1
|
Uchuwittayakul A, Thangsunan P, Thangsunan P, Rodkhum C, Srisapoome P. Molecular structure and functional responses of IgM, IgT and IgD to Flavobacterium covae and Streptococcus iniae infection in Asian seabass (Lates calcarifer Bloch, 1790). FISH & SHELLFISH IMMUNOLOGY 2024; 153:109823. [PMID: 39122096 DOI: 10.1016/j.fsi.2024.109823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
The Asian seabass (Lates calcarifer) faces significant disease threats, which are exacerbated by intensive farming practices and environmental changes. Therefore, understanding its immune system is crucial. The current study presents a comprehensive analysis of immune-related genes in Asian seabass peripheral blood leukocytes (PBLs) using Iso-seq technology, identifying 16 key pathways associated with 7857 immune-related genes, comprising 634 unique immune-related genes. The research marks the first comprehensive report on the entire immunoglobulin repertoire in Asian seabass, revealing specific characteristics of immunoglobulin heavy chain constant region transcripts, including IgM (Cμ, ighm), IgT (Cτ, ight), and IgD (Cδ, ighd). The study confirms the presence of membrane-bound form, ighmmb, ightmb, ighdmb of IgM, IgT and IgD and secreted form, ighmsc and ightsc of IgM and IgT, respectively, with similar structural patterns and conserved features in amino acids across immunoglobulin molecules, including cysteine residues crucial for structural integrity observed in other teleost species. In response to bacterial infections by Flavobacterium covae (formerly F. columnare genomovar II) and Streptococcus iniae, both secreted and membrane-bound forms of IgM (ighmmb and ighmsc) and IgT (ightmb and ightsc) show significant expression, indicating their roles in systemic and mucosal immunity. The expression of membrane-bound form IgD gene, ighdmb, predominantly exhibits targeted upregulation in PBLs, suggesting a regulatory role in B cell-mediated immunity. The findings underscore the dynamic and tissue-specific expression of immunoglobulin repertoires, ighmmb, ighmsc, ightmb, ightsc and ighdmb in Asian seabass, indicating a sophisticated immune response to bacterial pathogens. These findings have practical implications for fish aquaculture, and disease control strategies, serving as a valuable resource for advancing research in Asian seabass immunology.
Collapse
Affiliation(s)
- Anurak Uchuwittayakul
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, 10900, Thailand; Center of Excellence in Aquatic Animal Health Management (CE AAHM), Faculty of Fisheries, Kasetsart University, Bangkok, 10900, Thailand.
| | - Pattanapong Thangsunan
- Division of Biochemistry and Biochemical Innovation, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence for Innovation in Chemistry, Research Laboratory on Advanced Materials for Sensor and Biosensor Innovation, Material Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Patcharapong Thangsunan
- Division of Biochemistry and Biochemical Innovation, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand; Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Channarong Rodkhum
- Center of Excellence in Fish Infectious Diseases (CE FID), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Prapansak Srisapoome
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, 10900, Thailand; Center of Excellence in Aquatic Animal Health Management (CE AAHM), Faculty of Fisheries, Kasetsart University, Bangkok, 10900, Thailand.
