1
|
Miao L, Liu S, Pan KP, Jiao RL, Zhang Q, Xu TY, Tong SY, Kang KL, Zhao J, Zhang C, Wang KD, Ji AQ, Wu J, Wang L. Improved understanding of sequence polymorphisms at 42 Y chromosome short tandem repeats for the Chinese Han population. Forensic Sci Int Genet 2025; 75:103181. [PMID: 39603203 DOI: 10.1016/j.fsigen.2024.103181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024]
Abstract
Y-chromosome short tandem repeat (Y-STR) is an important type of genetic markers in the human genome, widely used in molecular anthropology and forensic genetics. However, most Y-STR studies has been focused on the length-based variations resulting from differences in the number of repeat units. Less attention was paid to sequence-based Y-STR variations. Consequently, sequence-based variation characteristics of Y-STRs in Chinese populations remain insufficiently studied. In this study, targeted sequencing of 42 Y-STR loci was performed for 331 Chinese Han males (with an average sequencing depth of 612 ×), unveiling a total of 387 sequence allele types and their frequencies in the population. Repeat pattern variations were observed in seven loci containing multiple repeat units. Across all sequenced repeat and flanking regions, 46 single-nucleotide substitutions and insertion/deletion variations were identified, including 13 mutations not recorded in the dbSNP database. Twenty-seven previously unreported sequence-based alleles were identified. Additionally, differences in Y-STRs between the Chinese Han population and three American populations (African Americans, Caucasians, and Hispanics) were revealed from sequence-based data analysis. In summary, this study provides a detailed summary of the sequence features of 42 Y-STRs in the Chinese Han population, improving our understanding of Y-STRs and providing basic data of sequence variations for the application of Y-STRs.
Collapse
Affiliation(s)
- Lei Miao
- Key Laboratory of Forensic Genetics of Ministry of Public Security, Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China; School of Forensic Medicine, Kunming Medical University, Kunming 650500, China.
| | - Shuang Liu
- School of Forensic Medicine, Kunming Medical University, Kunming 650500, China.
| | - Kun-Peng Pan
- School of Forensic Medicine, Kunming Medical University, Kunming 650500, China.
| | - Rui-Lian Jiao
- Key Laboratory of Forensic Genetics of Ministry of Public Security, Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China.
| | - Qian Zhang
- Key Laboratory of Forensic Genetics of Ministry of Public Security, Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China.
| | - Tao-Yong Xu
- Key Laboratory of Forensic Genetics of Ministry of Public Security, Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China.
| | - Shi-Yu Tong
- School of Forensic Medicine, Kunming Medical University, Kunming 650500, China.
| | - Ke-Lai Kang
- Key Laboratory of Forensic Genetics of Ministry of Public Security, Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China.
| | - Jie Zhao
- Key Laboratory of Forensic Genetics of Ministry of Public Security, Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China.
| | - Chi Zhang
- Key Laboratory of Forensic Genetics of Ministry of Public Security, Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China.
| | - Kai-Di Wang
- School of Forensic Medicine, Kunming Medical University, Kunming 650500, China.
| | - An-Quan Ji
- Key Laboratory of Forensic Genetics of Ministry of Public Security, Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China; School of Forensic Medicine, Kunming Medical University, Kunming 650500, China.
| | - Jian Wu
- School of Forensic Medicine, Kunming Medical University, Kunming 650500, China.
| | - Le Wang
- Key Laboratory of Forensic Genetics of Ministry of Public Security, Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China; School of Forensic Medicine, Kunming Medical University, Kunming 650500, China; School of Forensic Medicine, Shanxi Medical University, Jinzhong 030600, China.
| |
Collapse
|
2
|
Barni F, Ralf A, Della Rocca C, Cannistrà F, Gigliucci M, Trombetta B, Berti A, Kayser M, Cruciani F. Analysis of rapidly mutating Y-STRs enables almost complete discrimination of unrelated and related males from the African continent. Forensic Sci Int Genet 2024; 73:103127. [PMID: 39226871 DOI: 10.1016/j.fsigen.2024.103127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 08/03/2024] [Accepted: 08/13/2024] [Indexed: 09/05/2024]
Affiliation(s)
- Filippo Barni
- Forensic Biology Unit, Carabinieri Scientific Investigations Department of Rome, Rome, Italy
| | - Arwin Ralf
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Chiara Della Rocca
- Forensic Biology Unit, Carabinieri Scientific Investigations Department of Cagliari, Cagliari, Italy
| | - Federica Cannistrà
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Marco Gigliucci
- Forensic Biology Unit, Carabinieri Scientific Investigations Department of Rome, Rome, Italy
| | - Beniamino Trombetta
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Andrea Berti
- Forensic Biology Unit, Carabinieri Scientific Investigations Department of Rome, Rome, Italy
| | - Manfred Kayser
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Fulvio Cruciani
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
3
|
Haarkötter C, Isabel Medina-Lozano M, Vinueza-Espinosa DC, Saiz M, Gálvez X, Carlos Álvarez J, Antonio Lorente J. Evaluating the efficacy of three Y-STRs commercial kits in degraded skeletal remains. Sci Justice 2024; 64:543-548. [PMID: 39277336 DOI: 10.1016/j.scijus.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 06/18/2024] [Accepted: 07/29/2024] [Indexed: 09/17/2024]
Abstract
Y chromosome short tandem repeats (Y-STRs) typing is a useful tool in scenarios such as mass graves analysis or disaster victim identification and has become a routine analysis in many laboratories. Not many comparisons have been performed with the currently available commercial kits, much less with degraded skeletal remains. This research aims to evaluate the performance of three commercial Y-STR kits: Yfiler™ Plus, PowerPlex® Y23, and Investigator® Argus Y-28 in 63 degraded skeletal remains from mass graves. PowerPlex® Y23 yields more reportable markers and twice the RFU on average, while Yfiler™ Plus and Investigator® Argus Y-28 exhibited a similar behaviour. Additionally, Argus Y-28, which has not been tested with this kind of samples in literature before, showed a good performance. Finally, a predictive model was attempted to be developed from quantification and autosomal STR data. However, no acceptable model could be obtained. Nevertheless, good Y-STR typing results may be expected if at least 50 pg DNA input is used or 13 autosomal markers were previously obtained.
Collapse
Affiliation(s)
- Christian Haarkötter
- University of Granada, Laboratory of Genetic Identification & Human Rights (LABIGEN-UGR), Department of Legal Medicine, Faculty of Medicine, Av. Investigación 11 - PTS - 18016 Granada, Spain
| | - María Isabel Medina-Lozano
- University of Granada, Laboratory of Genetic Identification & Human Rights (LABIGEN-UGR), Department of Legal Medicine, Faculty of Medicine, Av. Investigación 11 - PTS - 18016 Granada, Spain
| | - Diana C Vinueza-Espinosa
- University of Granada, Laboratory of Genetic Identification & Human Rights (LABIGEN-UGR), Department of Legal Medicine, Faculty of Medicine, Av. Investigación 11 - PTS - 18016 Granada, Spain
| | - María Saiz
- University of Granada, Laboratory of Genetic Identification & Human Rights (LABIGEN-UGR), Department of Legal Medicine, Faculty of Medicine, Av. Investigación 11 - PTS - 18016 Granada, Spain
| | - Xiomara Gálvez
- University of Granada, Laboratory of Genetic Identification & Human Rights (LABIGEN-UGR), Department of Legal Medicine, Faculty of Medicine, Av. Investigación 11 - PTS - 18016 Granada, Spain
| | - Juan Carlos Álvarez
- University of Granada, Laboratory of Genetic Identification & Human Rights (LABIGEN-UGR), Department of Legal Medicine, Faculty of Medicine, Av. Investigación 11 - PTS - 18016 Granada, Spain.
| | - José Antonio Lorente
- University of Granada, Laboratory of Genetic Identification & Human Rights (LABIGEN-UGR), Department of Legal Medicine, Faculty of Medicine, Av. Investigación 11 - PTS - 18016 Granada, Spain
| |
Collapse
|
4
|
Guo LL, Yuan JH, Zhang C, Zhao J, Yao YR, Guo KL, Meng Y, Ji AQ, Kang KL, Wang L. Developmental validation of the STRSeqTyper122 kit for massively parallel sequencing of forensic STRs. Int J Legal Med 2024; 138:1255-1264. [PMID: 38416217 DOI: 10.1007/s00414-024-03195-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/09/2024] [Indexed: 02/29/2024]
Abstract
Massively parallel sequencing allows for integrated genotyping of different types of forensic markers, which reduces DNA consumption, simplifies experimental processes, and provides additional sequence-based genetic information. The STRseqTyper122 kit genotypes 63 autosomal STRs, 16 X-STRs, 42 Y-STRs, and the Amelogenin locus. Amplicon sizes of 117 loci were below 300 bp. In this study, MiSeq FGx sequencing metrics for STRseqTyper122 were presented. The genotyping accuracy of this kit was examined by comparing to certified genotypes of NIST standard reference materials and results from five capillary electrophoresis-based kits. The sensitivity of STRseqTyper122 reached 125 pg, and > 80% of the loci were correctly called with 62.5 pg and 31.25 pg input genomic DNA. Repeatability, species specificity, and tolerance for DNA degradation and PCR inhibitors of this kit were also evaluated. STRseqTyper122 demonstrated reliable performance with routine case-work samples and provided a powerful tool for forensic applications.
Collapse
Affiliation(s)
- Li-Liang Guo
- Key Laboratory of Forensic Genetics of Ministry of Public Security, Institute of Forensic Science, Ministry of Public Security, Beijing, 100038, China
| | - Jia-Hui Yuan
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Chi Zhang
- Key Laboratory of Forensic Genetics of Ministry of Public Security, Institute of Forensic Science, Ministry of Public Security, Beijing, 100038, China
| | - Jie Zhao
- Key Laboratory of Forensic Genetics of Ministry of Public Security, Institute of Forensic Science, Ministry of Public Security, Beijing, 100038, China
| | - Yi-Ren Yao
- Key Laboratory of Forensic Genetics of Ministry of Public Security, Institute of Forensic Science, Ministry of Public Security, Beijing, 100038, China
| | - Ke-Li Guo
- Key Laboratory of Forensic Genetics of Ministry of Public Security, Institute of Forensic Science, Ministry of Public Security, Beijing, 100038, China
| | - Yang Meng
- Key Laboratory of Forensic Genetics of Ministry of Public Security, Institute of Forensic Science, Ministry of Public Security, Beijing, 100038, China
| | - An-Quan Ji
- Key Laboratory of Forensic Genetics of Ministry of Public Security, Institute of Forensic Science, Ministry of Public Security, Beijing, 100038, China.
| | - Ke-Lai Kang
- Key Laboratory of Forensic Genetics of Ministry of Public Security, Institute of Forensic Science, Ministry of Public Security, Beijing, 100038, China.
| | - Le Wang
- Key Laboratory of Forensic Genetics of Ministry of Public Security, Institute of Forensic Science, Ministry of Public Security, Beijing, 100038, China.
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China.
| |
Collapse
|
5
|
Bodner M, Ballard D, Borsuk LA, King JL, Parson W, Phillips C, Gettings KB. Harmonizing the forensic nomenclature for STR loci D6S474 and DYS612. Forensic Sci Int Genet 2024; 70:103012. [PMID: 38295652 DOI: 10.1016/j.fsigen.2024.103012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 04/01/2024]
Abstract
The autosomal STR D6S474 and the Y-chromosomal STR DYS612 have been reported in multiple ways in the forensic literature, with differences in both the bracketed repeat structures and counting of numerical length-based capillary electrophoresis (CE) alleles. These issues often come to light when STR loci are introduced in commercial assays and results compared with historical publications of allele frequency data, or multiple assays are characterized with reference materials. We review the forensic literature and other relevant information, and provide suggestions for the future treatment of each STR.
Collapse
Affiliation(s)
- Martin Bodner
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - David Ballard
- King's Forensics, King's College London, Franklin-Wilkins Building, London, UK
| | - Lisa A Borsuk
- National Institute of Standards and Technology, Biomolecular Measurement Division, Gaithersburg, MD, USA
| | - Jonathan L King
- Center for Human Identification, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Walther Parson
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria; Forensic Science Program, The Pennsylvania State University, University Park, PA, USA
| | - Christopher Phillips
- Forensic Genetics Unit, Institute of Forensic Sciences, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Katherine Butler Gettings
- National Institute of Standards and Technology, Biomolecular Measurement Division, Gaithersburg, MD, USA.
| |
Collapse
|
6
|
Hodișan R, Zaha DC, Jurca CM, Petchesi CD, Bembea M. Genetic Diversity Based on Human Y Chromosome Analysis: A Bibliometric Review Between 2014 and 2023. Cureus 2024; 16:e58542. [PMID: 38887511 PMCID: PMC11182565 DOI: 10.7759/cureus.58542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2024] [Indexed: 06/20/2024] Open
Abstract
The Y chromosome has gained significant importance in the examination of genetic studies of populations because of its non-recombinant character and its form of uniparental inheritance. This work seeks to offer a comprehensive review of the specialty literature in the field of population genetics, focusing specifically on the analysis of the human Y chromosome using a bibliometric approach and knowledge mapping. This involves establishing worldwide structural networks by identifying the primary research themes, authors, and papers that have had a significant impact on the academic community. The objective is to examine global publications by analyzing citations at both the document and country level. This will involve conducting co-citation analysis for references with a high number of citations, examining bibliographic coupling through journal analysis, analyzing the co-occurrence of keywords, and investigating collaboration between authors from a country perspective. The research papers have been extracted from the Web of Science database. The bibliometric analysis was performed using the Bibliometrix and VOSviewer software tools. The purpose of this article is to serve as a starting point for future research dedicated to the analysis of the diversity of human Y chromosome haplotypes. The objectives of the study were to identify and present the most cited publications and references with the highest number of citations, and to highlight current publications at the national level.
