1
|
Li Y, Chen J, Feng W, Xiao Y. Untargeted metabolomics and physiological phenotypic analyses reveal the defense strategies of nitrite by Lactiplantibacillus plantarum PK25. Food Chem 2024; 463:141338. [PMID: 39316904 DOI: 10.1016/j.foodchem.2024.141338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 09/12/2024] [Accepted: 09/15/2024] [Indexed: 09/26/2024]
Abstract
A comprehensive understanding of the defense strategies against nitrite by Lactiplantibacillus plantarum remains unknown. Herein, the effects of nitrite degradation process on metabolic profiling of L. plantarum PK25 were investigated by metabolomics and phenomenological measurement. A total of 633 metabolites were significantly different at 6, 12, and 24 incubation hours. Specifically, citrulline and lysine reduction facilitated strain survival by limiting cell growth. A significant reduction of unsaturated fatty acids was observed, which could induce reduced cell membrane fluidity to prevent nitrite entry. The accumulation of thymine and cytosine might be resulted from accelerated RNA expression to accelerate the repair of cells. Dopamine and ergothioneine could serve as antioxidants to prevent bacteria from oxidative stress. Furthermore, cell filamentation production, increased hydrophobicity, and altered antioxidant enzyme activity were favorable alterations made by strain. Our study demonstrated the metabolite profile alteration of L. plantarum during nitrite degradation, which provided a theoretical basis for targeting strain function.
Collapse
Affiliation(s)
- Yuanyuan Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiaping Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Wu Feng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Yao Xiao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
2
|
Wang P, Sun LH, Wang X, Wu Q, Liu A. Effective protective agents against the organ toxicity of T-2 toxin and corresponding detoxification mechanisms: A narrative review. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 16:251-266. [PMID: 38362519 PMCID: PMC10867609 DOI: 10.1016/j.aninu.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/28/2023] [Accepted: 12/01/2023] [Indexed: 02/17/2024]
Abstract
T-2 toxin is one of the most widespread and toxic fungal toxins in food and feed. It can cause gastrointestinal toxicity, hepatotoxicity, immunotoxicity, reproductive toxicity, neurotoxicity, and nephrotoxicity in humans and animals. T-2 toxin is physicochemically stable and does not readily degrade during food and feed processing. Therefore, suppressing T-2 toxin-induced organ toxicity through antidotes is an urgent issue. Protective agents against the organ toxicity of T-2 toxin have been recorded widely in the literature, but these protective agents and their molecular mechanisms of detoxification have not been comprehensively summarized. In this review, we provide an overview of the various protective agents to T-2 toxin and the molecular mechanisms underlying the detoxification effects. Targeting appropriate targets to antagonize T-2 toxin toxicity is also an important option. This review will provide essential guidance and strategies for the better application and development of T-2 toxin antidotes specific for organ toxicity in the future.
Collapse
Affiliation(s)
- Pengju Wang
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Lv-hui Sun
- Hubei Hongshan Laboratory, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Aimei Liu
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| |
Collapse
|
3
|
Han M, Zhu C, Tang S, Liang J, Li D, Guo Y, Zuraini Z, Si Q, Jiang Q. The effects of a polystyrene nanoplastic on the immune response and gut microbiota of Eriocheir sinensis and its post-recovery state. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 262:106644. [PMID: 37549485 DOI: 10.1016/j.aquatox.2023.106644] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/14/2023] [Accepted: 07/28/2023] [Indexed: 08/09/2023]
Abstract
Although there is increasing concern about the toxicity of nanoplastics, the effects of nanoplastic exposure and subsequent recovery on immune responses, as well as antioxidant responses and gut microbiota, in crustaceans are rarely reported. In this study, the nonspecific immunity and antioxidant defense of Eriocheir sinensis were evaluated after acute exposure to various concentrations (0, 2.5, 5, 10 and 20 mg/L) of 75-nm polystyrene nanoplastics (PS-NPs) for 48 h, as well as after 7 days of recovery from the nanoplastic environment. The results showed that, after 48 h of exposure, nanoplastics were observed in the gills, hepatopancreas and gut. However, no nanoplastics were found in the gut after 7 days of recovery. Under nanoplastic-induced stress, Hc, Relish, proPO, and LITAF mRNA levels increased in the gills and hepatopancreas for 48 h. Expression of the myd88, Hc, Relish and proPO genes decreased in the gills during the 7-day recovery period. Exposure to nanoplastics for 48 h and recovery for 7 days significantly decreased the activities of lysozyme (LZM) alkaline phosphatase (AKP), total superoxide dismutase (SOD) and phenoloxidase (POD) and, glutathione peroxidase (GPX) in the hepatopancreas. Meanwhile, the relative abundance of pathogens exposed to 10 mg/L nanoplastics for 48 h increased at the species level, and these pathogens decreased significantly in the 7-day recovery period. These results suggested that exposure to nanoplastics for 48 h affected the activities of immune system enzymes and expression of immune-related genes in Eriocheir sinensis and altered the diversity and composition of their gut microbiota. E. sinensis could not recover from damage to the hepatopancreas within a 7-day recovery period. The results of this study provided insight into the effects of nanoplastics on crustaceans and it filled a gap in research on crustacean recovery after exposure to nanoplastics.