| |
Collapse
|
2
|
Jafarzadeh F, Roomiani L, Dezfoulnejad MC, Baboli MJ, Sary AA. Harnessing paraprobiotics and postbiotics for enhanced immune function in Asian seabass (Lates calcarifer): Insights into pattern recognition receptor signaling. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109725. [PMID: 38925448 DOI: 10.1016/j.fsi.2024.109725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/12/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024]
Abstract
The Asian seabass, Lates calcarifer, is a key species in Asian aquaculture due to its nutritional value and adaptability. However, disease outbreaks, particularly viral and bacterial infections, pose significant challenges to its production. Immunostimulants offer promising solutions but raise safety concerns. Paraprobiotics and postbiotics (CPP) emerge as safer alternatives, exerting health benefits without live microorganisms. This study investigated the potential of probiotic paraprobiotic and postbiotic supplements derived from Bacillus subtilis to enhance the immune response and antioxidant capacity of Asian seabass and improve their resistance to Streptococcus iniae infection. Analysis of antioxidant activity and lipid peroxidation revealed significant improvements in fish supplemented with CPP, indicating their effectiveness in mitigating oxidative stress. Immunological assays demonstrated enhanced growth performance and serum immunity, including increased alternative complement activity, immunoglobulin levels, and phagocytic activity, in supplemented fish. Furthermore, upregulated expression of proinflammatory cytokines (TNF-α, IL-6, IL-1β) and pattern recognition receptors (NLRC3, TLR22, MDA5) in immune tissues. Fish supplemented with CPP exhibited higher resistance and survival rates against S. iniae infection challenge compared to control groups. The study elucidates the mechanisms underlying the immunomodulatory effects of CPP, shedding light on their potential applications in aquaculture.
Collapse
Affiliation(s)
- Forough Jafarzadeh
- Department of Fisheries, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
| | - Laleh Roomiani
- Department of Fisheries, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran.
| | | | | | | |
Collapse
|
3
|
Lan NGT, Dong HT, Shinn AP, Vinh NT, Senapin S, Salin KR, Rodkhum C. Review of current perspectives and future outlook on bacterial disease prevention through vaccination in Asian seabass (Lates calcarifer). JOURNAL OF FISH DISEASES 2024; 47:e13964. [PMID: 38798108 DOI: 10.1111/jfd.13964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024]
Abstract
Asian seabass, Lates calcarifer, is an important aquatic species in mariculture. Intensive farming of this species has faced episodes of bacterial diseases, including those due to vibriosis, scale drop, and muscle necrosis disease, big belly disease, photobacteriosis, columnaris, streptococcosis, aeromoniasis, and tenacibaculosis. Vaccination is one of the most efficient, non-antibiotic, and eco-friendly strategies for protecting fish against bacterial diseases, contributing to aquaculture expansion and ensuring food security. As of now, although numerous vaccines have undergone laboratory research, only one commercially available inactivated vaccine, suitable for both immersion and injection administration, is accessible for preventing Streptococcus iniae. Several key challenges in developing vaccines for Asian seabass must be addressed, such as the current limited understanding of immunological responses to vaccines, the costs associated with vaccine production, forms, and routes of vaccine application, and how to increase the adoption of vaccines by farmers. The future of vaccine development for the Asian seabass industry, therefore, is discussed with these key critical issues in mind. The focus is on improving our understanding of Asian seabass immunity, including maternal immunity, immunocompetence, and immune responses post-vaccination, as well as developing tools to assess vaccine effectiveness. The need for an alignment of fish vaccines with state-of-the-art vaccine technologies employed in human and terrestrial animal healthcare is also discussed. This review also discusses the necessity of providing locally-produced autogenous vaccines, especially for immersion and oral vaccines, to benefit small-scale fish farmers, and the potential benefits that might be extended through changes to current husbandry practices such as the vaccination of broodstock and earlier life stages of their off-spring.