Collapse
Affiliation(s)
- Ramona Hodișan
- Doctoral School of Biomedical Sciences, University of Oradea, Oradea, ROU
- Department of Preclinical Disciplines, University of Oradea, Faculty of Medicine and Pharmacy, Oradea, ROU
| | - Dana C Zaha
- Department of Preclinical Disciplines, University of Oradea, Faculty of Medicine and Pharmacy, Oradea, ROU
| | - Claudia M Jurca
- Department of Preclinical Disciplines, University of Oradea, Faculty of Medicine and Pharmacy, Oradea, ROU
| | - Codruta D Petchesi
- Department of Preclinical Disciplines, University of Oradea, Faculty of Medicine and Pharmacy, Oradea, ROU
| | - Marius Bembea
- Doctoral School of Biomedical Sciences, University of Oradea, Oradea, ROU
| |
Collapse
|
7
|
Lee JE, Park SU, So MH, Lee HY. Age prediction using DNA methylation of Y-chromosomal CpGs in semen samples. Forensic Sci Int Genet 2024; 69:103007. [PMID: 38217952 DOI: 10.1016/j.fsigen.2024.103007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024]
Abstract
In cases of sexual assault, the evidence often exists as a mixture of female and male body fluids, and in many cases, contains a higher proportion of female body fluids than males. In these cases, Y-STR, rather than autosomal STRs, can provide useful information. It becomes very difficult to identify the true suspect if there is no match among known suspects or if a match exists for two or more suspects, e.g. two suspects from the same paternal lineage. However, age prediction using the DNA methylation of Y-chromosomal CpGs can help narrow the search for unknown suspects and discriminate between older and younger suspects. Therefore, the DNA methylation profiles of semen samples from 56 healthy Korean males were generated using Illumina's Infinium MethylationEPIC BeadChip Array. Among the ten identified age-associated CpG markers located in the Y-chromosome, nine were used to construct age prediction models. The identified markers were further investigated in the MPS analysis of 147 semen samples, and the multiplex assay was validated with the reliability, reproducibility and sensitivity tests. Several age prediction models were constructed using the MPS data with the multiple linear regression, stepwise linear regression, ridge linear regression, lasso regression, elastic net linear regression and support vector machine analyses, and all showed MAEs of 5 to 7 years in the test set samples. Six single-source female samples were also subjected to MPS analysis but showed very low coverage that could not affect the analysis of the mixed samples. Therefore, the age prediction models of the present study are expected to provide useful investigative leads, especially in mixed male and female samples from sexual assault cases.
Collapse
Affiliation(s)
- Ji Eun Lee
- Department of Forensic Medicine, Seoul National University College of Medicine, Seoul, the Republic of Korea
| | - Sang Un Park
- Department of Forensic Medicine, Seoul National University College of Medicine, Seoul, the Republic of Korea
| | - Moon Hyun So
- Department of Forensic Medicine, Seoul National University College of Medicine, Seoul, the Republic of Korea
| | - Hwan Young Lee
- Department of Forensic Medicine, Seoul National University College of Medicine, Seoul, the Republic of Korea; Institute of Forensic and Anthropological Science, Seoul National University College of Medicine, Seoul, the Republic of Korea.
| |
Collapse
|
8
|
Mitchell MR, Chaseling J, Jones L, White T, Bernie A, Haupt LM, Griffiths LR, Wright KM. Improving the strategy to identify historical military remains: a literature review and Y-STR meta-analysis. Forensic Sci Res 2024; 9:owad050. [PMID: 38562552 PMCID: PMC10982847 DOI: 10.1093/fsr/owad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 09/26/2023] [Indexed: 04/04/2024] Open
Abstract
The identification of historical military remains by Unrecovered War Casualties-Army (UWC-A) currently relies on Y-chromosome Short Tandem Repeat (Y-STR) testing when maternal relatives are not available, or when a mitochondrial DNA match does not provide sufficient certainty of identification. However, common Y-STR profiles (using Yfiler™) between sets of remains or families often prevent identification. To resolve these cases, an investigation of additional Y-DNA markers is needed for their potential inclusion into the DNA identification strategy. The number of genetic transmissions between missing soldiers and their living relatives needs to be considered to avoid false exclusions between paternal relatives. Analysis of 236 World War I/II (WWI/II) era pairs of relatives identified up to seven genetic transmissions between WWII soldiers and their living relatives, and nine for WWI. Previous Y-STR meta-analyses were published approximately 10 years ago when rapidly mutating markers were relatively new. This paper reports a contemporary literature review and meta-analysis of 35 studies (which includes 23 studies not previously used in meta-analysis) and 23 commonly used Y-STR's mutation rates to inform the inclusion of additional loci to UWC-A's DNA identification strategy. Meta-analysis found mutation data for a given Y-STR locus could be pooled between studies and that the mutation rates were significantly different between some loci (at P < 0.05). Based on this meta-analysis, we have identified two additional markers from PowerPlex® Y23 for potential inclusion in UWC-A's identification strategy. Further avenues for potential experimental exploration are discussed. Key points From 236 UWC-A pairs of relatives, we observed up to nine genetic transmissions between WWI soldiers and their living relatives, and seven for WWII.MedCalc® software for meta-analysis utilizing the Freeman-Tukey transformation was run, which analysed 35 published studies and 23 commonly used loci. Previous Y-STR mutation rate meta-analyses are now 10 years old; this paper includes 23 studies that were not included in previous meta-analyses.Through meta-analysis, we identify two markers from PowerPlex® Y23 for potential inclusion in UWC-A's historical remains identification strategy (alongside Yfiler™). We discuss potential next steps for experimental exploration of additional Y-DNA markers.
Collapse
Affiliation(s)
- Melinda R Mitchell
- Queensland University of Technology (QUT), Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Kelvin Grove, Queensland, Australia
| | - Janet Chaseling
- Queensland University of Technology (QUT), Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Kelvin Grove, Queensland, Australia
| | - Lee Jones
- Queensland University of Technology (QUT), Research Methods Group, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Kelvin Grove, Queensland, Australia
| | - Toni White
- Queensland University of Technology (QUT), Defence Innovation Hub, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Kelvin Grove, Queensland, Australia
| | - Andrew Bernie
- Unrecovered War Casualties-Army, Australian Defence Force, Russell Offices, Russell, Australian Capital Territory, Australia
| | - Larisa M Haupt
- Queensland University of Technology (QUT), Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Kelvin Grove, Queensland, Australia
| | - Lyn R Griffiths
- Queensland University of Technology (QUT), Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Kelvin Grove, Queensland, Australia
| | - Kirsty M Wright
- Queensland University of Technology (QUT), Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Kelvin Grove, Queensland, Australia
- Unrecovered War Casualties-Army, Australian Defence Force, Russell Offices, Russell, Australian Capital Territory, Australia
- Royal Australian Air Force (RAAF), No 2 Expeditionary Health Squadron, RAAF Base Williamtown, Williamtown, New South Wales, Australia
| |
Collapse
|
9
|
Ge J, Crysup B, Peters D, Franco R, Liu M, Wang X, Huang M, Budowle B. MPKin-YSTR: Interpretation of Y chromosome STR haplotypes for missing persons cases. Electrophoresis 2023; 44:1080-1087. [PMID: 37016479 DOI: 10.1002/elps.202200225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 03/22/2023] [Accepted: 03/30/2023] [Indexed: 04/06/2023]
Abstract
Y chromosome Short Tandem Repeat (STR) haplotypes have been used in assisting forensic investigations primarily for identification and male lineage determination. The current SWGDAM interpretation guidelines for Y-STR typing provide helpful guidance on those purposes but do not address the issue of kinship analysis with Y-STR haplotypes. Because of the high mutation rate of Y-STRs, there are complex missing person cases in which inconsistent Y-STR haplotypes between true paternal lineage relatives will arise and cases with two or more male references in the same lineage and yet differ in their haplotypes. Therefore, more useful methods are needed for interpreting the Y-STR haplotype data. Computational methods and interpretation guidelines have been developed specifically addressing this issue, either using a mismatch-based counting method or a pedigree likelihood ratio method. In this study, a software program, MPKin-YSTR, was developed by implementing those more sophisticated methods. This software should be able to improve the interpretation of complex cases with Y-STR haplotype evidence. Thus, more biological evidence will be interpreted, which in turn will result in more investigation leads to help solve crimes.
Collapse
Affiliation(s)
- Jianye Ge
- Center for Human Identification, University of North Texas Health Science Center, Fort Worth, Texas, USA
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Benjamin Crysup
- Center for Human Identification, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Dixie Peters
- Center for Human Identification, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Romy Franco
- Center for Human Identification, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Muyi Liu
- Center for Human Identification, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Xuewen Wang
- Center for Human Identification, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Meng Huang
- Center for Human Identification, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Bruce Budowle
- Center for Human Identification, University of North Texas Health Science Center, Fort Worth, Texas, USA
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, Texas, USA
| |
Collapse
|
10
|
Liu Z, Long G, Lang Y, Liu D, Zhang B, Yu S, Guo F. Sequence-based mutation patterns at 41 Y chromosomal STRs in 2 548 father-son pairs. Forensic Sci Res 2023; 8:152-162. [PMID: 37621447 PMCID: PMC10445670 DOI: 10.1093/fsr/owad016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/16/2023] [Indexed: 08/26/2023] Open
Abstract
A total of 2 548 unrelated healthy father-son pairs from a Northern Han Chinese population were genotyped at 41 Y chromosomal short tandem repeat (Y-STRs) including DYS19, DYS388, DYS389I, DYS389II, DYS390, DYS391, DYS392, DYS393, DYS437, DYS438, DYS439, DYS444, DYS447, DYS448, DYS449, DYS456, DYS458, DYS460, DYS481, DYS518, DYS522, DYS549, DYS533, DYS557, DYS570, DYS576, DYS593, DYS596, DYS627, DYS635, DYS643, DYS645, Y-GATA-H4, DYF387S1a/b, DYF404S1a/b, DYS385a/b, and DYS527a/b. In 2 548 father samples, 2 387 unique haplotypes were detected with the haplotype diversity and discrimination capacity values of 0.999 956 608 and 0.96 741 007. The average gene diversity (GD) value was 0.6934 with a range from 0.1051 at DYS645 to 0.9657 at DYS385a/b. When comparing alleles at 24 overlapped Y-STRs between the ForenSeq™ deoxyribonucleic acid (DNA) Signature Prep Kit on the MiSeq FGx® Forensic Genomics System and the Goldeneye® DNA ID Y Plus Kit on the Applied Biosystems™ 3730 DNA Analyzer from 308 father samples in mutational pairs, 258 alleles were detected by massively parallel sequencing (MPS) typing including 156 length-based alleles that could be obtained by capillary electrophoresis (CE) typing, 95 repeat region (RR) variant alleles and seven flanking region variant alleles. Hereof, we found 16 novel RR variant alleles and firstly identified two SNPs (rs2016239814 at DYS19 and rs2089968964 at DYS448) and one 4-bp deletion (rs2053269960 at DYS439) that had been validated by the Database of Short Genetic Variation. Sanger sequencing or MPS was employed to confirm 356 mutations from 104 468 allele transfers generated from CE, where 96.63% resulted in one-step mutations, 2.25% in two-step, and 1.12% in multi-step, and the overall ratio of repeat gains versus losses was balanced (173 gains vs. 183 losses). In 308 father-son pairs, 268 pairs occurred mutations at a single locus, 33 pairs at two loci, six pairs at three loci, and one pair at four loci. The average Y-STR mutation rate at 41 Y-STRs was ⁓3.4 × 10-3 (95% confidence intervals: 3.1 × 10-3-3.8 × 10-3). The mutation rates at DYS576 and DYS627 were higher than 1 × 10-2 in Northern Han Chinese, whilst the mutation rates at DYF387S1a/b, DYF404S1a/b, DYS449, DYS518, and DYS570 were lower than initially defined. In this study, the classical molecular factors (the longer STR region, the more complex motif and the order father) were confirmed to drive Y-STR mutation rates increased, but the length of repeat unit did not conform to the convention. Lastly, the interactive graphical and installable StatsY was developed to facilitate forensic scientists to automatically calculate allele and haplotype frequencies, forensic parameters, and mutation rates at Y-STRs. Key points 308 of 2 548 father-son pairs from Northern Han Chinese occurred at least one mutation(s) across 41 Y-STRs.Sanger sequencing or MPS was employed to confirm those mutations generated from CE.The longer STR region, the more complex motif and the order father drove Y-STR mutation rates increased.StatsY was developed to calculate allele and haplotype frequencies, forensic parameters and mutation rates at Y-STRs.
