs) and 305 DEGs (including 150 up-regulated DEGs, and 155 down-regulated DEGs) were identified at 24 hpi and 48 hpi, respectively. Annotation and classification analysis of these 391 DEGs showed that most of the DEGs were annotated to metableolic and immune pathways, which indicated that F. merguiensis responded to the invasion through the regulation of material metableolism and immune system genes during V. owensii infection. In the KEGG enrichment analysis, some pathways related to immune response were significantly influenced by V. owensii infection, including phagosome, MAPK signalling pathway and PI3K-Akt signalling pathway. In addition, some pathways related to the warburg effect were also significantly enriched after V. owensii infection, including pyruvate metableolism, glycolysis/gluconeogenesis, and citrate cycle (TAC cycle). Further analysis showed that C-type lectins and ficolin were also play important roles in the immune response of F. merguiensis against V. owensii infection. The current research preliminarily revealed the immune response of F. merguiensis to V. owensii infection at the molecular level, which provided valuable information to further understand the disease control and the interaction between shrimp and Vibrio.
Collapse
Affiliation(s)
- Linxin Dai
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Zhiwang Xiong
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Danqing Hou
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Yue Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Ting Li
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Xinxin Long
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Haozhen Chen
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Chengbo Sun
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, Guangdong, China; Guangdong Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang, Guangdong, China.
| |
Collapse
|
21
|
Viana JT, Rocha RDS, Maggioni R. Structural and functional diversity of lectins associated with immunity in the marine shrimp Litopenaeusvannamei. FISH & SHELLFISH IMMUNOLOGY 2022; 129:152-160. [PMID: 36058435 DOI: 10.1016/j.fsi.2022.08.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Lectins are important pattern recognition receptors (PRRs) and their immunological action is related to the recognition of glycans present in the pathogen cells surface. The lectins described for Litopenaeus vannamei are divided into C-type, L-type and galectin, which are mainly expressed in hepatopancreas and hemocytes. They are involved in several immune response pathways, such as phagocytosis, hemocytes recruitment, prophenoloxidase activation, and gene regulation. Although lectins have multiple immune functions, most experimental challenges focus only on WSSV and Vibrio sp. This article is a detailed review on the role of lectins in L. vannamei immune system, bringing together information on molecular structure, temporal and special expression and immune function, highlighting the wide participation of these molecules in shrimp innate immune system.
Collapse
Affiliation(s)
- Jhonatas Teixeira Viana
- Center for the Diagnosis of Diseases of Aquatic Organisms, Marine Sciences Institute, Federal University of Ceará, 60165-081, Fortaleza, CE, Brazil.
| | - Rafael Dos Santos Rocha
- Center for the Diagnosis of Diseases of Aquatic Organisms, Marine Sciences Institute, Federal University of Ceará, 60165-081, Fortaleza, CE, Brazil.
| | - Rodrigo Maggioni
- Center for the Diagnosis of Diseases of Aquatic Organisms, Marine Sciences Institute, Federal University of Ceará, 60165-081, Fortaleza, CE, Brazil.
| |
Collapse
|
22
|
Zhao C, Wen H, Huang S, Weng S, He J. A Novel Disease (Water Bubble Disease) of the Giant Freshwater Prawn Macrobrachium rosenbergii Caused by Citrobacter freundii: Antibiotic Treatment and Effects on the Antioxidant Enzyme Activity and Immune Responses. Antioxidants (Basel) 2022; 11:1491. [PMID: 36009210 PMCID: PMC9405353 DOI: 10.3390/antiox11081491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 12/10/2022] Open
Abstract
The giant freshwater prawn, Macrobrachium rosenbergii, is an important and economical aquaculture species widely farmed in tropical and subtropical areas of the world. A new disease, "water bubble disease (WBD)", has emerged and resulted in a large loss of M. rosenbergii cultured in China. A water bubble with a diameter of about 7 mm under the carapace represents the main clinical sign of diseased prawns. In the present study, Citrobacter freundii was isolated and identified from the water bubble. The optimum temperature, pH, and salinity of the C. freundii were 32 °C, 6, and 1%, respectively. A challenging experiment showed that C. freundii caused the same typical signs of WBD in prawns. Median lethal dose of the C. freundii to prawn was 104.94 CFU/g. According to the antibiogram tests of C. freundii, florfenicol and ofloxacin were selected to evaluate their therapeutic effects against C. freundii in prawn. After the challenge with C. freundii, 86.67% and 72.22% survival of protective effects against C. freundii were evaluated in the oral florfenicol pellets and oral ofloxacin pellets feding prawns, respectively, whereas the mortality of prawns without fed antibiotics was 93%. After antibiotic treatment and C. freundii infection, the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione S-transferase (GST), malondialdehyde (MDA), acid phosphatase (ACP), alkaline phosphatase (ALP), and lysozyme (LZM) in the hemolymph and hepatopancreas of the prawns and the immune-related gene expression levels of Cu/Zn-SOD, CAT, GPx, GST, LZM, ACP, anti-lipopolysaccharide factor, crustin, cyclophilin A, and C-type lectin in hepatopancreas were all significantly changed, indicating that innate immune responses were induced by C. freundii. These results can be beneficial for the prevention and control of C. freundii in prawns.