Collapse
Affiliation(s)
- Nguyen Giang Thu Lan
- The International Graduate Program of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Fish Infectious Diseases (CE FID), Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Aquaculture and Aquatic Resources Management, School of Environment, Resources and Development, Asian Institute of Technology, Pathum Thani, Thailand
| | - Ha Thanh Dong
- Aquaculture and Aquatic Resources Management, School of Environment, Resources and Development, Asian Institute of Technology, Pathum Thani, Thailand
| | | | - Nguyen Tien Vinh
- Aquaculture and Aquatic Resources Management, School of Environment, Resources and Development, Asian Institute of Technology, Pathum Thani, Thailand
| | - Saengchan Senapin
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
- Fish Heath Platform, Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Krishna R Salin
- Aquaculture and Aquatic Resources Management, School of Environment, Resources and Development, Asian Institute of Technology, Pathum Thani, Thailand
| | - Channarong Rodkhum
- The International Graduate Program of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Fish Infectious Diseases (CE FID), Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
4
|
Thu Lan NG, Dong HT, Vinh NT, Salin KR, Senapin S, Pimsannil K, St-Hilaire S, Shinn AP, Rodkhum C. A novel vaccination strategy against Vibrio harveyi infection in Asian seabass (Lates calcarifer) with the aid of oxygen nanobubbles and chitosan. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109557. [PMID: 38608847 DOI: 10.1016/j.fsi.2024.109557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
Immersion vaccination, albeit easier to administer than immunization by injection, sometimes has challenges with antigen uptake, resulting in sub-optimal protection. In this research, a new strategy to enhance antigen uptake of a heat-inactivated Vibrio harveyi vaccine in Asian seabass (Lates calcarifer) using oxygen nanobubble-enriched water (ONB) and positively charged chitosan (CS) was explored. Antigen uptake in fish gills was assessed, as was the antibody response and vaccine efficacy of four different combinations of vaccine with ONB and CS, and two control groups. Pre-mixing of ONB and CS before introducing the vaccine, referred to as (ONB + CS) + Vac, resulted in superior antigen uptake and anti-V. harveyi antibody (IgM) production in both serum and mucus compared to other formulas. The integration of an oral booster (4.22 × 108 CFU/g, at day 21-25) within a vaccine trial experiment set out to further evaluate how survival rates post exposure to V. harveyi might be improved. Antibody responses were measured over 42 days, and vaccine efficacy was assessed through an experimental challenge with V. harveyi. The expression of immune-related genes IL1β, TNFα, CD4, CD8, IgT and antibody levels were assessed at 1, 3, and 7-day(s) post challenge (dpc). The results revealed that antibody levels in the group (ONB + CS) + Vac were consistently higher than the other groups post immersion immunization and oral booster, along with elevated expression of immune-related genes after challenge with V. harveyi. Ultimately, this group demonstrated a significantly higher relative percent survival (RPS) of 63 % ± 10.5 %, showcasing the potential of the ONB-CS-Vac complex as a promising immersion vaccination strategy for enhancing antigen uptake, stimulating immunological responses, and improving survival of Asian seabass against vibriosis.
Collapse
Affiliation(s)
- Nguyen Giang Thu Lan
- The International Graduate Program of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand; Center of Excellence in Fish Infectious Diseases (CE FID), Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand; Aquaculture and Aquatic Resources Management, Department of Food Agriculture and Bioresources, School of Environment, Resources and Development, Asian Institute of Technology, Pathum Thani, Thailand
| | - Ha Thanh Dong
- Aquaculture and Aquatic Resources Management, Department of Food Agriculture and Bioresources, School of Environment, Resources and Development, Asian Institute of Technology, Pathum Thani, Thailand.