Collapse
Affiliation(s)
- Ze Liu
- DNA Laboratory of Forensic Science Center, Shenyang Public Security Bureau, Shenyang, China
| | - Guannan Long
- DNA Laboratory of Forensic Science Center, Shenyang Public Security Bureau, Shenyang, China
| | - Yubo Lang
- School of Public Security Information Technology and Intelligence, Criminal Investigation Police University of China, Shenyang, China
| | - Dahua Liu
- Department of Forensic Medicine, Jinzhou Medical University, Jinzhou, China
| | - Biao Zhang
- DNA Laboratory of Forensic Science Center, Shenyang Public Security Bureau, Shenyang, China
| | - Shaobo Yu
- DNA Laboratory of Forensic Science Center, Shenyang Public Security Bureau, Shenyang, China
| | - Fei Guo
- School of Forensic Science and Technology, Criminal Investigation Police University of China, Shenyang, China
| |
Collapse
|
11
|
Shabalala S, Ghai M, Okpeku M. Analysis of Y-STR diversity and DNA methylation variation among Black and Indian males from KwaZulu-Natal, South Africa. Forensic Sci Int 2023; 348:111682. [PMID: 37094501 DOI: 10.1016/j.forsciint.2023.111682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/05/2023] [Indexed: 04/26/2023]
Abstract
Y-chromosome short tandem repeats (Y-STRs) are essential in understanding genetic structure and diversity of human populations and, most importantly, in identification of male perpetrators in criminal investigations. DNA methylation differences have been reported in human populations and methylation pattern at the CpG sites found within or flanking the Y-STR sites could also aid in human identification. Studies based on DNA methylation (DNAm) at Y-STRs are currently limited. The current study aimed to analyze the Y-STR diversity in South African Black and Indian individuals living in KwaZulu-Natal, Durban, South Africa, with the Yfiler™ Plus Kit and to analyze DNAm patterns in Y-STR markers CpG sites. DNA from 247 stored saliva samples were isolated and quantified. Across the 27 Y-STR loci in the Yfiler™ Plus Kit, 253 alleles were observed in 113 South African Black and Indian males, 112 unique haplotypes were observed, and one haplotype appeared twice (two Black individuals). No statistically significant differences were observed in the genetic diversity between the two population groups (Fst = 0.028, p-value ≥ 0.05). The kit showed a high discrimination capacity (DC) of 0.9912 and an overall haplotype diversity (HD) = 0.9995 among the sampled population groups. DYS438 and DYS448 markers displayed 2 and 3 CpG sites, respectively. Based on the two-tailed Fisher's Exact test, there were no statistically significant differences in the DNAm levels at DYS438 CpGs of Black and Indian males (p > 0.05). The Yfiler™ Plus Kit can be considered highly discriminatory among South African Black and Indian males. Studies on the South African population using Yfiler™ Plus Kit are scarce. Hence, accumulating Y-STR data on the diverse South African population will enhance the representation of South Africa in STR databases. Knowing which Y-STR markers are significantly informative for South Africa is essential for developing Y-STR kits better suited for the different ethnic groups. And to the best of our knowledge, DNA methylation analysis in Y-STR for different ethnic groups has never been done before. Complementing Y-STR data with methylation knowledge could provide population-specific information for forensic identification.
Collapse
Affiliation(s)
- Sthabile Shabalala
- School of Life Sciences, University of KwaZulu-Natal, Private Bag X54001, Westville, Durban 4000, South Africa
| | - Meenu Ghai
- School of Life Sciences, University of KwaZulu-Natal, Private Bag X54001, Westville, Durban 4000, South Africa.
| | - Moses Okpeku
- School of Life Sciences, University of KwaZulu-Natal, Private Bag X54001, Westville, Durban 4000, South Africa
| |
Collapse
|
12
|
Chai S, Li M, Tao R, Xia R, Kong Q, Qu Y, Chen L, Liu S, Li C, Chen P, Zhang S. Internal validation of an improved system for forensic application: a 41-plex Y-STR panel. Forensic Sci Res 2023; 8:70-78. [PMID: 37415794 PMCID: PMC10265952 DOI: 10.1093/fsr/owad012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 03/22/2023] [Indexed: 07/08/2023] Open
Abstract
Y-chromosome short tandem repeats (Y-STRs) have a unique role in forensic investigation. However, low-medium mutating Y-STRs cannot meet the requirements for male lineage differentiation in inbred populations, whereas rapidly mutating (RM) high-resolution Y-STRs might cause unexpected exclusion of paternal lineages. Thus, combining Y-STRs with low and high mutation rates helps to distinguish male individuals and lineages in family screening and analysis of genetic relationships. In this study, a novel 6-dye, 41-plex Y-STR panel was developed and validated, which included 17 loci from the Yfiler kit, nine RM Y-STR loci, 15 low-medium mutating Y-STR loci, and three Y-InDels. Developmental validation was performed for this panel, including size precision testing, stutter analysis, species specificity analysis, male specificity testing, sensitivity testing, concordance evaluation, polymerase chain reaction inhibitors analysis, and DNA mixture examination. The results demonstrated that the novel 41-plex Y-STR panel, developed in-house, was time efficient, accurate, and reliable. It showed good adaptability to directly amplify a variety of case-type samples. Furthermore, adding multiple Y-STR loci significantly improved the system's ability to distinguish related males, making it highly informative for forensic applications. In addition, the data obtained were compatible with the widely used Y-STR kits, facilitating the search and construction of population databases. Moreover, the addition of Y-Indels with short amplicons improves the analyses of degraded samples. Key Points A novel multiplex comprising 41 Y-STR and 3 Y-InDel was developed for forensic application.The multiplex included rapidly mutating Y-STRs and low-medium mutating Y-STRs, which is compatible with many commonly used Y-STR kits.The multiplex is a powerful tool for distinguishing related males, familial searching, and constructing DNA databases.
Collapse
Affiliation(s)
| | | | - Ruiyang Tao
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, China, Shanghai, China
| | - Ruocheng Xia
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, China, Shanghai, China
| | - Qianqian Kong
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, China, Shanghai, China
- Department of Forensic Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Yiling Qu
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, China, Shanghai, China
- Department of Forensic Science, Medical School of Soochow University, Suzhou, China
| | - Liqin Chen
- Department of Forensic Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Shiquan Liu
- Institute of Evidence Law and Forensic Science, China University of Political Science and Law, Beijing, China
| | - Chengtao Li
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, China, Shanghai, China
| | | | | |
Collapse
|
13
|
Fan G, Zhao Q, Wuo NA, Li Q, Mao Z. Developmental validation of a complementary Y-STR system for the amplification of forensic samples. Forensic Sci Int 2023; 346:111667. [PMID: 37003122 DOI: 10.1016/j.forsciint.2023.111667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/17/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023]
Abstract
In this study, a new complementary Y-STR system that includes 31 loci was developed (DYS522, DYS388, DYF387S1a/b, DYS510, DYS587, DYS645, DYS531, DYS593, DYS617, GATA_A10, DYS622, DYS552, DYS508, DYS447, DYS527a/b, DYS446, DYS459a/b, DYS444, DYS557, DYS443, DYS626, DYS630, DYS526a, DYF404S1a/b, DYS520, DYS518, and DYS526b). This 31-plex Y-STR system, SureID® Y-comp, is designed for biological samples from forensic casework and reference samples from forensic DNA database. To validate the suitability of this novel kit, many developmental works including size precision testing, sensitivity, male specificity testing, species specificity, PCR inhibitors, stutter precision, reproducibility, suitability for use on DNA mixture and parallel testing of different capillary electrophoresis devices were performed. Mutation rates were investigated using 295 DNA-confirmed father-son pairs. The results demonstrate that the SureID® Y-comp Kit is time-efficient, accurate, and reliable for various case-type samples. It possessed a higher discrimination power and can be a stand-alone kit for male identification. Moreover, the simply acquired additional Y-STR loci will be conductive to construct a robust database. Even if various commercial Y-STR kits are used in distinct forensic laboratories, a wider trans-database retrieval will become feasible with the effort of the SureID® Y-comp Kit.
Collapse
Affiliation(s)
- Guangyao Fan
- Forensic Center, School of Medicine, Shaoxing University, Shaoxing 312000, China.
| | - Qian Zhao
- Shanghai Xuhui District Dahua Hospital, Shanghai 200031, China
| | - Nixon Austin Wuo
- College of Life Sciences, Shaoxing University, Shaoxing 312000, China
| | - Qinghao Li
- Tongshan District Branch of Xuzhou Public Security Bureau, Xuzhou 221100, China
| | - Zemin Mao
- Ningbo Health Gene Technologies Co. Ltd., Ningbo 315040, China
| |
Collapse
|
14
|
Stasi A, Mir TUG, Pellegrino A, Wani AK, Shukla S. Forty years of research and development on forensic genetics: A bibliometric analysis. Forensic Sci Int Genet 2023; 63:102826. [PMID: 36640637 DOI: 10.1016/j.fsigen.2023.102826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
The current study aims to investigate the research publication trends in the field of forensic genetics using Bibliometric analysis. An extensive search of the Scopus database was conducted to identify scholarly articles on forensic genetics published between 1977 and 2022, and a data set comprising 2945 articles was obtained. The analysis was carried out using VOSviewer, RStudio, MS Excel and MS Access to investigate the annual publication trend, most productive journals, organizations/authors/countries, authorship and citation patterns, most cited documents/articles and co-occurrence of keywords. The results revealed the first article in the field of forensic genetics was published in 1977. By the end of 1999, only 15 articles were published. Since then, there has been a considerable increase in the yearly number of publications and post-2006, there were more than 100 yearly published articles. USA, China, Spain, Germany and United Kingdom were found to be the most productive countries. Among various organizations, the Institute of Legal Medicine, Innsbruck Medical University, Austria was found to be the most productive organization. In terms of the number of publications and citations, Morling N. was found to be the most prolific author. The highest number of articles were published in Forensic Science International: Genetics, contributing about 34% of the total articles published in different sources/journals. The document with the highest number of citations was "HOMER N, 2008, PLOS GENET", with a total of 750 citations. The most frequent keywords were forensic genetics and forensic science, followed by STR, population genetics, DNA, mt-DNA and DNA-typing. The results also revealed that there had been collaborative research among countries, organizations and authors, which helps in the exchange of ideas across disciplines, developing new skills, getting access to financial resources and generating quality results.
Collapse
Affiliation(s)
- Alessandro Stasi
- Mahidol University International College, 999 Phutthamonthon Sai 4 Rd, Salaya, Phutthamonthon District, Nakhon Pathom 73170, Thailand.
| | - Tahir Ul Gani Mir
- Department of Forensic Science, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India.
| | - Alfonso Pellegrino
- Sasin School of Management, Chulalongkorn University, Chula soi 12, Wang Mai, Pathum Wan, Bangkok 10330, Thailand.
| | - Atif Khurshid Wani
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India.
| | - Saurabh Shukla
- Department of Forensic Science, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India.
| |
Collapse
|
15
|
Ashirbekov Y, Nogay A, Abaildayev A, Zhunussova A, Sabitov Z, Zhabagin M. Genetic polymorphism of 27 Y-STR loci in Kazakh populations from Eastern Kazakhstan. Ann Hum Biol 2023; 50:48-51. [PMID: 36650935 DOI: 10.1080/03014460.2023.2170465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND The establishment of a national haplotype database is important for forensic and genetic applications and requires studying genetic polymorphisms at Y-STR sites. However, the genetic structure of the Eastern Kazakhstan population is poorly characterised. AIM To investigate the genetic polymorphisms of 27 Y-STR loci in the Kazakh population from Eastern Kazakhstan and analyse the population genetic relationships of the Eastern Kazakhs with other populations. SUBJECTS AND METHODS The Yfiler Plus kit was utilised to genotype 246 healthy, unrelated males from Eastern Kazakhstan. Based on the raw data, haplotype and allele frequencies along with forensic parameters were calculated, and an MDS plot was constructed. RESULTS A total of 207 haplotypes were detected, of which 186 were unique. The haplotype diversity and discrimination capacity were 0.997 and 0.841, respectively. Population comparisons showed that Eastern Kazakhs have close genetic relationships with Kazakhs from Xinjiang, China. At the same time, a difference was found between the studied population and the previous one in the same part of Kazakhstan. CONCLUSIONS The obtained haplotypes will help to expand the Kazakhstan Y-chromosome reference database and will be useful for future genetic research and forensic applications.