Collapse
Affiliation(s)
- Caiyuan Zhao
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou 510006, China;
| | - Huagen Wen
- Southtern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Science, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou 510006, China; (H.W.); (S.H.); (S.W.)
| | - Shengsheng Huang
- Southtern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Science, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou 510006, China; (H.W.); (S.H.); (S.W.)
| | - Shaoping Weng
- Southtern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Science, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou 510006, China; (H.W.); (S.H.); (S.W.)
| | - Jianguo He
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou 510006, China;
- Southtern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Science, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou 510006, China; (H.W.); (S.H.); (S.W.)
| |
Collapse
|
23
|
Ahmmed MK, Bhowmik S, Giteru SG, Zilani MNH, Adadi P, Islam SS, Kanwugu ON, Haq M, Ahmmed F, Ng CCW, Chan YS, Asadujjaman M, Chan GHH, Naude R, Bekhit AEDA, Ng TB, Wong JH. An Update of Lectins from Marine Organisms: Characterization, Extraction Methodology, and Potential Biofunctional Applications. Mar Drugs 2022; 20:md20070430. [PMID: 35877723 PMCID: PMC9316650 DOI: 10.3390/md20070430] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 02/07/2023] Open
Abstract
Lectins are a unique group of nonimmune carbohydrate-binding proteins or glycoproteins that exhibit specific and reversible carbohydrate-binding activity in a non-catalytic manner. Lectins have diverse sources and are classified according to their origins, such as plant lectins, animal lectins, and fish lectins. Marine organisms including fish, crustaceans, and mollusks produce a myriad of lectins, including rhamnose binding lectins (RBL), fucose-binding lectins (FTL), mannose-binding lectin, galectins, galactose binding lectins, and C-type lectins. The widely used method of extracting lectins from marine samples is a simple two-step process employing a polar salt solution and purification by column chromatography. Lectins exert several immunomodulatory functions, including pathogen recognition, inflammatory reactions, participating in various hemocyte functions (e.g., agglutination), phagocytic reactions, among others. Lectins can also control cell proliferation, protein folding, RNA splicing, and trafficking of molecules. Due to their reported biological and pharmaceutical activities, lectins have attracted the attention of scientists and industries (i.e., food, biomedical, and pharmaceutical industries). Therefore, this review aims to update current information on lectins from marine organisms, their characterization, extraction, and biofunctionalities.
Collapse
Affiliation(s)
- Mirja Kaizer Ahmmed
- Department of Food Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand or (M.K.A.); (S.G.G.); (P.A.)
- Department of Fishing and Post-Harvest Technology, Faculty of Fisheries, Chittagong Veterinary and Animal Sciences University, Chittagong 4225, Bangladesh
| | - Shuva Bhowmik
- Centre for Bioengineering and Nanomedicine, Faculty of Dentistry, Division of Health Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand;
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Stephen G. Giteru
- Department of Food Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand or (M.K.A.); (S.G.G.); (P.A.)