| | - Nguyen Tien Vinh
- Aquaculture and Aquatic Resources Management, Department of Food Agriculture and Bioresources, School of Environment, Resources and Development, Asian Institute of Technology, Pathum Thani, Thailand
| | - Krishna R Salin
- Aquaculture and Aquatic Resources Management, Department of Food Agriculture and Bioresources, School of Environment, Resources and Development, Asian Institute of Technology, Pathum Thani, Thailand
| | - Saengchan Senapin
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand; Fish Heath Platform, Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Khaettareeya Pimsannil
- Fish Heath Platform, Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Sophie St-Hilaire
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Andrew P Shinn
- INVE (Thailand), 471 Bond Street, Bangpood, Pakkred, Nonthaburi, 11120, Thailand
| | - Channarong Rodkhum
- The International Graduate Program of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand; Center of Excellence in Fish Infectious Diseases (CE FID), Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
5
|
Juárez-Cortés MZ, Vázquez LEC, Díaz SFM, Cardona Félix CS. Streptococcus iniae in aquaculture: a review of pathogenesis, virulence, and antibiotic resistance. Int J Vet Sci Med 2024; 12:25-38. [PMID: 38751408 PMCID: PMC11095286 DOI: 10.1080/23144599.2024.2348408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 04/18/2024] [Indexed: 05/18/2024] Open
Abstract
One of the main challenges in aquaculture is pathogenic bacterial control. Streptococcus iniae stands out for its ability to cause high mortality rates in populations of commercially important fish populations and its recent recognition as an emerging zoonotic pathogen. The rise in identifying over 80 strains some displaying antibiotic resistance coupled with the emerging occurrence of infections in marine mammal species and wild fish underscores the urgent need of understanding pathogenesis, virulence and drug resistance mechanisms of this bacterium. This understanding is crucial to ensure effective control strategies. In this context, the present review conducts a bibliometric analysis to examine research trends related to S. iniae, extending into the mechanisms of infection, virulence, drug resistance and control strategies, whose relevance is highlighted on vaccines and probiotics to strengthen the host immune system. Despite the advances in this field, the need for developing more efficient identification methods is evident, since they constitute the basis for accurate diagnosis and treatment.
Collapse
Affiliation(s)
| | - Luz Edith Casados Vázquez
- CONAHCYT- Universidad de Guanajuato. Food Department, Life Science Division, University of Guanajuato Campus Irapuato-Salamanca. Irapuato, Guanajuato, México
| | | | | |
Collapse
|
6
|
Lan NGT, Dong HT, Vinh NT, Senapin S, Shinn AP, Salin KR, Rodkhum C. Immersion prime and oral boost vaccination with an inactivated Vibrio harveyi vaccine confers a specific immune response and protection in Asian seabass (Lates calcarifer). FISH & SHELLFISH IMMUNOLOGY 2024; 144:109293. [PMID: 38104696 DOI: 10.1016/j.fsi.2023.109293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/07/2023] [Accepted: 12/09/2023] [Indexed: 12/19/2023]
Abstract
Asian seabass (Lates calcarifer) holds significant economic value in fish farming in the Asia-Pacific region. Vibriosis caused by Vibrio harveyi (Vh) is a severe infectious disease affecting intensive farming of this species, for which prevention strategies by vaccination have been developed. This study investigated an alternative approach to injectable vaccination to prevent vibriosis in Asian seabass juveniles. The strategy begins with an immersion prime vaccination with a heat-inactivated Vh vaccine, followed by two oral booster doses administered at 14- and 28-days post-vaccination (dpv). Expression of five immune genes TNFα, IL1β, CD4, CD8, and IgM in the head kidney and spleen, along with investigation of anti-Vh antibody response (IgM) in both systemic and mucosal systems, was conducted on a weekly basis. The efficacy of the vaccines was assessed by a laboratory challenge test at 43 dpv. The results showed that the immunized fish displayed higher levels of mRNA transcripts of the immune genes after the immersion prime and the first oral booster dose compared to the control group. The expression levels peaked at 14 and 28 dpv and then declined to baseline at 35 and 42 dpv. Serum specific IgM antibodies were detected as early as 7 dpv (the first time point investigated) and exhibited a steady increase, reaching the first peak at 21 dpv, and a second peak at 35 dpv. Although the antibody levels gradually declined over subsequent weeks, they remained significantly higher than the control group throughout the experiment. A similar antibody response pattern was also observed in the mucosal compartment. The laboratory challenge test demonstrated high protection by injection with 1.65 × 104 CFU/fish, with a relative percent of survival (RPS) of 72.22 ± 7.86 %. In conclusion, our findings highlight the potential of an immersion prime-oral booster vaccination strategy as a promising approach for preventing vibriosis in Asian seabass.