Collapse
Affiliation(s)
- Yeldar Ashirbekov
- M. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Republic of Kazakhstan
| | - Anastassiya Nogay
- National Center for Biotechnology, Astana, Republic of Kazakhstan.,School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
| | - Arman Abaildayev
- M. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Republic of Kazakhstan
| | - Aigul Zhunussova
- National Center for Biotechnology, Astana, Republic of Kazakhstan
| | - Zhaxylyk Sabitov
- National Center for Biotechnology, Astana, Republic of Kazakhstan.,L.N. Gumilyov Eurasian National University, Astana, Republic of Kazakhstan.,Research Institute for Jochi Ulus Studies, Astana, Republic of Kazakhstan
| | - Maxat Zhabagin
- National Center for Biotechnology, Astana, Republic of Kazakhstan
| |
Collapse
|
16
|
Weight of evidence of Y-STR matches computed with the discrete Laplace method: Impact of adding a suspect's profile to a reference database. Forensic Sci Int Genet 2023; 64:102839. [PMID: 36731195 DOI: 10.1016/j.fsigen.2023.102839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023]
Abstract
The discrete Laplace method is recommended by multiple parties (including the International Society for Forensic Genetics, ISFG) to estimate the weight of evidence in criminal cases when a suspect's Y-STR profile matches the crime scene Y-STR profile. Unfortunately, modelling the distribution of Y-STR profiles in the population reference database is time-consuming and requires expert knowledge. When the suspect's Y-STR profile is added to the database, as would be the protocol in many cases, the parameters of the discrete Laplace model must be re-estimated. We found that the likelihood ratios with and without adding the suspect's Y-STR profile were almost identical with 1,000 or more Y-STR profiles in the database for Y-STR profiles with 8, 12, and 17 loci. Thus, likelihood ratio calculations can be performed in seconds if an established discrete Laplace model based on at least 1,000 Y-STR profiles is used. A match in a population reference database with 17 Y-STR loci from at least 1,000 male individuals results in a likelihood ratio above 10,000 in approximately 94% of the cases, and above 100,000 in approximately 82% of the cases. We offer free software accessible without restrictions to estimate a discrete Laplace model using a Y-STR reference database and subsequently to calculate likelihood ratios.
Collapse
|
17
|
He G, Adnan A, Al-Qahtani WS, Safhi FA, Yeh HY, Hadi S, Wang CC, Wang M, Liu C, Yao J. Genetic admixture history and forensic characteristics of Tibeto-Burman-speaking Qiang people explored via the newly developed Y-STR panel and genome-wide SNP data. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.939659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Fine-scale patterns of population genetic structure and diversity of ethnolinguistically diverse populations are important for biogeographical ancestry inference, kinship testing, and development and validation of new kits focused on forensic personal identification. Analyses focused on forensic markers and genome-wide single nucleotide polymorphism (SNP) data can provide new insights into the origin, admixture processes, and forensic characteristics of targeted populations. Qiang people had a large sample size among Tibeto-Burmanspeaking populations, which widely resided in the middle latitude of the Tibetan Plateau. However, their genetic structure and forensic features have remained uncharacterized because of the paucity of comprehensive genetic analyses. Here, we first developed and validated the forensic performance of the AGCU-Y30 Y-short tandem repeats (STR) panel, which contains slowly and moderately mutating Y-STRs, and then we conducted comprehensive population genetic analyses based on Y-STRs and genome-wide SNPs to explore the admixture history of Qiang people and their neighbors. The validated results of this panel showed that the new Y-STR kit was sensitive and robust enough for forensic applications. Haplotype diversity (HD) ranging from 0.9932 to 0.9996 and allelic frequencies ranging from 0.001946 to 0.8326 in 514 Qiang people demonstrated that all included markers were highly polymorphic in Tibeto-Burman people. Population genetic analyses based on Y-STRs [RST, FST, multidimensional scaling (MDS) analysis, neighboring-joining (NJ) tree, principal component analysis (PCA), and median-joining network (MJN)] revealed that the Qiang people harbored a paternally close relationship with lowland Tibetan-Yi corridor populations. Furthermore, we conducted a comprehensive population admixture analysis among modern and ancient Eurasian populations based on genome-wide shared SNPs. We found that the Qiang people were a genetically admixed population and showed closest relationship with Tibetan and Neolithic Yellow River farmers. Admixture modeling showed that Qiang people shared the primary ancestry related to Tibetan, supporting the hypothesis of common origin between Tibetan and Qiang people from North China.
Collapse
|
18
|
Zhou Y, Cui W, Wu B, Zhu B. Development and validation of a new multiplex Y-STR panel designed to increase the power of discrimination. Electrophoresis 2022; 43:1899-1910. [PMID: 35856743 DOI: 10.1002/elps.202100313] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 03/28/2022] [Accepted: 07/08/2022] [Indexed: 12/14/2022]
Abstract
In an attempt to increase the discrimination capacity (DC) and reduce the adventitious match probability, a 6-dye multiplex Y-chromosomal short tandem repeat (Y-STR) panel named Y34plex was constructed that combined 25 Y-chromosomal markers (DYS456, DYS627, DYS390, DYS570, DYS635, DYS385a/b, DYS448, DYS437, DYS533, DYS449, DYS481, DYS392, DYS391, DYS389I, DYS460, YGATAH4, DYS438, DYS389II, DYS19, DYS458, DYF387S1a/b, DYS439, DYS393, DYS576, and DYS518) in widely used commercial kits, with nine highly polymorphic Y-STR loci (DYS557, DYS527a/b, DYS593, DYS444, DYS596, DYS643, DYS447, DYS549, and DYS645). The Y34plex is a promising type system to distinguish both unrelated and related male individuals due to the incorporation of rapidly mutated Y-STR loci. A validation study of the Y34plex was performed and followed the guidelines of the Scientific Working Group on DNA analysis methods. Results show that full Y-STR profiles were obtained from male/female DNA mixtures with 125 pg of male DNA in the presence of 50 ng of female DNA. The ability to tolerate polymerase chain reaction inhibitors commonly contained in forensic casework samples demonstrated the applicability and robustness of the Y34plex. Compared with the Yfiler Plus kit, the novel panel showed an increased power of discrimination in Chinese Wuxi Han population (n = 434). The overall haplotype diversity of the Y34plex was 0.999606, whereas DC value was 0.956221, which is suitable for use on forensic paternal investigation.
Collapse
Affiliation(s)
- Yongsong Zhou
- Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen, P. R. China.,Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, P. R. China
| | - Wei Cui
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, P. R. China
| | - Buling Wu
- Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen, P. R. China
| | - Bofeng Zhu
- Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen, P. R. China.,Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, P. R. China.,Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, P. R. China
| |
Collapse
|
19
|
Valikhova LV, Kharkov VN, Zarubin AA, Kolesnikov NA, Svarovskaya MG, Khitrinskaya IY, Shtygasheva OV, Volkov VG, Stepanov VA. Genetic Interrelation of the Chulym Turks with Khakass and Kets according to Autosomal SNP Data and Y-Chromosome Haplogroups. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422100118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
20
|
Albastaki A, Naji M, Lootah R, Almheiri R, Almulla H, Alreyami A, Almarri I, Yu Z, Zhang Y, Shu C, Alghafri R. Design and development of novel single multiplex system incorporating 26 rapidly mutating Y-STRs; 26 RM Yplex. Electrophoresis 2022; 43:1911-1919. [PMID: 35899438 DOI: 10.1002/elps.202200099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 07/09/2022] [Accepted: 07/14/2022] [Indexed: 01/07/2023]
Abstract
This article details the development of a single multiplex system amplifying 26 rapidly mutating Y-STR markers. A sequenced allelic ladder, constructed for calling alleles of all loci, is introduced. The multiplex system shows the ability to address the limitations of Y-STRs commercial kits in differentiating closely related males. The multiplex performed well in the prevalidation tests and showed great potential to be used in forensic casework.
Collapse
Affiliation(s)
- Abdulla Albastaki
- International Center for Forensic Sciences, Dubai Police G.H.Q., Dubai, United Arab Emirates
| | - Mohammed Naji
- International Center for Forensic Sciences, Dubai Police G.H.Q., Dubai, United Arab Emirates
| | - Reem Lootah
- International Center for Forensic Sciences, Dubai Police G.H.Q., Dubai, United Arab Emirates
| | - Reem Almheiri
- International Center for Forensic Sciences, Dubai Police G.H.Q., Dubai, United Arab Emirates
| | - Hanan Almulla
- International Center for Forensic Sciences, Dubai Police G.H.Q., Dubai, United Arab Emirates
| | - Afra Alreyami
- International Center for Forensic Sciences, Dubai Police G.H.Q., Dubai, United Arab Emirates
| | - Iman Almarri
- International Center for Forensic Sciences, Dubai Police G.H.Q., Dubai, United Arab Emirates
| | - Zailiang Yu
- Suzhou Microread Genetics Co., Ltd, Suzhou, P. R. China
| | - Yueke Zhang
- Suzhou Microread Genetics Co., Ltd, Suzhou, P. R. China
| | - Chang Shu
- Beijing Microread Genetics Co., Ltd, Beijing, P. R. China
| | - Rashed Alghafri
- International Center for Forensic Sciences, Dubai Police G.H.Q., Dubai, United Arab Emirates
| |
Collapse
|
21
|
Song M, Jiang L, Lyu Q, Ying J, Wang Z, Zhou Y, Song F, Luo H, Song X, Ying B. Developmental validation of the Microreader Group Y Direct ID System: A novel six‐dye typing system with 54 Y‐chromosomal loci for forensic application. Electrophoresis 2022; 43:2023-2032. [DOI: 10.1002/elps.202200109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/15/2022] [Accepted: 08/09/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Mengyuan Song
- Department of Laboratory Medicine West China Hospital Sichuan University Chengdu Sichuan P. R. China
| | - Lanrui Jiang
- Department of Forensic Genetics West China School of Basic Medical Sciences & Forensic Medicine Sichuan University Chengdu Sichuan P. R. China
| | - Qiang Lyu
- Department of Clinical Laboratory People's Hospital of Beichuan Qiang Autonomous County Beichuan Sichuan P. R. China
| | - Jun Ying
- Department of Clinical Laboratory Santai People's Hospital Santai Sichuan P. R. China
| | - Zefei Wang
- Department of Forensic Genetics West China School of Basic Medical Sciences & Forensic Medicine Sichuan University Chengdu Sichuan P. R. China
| | - Yuxiang Zhou
- Department of Forensic Genetics West China School of Basic Medical Sciences & Forensic Medicine Sichuan University Chengdu Sichuan P. R. China
| | - Feng Song
- Department of Forensic Genetics West China School of Basic Medical Sciences & Forensic Medicine Sichuan University Chengdu Sichuan P. R. China
| | - Haibo Luo
- Department of Forensic Genetics West China School of Basic Medical Sciences & Forensic Medicine Sichuan University Chengdu Sichuan P. R. China
| | - Xingbo Song
- Department of Laboratory Medicine West China Hospital Sichuan University Chengdu Sichuan P. R. China
- Department of Clinical Laboratory Karamay Hospital of Integrated Traditional Chinese and Western Medicine (Karamay People's Hospital) Karamay Xinjiang P. R. China
| | - Binwu Ying
- Department of Laboratory Medicine West China Hospital Sichuan University Chengdu Sichuan P. R. China
| |
Collapse
|
22
|
Otagiri T, Sato N, Asamura H, Parvanova E, Kayser M, Ralf A. RMplex reveals population differences in RM Y-STR mutation rates and provides improved father-son differentiation in Japanese. Forensic Sci Int Genet 2022; 61:102766. [PMID: 36007266 DOI: 10.1016/j.fsigen.2022.102766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/15/2022] [Indexed: 11/29/2022]
Abstract
Rapidly mutating Y chromosomal short tandem repeat markers (RM Y-STRs) -characterized by at least one mutation per 100 generations- are suitable for differentiating both related and unrelated males. The recently introduced multiplex method RMplex allows for the efficient analysis of 30 Y-STRs with increased mutation rates, including all 26 currently known RM Y-STRs. While currently available RM Y-STR mutation rates were established mostly from European individuals, here we applied RMplex to DNA samples of 178 genetically confirmed father-son pairs from East Asia. For several Y-STRs, we found significantly higher mutation rates in Japanese compared to previous estimates. The consequent father-son differentiation rate based on RMplex was significantly higher (52%) in Japanese than previously reported for Europeans (42%), and much higher than with Yfiler Plus in both sample sets (14% and 13%, respectively). Further analysis suggests that the higher mutation and relative differentiation rates in Japanese can in part be explained by on average longer Y-STR alleles relative to Europeans. Moreover, we show that the most striking difference, which was found in DYS712, could be linked to a Y-SNP haplogroup (O1b2-P49) that is common in Japanese and rare in other populations. We encourage the forensic Y-STR community to generate more RMplex data from more population samples of sufficiently large sample size in combination with Y-SNP data to further investigate population effects on mutation and relative differentiation rates. Until more RMplex data from more populations become available, caution shall be placed when applying RM Y-STR mutation rate estimates established in one population, such as Europeans, to forensic casework involving male suspects of paternal origin from other populations, such as non-Europeans.