Collapse
Affiliation(s)
- Mingming Han
- Biology Program, Centre for Marine and Coastal Studies, Universiti Sains Malaysia, Minden, Penang 11800, Malaysia
| | - Chenxi Zhu
- Freshwater Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing 210017, China
| | - Shengkai Tang
- Freshwater Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing 210017, China
| | - Ji Liang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Daming Li
- Freshwater Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing 210017, China
| | - YanXia Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Zakaria Zuraini
- Biology Program, Centre for Marine and Coastal Studies, Universiti Sains Malaysia, Minden, Penang 11800, Malaysia
| | - Qin Si
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Qichen Jiang
- Freshwater Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing 210017, China.
| |
Collapse
|
4
|
Wang M, Liao S, Zang X, Fu Z, Yin S, Wang T. Long-term hypoxia stress-induced oxidative stress, cell apoptosis, and immune response in the intestine of Pelteobagrus vachelli. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:585-597. [PMID: 37222964 DOI: 10.1007/s10695-023-01204-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 05/19/2023] [Indexed: 05/25/2023]
Abstract
Hypoxia is a common phenomenon in aquaculture. With the dissolved oxygen (DO) 3.75 ± 0.25 mg O2 /L for hypoxia group and 7.25 ± 0.25 mg O2 /L for control group for 30, 60, and 90 days, long-term hypoxia stress was used to investigate the oxidative stress, apoptosis, and immunity in the intestine of Pelteobagrus vachelli. According to the results of measurement of total superoxide dismutase (T-SOD), glutathione peroxidase (GSH-PX), and catalase (CAT) activities and malondialdehyde (MDA) content, the oxidative stress ability of the intestine was activated at 30 days and impaired at 60 and 90 days. The upregulation of Bcl-2-associated x (Bax); downregulation of B cell lymphoma-2 (Bcl-2); increased activities of caspase-3, caspase-9, and Na+-K+-ATPase; decreased activities of succinate dehydrogenase (SDH); and the release of cytochrome c (Cyt-c) in mitochondria revealed that hypoxia induced the apoptosis. Moreover, heat shock protein 70 (HSP 70), heat shock protein 90 (HSP 90), immunoglobulin M (IgM), and C-lysozyme (C-LZM) were activated to inhibit apoptosis, but the immunoregulatory function might be damaged at 60 and 90 days. This study provides a theoretical foundation for understanding the mechanisms of hypoxia stress and aquaculture management of P. vachelli.
Collapse
Affiliation(s)
- Min Wang
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, 210023, China
| | - Shujia Liao
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, 210023, China
| | - Xuechun Zang
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, 210023, China
| | - Zhineng Fu
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, 210023, China
| | - Shaowu Yin
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, 210023, China
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, 222005, Jiangsu, China
| | - Tao Wang
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, 210023, China.
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, 222005, Jiangsu, China.
