1
|
Liu Z, Wang J, Li Z, Zhang G. mRNA for Body Fluid and Individual Identification. Electrophoresis 2024. [PMID: 39498727 DOI: 10.1002/elps.202400077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/02/2024] [Accepted: 10/20/2024] [Indexed: 11/07/2024]
Abstract
Biological stains are one of the most important pieces of evidence, playing a multifaceted role in forensic investigations. An integral facet of forensic practice involves the identification of body fluids, typically achieved through chemical and enzymatic reactions. In recent decades, the introduction of mRNA markers has been posited as a pivotal advancement to augment the capabilities of body fluid identification (BFID). The mRNA coding region single-nucleotide polymorphisms (cSNPs) also present notable advantages, particularly in the task of individual identification. Here, we review the specificity and stability of mRNA markers in the context of BFID and the prowess of mRNA polymorphism in individual identification. Additionally, innovative methods for mRNA detection are discussed.
Collapse
Affiliation(s)
- Zidong Liu
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, China
| | - Jiaqi Wang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, China
| | - Zeqin Li
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, China
| | - Gengqian Zhang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, China
| |
Collapse
|
2
|
Lynch CRH, Fleming R, Curran JM. Developing an interpretation model for body fluid identification. Forensic Sci Int 2024; 359:112032. [PMID: 38688209 DOI: 10.1016/j.forsciint.2024.112032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/14/2024] [Accepted: 04/18/2024] [Indexed: 05/02/2024]
Abstract
Criminal investigations, particularly sexual assaults, frequently require the identification of body fluid type in addition to body fluid donor to provide context. In most cases this can be achieved by conventional methods, however, in certain scenarios, alternative molecular methods are required. An example of this is the detection of menstrual fluid and vaginal material, which are not able to be identified using conventional techniques. Endpoint reverse-transcription PCR (RT-PCR) is currently used for this purpose to amplify body fluid specific messenger RNA (mRNA) transcripts in forensic casework. Real-time quantitative reverse-transcription PCR (RT-qPCR) is a similar method but utilises fluorescent markers to generate quantitative results in the form of threshold cycle (Cq) values. Despite the uncertainty surrounding body fluid identification, most interpretation guidelines utilise categorical statements. Probabilistic modelling is more realistic as it reflects biological variation as well as the known performance of the method. This research describes the application of various machine learning models to single-source mRNA profiles obtained by RT-qPCR and assesses their performance. Multinomial logistic regression (MLR), Naïve Bayes (NB), and linear discriminant analysis (LDA) were used to discriminate between the following body fluid categories: saliva, circulatory blood, menstrual fluid, vaginal material, and semen. We identified that the performance of MLR was somewhat improved when the quantitative dataset of the original Cq values was used (overall accuracy of approximately 0.95) rather than presence/absence coded data (overall accuracy of approximately 0.94). This indicates that the quantitative information obtained by RT-qPCR amplification is useful in assigning body fluid class. Of the three classification methods, MLR performed the best. When we utilised receiver operating characteristic curves to observe performance by body fluid class, it was clear that all methods found difficulty in classifying menstrual blood samples. Future work will involve the modelling of body fluid mixtures, which are common in samples analysed as part of sexual assault investigations.
Collapse
Affiliation(s)
- Courtney R H Lynch
- Institute of Environmental Science and Research Limited, Private Bag 92021, Auckland, New Zealand; School of Chemistry, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Rachel Fleming
- Institute of Environmental Science and Research Limited, Private Bag 92021, Auckland, New Zealand
| | - James M Curran
- Department of Statistics, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
3
|
Li S, Liu J, Zhao M, Su Y, Cong B, Wang Z. RNA quality score evaluation: A preliminary study of RNA integrity number (RIN) and RNA integrity and quality number (RNA IQ). Forensic Sci Int 2024; 357:111976. [PMID: 38447345 DOI: 10.1016/j.forsciint.2024.111976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/17/2024] [Accepted: 03/01/2024] [Indexed: 03/08/2024]
Abstract
In the past several years, with the in-depth development of RNA-related research, exploring the application of transcriptome and corresponding RNA biomarkers has become one of the research hotspots in the field of forensic science. High-quality RNA is essential for successful downstream workflows, especially in the steps of screening biomarkers by microarray or RNA sequencing (RNA-seq). Thus, accurately evaluating the quality of RNA samples is a critical step in obtaining meaningful expression data. The RNA integrity number (RIN) generated from the Agilent Bioanalyzer system has been widely used for RNA quality control in the past two decades. Recently, Thermo Fisher Scientific launched a ratiometric fluorescence-based method to quickly check whether an RNA sample has degraded, and the results are presented as RNA integrity and quality number (RNA IQ). Both quality score systems determine RNA quality using a numerical system based on a scale of 1-10, with 1 denoting significantly degraded specimens and 10 representing high-quality, intact RNA samples. In this preliminary study, we evaluated the consistency, reproducibility and linearity of two quality scores in RNA quality determination by analyzing heat- and RNase- artificially degraded samples. Meanwhile, the expression levels of three microRNAs (hsa-let-7 g-5p, hsa-miR-93-5p and hsa-miR-191-5p) in intact and severely degraded RNA samples were estimated by TaqMan-qPCR and droplet digital PCR. Overall, both quality scores showed good repeatability and reproducibility in their respective tests. In the samples subjected to thermal degradation, RIN showed a trend corresponding to heating time, while RNA IQ value showed almost no change on the time gradient. However, in RNase A mediated degradation, RNA IQ value observed better linearity. Furthermore, the expression levels of three microRNAs in the severely degraded samples did not show significant changes compared to the intact RNA samples. RNA degradation is a very complex and highly variable process, which is difficult to comprehensively evaluate through any one index and cannot directly compare these two parameters. Nevertheless, combined with previous research results and the expression levels of three microRNAs in this study, analyzing RNA biomarkers with stable regions or small sizes in challenged samples may be a conservative and reliable approach.