Collapse
Affiliation(s)
- Tomomi Otagiri
- Department of Legal Medicine, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Noriko Sato
- Department of Legal Medicine, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Hideki Asamura
- Department of Legal Medicine, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Evelina Parvanova
- Department of Genetic Identification, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Manfred Kayser
- Department of Genetic Identification, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Arwin Ralf
- Department of Genetic Identification, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| |
Collapse
|
23
|
Nazir S, Adnan A, Rehman RA, Al-Qahtani WS, Alsaleh AB, Al-Harthi HS, Safhi FA, Almheiri R, Lootah R, Alreyami A, Almarri I, Wang CC, Rakha A, Hadi S. Mutation Rate Analysis of RM Y-STRs in Deep-Rooted Multi-Generational Punjabi Pedigrees from Pakistan. Genes (Basel) 2022; 13:genes13081403. [PMID: 36011314 PMCID: PMC9407599 DOI: 10.3390/genes13081403] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/03/2022] [Indexed: 11/30/2022] Open
Abstract
Y chromosome short tandem repeat polymorphisms (Y-STRs) are important in many areas of human genetics. Y chromosomal STRs, being normally utilized in the field of forensics, exhibit low haplotype diversity in consanguineous populations and fail to discriminate among male relatives from the same pedigree. Rapidly mutating Y-STRs (RM Y-STRs) have received much attention in the past decade. These 13 RM Y-STRs have high mutation rates (>10−2) and have considerably higher haplotype diversity and discrimination capacity than conventionally used Y-STRs, showing remarkable power when it comes to differentiation in paternal lineages in endogamous populations. Previously, we analyzed two to four generations of 99 pedigrees with 1568 pairs of men covering one to six meioses from all over Pakistan and 216 male relatives from 18 deep-rooted endogamous Sindhi pedigrees covering one to seven meioses. Here, we present 861 pairs of men from 62 endogamous pedigrees covering one to six meioses from the Punjabi population of Punjab, Pakistan. Mutations were frequently observed at DYF399 and DYF403, while no mutation was observed at DYS526a/b. The rate of differentiation ranged from 29.70% (first meiosis) to 80.95% (fifth meiosis), while overall (first to sixth meiosis) differentiation was 59.46%. Combining previously published data with newly generated data, the overall differentiation rate was 38.79% based on 5176 pairs of men related by 1−20 meioses, while Yfiler differentiation was 9.24% based on 3864 pairs. Using father−son pair data from the present and previous studies, we also provide updated RM Y-STR mutation rates.
Collapse
Affiliation(s)
- Shahid Nazir
- Department of Forensic Sciences, University of Health Sciences, Lahore 54600, Pakistan
| | - Atif Adnan
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Xiamen University, Xiamen 361005, China
- Department of Forensic Sciences, College of Criminal Justice, Naïf Arab University of Security Sciences, Riyadh 11452, Saudi Arabia
- Correspondence: (A.A.); (C.-C.W.); (A.R.); (S.H.)
| | - Rahat Abdul Rehman
- Department of Forensic Sciences, University of Health Sciences, Lahore 54600, Pakistan
| | - Wedad Saeed Al-Qahtani
- Department of Forensic Sciences, College of Criminal Justice, Naïf Arab University of Security Sciences, Riyadh 11452, Saudi Arabia
| | - Abrar B. Alsaleh
- Department of Forensic Sciences, College of Criminal Justice, Naïf Arab University of Security Sciences, Riyadh 11452, Saudi Arabia
| | - Hussam S. Al-Harthi
- Prince Sultan Military Medical City, Makkah Al Mukarramah Road, Al-Sulimaniyah, Riyadh 12233, Saudi Arabia
| | - Fatmah Ahmed Safhi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Reem Almheiri
- General Department of Forensic Sciences and Criminology, Dubai Police General Headquarters, Dubai 1493, United Arab Emirates
| | - Reem Lootah
- General Department of Forensic Sciences and Criminology, Dubai Police General Headquarters, Dubai 1493, United Arab Emirates
| | - Afra Alreyami
- General Department of Forensic Sciences and Criminology, Dubai Police General Headquarters, Dubai 1493, United Arab Emirates
| | - Imran Almarri
- General Department of Forensic Sciences and Criminology, Dubai Police General Headquarters, Dubai 1493, United Arab Emirates
| | - Chuan-Chao Wang
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Xiamen University, Xiamen 361005, China
- Correspondence: (A.A.); (C.-C.W.); (A.R.); (S.H.)
| | - Allah Rakha
- Department of Forensic Sciences, University of Health Sciences, Lahore 54600, Pakistan
- Correspondence: (A.A.); (C.-C.W.); (A.R.); (S.H.)
| | - Sibte Hadi
- Department of Forensic Sciences, College of Criminal Justice, Naïf Arab University of Security Sciences, Riyadh 11452, Saudi Arabia
- Correspondence: (A.A.); (C.-C.W.); (A.R.); (S.H.)
| |
Collapse
|
24
|
Della Rocca C, Trombetta B, Barni F, D’Atanasio E, Hajiesmaeil M, Berti A, Hadi S, Cruciani F. Improving discrimination capacity through rapidly mutating Y-STRs in structured populations from the African continent. Forensic Sci Int Genet 2022; 61:102755. [DOI: 10.1016/j.fsigen.2022.102755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/21/2022] [Accepted: 07/31/2022] [Indexed: 11/16/2022]
|
25
|
Xiong C, Yang C, Wu W, Zeng Y, Lin T, Chen L, Liu H, Liu C, Du W, Wang M, Sun H, Liu C. Development and Validation of A Multiplex Typing System With 32 Y-STRs for Forensic Application. Forensic Sci Int 2022; 339:111409. [DOI: 10.1016/j.forsciint.2022.111409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/13/2022] [Accepted: 07/21/2022] [Indexed: 11/26/2022]
|
26
|
Hadi S, Yao J, Adnan A. Editorial: Role of Y Chromosome in Molecular Anthropology, Forensics, and Genetic Genealogy. Front Genet 2022; 13:863455. [PMID: 35754810 PMCID: PMC9218708 DOI: 10.3389/fgene.2022.863455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/09/2022] [Indexed: 12/03/2022] Open
Affiliation(s)
- Sibte Hadi
- Department of Forensic Sciences, College of Criminal Justice, Naif Arab University for Security Sciences, Riyadh, Kingdom of Saudi Arabia
| | - Jun Yao
- Department of Forensic Genetics, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Atif Adnan
- Department of Forensic Genetics, School of Forensic Medicine, China Medical University, Shenyang, China
| |
Collapse
|
27
|
Javed F, Shafique M, McNevin D, Javed MU, Shehzadi A, Shahid AA. Empirical Evidence on Enhanced Mutation Rates of 19 RM-YSTRs for Differentiating Paternal Lineages. Genes (Basel) 2022; 13:genes13060946. [PMID: 35741708 PMCID: PMC9222627 DOI: 10.3390/genes13060946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/13/2022] [Accepted: 05/20/2022] [Indexed: 11/21/2022] Open
Abstract
Rapidly mutating Y-chromosomal short tandem repeats (RM Y STRs) with mutation rates ≥ 10−2 per locus per generation are valuable for differentiating amongst male paternal relatives where standard Y STRs with mutation rates of ≤10−3 per locus per generation may not. Although the 13 RM Y STRs commonly found in commercial assays provide higher levels of paternal lineage differentiation than conventional Y STRs, there are many male paternal relatives that still cannot be differentiated. This can be improved by increasing the number of Y STRs or choosing those with high mutation rates. We present a RM Y STR multiplex comprising 19 loci with high mutation rates and its developmental validation (repeatability, sensitivity and male specificity). The multiplex was found to be robust, reproducible, specific and sensitive enough to generate DNA profiles from samples with inhibitors. It was also able to detect all contributor alleles of mixtures in ratios up to 9:1. We provide preliminary evidence for the ability of the multiplex to discriminate between male paternal relatives by analyzing large numbers of male relative pairs (536) separated by one to seven meioses. A total of 96 mutations were observed in 162 meioses of father–son pairs, and other closely related male pairs were able to be differentiated after 1, 2, 3, 4, 5, 6 and 7 meiosis in 44%, 69%, 68%, 85%, 0%, 100% and 100% of cases, respectively. The multiplex offers a noticeable enhancement in the ability to differentiate paternally related males compared with the 13 RM Y STR set. We envision the future application of our 19 RM Yplex in criminal cases for the exclusion of male relatives possessing matching standard Y STR profiles and in familial searching with unknown suspects. It represents a step towards the complete individualization of closely related males.
Collapse
Affiliation(s)
- Faqeeha Javed
- Forensic Research Laboratory, Centre of Excellence in Molecular Biology, University of the Punjab, Lahore 53700, Pakistan; (F.J.); (A.S.); (A.A.S.)
| | - Muhammad Shafique
- Forensic Research Laboratory, Centre of Excellence in Molecular Biology, University of the Punjab, Lahore 53700, Pakistan; (F.J.); (A.S.); (A.A.S.)
- Correspondence:
| | - Dennis McNevin
- Centre for Forensic Science, University of Technology Sydney, Sydney 2007, Australia;
| | - Muhammad Usama Javed
- Faculty of Medicine, Allama Iqbal Medical College, University of Health Sciences, Lahore 54700, Pakistan;
| | - Abida Shehzadi
- Forensic Research Laboratory, Centre of Excellence in Molecular Biology, University of the Punjab, Lahore 53700, Pakistan; (F.J.); (A.S.); (A.A.S.)
| | - Ahmad Ali Shahid
- Forensic Research Laboratory, Centre of Excellence in Molecular Biology, University of the Punjab, Lahore 53700, Pakistan; (F.J.); (A.S.); (A.A.S.)
| |
Collapse
|
28
|
de Knijff P. On the Forensic Use of Y-Chromosome Polymorphisms. Genes (Basel) 2022; 13:genes13050898. [PMID: 35627283 PMCID: PMC9141910 DOI: 10.3390/genes13050898] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 12/26/2022] Open
Abstract
Nowadays, the use of Y-chromosome polymorphisms forms an essential part of many forensic DNA investigations. However, this was not always the case. Only since 1992 have we seen that some forensic scientists started to have an interest in this chromosome. In this review, I will sketch a brief history focusing on the forensic use of Y-chromosome polymorphisms. Before describing the various applications of short-tandem repeats (STRs) and single nucleotide polymorphisms (SNPs) on the Y-chromosome, I will discuss a few often ignored aspects influencing proper use and interpretation of Y-chromosome information: (i) genotyping Y-SNPs and Y-STRs, (ii) Y-STR haplotypes shared identical by state (IBS) or identical by descent (IBD), and (iii) Y-haplotype database frequencies.
Collapse
Affiliation(s)
- Peter de Knijff
- Department of Human Genetics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| |
Collapse
|
29
|
Wei X, Song F, Wang X, Wang S, Jiang L, Zhang K, Zhou Y, Wang Z, Liao M, Zha L, Luo H. Validation of the AGCU Expressmarker 20 + 20Y Kit: A 6-dye multiplex assay for forensic application. Forensic Sci Int 2022; 336:111342. [DOI: 10.1016/j.forsciint.2022.111342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/15/2022] [Accepted: 05/07/2022] [Indexed: 11/04/2022]
|
30
|
Dooley KB, Thabang Madisha M, Strümpher S, Ehlers K. Forensic genetic value of 27 Y-STR loci (Y-Filer® Plus) in the South African population. Sci Justice 2022; 62:358-364. [PMID: 35598928 DOI: 10.1016/j.scijus.2022.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 10/18/2022]
Abstract
South Africa has one of the highest rape statistics in the world, with an average of 117 rapes reported daily. Y-STR genotyping is becoming a popular tool in the analysis of DNA evidence collected after a crime of a sexual nature has been committed, but has yet to be implemented in South Africa's forensic laboratories. This study aimed to investigate the forensic value of the 27 Yfiler™ Plus loci in the South African population. A total of 271 samples from the African, Asian/Indian, Mixed Ancestry1, and Caucasian populations at the University of the Free State in Bloemfontein, South Africa were amplified and analysed using ThermoFisher Scientific's Yfiler™ Plus PCR Amplification kit. Of the 271 samples, 261 were identified to be unique, with an overall discrimination capacity of 98.15%. Discrimination capacities ranged from 91.67% for the Asian/Indian population to 100% for the Mixed Ancestry population. The haplotype diversity across the four populations is 0.9999, with an average gene diversity across all loci of 0.717. The forensic parameters estimated in this study provide evidence for the potential use of the commercial Yfiler™ Plus PCR amplification kit in a forensic application in South Africa.