- Alliance Group Limited, Invercargill 9840, New Zealand
| | - Md. Nazmul Hasan Zilani
- Department of Pharmacy, Jashore University of Science and Technology, Jashore 7408, Bangladesh;
| | - Parise Adadi
- Department of Food Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand or (M.K.A.); (S.G.G.); (P.A.)
| | - Shikder Saiful Islam
- Institute for Marine and Antarctic Studies, University of Tasmania, Launceston 7250, Australia;
- Fisheries and Marine Resource Technology Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | - Osman N. Kanwugu
- Institute of Chemical Engineering, Ural Federal University, Mira Street 28, 620002 Yekaterinburg, Russia;
| | - Monjurul Haq
- Department of Fisheries and Marine Bioscience, Jashore University of Science and Technology, Jashore 7408, Bangladesh;
| | - Fatema Ahmmed
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand;
| | | | - Yau Sang Chan
- Department of Obstetrics & Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China;
| | - Md. Asadujjaman
- Department of Aquaculture, Faculty of Fisheries and Ocean Sciences, Khulna Agricultural University, Khulna 9100, Bangladesh;
| | - Gabriel Hoi Huen Chan
- Division of Science, Engineering and Health Studies, College of Professional and Continuing Education, The Hong Kong Polytechnic University, Hong Kong, China;
| | - Ryno Naude
- Department of Biochemistry and Microbiology, Nelson Mandela University, Port Elizabeth 6031, South Africa;
| | - Alaa El-Din Ahmed Bekhit
- Department of Food Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand or (M.K.A.); (S.G.G.); (P.A.)
- Correspondence: (A.E.-D.A.B.); (J.H.W.)
| | - Tzi Bun Ng
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China;
| | - Jack Ho Wong
- School of Health Sciences, Caritas Institute of Higher Education, Hong Kong, China
- Correspondence: (A.E.-D.A.B.); (J.H.W.)
| |
Collapse
|
24
|
Li Y, Zhou F, Yang Q, Jiang S, Huang J, Yang L, Ma Z, Jiang S. Single-Cell Sequencing Reveals Types of Hepatopancreatic Cells and Haemocytes in Black Tiger Shrimp ( Penaeus monodon) and Their Molecular Responses to Ammonia Stress. Front Immunol 2022; 13:883043. [PMID: 35603188 PMCID: PMC9114817 DOI: 10.3389/fimmu.2022.883043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
The cell types and developmental trajectories of shrimp cells based on the transcriptional level have not been established, and gene expression profile and function at the single-cell level is unclear. We aimed to use scRNA-seq to construct a single-cell resolution transcriptional map of hepatopancreas and haemocytes in shrimp to analyse the molecular mechanisms of the immune response to ammonia nitrogen stress. In the present study, seven cell clusters were successfully identified in each of the two tissues (haemocytes, Hem1-7; hepatopancreas, Hep1-7) based on specifically-expressed marker genes. The developmental starting points of haemocytes and hepatopancreatic cells were Hem2 and Hep1, respectively. We propose that Hem2 has oligopotent potential as the initiation site for haemocyte development and that Hem4 and Hem5, located at the end of development, are the most mature immune cell types in haemocytes. Hep5 and Hep6 were the developing terminal cells of hepatopancreas. The antioxidant system and proPO system of shrimp were activated under ammonia nitrogen stress. A large number of DEGs were involved in oxidative stress, detoxification metabolism, and immune defence. In particular, important response genes such as AMPs, proPO, and GST were not only marker genes for identifying cell groups but also played an important role in shrimp cell differentiation and functional plasticity. By successfully applying 10× Genomics based scRNA-seq to the study of shrimp, the single-cell transcriptional profiles of hepatopancreatic cells and haemocytes of shrimp innate immune responses under ammonia stress were constructed for the first time. This atlas of invertebrate hepatopancreatic cells and haemocytes at single-cell resolution identifies molecular events that underpin shrimp innate immune system responses to stress.