Collapse
Affiliation(s)
- Nguyen Giang Thu Lan
- The International Graduate Program of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand; Center of Excellence in Fish Infectious Diseases (CE FID), Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand; Aquaculture and Aquatic Resources Management, Department of Food Agriculture and Bioresources, School of Environment, Resources and Development, Asian Institute of Technology, Pathum Thani, Thailand
| | - Ha Thanh Dong
- Aquaculture and Aquatic Resources Management, Department of Food Agriculture and Bioresources, School of Environment, Resources and Development, Asian Institute of Technology, Pathum Thani, Thailand.
| | - Nguyen Tien Vinh
- Aquaculture and Aquatic Resources Management, Department of Food Agriculture and Bioresources, School of Environment, Resources and Development, Asian Institute of Technology, Pathum Thani, Thailand
| | - Saengchan Senapin
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand; Fish Heath Platform, Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Andrew P Shinn
- INVE (Thailand), 471 Bond Street, Bangpood, Pakkred, Nonthaburi, 11120, Thailand
| | - Krishna R Salin
- Aquaculture and Aquatic Resources Management, Department of Food Agriculture and Bioresources, School of Environment, Resources and Development, Asian Institute of Technology, Pathum Thani, Thailand
| | - Channarong Rodkhum
- The International Graduate Program of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand; Center of Excellence in Fish Infectious Diseases (CE FID), Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
7
|
Kumwan B, Bunnoy A, Chatchaiphan S, Kayansamruaj P, Dong HT, Senapin S, Srisapoome P. First Investigation of the Optimal Timing of Vaccination of Nile Tilapia ( Oreochromis niloticus) Larvae against Streptococcus agalactiae. Vaccines (Basel) 2023; 11:1753. [PMID: 38140158 PMCID: PMC10747866 DOI: 10.3390/vaccines11121753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
To investigate early immune responses and explore the optimal vaccination periods, Nile tilapia at 1, 7, 14, 21, 28, 35, and 42 days after yolk sac collapse (DAYC) were immersed in formalin-killed Streptococcus agalactiae vaccine (FKV-SA). A specific IgM was first detected via ELISA in the 21 DAYC larvae (0.108 g) at 336 h after vaccination (hav), whereas in the 28-42 DAYC larvae (0.330-0.580 g), the specific IgM could be initially detected at 24 hav. qRT-PCR analysis of the TCRβ, CD4, MHCIIα, IgHM, IgHT, and IgHD genes in 21-42 DAYC larvae immunized with the FKV-SA immersion route for 24, 168, and 336 hav revealed that the levels of most immune-related genes were significantly higher in the vaccinated larvae at all DAYCs than in the control larvae (p < 0.05) at 336 hav. Immunohistochemistry demonstrated stronger IgM signals in the gills, head kidney, and intestine tissues at 21, 28, and 35 DAYC in all vaccinated larvae compared with the control. Interestingly, at all DAYCs, FKV-SA larvae exhibited significantly higher survival rates and an increased relative percent survival (RPS) than the control after challenge with viable S. agalactiae, particularly in larvae that were immunized with FKV-SA at 168 and 336 hav (p < 0.05).
Collapse
Affiliation(s)
- Benchawan Kumwan
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Road, Ladyao, Chatuchak, Bangkok 10900, Thailand; (B.K.); (A.B.); (P.K.)
- Center of Excellence in Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Road, Ladyao, Chatuchak, Bangkok 10900, Thailand
| | - Anurak Bunnoy
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Road, Ladyao, Chatuchak, Bangkok 10900, Thailand; (B.K.); (A.B.); (P.K.)
- Center of Excellence in Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Road, Ladyao, Chatuchak, Bangkok 10900, Thailand
| | - Satid Chatchaiphan
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand;
| | - Pattanapon Kayansamruaj
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Road, Ladyao, Chatuchak, Bangkok 10900, Thailand; (B.K.); (A.B.); (P.K.)