Collapse
Affiliation(s)
- Kyla Bianca Dooley
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa
| | - M Thabang Madisha
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa
| | - Sonja Strümpher
- ThermoFisher Scientific, Fairland, Johannesburg 2195, South Africa
| | - Karen Ehlers
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa.
| |
Collapse
|
31
|
Jin X, Zhang H, Ren Z, Wang Q, Liu Y, Ji J, Zhang H, Yang M, Zhou Y, Huang J. Developmental Validation of a Rapidly Mutating Y-STR Panel Labeled by Six Fluoresceins for Forensic Research. Front Genet 2022; 13:777440. [PMID: 35309136 PMCID: PMC8927084 DOI: 10.3389/fgene.2022.777440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 01/20/2022] [Indexed: 11/23/2022] Open
Abstract
The male-specific region of the human Y chromosome is a useful genetic marker for genealogical searching, male inheritance testing, and male DNA mixture deconvolution in forensic studies. However, the Y chromosomal short tandem repeats (Y-STRs) are difficult to distinguish among related males due to their low/medium mutation rate. In contrast, rapidly mutating (RM) Y-STRs exhibit unusually high mutation rates and possess great potential for differentiating male lineages. In this study, we developed a novel Y-STRs multiplex amplification assay of 32 RM Y-STRs by fragment analysis using six dye-labeled technologies (FAM, HEX, TAMRA, ROX, VIG, and SIZ). The development and the validation of the kit were carried out in accordance with the Scientific Working Group guidelines on DNA Analysis Methods. Identical allelic profiles of the 32 RM Y-STRs using a DNA 9948 sample as the positive control could be observed at different concentrations of PCR reagents. Further, the RM Y-STRs did not show cross-reactions with other common animal species, and the developed assay could tolerate interferences from common PCR inhibitors and mixed DNA samples. More importantly, the kit showed relatively high sensitivity and could detect trace DNA samples. Genetic distributions of 32 RM Y-STRs in the Guizhou Han population revealed that these RM Y-STRs showed relatively high genetic diversities. In conclusion, the RM Y-STR assay developed here showed good species specificity, high sensitivity, tolerance to inhibitors, and sample compatibility, which can be viewed as a highly efficient tool with high discrimination capacity for forensic male differentiation.
Collapse
Affiliation(s)
- Xiaoye Jin
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Hongling Zhang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Zheng Ren
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Qiyan Wang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Yubo Liu
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Jingyan Ji
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Han Zhang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Meiqing Yang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Yongsong Zhou
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Jiang Huang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
- *Correspondence: Jiang Huang,
| |
Collapse
|
32
|
Moon MH, Hong SR, Shin KJ. Sequence Variations of 31 Υ-Chromosomal Short Tandem Repeats Analyzed by Massively Parallel Sequencing in Three U.S. Population Groups and Korean Population. J Korean Med Sci 2022; 37:e40. [PMID: 35166077 PMCID: PMC8845103 DOI: 10.3346/jkms.2022.37.e40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/19/2021] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Rapidly mutating (RM) Y-chromosomal short tandem repeats (Y-STRs) have been demonstrated to increase the possibility of distinguishing between male relatives due to a higher mutation rate than conventional Y-STRs. Massively parallel sequencing (MPS) can be useful for forensic DNA typing as it allows the detection of sequence variants of many forensic markers. Here, we present sequence variations of 31 Y-STRs including nine RM Y-STRs (DYF387S1, DYF399S1, DYF404S1, DYS449, DYS518, DYS570, DYS576, DYS612, and DYS627), their frequencies, distribution, and the gain in the number of alleles using MPS. METHODS We constructed a multiplex MPS assay capable of simultaneously amplifying 32 Y-chromosomal markers, producing amplicons ranging from 85-274 bp. Barcoded libraries from 220 unrelated males from four populations-African Americans, Caucasians, Hispanics, and Koreans-were generated via two-step polymerase chain reaction and sequenced on a MiSeq system. Genotype concordance between the capillary electrophoresis (CE) and MPS method and sequence variation of Y-STRs were investigated. RESULTS In total, 195 alleles were increased by MPS compared to CE-based alleles (261 to 456). The DYS518 marker showed the largest increase due to repeat region variation (a 3.69-fold increase). The highest increase in the number of alleles due to single nucleotide polymorphisms in the flanking region was found in DYF399S1. RM Y-STRs had more diverse sequences than conventional Y-STRs. Furthermore, null alleles were observed in DYS576 due to primer-binding site mutation, and allele drop-outs in DYS449 resulted from low marker coverage of less than the threshold. CONCLUSION The results suggest that the expanded and discriminative MPS assay could provide more genetic information for Y-STRs, especially for RM Y-STRs, and could advance male individualization. Compiling sequence-based Y-STR data for worldwide populations would facilitate the application of MPS in the field of forensic genetics and could be applicable in solving male-related forensic cases.
Collapse
Affiliation(s)
- Mi Hyeon Moon
- Department of Forensic Medicine, Yonsei University College of Medicine, Seoul, Korea
- Graduate School of Medical Science and Brain Korea 21 Project, Yonsei University, Seoul, Korea
| | - Sae Rom Hong
- Department of Forensic Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Kyoung-Jin Shin
- Department of Forensic Medicine, Yonsei University College of Medicine, Seoul, Korea
- Graduate School of Medical Science and Brain Korea 21 Project, Yonsei University, Seoul, Korea.
| |
Collapse
|
33
|
Neuhuber F, Dunkelmann B, Grießner I, Helm K, Kayser M, Ralf A. Improving the differentiation of closely related males by RMplex analysis of 30 Y-STRs with high mutation rates. Forensic Sci Int Genet 2022; 58:102682. [DOI: 10.1016/j.fsigen.2022.102682] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/16/2022] [Accepted: 02/20/2022] [Indexed: 11/04/2022]
|
34
|
Farhat Ullah M, Ali A, Majeed A, Ijaz A, Albastaki A, Ijaz Khan M, Ramzan Khan M, Ahmed Alghamdi H, Abdulrahman Alshahrani M. Population and Mutational Assessment of Novel Repeats in 13RM Y-STRs in Unrelated Males Born in Gilgit, Pakistan. Saudi J Biol Sci 2022; 29:3177-3183. [PMID: 35844379 PMCID: PMC9280172 DOI: 10.1016/j.sjbs.2022.01.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 11/25/2022] Open
Abstract
Because they are totally transferred to the future generations until mutations occur, Y chromosome genetic markers are commonly utilised in forensics for the classification of male lineages for criminal justice purposes. The mutation rate of Rapidly Mutating Y-STRs (RM Y-STRs) markers is high. That is not seen in other Y-STRs markers, and they appear to be effective in distinguishing paternally related men. This study aimed to estimate the population and mutational parameters of 13 RM Y-STRs in 13 unrelated males born in Gilgit, Pakistan. Repeat there was no population substructure and strong discriminating capacity in the counts. In this population, there were higher mutation rates with the unusual structure of repeats. More research is needed to better characterize these loci in diverse Pakistani groups.
Collapse
|
35
|
Improving the regional Y-STR haplotype resolution utilizing haplogroup-determining Y-SNPs and the application of machine learning in Y-SNP haplogroup prediction in a forensic Y-STR database: A pilot study on male Chinese Yunnan Zhaoyang Han population. Forensic Sci Int Genet 2021; 57:102659. [PMID: 35007855 DOI: 10.1016/j.fsigen.2021.102659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 12/14/2021] [Accepted: 12/27/2021] [Indexed: 11/23/2022]
Abstract
Improving the resolution of the current widely used Y-chromosomal short tandem repeat (Y-STR) dataset is of great importance for forensic investigators, and the current approach is limited, except for the addition of more Y-STR loci. In this research, a regional Y-DNA database was investigated to improve the Y-STR haplotype resolution utilizing a Y-SNP Pedigree Tagging System that includes 24 Y-chromosomal single nucleotide polymorphism (Y-SNP) loci. This pilot study was conducted in the Chinese Yunnan Zhaoyang Han population, and 3473 unrelated male individuals were enrolled. Based on data on the male haplogroups under different panels, the matched or near-matching (NM) Y-STR haplotype pairs from different haplogroups indicated the critical roles of haplogroups in improving the regional Y-STR haplotype resolution. A classic median-joining network analysis was performed using Y-STR or Y-STR/Y-SNP data to reconstruct population substructures, which revealed the ability of Y-SNPs to correct misclassifications from Y-STRs. Additionally, population substructures were reconstructed using multiple unsupervised or supervised dimensionality reduction methods, which indicated the potential of Y-STR haplotypes in predicting Y-SNP haplogroups. Haplogroup prediction models were built based on nine publicly accessible machine-learning (ML) approaches. The results showed that the best prediction accuracy score could reach 99.71% for major haplogroups and 98.54% for detailed haplogroups. Potential influences on prediction accuracy were assessed by adjusting the Y-STR locus numbers, selecting Y-STR loci with various mutabilities, and performing data processing. ML-based predictors generally presented a better prediction accuracy than two available predictors (Nevgen and EA-YPredictor). Three tree models were developed based on the Yfiler Plus panel with unprocessed input data, which showed their strong generalization ability in classifying various Chinese Han subgroups (validation dataset). In conclusion, this study revealed the significance and application prospects of Y-SNP haplogroups in improving regional Y-STR databases. Y-SNP haplogroups can be used to discriminate NM Y-STR haplotype pairs, and it is important for forensic Y-STR databases to develop haplogroup prediction tools to improve the accuracy of biogeographic ancestry inferences.
Collapse
|
36
|
Bini C, Cilli E, Sarno S, Traversari M, Fontani F, Boattini A, Pelotti S, Luiselli D. Twenty-Seven Y-Chromosome Short Tandem Repeats Analysis of Italian Mummies of the 16th and 18th Centuries: An Interdisciplinary Research. Front Genet 2021; 12:720640. [PMID: 34659342 PMCID: PMC8514714 DOI: 10.3389/fgene.2021.720640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/12/2021] [Indexed: 11/13/2022] Open
Abstract
Roccapelago (MO) is a small village located in the Northern Central Apennines, with a population of 31 inhabitants (2014). In 2010, more than 400 individuals dated between the end of the 16th and the 18th century, many of which partially mummified, were discovered in the crypt of the church. This small village, because of its geographical location and surrounding environment, seems to possess the characteristics of a genetic isolate, useful for population genetics and genealogical analyses. Thus, a diachronic study of DNA aimed at investigating the structure and dynamics of the population of Roccapelago over the about 4 centuries, was conducted by analyzing ancient and modern inhabitants of the village. The 14 modern samples were selected by considering both the founder surnames of the village, identified thanks to the study of parish registers, and the grandparent's criterion. From 25 ancient mummies, morphologically assigned to male individuals, the petrous bone, that harbors high DNA amounts, was selected for the DNA extraction. The quantification and qualitative assessment of total human male DNA were evaluated by a real-time PCR assay using the Quantifiler Trio DNA Quantification Kit and multiplex PCR of 27 Y-chromosome short tandem repeat (Y-STR) markers included in the Yfiler Plus PCR Amplification Kit, with seven rapidly mutating Y-STR loci for improving discrimination of male lineages, was performed to genotype the samples. Y-STRs were analyzed according to the criteria of ancient DNA (aDNA) analysis to ensure that authentic DNA typing results were obtained from these ancient samples. The molecular analysis showed the usefulness of the Y chromosome to identify historically relevant remains and discover patterns of relatedness in communities moving from anthropology to genetic genealogy and forensics.
Collapse
Affiliation(s)
- Carla Bini
- Laboratory of Forensic Genetics, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Elisabetta Cilli
- Laboratory of Ancient DNA (aDNALab), Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - Stefania Sarno
- Laboratory of Molecular Anthropology and Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Mirko Traversari
- Laboratory of Ancient DNA (aDNALab), Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - Francesco Fontani
- Laboratory of Ancient DNA (aDNALab), Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - Alessio Boattini
- Laboratory of Molecular Anthropology and Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Susi Pelotti
- Laboratory of Forensic Genetics, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Donata Luiselli
- Laboratory of Ancient DNA (aDNALab), Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| |
Collapse
|
37
|
Kharkov VN. Y-Chromosome Markers in Population Genetics: Fundamental and Applied Results of Ethnogenomic Research. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421090040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
38
|
Zhou Y, Song F, Dai H, Wang S, Zhang K, Wei X, Wang X, Luo H. Developmental validation of the Microreader™ RM-Y ID System: a new rapidly mutating Y-STR 17-plex system for forensic application. Int J Legal Med 2021; 136:501-512. [PMID: 34302216 DOI: 10.1007/s00414-021-02632-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/07/2021] [Indexed: 10/20/2022]
Abstract
Y-chromosomal short tandem repeats (Y-STRs) are widely applied to evolutionary, genealogical, and kinship analyses of male linages in forensic studies, but these low to midrange mutated Y-STRs typically fail to separate related males from the same paternal lineage. Recently, rapidly mutating Y-STRs (RM Y-STRs) have been demonstrated to improve the differentiation of male relatives and individuals. The Microreader™ RM-Y ID System is a new RM Y-STR kit that is capable of simultaneously amplifying 17 RM Y-STRs. Herein, to verify the efficiency and accuracy of the Microreader™ RM-Y ID System, developmental validation was conducted, including PCR-based studies, sensitivity, stability, species specificity, mixture, stutter percentage, and precision studies. Full profiles could be obtained when the hematin concentration was 250 μM, humic acid concentration was 1500 ng/μl, and tannic acid concentration was 200 ng/μl. Full profiles of the mixture of males/males could be detected up to a ratio of 19:1, and full profiles of females/males could always be detected even at ratios up to 24,000:1. Moreover, the forensic characteristics of 250 DNA-confirmed father-son pairs were analysed. The results showed that these 17 RM Y-STRs had high power for forensic discrimination (HD = 1) in the Chinese Han population, and the mutation rates were in the range of 4 × 10-3 (95% CI 1.00 × 10-4 to 2.21 × 10-2, DYS464) to 8.8 × 10-2 (95% CI 5.60 × 10-2 to 1.30 × 10-1, DYF399S1), indicating that the kit was effective for RM Y-STR studies and absolute individualisation of interrelated male individuals.