Collapse
Affiliation(s)
- Yundong Li
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, China.,Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Falin Zhou
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Qibin Yang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Song Jiang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Jianhua Huang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Lishi Yang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Zhenhua Ma
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Shigui Jiang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| |
Collapse
|
25
|
Du J, Yue K, Peng Y, Ning Q. Crucial roles of a novel exoskeletal-derived lectin in innate immunity of the oriental river prawn, Macrobrachium nipponense. JOURNAL OF FISH DISEASES 2022; 45:717-728. [PMID: 35253248 DOI: 10.1111/jfd.13597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/06/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
As important pattern recognition receptors (PRRs), C-type lectins play crucial roles in the crustacean innate immune system. In this study, a novel C-type lectin, designated as MnLec1, was obtained from the exoskeleton of the oriental river prawn Macrobrachium nipponense for the first time. The full-length cDNA of MnLec1 was 1329 bp with an open reading frame of 774 bp. The predicted MnLec1 protein contains a single carbohydrate-recognition domain with an EPN/LND motif and one Ca2+ binding site-2. MnLec1 transcripts were widely detected in the tested tissues of M. nipponense and significantly up-regulated after Aeromonas hydrophila challenge. The recombinant MnLec1 protein was found to have a wide spectrum of binding activities towards various microorganisms, agglutinate two kinds of Gram-negative bacteria (Escherichia coli and A. hydrophila) in a Ca2+ -independent manner. What's more, the survivability of prawns was significantly down-regulated after RNAi of MnLec1 when infected with A. hydrophila. Collectively, these findings suggest that MnLec1 from the exoskeleton might function as a PRR and play a crucial role in immune defense against invading pathogens in M. nipponense.
Collapse
Affiliation(s)
- Juan Du
- College of Life Sciences, Henan Normal University, Xinxiang, China
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Kaidi Yue
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Yanxin Peng
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Qianji Ning
- College of Life Sciences, Henan Normal University, Xinxiang, China
| |
Collapse
|
26
|
Lei F, Tian Y, Miao J, Pan L, Tong R, Zhou Y. Immunotoxicity pathway and mechanism of benzo[a]pyrene on hemocytes of Chlamys farreri in vitro. FISH & SHELLFISH IMMUNOLOGY 2022; 124:208-218. [PMID: 35413479 DOI: 10.1016/j.fsi.2022.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
Benzo[a]pyrene (B[a]P), a typical PAHs widely existing in the marine environment, has been extensively studied for its immunotoxicity due to its persistence and high toxicity. Nevertheless, the immunotoxicity mechanism remain incompletely understood. In this study, isolated hemocytes of Chlamys farreri were exposed at three concentrations of B[a]P (5, 10 and 15 μg/mL), and the effects of B[a]P on detoxification metabolism, signal transduction, humoral immune factors, exocytosis and phagocytosis relevant proteins and immune function at 0, 6, 12, 24 h were studied. Results illustrated the AhR, ARNT and CYP1A1 were significantly induced by B[a]P at 12 h. Additionally, the content of B[a]P metabolite BPDE increased in a dose-dependent manner with pollutants. Under B[a]P stimulation, the expressions of PTK (Src, Fyn) and PLC-Ca2+-PKC pathway gene increased significantly, while the transcription level of AC-cAMP-PKA pathway gene decreased remarkably. Additionally, the expressions of nuclear transcription factors (CREB, NF-κB), complement system genes and C-type lectin genes up-regulated obviously. The gene expressions of phagocytosis and exocytosis related proteins were also notably affected. 5 μg/mL B[a]P could promote phagocytosis in a transitory time, but with the increase of exposure time and concentration of B[a]P, the phagocytosis, antibacterial and bacteriolytic activities gradually decreased. These results indicated that similar to vertebrates, BPDE, the metabolite of B[a]P, mediated downstream signal transduction via PTK in bivalves. The declined of the immune defense ability of hemocytes might be closely related to the inhibition of AC-cAMP-PKA pathway and the imbalance of intracellular Ca2+ pathway. In addition, the results manifested that complement and lectin systems play a significant role in regulating immune response. In this study, the direct relationship between detoxification metabolism and immune signal transduction in bivalves under B[a]P stress was demonstrated for the first time, which provided important information for the potential molecular mechanism of B[a]P-induced immune system disorder in bivalves.
Collapse
Affiliation(s)
- Fengjun Lei
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Yimeng Tian
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Jingjing Miao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China.