- Center of Excellence in Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Road, Ladyao, Chatuchak, Bangkok 10900, Thailand
| | - Ha Thanh Dong
- Aquaculture and Aquatic Resources Management, Department of Food Agriculture and Bioresources, School of Environment, Resources and Development, Asian Institute of Technology, Pathum Thani 12120, Thailand;
| | - Saengchan Senapin
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
- Fish Health Platform, Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Prapansak Srisapoome
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Road, Ladyao, Chatuchak, Bangkok 10900, Thailand; (B.K.); (A.B.); (P.K.)
- Center of Excellence in Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Road, Ladyao, Chatuchak, Bangkok 10900, Thailand
| |
Collapse
|
8
|
Jungi SV, Machimbirike VI, Linh NV, Sangsuriya P, Salin KR, Senapin S, Dong HT. Synthetic peptides derived from predicted B cell epitopes of nervous necrosis virus (NNV) show antigenicity and elicit immunogenic responses in Asian seabass (Lates calcarifer). FISH & SHELLFISH IMMUNOLOGY 2023:108854. [PMID: 37253409 DOI: 10.1016/j.fsi.2023.108854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 05/24/2023] [Accepted: 05/28/2023] [Indexed: 06/01/2023]
Abstract
Nervous necrosis virus (NNV) has spread throughout the world, affecting more than 120 freshwater and marine fish species. While vaccination effectively prevents disease outbreaks, the difficulty of producing sufficient viruses using cell lines continues to be a significant disadvantage for producing inactivated vaccines. This study, therefore, explored the application of synthetic peptides as potential vaccine candidates for the prevention of NNV in Asian seabass (Lates calcarifer). Using the epitope prediction tool and molecular docking, three predicted immunogenic B cell epitopes (30-32 aa) derived from NNV coat protein were selected and synthesised, corresponding to amino acid positions 5 to 34 (P1), 133 to 162 (P2) and 181 to 212 (P3). All the predicted peptides interact with Asian sea bass's MHC class II by docking. The antigenicity of these peptides was determined through ELISA and all peptides were able to react with NNV-specific antibodies. Subsequently, the immunogenicity of these synthetic peptides was investigated by immunisation of Asian seabass with individual peptides (30 μg/fish) and a peptide cocktail (P1+P2+P3, 10 μg each/fish) by intraperitoneal injection, followed by a booster dose at day 28 post-primary immunisation. There was a subset of immunised fish that were able to induce upregulation of immune genes (IL-1β, TNFα, MHCI, MHCII β, CD4, CD8, and IgM-like) in the head kidney and spleen post immunization. Importantly, antibodies derived from fish immunised with synthetic peptides reacted with whole NNV virions, and sera from P1 group could neutralise NNV in an in vitro assay. Taken together, these findings indicate that synthetic linear peptides based on predicted B cell epitopes exhibited both antigenic and immunogenic properties, suggesting that they could be potential vaccine candidates for the prevention of NNV in fish.
Collapse
Affiliation(s)
- Sumit Vinod Jungi
- Aquaculture and Aquatic Resources Management, School of Environment, Resources and Development, Asian Institute of Technology, Pathum Thanim, 12120, Thailand
| | - Vimbai Irene Machimbirike
- Marine Microbial Pathogenesis and Vaccinology Lab, Department of Ocean Sciences, Memorial University, St. John's, A1C 5S7, NL, Canada
| | - Nguyen Vu Linh
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Material Science and Technology, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Pakkakul Sangsuriya
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand; Aquatic Molecular Genetics and Biotechnology Research Team, BIOTEC, NSTDA, Pathum Thani, 12120, Thailand
| | - Krishna R Salin
- Aquaculture and Aquatic Resources Management, School of Environment, Resources and Development, Asian Institute of Technology, Pathum Thanim, 12120, Thailand
| | - Saengchan Senapin
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand; Fish Heath Platform, Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Ha Thanh Dong
- Aquaculture and Aquatic Resources Management, School of Environment, Resources and Development, Asian Institute of Technology, Pathum Thanim, 12120, Thailand.
| |
Collapse
|