Collapse
Affiliation(s)
- Yuxiang Zhou
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, 3-16 Renmin South Road, Chengdu, 610041, China
| | - Feng Song
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, 3-16 Renmin South Road, Chengdu, 610041, China
| | - Hao Dai
- Department of Forensic Pathology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Shuangshuang Wang
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, 3-16 Renmin South Road, Chengdu, 610041, China
| | - Ke Zhang
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, 3-16 Renmin South Road, Chengdu, 610041, China
| | - Xiaowen Wei
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, 3-16 Renmin South Road, Chengdu, 610041, China
| | - Xindi Wang
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, 3-16 Renmin South Road, Chengdu, 610041, China
| | - Haibo Luo
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, 3-16 Renmin South Road, Chengdu, 610041, China.
| |
Collapse
|
39
|
Genetic insights into the paternal admixture history of Chinese Mongolians via high-resolution customized Y-SNP SNaPshot panels. Forensic Sci Int Genet 2021; 54:102565. [PMID: 34332322 DOI: 10.1016/j.fsigen.2021.102565] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/10/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022]
Abstract
The Mongolian people, one of the Mongolic-speaking populations, are native to the Mongolian Plateau in North China and southern Siberia. Many ancient DNA studies recently reported extensive population transformations during the Paleolithic to historic periods in this region, while little is known about the paternal genetic legacy of modern geographically different Mongolians. Here, we genotyped 215 Y-chromosomal single nucleotide polymorphisms (Y-SNPs) and 37 Y-chromosomal short tandem repeats (Y-STRs) among 679 Mongolian individuals from Hohhot, Hulunbuir, and Ordos in North China using the AGCU Y37 kit and our developed eight Y-SNP SNaPshot panels (including two panels first reported herein). The C-M130 Y-SNP SNaPshot panel defines 28 subhaplogroups, and the N/O/Q complementary Y-SNP SNaPshot panel defines 30 subhaplogroups of N1b-F2930, N1a1a1a1a3-B197, Q-M242, and O2a2b1a1a1a4a-CTS4658, which improved the resolution our developed Y-SNP SNaPshot panel set and could be applied for dissecting the finer-scale paternal lineages of Mongolic speakers. We found a strong association between Mongolian-prevailing haplogroups and some observed microvariants among the newly generated Y-STR haplotype data, suggesting the possibility of haplogroup prediction based on the distribution of Y-STR haplotypes. We identified three main ancestral sources of the observed Mongolian-dominant haplogroups, including the local lineage of C2*-M217 and incoming lineages from other regions of southern East Asia (O2*-M122, O1b*-P31, and N1*-CTS3750) and western Eurasia (R1*-M173). We also observed DE-M145, D1*-M174, C1*-F3393, G*-M201, I-M170, J*-M304, L-M20, O1a*-M119, and Q*-M242 at relatively low frequencies (< 5.00%), suggesting a complex admixture history between Mongolians and other incoming Eurasians from surrounding regions. Genetic clustering analyses indicated that the studied Mongolians showed close genetic affinities with other Altaic-speaking populations and Sinitic-speaking Hui people. The Y-SNP haplotype/haplogroup-based genetic legacy not only revealed that the stratification among geographically/linguistically/ethnically different Chinese populations was highly consistent with the geographical division and language classification, but also demonstrated that patrilineal genetic materials could provide fine-scale genetic structures among geographically different Mongolian people, suggesting that our developed high-resolution Y-SNP SNaPshot panels have the potential for forensic pedigree searches and biogeographical ancestry inference.
Collapse
|
40
|
Shang L, Ding G, Mo X, Sun J, Sun H, Yu Z, Li W. A novel multiplex of 12 multicopy Y-STRs for forensic application. J Forensic Sci 2021; 66:1901-1907. [PMID: 34110021 DOI: 10.1111/1556-4029.14774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/08/2021] [Accepted: 05/18/2021] [Indexed: 11/28/2022]
Abstract
Y chromosomal short tandem repeats (Y-STRs) have been applied overwhelmingly in forensic areas for solving paternity identification and sexual assault cases. Yet the widely used Y-STR kits contain mostly single-copy markers, which may restrict the discrimination power. Here, a novel Y-STR multiplex was developed and validated in order to complement the currently available Y-STR kits, especially on differentiating male relatives. The assay includes twelve multicopy Y-STR loci (DYF371, DYF383S1, DYS385, DYF387S1, DYS389I/II, DYF399S1, DYF404S1, DYF409S1, DYF411S1, DYS464, DYS526, DYS527; four of them are rapidly mutating ones), 1 single-copy Y-STR (DYS391), and Amelogenin, and was optimized to amplify at annealing temperature of 59°C and 28 cycles. Validation studies show that full profiles are obtained with 0.125 ng of male DNA. The system is capable of overcoming high concentrations of inhibitors such as hematin, EDTA, and humic acid. Besides, the results demonstrate good sizing precision and the ability to detect male-specific profiles in male/female DNA mixtures at a ratio of 1:800. Excellent species specificity was also observed in microorganisms and non-primates, while detectable peaks were found in some primates. Based on published genetic data, gene diversity values were above 0.7 for most of the loci in our multiplex, inferring a high capacity in discriminating unrelated and related male individuals. The kit is of great potential for forensic application.
Collapse
Affiliation(s)
- Lei Shang
- National Engineering Laboratory for Forensic Science, Beijing Engineering Research Center of Crime Scene Evidence Examination, Key Laboratory of Forensic Genetics, Institute of Forensic Science, Ministry of Public Security, Beijing, China
| | - Guangshu Ding
- National Engineering Laboratory for Forensic Science, Beijing Engineering Research Center of Crime Scene Evidence Examination, Key Laboratory of Forensic Genetics, Institute of Forensic Science, Ministry of Public Security, Beijing, China
| | - Xiaoting Mo
- National Engineering Laboratory for Forensic Science, Beijing Engineering Research Center of Crime Scene Evidence Examination, Key Laboratory of Forensic Genetics, Institute of Forensic Science, Ministry of Public Security, Beijing, China
| | - Jing Sun
- National Engineering Laboratory for Forensic Science, Beijing Engineering Research Center of Crime Scene Evidence Examination, Key Laboratory of Forensic Genetics, Institute of Forensic Science, Ministry of Public Security, Beijing, China
| | - Hui Sun
- National Engineering Laboratory for Forensic Science, Beijing Engineering Research Center of Crime Scene Evidence Examination, Key Laboratory of Forensic Genetics, Institute of Forensic Science, Ministry of Public Security, Beijing, China
| | - Zhengliang Yu
- National Engineering Laboratory for Forensic Science, Beijing Engineering Research Center of Crime Scene Evidence Examination, Key Laboratory of Forensic Genetics, Institute of Forensic Science, Ministry of Public Security, Beijing, China
| | - Wanshui Li
- National Engineering Laboratory for Forensic Science, Beijing Engineering Research Center of Crime Scene Evidence Examination, Key Laboratory of Forensic Genetics, Institute of Forensic Science, Ministry of Public Security, Beijing, China
| |
Collapse
|
41
|
Fan H, Zeng Y, Wu W, Liu H, Xu Q, Du W, Hao H, Liu C, Ren W, Wu W, Chen L, Liu C. The Y-STR landscape of coastal southeastern Han: Forensic characteristics, haplotype analyses, mutation rates, and population genetics. Electrophoresis 2021; 42:1578-1593. [PMID: 34018209 DOI: 10.1002/elps.202100037] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/16/2021] [Accepted: 05/15/2021] [Indexed: 11/09/2022]
Abstract
The Y-STR landscape of Coastal Southeastern Han (CSEH) living in Chinese southeast areas (including Guangdong, Fujian, and Zhejiang provinces) is still unclear. We investigated 62 Y-STR markers in a reasonably large number of 1021 unrelated males and 1027 DNA-confirmed father-son pairs to broaden the genetic backgrounds of CSEH. In total, 85 null alleles, 121 off-ladder alleles, and 95 copy number variants were observed, and 1012 distinct haplotypes were determined with the overall HD and DC values of 0.999974 and 0.9912. We observed 369 mutations in 76 099 meiotic transfers, and the average estimated Y-STR mutation rate was 4.85 × 10-3 (95% CI, 4.4 × 10-3 -5.4 × 10-3 ). The Spearman correlation analyses indicated that GD values (R2 = 0.6548) and average allele sizes (R2 = 0.5989) have positive correlations with Y-STR mutation rates. Our RM Y-STR set including 8 candidate RM Y-STRs, of which DYS534, DYS630, and DYS713 are new candidates in CSEH, distinguished 18.52% of father-son pairs. This study also clarified the population structures of CSEH which isolated in population-mixed South China relatively. The strategy, SM Y-STRs for familial searching and RM Y-STRs for individual identification regionally, could be applicable based on enough knowledge of the Y-STR mutability of different populations.
Collapse
Affiliation(s)
- Haoliang Fan
- School of Forensic Medicine, Southern Medical University, Guangzhou, P. R. China
| | - Ying Zeng
- School of Forensic Medicine, Southern Medical University, Guangzhou, P. R. China
| | - Weiwei Wu
- Zhejiang Key Laboratory of Forensic Science and Technology, Institute of Forensic Science of Zhejiang Provincial Public Security Bureau, Hangzhou, P. R. China
| | - Hong Liu
- Guangzhou Forensic Science Institute, Guangzhou, P. R. China
| | - Quyi Xu
- Guangzhou Forensic Science Institute, Guangzhou, P. R. China
| | - Weian Du
- School of Forensic Medicine, Southern Medical University, Guangzhou, P. R. China
| | - Honglei Hao
- Zhejiang Key Laboratory of Forensic Science and Technology, Institute of Forensic Science of Zhejiang Provincial Public Security Bureau, Hangzhou, P. R. China
| | - Changhui Liu
- Guangzhou Forensic Science Institute, Guangzhou, P. R. China
| | - Wenyan Ren
- Zhejiang Key Laboratory of Forensic Science and Technology, Institute of Forensic Science of Zhejiang Provincial Public Security Bureau, Hangzhou, P. R. China
| | - Weibin Wu
- School of Forensic Medicine, Southern Medical University, Guangzhou, P. R. China
| | - Ling Chen
- School of Forensic Medicine, Southern Medical University, Guangzhou, P. R. China
| | - Chao Liu
- School of Forensic Medicine, Southern Medical University, Guangzhou, P. R. China.,Guangzhou Forensic Science Institute, Guangzhou, P. R. China
| |
Collapse
|
42
|
Ravasini F, D'Atanasio E, Bonito M, Bonucci B, Della Rocca C, Berti A, Trombetta B, Cruciani F. Sequence Read Depth Analysis of a Monophyletic Cluster of Y Chromosomes Characterized by Structural Rearrangements in the AZFc Region Resulting in DYS448 Deletion and DYF387S1 Duplication. Front Genet 2021; 12:669405. [PMID: 33936180 PMCID: PMC8085532 DOI: 10.3389/fgene.2021.669405] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/29/2021] [Indexed: 12/26/2022] Open
Abstract
The azoospermia factor c region (AZFc), located in the long arm of the human Y chromosome, is frequently involved in chromosome rearrangements, mainly due to non-allelic homologous recombination events that occur between the nearly identical sequences (amplicon) that comprises it. These rearrangements may have major phenotypic effects like spermatogenic failure or other pathologies linked to male infertility. Moreover, they may also be relevant in forensic genetics, since some of the Y chromosome short tandem repeats (Y-STRs) commonly used in forensic analysis are located in amplicons or in inter-amplicon sequences of the AZFc. In a previous study, we identified four phylogenetically related samples with a null allele at DYS448 and a tetrallelic pattern at DYF387S1, two Y-STRs located in the AZFc. Through NGS read depth analysis, we found that the unusual Y-STR pattern may be due to a 1.6 Mb deletion arising concurrently or after a 3.5 Mb duplication event. The observed large genomic rearrangement results in copy number reduction for the RBMY gene family as well as duplication of other AZFc genes. Based on the diversity of 16 additional Y-STRs, we estimated that the duplication/deletion event occurred at least twenty generations ago, suggesting that it has not been affected by negative selection.