| |
Collapse
|
5
|
Yu X, Zhang C, Chen K, Liu Y, Deng Y, Liu W, Zhang D, Jiang G, Li X, Giri SS, Park SC, Chi C. Dietary T-2 toxin induces transcriptomic changes in hepatopancreas of Chinese mitten crab (Eriocheir sinensis) via nutrition metabolism and apoptosis-related pathways. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114397. [PMID: 36527851 DOI: 10.1016/j.ecoenv.2022.114397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Long-term feed route exposure to T-2 toxin was proved to elicit growth retarding effects and induction of oxidative stress and apoptosis in Chinese mitten crab (Eriocheir sinensis). However, no study with a holistic perspective has been conducted to date to further describe the in-depth toxicological mechanism of T-2 toxin in E.sinensis. In this study, an RNA-Sequencing (RNA-seq) was used in this study to investigate the effects of feed supplementation with 0 mg/kg and 4 mg/kg T-2 toxin on the hepatopancreas transcriptome of E.sinensis and establish a hepatopancreas transcriptome library of T-2 toxin chronically exposed crabs after five weeks, where 14 differentially expressed genes (DEGs) were screened out across antioxidant, apoptosis, autophagy, glucolipid metabolism and protein synthesis. The actual expression of all the DEGs (Caspase, ATG4, PERK, ACSL, CAT, BIRC2, HADHA, HADHB, ACOX, PFK, eEFe1, eIF4ɑ, RPL13Ae) was also analyzed by real-time quantitative PCR (RT-qPCR). It was demonstrated that long-term intake of large amounts of T-2 toxin could impair antioxidant enzyme activity, promote apoptosis and protective autophagy, disrupt lipid metabolism and inhibit protein synthesis in the hepatopancreas of E.sinensis. In conclusion, this study explored the toxicity mechanism of T-2 toxin on the hepatopancreas of E.sinensis at the mRNA level, which lays the foundation for further investigation of the molecular toxicity mechanism of T-2 toxin in aquatic crustaceans.
Collapse
Affiliation(s)
- Xiawei Yu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu Province, People's Republic of China.
| | - Caiyan Zhang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Keke Chen
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Yuan Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Ying Deng
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Wenbin Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Dingdong Zhang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Guangzhen Jiang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Xiangfei Li
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Sib Sankar Giri
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea.
| | - Se Chang Park
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea.
| | - Cheng Chi
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu Province, People's Republic of China.
| |
Collapse
|
6
|
Zhang Y, Li Z, Zhang Y, Sun K, Ren N, Li M. Acute toxic effects of diclofenac exposure on freshwater crayfish (Procambarus clarkii): Insights from hepatopancreatic pathology, molecular regulation and intestinal microbiota. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 244:114068. [PMID: 36108435 DOI: 10.1016/j.ecoenv.2022.114068] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/27/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
In this study, we exposed adult male crayfish (Procambarus clarkii) to different concentrations of diclofenac (DCF) for 96 h. In the meantime, we investigated the alternations of hepatopancreatic pathology, molecular regulation and intestinal microbiota of P. clarkii exposed to DCF. The results demonstrated DCF led to histological changes including epithelium vacuolization and tubule lumen dilatation in the hepatopancreas. Transcriptome sequencing analysis showed that 642 and 586 genes were differentially expressed in the hepatopancreas of P. clarkii exposed to 1 and 10 mg/L DCF, respectively. DCF could affect the functions of antioxidation, immunity and metabolism of hepatopancreas by inducing the abnormal expressions of immune- and redox-related genes. GO enrichment results demonstrated that 10 mg/L DCF exposure could modulate the processes of molting, amino sugar metabolism, protein hydrolysis and intracellular protein translocation of P. clarkii. Additionally, the abundances of bacterial families including Shewanellaceae, Bacteroidaceae, Vibrionaceae, Erysipelotrichaceae, Aeromonadaceae, Moraxellaceae, etc. in the intestine were significantly changed after DCF exposure, and the disruption of intestinal flora might further cause abnormal intestinal metabolism in P. clarkii. This study provides novel mechanistic insights into the toxic effects of anti-inflammatory drugs on aquatic crustaceans.