| | - Ruixue Tong
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Yueyao Zhou
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| |
Collapse
|
27
|
Yu D, Zhai Y, He P, Jia R. Comprehensive Transcriptomic and Metabolomic Analysis of the Litopenaeus vannamei Hepatopancreas After WSSV Challenge. Front Immunol 2022; 13:826794. [PMID: 35222409 PMCID: PMC8867067 DOI: 10.3389/fimmu.2022.826794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/21/2022] [Indexed: 11/13/2022] Open
Abstract
Litopenaeus vannamei is the major farmed shrimp species worldwide. White spot disease due to white spot syndrome virus (WSSV) is severely affecting shrimp worldwide, causing extensive economic losses in L. vannamei culture. This is the first study that applied combined transcriptomic and metabolomic analysis to study the effects on the L. vannamei hepatopancreas after WSSV challenge. Our transcriptomic data revealed differentially expressed genes (DEGs) associated with immunity, apoptosis, the cytoskeleton and the antioxidant system in the hepatopancreas of L. vannamei. Metabolomic results showed that WSSV disrupts metabolic processes including amino acid metabolism, lipid metabolism and nucleotide metabolism. After challenged by WSSV, immune-related DEGs and differential metabolites (DMs) were detected in the hepatopancreas of L. vannamei, indicating that WSSV may damage the immune system and cause metabolic disorder in the shrimp. In summary, these results provide new insights into the molecular mechanisms underlying L. vannamei's response to WSSV.
Collapse
Affiliation(s)
- Dianjiang Yu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Yufeng Zhai
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Peimin He
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Rui Jia
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
28
|
Li L, Zhang C, Lin Q, Zhu M, Mei F, Jian S, Zhao D. Role of peroxinectin in the antibacterial immune response of the Chinese mitten crab, Eriocheir sinensis. FISH & SHELLFISH IMMUNOLOGY 2022; 123:496-505. [PMID: 35331883 DOI: 10.1016/j.fsi.2022.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 03/12/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
To elucidate the antibacterial role of peroxinectin (referred to as PXN) and its molecular mechanism in Chinese mitten crab Eriocheir sinensis, we analyzed the bacterial binding and removal of the peroxinectin recombinant protein in vitro and the interaction of peroxinectin with integrin and CuZn-SOD through GST-pulldown and bimolecular fluorescence complementation methods. Concurrently, the effect of peroxinectin interference on the expression of other immune-related genes was studied using RNA interference. The results showed that the recombinant peroxinectin protein could bind to Bacillus subtilis, Staphylococcus aureus, Aeromonas hydrophila, and Vibrio parahaemolyticus with different affinities in vitro and could eliminate Vibrio parahaemolyticus in vivo. The findings also indicated that peroxinectin could establish interactions with integrin and CuZn-SOD in vitro. Furthermore, 48 h after the injection of the peroxinectin gene siRNA in vivo, the expression of peroxinectin mRNA decreased significantly (P < 0.05), integrin mRNA expression decreased by 16.8%, and CuZn-SOD mRNA expression decreased by 62.84% (P < 0.01). The expression levels of Dorsal, GPx, GST, PPAF, and Relish (P < 0.01), as well as that of lectin (P < 0.001) were significantly decreased. When peroxinectin siRNA was injected in vivo for 48 h and Aeromonas hydrophila was injected into mitten crabs, the expression of immune-related genes significantly increased. All data indicate that the recombinant peroxinectin protein in Chinese mitten crabs can recognize and bind different bacteria and promote the elimination of Vibrio parahaemolyticus from the body. Furthermore, peroxinectin may establish interactions with integrin and CuZn-SOD to activate the expression of related immune genes to elicit responses to bacterial infections and achieve immune protection.
Collapse
Affiliation(s)
- Linjie Li
- School of Life Sciences, Nanchang University, Jiangxi, 330013, PR China
| | - Cuizhen Zhang
- School of Life Sciences, Nanchang University, Jiangxi, 330013, PR China
| | - Qichen Lin
- School of Life Sciences, Nanchang University, Jiangxi, 330013, PR China
| | - Minjie Zhu
- School of Life Sciences, Nanchang University, Jiangxi, 330013, PR China
| | - Feng Mei
- School of Life Sciences, Nanchang University, Jiangxi, 330013, PR China
| | - Shaoqing Jian
- School of Life Sciences, Nanchang University, Jiangxi, 330013, PR China; Key Laboratory of Aquatic Animal Resources and Utilization of Jiangxi Province, Jiangxi, 330013, PR China.
| | - Daxian Zhao
- School of Life Sciences, Nanchang University, Jiangxi, 330013, PR China; Key Laboratory of Aquatic Animal Resources and Utilization of Jiangxi Province, Jiangxi, 330013, PR China.