Collapse
Affiliation(s)
- Francesco Ravasini
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Rome, Italy
| | - Eugenia D'Atanasio
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Maria Bonito
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Rome, Italy
| | - Biancamaria Bonucci
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Rome, Italy
| | - Chiara Della Rocca
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Rome, Italy
| | - Andrea Berti
- Sezione di Biologia, Reparto CC Investigazioni Scientifiche di Roma, Rome, Italy
| | - Beniamino Trombetta
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Rome, Italy
| | - Fulvio Cruciani
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Rome, Italy.,Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Rome, Italy
| |
Collapse
|
43
|
Mutation analysis for 25 Y-STR markers in Japanese population. Leg Med (Tokyo) 2021; 50:101860. [PMID: 33607450 DOI: 10.1016/j.legalmed.2021.101860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/22/2021] [Accepted: 02/05/2021] [Indexed: 11/27/2022]
Abstract
In this study, we analyzed DNA samples from 213 Japanese father son pairs with 25 Y-chromosome short tandem repeat (Y-STR) (DYS576, DYS389I, DYS635, DYS389II, DYS627, DYS460, DYS458, DYS19, YGATAH4, DYS448, DYS391, DYS456, DYS390, DYS438, DYS392, DYS518, DYS570, DYS437, DYS385, DYS449, DYS393, DYS439, DYS481, DYF387S1, and DYS533) markers using the Yfiler™ Plus PCR amplification kit. We calculated Y-STR mutation rates for each locus to evaluate the efficacy of the 25 Y-STR markers for paternity testing and forensic identification using samples from male relatives. Six rapidly mutating Y-STR markers (DYS576, DYS627, DYS518, DYS570, DYS449 and DYF387S1), previously reported to have high mutation rates (>1.0 × 10-2), are included in the 25 Y-STR markers, but our findings revealed that the mutation rates for all Y-STR markers except for DYS576 and DYS458 were lower than 1.0 × 10-2. Therefore, the use of these 25 Y-STR markers may be useful for forensic identification in the Japanese population.
Collapse
|
44
|
Song Z, Wang Q, Zhang H, Tang J, Wang Q, Zhang H, Yang M, Ji J, Ren Z, Wu Y, Huang J. Genetic structure and forensic characterization of 36 Y-chromosomal STR loci in Tibeto-Burman-speaking Yi population. Mol Genet Genomic Med 2021; 9:e1572. [PMID: 33448700 PMCID: PMC8077142 DOI: 10.1002/mgg3.1572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/05/2020] [Accepted: 11/20/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Male-specifically inherited Y-STRs have been widely used in population genetics and forensic investigations. METHODS We genotyped and analyzed Y chromosome haplotypes of 408 unrelated Tibeto-Burman-speaking Yi male individuals from Guizhou using Goldeneye® Y-PLUS kit. Population comparisons between the Guizhou Yi and 67 reference groups were performed via the AMOVA, MDS, and phylogenetic relationship reconstruction. RESULTS A total of 389 alleles and 396 haplotypes could be detected, and the allelic frequencies ranged from 0.0025 to 0.9875. The haplotype diversity, random match probability, and discrimination capacity values were 0.9999, 0.0026, and 0.9900, respectively. The gene diversity (GD) of 36 Y-STR loci in the studied group ranged from 0.0248 (DYS645) to 0.9601 (DYS385a/b). Our newly genotyped Yi samples show a close affinity with other Tibeto-Burman speaking groups in China and Southeast Asia. CONCLUSIONS The population stratification was almost consistent with the geographic distribution and language-family, both among Chinese and worldwide ethnic groups. Our data may provide useful information for paternal lineage in the forensic application and population genetics, as well as evidence for archaeological and historical research.
Collapse
Affiliation(s)
- Zhengyang Song
- Department of Forensic MedicineGuizhou Medical UniversityGuiyangChina
| | - Qian Wang
- Guiyang Judicial Expertise Center of Public SecurityGuiyangChina
| | - Han Zhang
- Department of Forensic MedicineGuizhou Medical UniversityGuiyangChina
| | - Jing Tang
- Guiyang Judicial Expertise Center of Public SecurityGuiyangChina
| | - Qiyan Wang
- Department of Forensic MedicineGuizhou Medical UniversityGuiyangChina
| | - Hongling Zhang
- Department of Forensic MedicineGuizhou Medical UniversityGuiyangChina
| | - Meiqing Yang
- Department of Forensic MedicineGuizhou Medical UniversityGuiyangChina
| | - Jingyan Ji
- Department of Forensic MedicineGuizhou Medical UniversityGuiyangChina
| | - Zheng Ren
- Department of Forensic MedicineGuizhou Medical UniversityGuiyangChina
| | - Yan Wu
- Department of Forensic MedicineGuizhou Medical UniversityGuiyangChina
| | - Jiang Huang
- Department of Forensic MedicineGuizhou Medical UniversityGuiyangChina
| |
Collapse
|
45
|
Jin XY, Fang YT, Cui W, Chen C, Guo YX, Meng HT, Wang HD, Zhao K, Zhu BF. Development of the decision tree model for distinguishing individuals of Chinese four surnames from Zhanjiang Han population based on Y-STR haplotypes. Leg Med (Tokyo) 2021; 49:101848. [PMID: 33517135 DOI: 10.1016/j.legalmed.2021.101848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 09/12/2020] [Accepted: 01/10/2021] [Indexed: 10/22/2022]
Abstract
Co-separation studies between surnames and Y chromosome genetic markers are beneficial to revealing population migrations, surname origins, population formation histories and forensic familial searching. Genetic distributions of 27 Y-STRs in Chinese four surnames (Li, Lin, Chen and Huang) from Zhanjiang Han population were investigated. Meanwhile, we tried to develop a decision tree model for surname predictions based on Y-STR haplotypes. Allelic frequencies of 27 Y-STRs showed that unique alleles were only observed in a certain surname; besides, some alleles displayed higher frequencies in a certain surname than those in other surnames, implying these alleles might be employed as the useful indicators for surname predictions. Haplotype match probability values of 27 Y-STRs in these surnames revealed that the system could be used as a valuable tool for forensic male identification. The developed decision tree model performed well for the training set with the accuracy of 0.9860 and obtained the relatively high accuracy (>0.70) for surname predictions of the testing set. To sum up, we explored the power of the machine learning to the surname predictions based on obtained Y-STR haplotypes, which showed promising application values in forensic familial searching.
Collapse
Affiliation(s)
- Xiao-Ye Jin
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China; College of Forensic Science, Xi'an Jiaotong University Health Science Center, Xi'an, China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Ya-Ting Fang
- Multi-Omics Innovative Research Center of Forensic Identification; Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Wei Cui
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China; College of Forensic Science, Xi'an Jiaotong University Health Science Center, Xi'an, China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Chong Chen
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China; College of Forensic Science, Xi'an Jiaotong University Health Science Center, Xi'an, China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Yu-Xin Guo
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China; College of Forensic Science, Xi'an Jiaotong University Health Science Center, Xi'an, China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Hao-Tian Meng
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Hong-Dan Wang
- Medical Genetic Institute of Henan Province, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Kai Zhao
- Multi-Omics Innovative Research Center of Forensic Identification; Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Bo-Feng Zhu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China; College of Forensic Science, Xi'an Jiaotong University Health Science Center, Xi'an, China; Multi-Omics Innovative Research Center of Forensic Identification; Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
46
|
Zeyad T, Adam A, Alghafri R, Iratni R. Study of 27 Y-STR markers in United Arab Emirates population. FORENSIC SCIENCE INTERNATIONAL: REPORTS 2020. [DOI: 10.1016/j.fsir.2020.100057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
47
|
Ge J, Budowle B. Forensic investigation approaches of searching relatives in DNA databases. J Forensic Sci 2020; 66:430-443. [PMID: 33136341 DOI: 10.1111/1556-4029.14615] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/11/2020] [Accepted: 10/05/2020] [Indexed: 11/29/2022]
Abstract
There are several indirect database searching approaches to identify the potential source of a forensic biological sample. These DNA-based approaches are familial searching, Y-STR database searching, and investigative genetic genealogy (IGG). The first two strategies use forensic DNA databases managed by the government, and the latter uses databases managed by private citizens or companies. Each of these search strategies relies on DNA testing to identify relatives of the donor of the crime scene sample, provided such profiles reside in the DNA database(s). All three approaches have been successfully used to identify the donor of biological evidence, which assisted in solving criminal cases or identifying unknown human remains. This paper describes and compares these approaches in terms of genotyping technologies, searching methods, database structures, searching efficiency, data quality, data security, and costs, and raises some potential privacy and legal considerations for further discussion by stakeholders and scientists. Y-STR database searching and IGG are advantageous since they are able to assist in more cases than familial searching readily identifying distant relatives. In contrast, familial searching can be performed more readily with existing laboratory systems. Every country or state may have its own unique economic, technical, cultural, and legal considerations and should decide the best approach(es) to fit those circumstances. Regardless of the approach, the ultimate goal should be the same: generate investigative leads and solve active and cold criminal cases to public safety, under stringent policies and security practices designed to protect the privacy of its citizenry.
Collapse
Affiliation(s)
- Jianye Ge
- Center for Human Identification, University of North Texas Health Science Center, Fort Worth, TX, USA.,Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Bruce Budowle
- Center for Human Identification, University of North Texas Health Science Center, Fort Worth, TX, USA.,Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
48
|
Ye Y, An Y, Yang Y, Wu H, Zheng Y, Liao L. Assessment of the forensic application of 50 Y-STR markers in a large pedigree. Forensic Sci Res 2020; 7:207-210. [PMID: 35784420 PMCID: PMC9246022 DOI: 10.1080/20961790.2020.1802827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Short tandem repeats on the Y chromosome (Y-STRs), characterized by paternal inheritance, are valuable in forensic practice. Notably, the potential application of Y-STRs in pedigrees should be drawn upon, especially in China’s surname-concentrated natural villages. The study focused on 50 Y-STRs, including 13 rapidly mutating (RM) Y-STRs that largely constitute the current Y-STR commercial kits, and determined the differences in these Y-STRs between branches in a large pedigree and the discriminatory power of these haplotypes in different units for male relatives. As indicated in the results, 14 inconsistencies were observed at 9 Y-STRs between 10 father-son pairs. In addition, these 50 Y-STR haplotypes discriminated 10 out of 47 father-son pairs, 106 of 148 cousin pairs, 70 of 119 uncle-nephew pairs, 17 of 39 brother pairs, and 14 out of 33 grandfather-grandson pairs in a large pedigree. The RM Y-STR set is able to differentiate close male relatives in a large pedigree.
Collapse
Affiliation(s)
- Yi Ye
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Yuran An
- Criminal Technology Department, Liupanshui Public Security Bureau, Guizhou, China
| | - Yiwen Yang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Hao Wu
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Yuzi Zheng
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Linchuan Liao
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
49
|
Fu J, Cheng J, Wei C, Khan MA, Jin Z, Fu J. Assessing 23 Y-STR loci mutation rates in Chinese Han father-son pairs from southwestern China. Mol Biol Rep 2020; 47:7755-7760. [PMID: 32989501 DOI: 10.1007/s11033-020-05851-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/18/2020] [Indexed: 12/27/2022]
Abstract
In this study, we have analyzed 23 Y-chromosomal short tandem repeats (Y-STRs) (DYS576, DYS389I, DYS389II, DYS448, DYS19, DYS391, DYS481, DYS549, DYS533, DYS438, DYS437, DYS570, DYS635, DYS390, DYS439, DYS392, DYS643, DYS393, DYS458, DYS460, DYS385ab, DYS456 and Y-GATA-H4) in 175 father-son sample pairs using a Microreader™ 24Y Direct ID system. Sixteen repeat mutations of father-son pairs at 10 loci, including three mutations at DYS570, 2 mutations at DYS549, DYS460, DYS458, and DYS576, and 1 mutation at other five loci, were revealed. Furthermore, all of the observed repeat mutations were single repeat changes with 5 (31.25%) repeat insertions and 11 (68.75%) repeat deletions. The deletion rate is more than two fold higher than of insertions (11:5 = 2.2-fold). Locus-specific mutation rates estimated varied between 5.71 × 10-3 (CI from 0.1 × 10-3 to 31.4 × 10-3) and 1.71 × 10-2 (CI from 3.6 × 10-3 to 49.3 × 10-3) for the 23 Y-STRs. An average mutation rate across all 23 Y-STR markers was estimated as 3.97 × 10-3 (CI 2.3 × 10-3 to 6.4 × 10-3). Thus, locus-specific mutation rates in DYS460, DYS458, and DYS438, estimated are much higher than previously published comprehensive data, but an average mutation rate across all 23 Y-STR markers is similar to previous reports (3.97 × 10-3 vs 4.34 × 10-3). These results by characterizing Y-STR mutations will not only provided new information for Y-STR mutations but also might be important for paternal lineage identification, kinship analysis, and family relationship reconstruction in our forensic Y-STR analysis.
Collapse
Affiliation(s)
- Jiewen Fu
- Laboratory of Forensic DNA, the Judicial Authentication Center, Southwest Medical University, Luzhou, 646000, Sichuan, China.,Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jingliang Cheng
- Laboratory of Forensic DNA, the Judicial Authentication Center, Southwest Medical University, Luzhou, 646000, Sichuan, China.,Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Chunli Wei
- Laboratory of Forensic DNA, the Judicial Authentication Center, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Md Asaduzzaman Khan
- Laboratory of Forensic DNA, the Judicial Authentication Center, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Zeming Jin
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Junjiang Fu
- Laboratory of Forensic DNA, the Judicial Authentication Center, Southwest Medical University, Luzhou, 646000, Sichuan, China. .,Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
50
|
Kharkov VN, Zarubin AA, Vagaitseva KV, Radzhabov MO, Novikova LM, Valikhova LV, Khitrinskaya IY, Stepanov VA. Y Chromosome as a Tool for DNA Identification and Determination of Ethnoterritorial Origin. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420090112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|