Collapse
Affiliation(s)
- Yu Zhang
- Key Laboratory of Soil Resource Sustainable Utilization for Jilin Province Commodity Grain Bases, College of Resources and Environment, Jilin Agricultural University, Changchun 130118, China
| | - Zheyu Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yanxiang Zhang
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Kai Sun
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Mingtang Li
- Key Laboratory of Soil Resource Sustainable Utilization for Jilin Province Commodity Grain Bases, College of Resources and Environment, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
7
|
Huang X, Huang Z, Sun L, Qiu M, Deng Q, Fang Z, Wang Y. Protective mechanisms of three antioxidants against T-2 toxin-induced muscle protein deterioration in shrimp. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4883-4891. [PMID: 35244220 DOI: 10.1002/jsfa.11851] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/18/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Quercetin (Q), tea polyphenols (TP), and rutin (R) are widely used plant-derived active ingredients. They possess antioxidant, anti-inflammatory, and anti-tumor properties, and can reduce the muscle damage caused by mycotoxins. However, few studies have examined the protective mechanisms of quercetin, tea polyphenols, and rutin on muscle quality. To elucidate their protective mechanisms, shrimp were exposed to both T-2 toxin and these three antioxidants for 20 days in a dose-escalating trial. The changes in the protein composition of shrimp muscle were measured. The target proteins associated with T-2 and antioxidants were screened and identified by non-labeled quantitative proteomics. RESULTS The T-2 toxin induced abnormal expression of 21 target proteins, leading to the deterioration of muscle proteins in shrimp. The three antioxidants ameliorated the T-2 toxin-induced damage to muscle proteins by increasing the sarcoplasmic and myofibrillar protein content and decreasing the alkali-soluble protein content. Quercetin had the strongest protective effect. The protective processes of these antioxidants involved the upregulation of target proteins involved in carbohydrate metabolism (enolase, malate dehydrogenase), protein translation (elongation factor 1-alpha and eukaryotic translation initiation factor 2 subunit alpha), and cytoskeleton component (actin 2, fast-type skeletal muscle actin 1). Quercetin regulated the largest number of target proteins, making it the best protective agent against T-2 toxin. CONCLUSION The T-2 toxin (4.80-24.30 mg/kg feed) induced changes in target proteins and muscle composition of shrimp, leading to a deterioration in muscle proteins. Quercetin (2.00-32.00 g/kg feed) had significant protective effects against this deterioration in muscle protein in shrimp. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaoyue Huang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, China
| | - Zhanrui Huang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, China
- College of Food and Chemical Engineering, Shaoyang University, Hunan Provincial Key Laboratory of Soybean Products Processing and Safety Control, Shaoyang, China
| | - Lijun Sun
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, China
| | - Mei Qiu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, China
| | - Qi Deng
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, China
| | - Zhijia Fang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, China
| | - Yaling Wang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, China
| |
Collapse
|
8
|
Zhou H, Sun F, Lin H, Fan Y, Wang C, Yu D, Liu N, Wu A. Food bioactive compounds with prevention functionalities against fungi and mycotoxins: developments and challenges. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Li Y, De J, Jiang Q, Yang Y, Xu W, Du X, Zhao Y. Comparison of lipid metabolism between broodstock and hybrid offspring in the hepatopancreas of juvenile shrimp (Macrobrachium nipponense): Response to chronic ammonia stress. Anim Genet 2022; 53:393-404. [PMID: 35307863 DOI: 10.1111/age.13194] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 11/30/2022]
Abstract
Ammonia nitrogen is a major pollutant that causes great physiological harm to crustaceans in culture. In this study, we conducted a 28 day chronic ammonia nitrogen stress experiment with broodstock populations (Dianshan, DS) and hybrid offspring populations (DS ♀ × CD (Changjiang ♂ × Dongting ♀), SCD) exposed to 0, 1 and 10 mg/L of ammonia concentrations. A 28 day feeding trial and chronic ammonia nitrogen stress were used to investigate the effects on the growth performance, histological structure and lipid metabolism of juvenile shrimp, Macrobrachium nipponense. Our results indicated that survival rates in the SCD groups were significantly higher than those in the DS groups, whereas weight and length gain rates were not significantly different between the groups (p > 0.05). Histological structure results showed that the number of vacuoles in the DS group was significantly higher than that in the SCD group and hepatopancreas cell structures were disrupted in the ammonia treatment groups. The results of oil red staining showed that the number of lipid droplets increased significantly with the increase in ammonia concentration. As the ammonia concentration increased, fatty acid contents, lipid enzyme activities and lipid metabolism-related gene expression all tended to rise. In conclusion, ammonia nitrogen exposure caused damage to the hepatopancreas structure of juvenile shrimp and disturbed the lipid metabolism of the hepatopancreas. In addition, the SCD population had stronger stress resistance than the DS population when subjected to the same concentration of ammonia nitrogen stress.