| |
Collapse
|
29
|
Thaimuangphol W, Sanoamuang L, Wangkahart E. The immune response of fairy shrimp Streptocephalus sirindhornae against bacterial black disease by de novo transcriptome analysis. FISH & SHELLFISH IMMUNOLOGY 2022; 121:108-115. [PMID: 34983002 DOI: 10.1016/j.fsi.2021.12.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/22/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
To enhance genomic resources and to understand the molecular immune mechanisms underlying the response of fairy shrimp (Streptocephalus sirindhornae) to pathogens, we first performed a comparative gene transcription analysis from Aeromonas hydrophila-immunized shrimp and from a control group through RNA sequencing. Meanwhile, the differentially expressed genes (DEGs) were investigated, and a total of 46,958,894 clean reads were obtained and then assembled into 73,297 unigenes with an average length of 993 bp and an N50 of 1,458 bp. Unigenes were annotated by comparison with the NR/NT/KO/SwissProt/PFAM/GO and KOG databases, and 28,198 unigenes (38.47%) were annotated in at least one database. After a bacterial challenge, 143 and 287 genes were identified as markedly up- or downregulated, respectively, and 345 were associated with 142 pathways, including the classic immune-related apoptosis, toll-like receptor and MAPK signaling pathways. Moreover, ten differently expressed immune-related genes were confirmed by using quantitative real-time PCR. This study characterized a gene expression pattern for normal and Aeromonas hydrophila-immunized S. sirindhornae for the first time and shed new light on its molecular mechanisms, thus enabling the future efforts of disease control programs for this valuable aquaculture species.
Collapse
Affiliation(s)
- Wipavee Thaimuangphol
- Laboratory of Fish Immunology and Nutrigenomics, Applied Animal and Aquatic Sciences Research Unit, Division of Fisheries, Faculty of Technology, Mahasarakham University, Khamriang Sub-District, Kantarawichai, Mahasarakham, 44150, Thailand
| | - Laorsri Sanoamuang
- Applied Taxonomic Research Center, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand; Laboratory of Biodiversity and Environmental Management, International College, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Eakapol Wangkahart
- Laboratory of Fish Immunology and Nutrigenomics, Applied Animal and Aquatic Sciences Research Unit, Division of Fisheries, Faculty of Technology, Mahasarakham University, Khamriang Sub-District, Kantarawichai, Mahasarakham, 44150, Thailand.
| |
Collapse
|
30
|
Huang YH, Kumar R, Liu CH, Lin SS, Wang HC. A novel C-type lectin LvCTL 4.2 has antibacterial activity but facilitates WSSV infection in shrimp (L. vannamei). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 126:104239. [PMID: 34425174 DOI: 10.1016/j.dci.2021.104239] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Glycan-binding protein C-type lectin (CTL), one of the pattern recognition receptors (PRRs), binds to carbohydrates on the surface of pathogens and elicits antimicrobial responses in shrimp innate immunity. The objective was to identify and characterize a novel C-type lectin LvCTL 4.2 in Litopenaeus vannamei. The LvCTL 4.2 protein consisted of a signal peptide at the N terminal and a carbohydrate-recognition domain (CRD) with a mutated mannose-binding (Glu-Pro-Ala; EPA) motif at the C terminal, and thereby has a putative secreted mannose-binding C-type lectin architecture. LvCTL 4.2 was highly expressed in nervous tissue and stomach. Infection with white spot syndrome virus (WSSV) induced expression of LvCTL 4.2 in shrimp stomach at 12 h post infection. Conversely, there was no obvious upregulation in expression of LvCTL 4.2 in stomach or hepatopancreas of shrimp with AHPND (acute hepatopancreas necrosis disease). Pathogen binding assays confirmed recombinant LvCTL 4.2 protein (rLvCTL 4.2) had significant binding ability with the WSSV virion, Gram-negative, and Gram-positive bacteria. Moreover, rLvCTL 4.2 had strong growth inhibition of Vibrio parahaemolyticus. Silencing LvCTL 4.2 suppressed WSSV replication, whereas pretreatment of WSSV with rLvCTL 4.2 facilitated viral replication in vivo. In conclusion, LvCTL 4.2 acted as a PRR that inhibited AHPND-causing bacteria, but facilitated WSSV pathogenesis.
Collapse
Affiliation(s)
- Yu-Hsun Huang
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan; International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, Taiwan
| | - Ramya Kumar
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan; International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, Taiwan
| | - Chun-Hung Liu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Shih-Shun Lin
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Han-Ching Wang
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan; International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
31
|
Capanni F, Greco S, Tomasi N, Giulianini PG, Manfrin C. Orally administered nano-polystyrene caused vitellogenin alteration and oxidative stress in the red swamp crayfish (Procambarus clarkii). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:147984. [PMID: 34118657 DOI: 10.1016/j.scitotenv.2021.147984] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/09/2021] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
Nanoplastics (≤100 nm) represent the smallest fraction of plastic litter and may result in the aquatic environment as degradation products of larger plastic material. To date, few studies focused on the interactions of micro- and nanoplastics with freshwater Decapoda. The red swamp crayfish (Procambarus clarkii, Girard, 1852) is an invasive species able to tolerate highly perturbed environments. As a benthic opportunistic feeder, this species may be susceptible to plastic ingestion. In this study, adult P. clarkii, at intermolt stage, were exposed to 100 μg of 100 nm carboxylated polystyrene nanoparticles (PS NPs) through diet in a 72 h acute toxicity test. An integrated approach was conceived to assess the biological effects of PS NPs, by analyzing both transcriptomic and physiological responses. Total hemocyte counts, basal and total phenoloxidase activities, glycemia and total protein concentration were investigated in crayfish hemolymph at 0 h, 24 h, 48 h and 72 h from PS NPs administration to evaluate general stress response over time. Differentially expressed genes (DEGs) in the hemocytes and hepatopancreas were analyzed to ascertain the response of crayfish to PS NP challenge after 72 h. At a physiological level, crayfish were able to compensate for the induced stress, not exceeding generic stress thresholds. The RNA-Sequencing analysis revealed the altered expression of few genes involved in immune response, oxidative stress, gene transcription and translation, protein degradation, lipid metabolism, oxygen demand, and reproduction after PS NPs exposure. This study suggests that a low concentration of PS NPs may induce mild stress in crayfish, and sheds light on molecular pathways possibly involved in nanoplastic toxicity.
Collapse
Affiliation(s)
- Francesca Capanni
- Dept. Life Sciences, University of Trieste, via L. Giorgieri 5, 34127 Trieste, Italy.
| | - Samuele Greco
- Dept. Life Sciences, University of Trieste, via L. Giorgieri 5, 34127 Trieste, Italy.
| | - Noemi Tomasi
- Dept. Life Sciences, University of Trieste, via L. Giorgieri 5, 34127 Trieste, Italy.
| | - Piero G Giulianini
- Dept. Life Sciences, University of Trieste, via L. Giorgieri 5, 34127 Trieste, Italy.
| | - Chiara Manfrin
- Dept. Life Sciences, University of Trieste, via L. Giorgieri 5, 34127 Trieste, Italy.
| |
Collapse
|
32
|
Yao T, Lu J, Bai C, Xie Z, Ye L. The Enhanced Immune Protection in Small Abalone Haliotis diversicolor Against a Secondary Infection With Vibrio harveyi. Front Immunol 2021; 12:685896. [PMID: 34295333 PMCID: PMC8290317 DOI: 10.3389/fimmu.2021.685896] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/22/2021] [Indexed: 11/28/2022] Open
Abstract
In recent years, more and more studies have shown that early pathogenic bacterial infection in invertebrates can enhance immunity and significantly reduce mortality when reinfected with the same pathogen. There are mechanisms to explain this phenomenon, but they are relatively few. In addition, dose-dependent primary infection is also associated with increased immunity. In the present study, the initial infection dose and mortality of abalone Haliotis diversicolor after reinfection with Vibrio harveyi were recorded, and the mechanism of immune enhancement was investigated by the transcriptomic response of abalone after two successive stimuli with V. harveyi. Priming with different concentrations of pathogen can enhance immunity; however, higher concentration is not always better. Compared with the first exposure, more genes were up-regulated after the second exposure. Among the commonly expressed genes, the immune related genes were significantly or persistently highly expressed after two infections and included pattern recognition receptors as well as immune effectors, such as toll-like receptors, perlucin 4, scavenger receptor class B-like protein, cytochrome P450 1B1-like, glutathione S-transferase 6, lysozyme and so on; in addition, these immune-related genes were mainly distributed in the pathways related to phagocytosis and calcium signaling. Among the specifically expressed genes, compared with the first infection, more genes were involved in the immune, metabolic and digestive pathways after the second infection, which would be more conducive to preventing the invasion of pathogens. This study outlined the mechanism of immune enhancement in abalone after secondary infection at the global molecular level, which is helpful for a comprehensive understanding of the mechanism of immune priming in invertebrates.