Collapse
Affiliation(s)
- Yiming Li
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Ji De
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Qichen Jiang
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, 210017, China
| | - Ying Yang
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Wenyue Xu
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Xinglin Du
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Yunlong Zhao
- School of Life Science, East China Normal University, Shanghai, 200241, China.,State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
10
|
Sharma V, Patial V. Food Mycotoxins: Dietary Interventions Implicated in the Prevention of Mycotoxicosis. ACS FOOD SCIENCE & TECHNOLOGY 2021; 1:1717-1739. [DOI: 10.1021/acsfoodscitech.1c00220] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Affiliation(s)
- Vinesh Sharma
- Pharmacology and Toxicology Laboratory, Dietetics & Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur-176061 (H.P.), India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002 (U.P.), India
| | - Vikram Patial
- Pharmacology and Toxicology Laboratory, Dietetics & Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur-176061 (H.P.), India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002 (U.P.), India
| |
Collapse
|
11
|
Zhang H, Wang Z, Li Z, Wang K, Kong B, Chen Q. l-glycine and l-glutamic acid protect Pediococcus pentosaceus R1 against oxidative damage induced by hydrogen peroxide. Food Microbiol 2021; 101:103897. [PMID: 34579850 DOI: 10.1016/j.fm.2021.103897] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 11/18/2022]
Abstract
The effects of l-glycine (Gly) and l-glutamic acid (Glu) on oxidative damage induced by hydrogen peroxide (H2O2) in Pediococcus pentosaceus R1 were investigated. Gly and Glu significantly reduce the production of intracellular reactive oxygen species and the levels of malondialdehyde and carbonylated proteins and concomitantly increase ATP levels in P. pentosaceus R1 under H2O2-induced stress (P < 0.05). Transmission electron microscopy and atomic force microscopy of bacteria under H2O2-induced stress revealed that Gly and Glu suppress bacterial membrane deformation and cell damage. Gly exhibited stronger ferrous ion-chelating ability, whereas Glu has higher radical scavenging activities and reducing power (P < 0.05). The abilities of Gly and Glu to inhibit lipid peroxidation are comparable. Gly and Glu significantly enhance the activities of superoxide dismutase and glutathione peroxidase, respectively, and increase the total antioxidant capacity of bacteria (P < 0.05). These findings indicate that Gly and Glu alleviate H2O2-induced oxidative stress via direct antioxidant effects and increase the activities of bacterial antioxidant enzyme.
Collapse
Affiliation(s)
- Huan Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Zhi Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Zhiwei Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Keda Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
| | - Qian Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| |
Collapse
|
12
|
Xu J, Zhang X, Sun X, Lv Q, Zhang Y. Red-Fleshed Apple Anthocyanin Extracts Attenuate Male Reproductive System Dysfunction Caused by Busulfan in Mice. Front Nutr 2021; 8:632483. [PMID: 34249984 PMCID: PMC8268157 DOI: 10.3389/fnut.2021.632483] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 05/11/2021] [Indexed: 12/11/2022] Open
Abstract
In this research, we analyzed the effect of an intragastrical oral administration of red-fleshed apple anthocyanin extract (RAAE) on busulfan-treated mice. First, we showed that the most abundant component in RAAE was cyanidin 3-O-galactoside. To determine the effect of the RAAE, the mice were divided into control and four other different concentrations of RAAE feeding treatment groups (BA0, no RAAE; BA.1, 0.1 mg/kg; BA1, 1 mg/kg; and BA5, 5 mg/kg) following busulfan injection. We observed that RAAE treatments displayed ameliorative effects on male reproductive system dysfunction caused by busulfan, such as recovering the irregular arrangements of seminiferous tubules, increasing the number of spermatogonia and spermatocytes, improving sperm concentration by 3-fold in BA.1, and improving sperm motility by 2-fold in BA1. The liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis showed significant up- or downregulation of certain metabolites, such as lysophosphatidylcholine (LysoPC), L-arginine, glycine, anandamide, and L-carnitine, which could contribute to the positive effects of RAAE, especially in PBA1 (plasma of BA1) and PBA5 (plasma of BA5). Taken together, the results indicate that 1 mg/kg of RAAE is a suitable concentration for rescuing spermatogenesis in mice. The research suggests that RAAE could be a potential nutraceutical for protecting spermatogenesis after busulfan therapy in cancer.
Collapse
Affiliation(s)
- Jihua Xu
- Qingdao Key Laboratory of Genetic Development and Breeding in Horticultural Plants, Qingdao Agricultural University, Qingdao, China
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Xiang Zhang
- Qingdao Key Laboratory of Genetic Development and Breeding in Horticultural Plants, Qingdao Agricultural University, Qingdao, China
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Xiaohong Sun
- Qingdao Key Laboratory of Genetic Development and Breeding in Horticultural Plants, Qingdao Agricultural University, Qingdao, China
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Qiang Lv
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yugang Zhang
- Qingdao Key Laboratory of Genetic Development and Breeding in Horticultural Plants, Qingdao Agricultural University, Qingdao, China
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|