Collapse
Affiliation(s)
- Tuo Yao
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Jie Lu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Changming Bai
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Zhilv Xie
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Lingtong Ye
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| |
Collapse
|
33
|
Sivakamavalli J, Park K, Kwak IS, Vaseeharan B. Purification and partial characterization of carbohydrate-recognition protein C-type lectin from Hemifusus pugilinus. Carbohydr Res 2020; 499:108224. [PMID: 33450477 DOI: 10.1016/j.carres.2020.108224] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 12/12/2020] [Accepted: 12/15/2020] [Indexed: 11/17/2022]
Abstract
A mannose binding lectin (C-type lectin) was detected in a molluscan snail Hemifusus pugilinus, this lectin molecule was isolated and purified from the plasma using mannose-fixed sepharose CL-4B column affinity chromatography. The purified protein corresponds to the molecular weight of 118 kDa on an SDS-PAGE gel. The divalent cation-dependent nature of the H. pugilinus lectin (Hp-Lec) evidenced through pH and thermal stability analysis using Circular Dichroism (CD) and Surface Plasmon Resonance (SPR) respectively. Functional investigations of the Hp-Lec reveal a broad spectrum of bacterial agglutination activity against wide range of Gram-positive and Gram-negative bacterial strains. Furthermore, Hp-Lec displayed the haemo agglutination activity against vertebrate red blood cells (RBCs) and its titers were recorded. Excitingly, microbial virulent pathogens such as fungal strains tested against the purified Hp-Lec (25 and 50 μg/ml), which exhibits the effective antifungal activity against tested fungal pathogens such as Aspergillus niger and A. flavus.
Collapse
Affiliation(s)
- Jeyachandran Sivakamavalli
- Fisheries Science Institute, Chonnam National University, Yeosu, 59626, South Korea; Department of Biotechnology & Microbiology, National College, Tiruchirappalli, 620001, India; Department of Animal Health and Management, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India.
| | - Kiyun Park
- Fisheries Science Institute, Chonnam National University, Yeosu, 59626, South Korea; Department of Biotechnology & Microbiology, National College, Tiruchirappalli, 620001, India.
| | - Ihn-Sil Kwak
- Fisheries Science Institute, Chonnam National University, Yeosu, 59626, South Korea; Department of Biotechnology & Microbiology, National College, Tiruchirappalli, 620001, India; Faculty of Marine Technology, Chonnam National University, Yeosu, 59626, South Korea.
| | - Baskaralingam Vaseeharan
- Department of Animal Health and Management, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India.
| |
Collapse
|
34
|
Low CF, Chong CM. Peculiarities of innate immune memory in crustaceans. FISH & SHELLFISH IMMUNOLOGY 2020; 104:605-612. [PMID: 32619624 DOI: 10.1016/j.fsi.2020.06.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/31/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
Classical characteristic of the innate immune system is the lack of ability to build up immunological memory, contrast to the adaptive immune system that is capable of "remembering" antigens, and rapidly mount a greater magnitude of immune response upon subsequent exposure to the same antigens. Peculiarly, immunological memory of innate immunity is evidenced in invertebrates. At least three different memory phenomena have been described, namely sustained unique response, recalled response, and immune shift. Studies attended to decipher the mechanistic biology of the innate immune memory reveals the role of epigenetics, which modulates the response of immune memory, and the heritability of immune memory to subsequent generations. A parthenogenetic Artemia model demonstrated successful transgenerational epigenetic inheritance of resistance trait against Vibrio campbellii. Following, the role of invertebrate hemocytes and Down syndrome cell adhesion molecule (Dscam) in innate immune memory is reviewed. While there is no vertebrate antibody homolog found in invertebrates, Dscam was found to resemble the functionality of vertebrate antibody. Insight of Dscam as immune factor was illustrated further in the current review.
Collapse
Affiliation(s)
- Chen Fei Low
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
| | - Chou Min Chong
- Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|