Collapse
Affiliation(s)
- Suyu Li
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Jing Liu
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Shijiazhuang 050017, China
| | - Mengyao Zhao
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Yonglin Su
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bin Cong
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Shijiazhuang 050017, China.
| | - Zheng Wang
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
4
|
Wang S, Jiang T, Yuan C, Wu L, Zhen X, Lei Y, Xie B, Tao R, Li C. An mRNA profiling assay incorporating coding region InDels for body fluid identification and the inference of the donor in mixed samples. Forensic Sci Int Genet 2024; 69:102979. [PMID: 38043150 DOI: 10.1016/j.fsigen.2023.102979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/23/2023] [Accepted: 11/23/2023] [Indexed: 12/05/2023]
Abstract
Biological traces discovered at crime scenes hold significant significance in forensic investigations. In cases involving mixed body fluid stains, the evidentiary value of DNA profiles depends on the type of body fluid from which the DNA was obtained. Recently, coding region polymorphism analysis has proved to be a promising method for directly linking specific body fluids to their respective DNA contributors in mixtures, which may help to avoid "association fallacy" between separate DNA and RNA evidence. In this study, we present an update on previously reported coding region Single Nucleotide Polymorphisms (cSNPs) by exploring the potential application of coding region Insertion/Deletion polymorphisms (cInDels). Nine promising cInDels, selected from 70 mRNA markers based on stringent screening criteria, were integrated into an existing mRNA profiling assay. Subsequently, the body fluid specificity of our cInDel assay and the genotyping consistency between complementary DNA (cDNA) and genomic DNA (gDNA) were examined. Our study demonstrates that cInDels can function as important multifunctional genetic markers, as they provide not only the ability to confirm the presence of forensically relevant body fluids, but also the ability to associate/dissociate specific body fluids with particular donors.
Collapse
Affiliation(s)
- Shouyu Wang
- Department of Forensic Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Tingting Jiang
- Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Chunyan Yuan
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, PR China, Shanghai 200063, China
| | - Liming Wu
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, PR China, Shanghai 200063, China
| | - Xiaoyuan Zhen
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, PR China, Shanghai 200063, China
| | - Yinlei Lei
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, PR China, Shanghai 200063, China
| | - Baoyan Xie
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, PR China, Shanghai 200063, China
| | - Ruiyang Tao
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, PR China, Shanghai 200063, China.
| | - Chengtao Li
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, PR China, Shanghai 200063, China; Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
5
|
Gosch A, Banemann R, Dørum G, Haas C, Hadrys T, Haenggi N, Kulstein G, Neubauer J, Courts C. Spitting in the wind?-The challenges of RNA sequencing for biomarker discovery from saliva. Int J Legal Med 2024; 138:401-412. [PMID: 37847308 PMCID: PMC10861700 DOI: 10.1007/s00414-023-03100-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/25/2023] [Indexed: 10/18/2023]
Abstract
Forensic trace contextualization, i.e., assessing information beyond who deposited a biological stain, has become an issue of great and steadily growing importance in forensic genetic casework and research. The human transcriptome encodes a wide variety of information and thus has received increasing interest for the identification of biomarkers for different aspects of forensic trace contextualization over the past years. Massively parallel sequencing of reverse-transcribed RNA ("RNA sequencing") has emerged as the gold standard technology to characterize the transcriptome in its entirety and identify RNA markers showing significant expression differences not only between different forensically relevant body fluids but also within a single body fluid between forensically relevant conditions of interest. Here, we analyze the quality and composition of four RNA sequencing datasets (whole transcriptome as well as miRNA sequencing) from two different research projects (the RNAgE project and the TrACES project), aiming at identifying contextualizing forensic biomarker from the forensically relevant body fluid saliva. We describe and characterize challenges of RNA sequencing of saliva samples arising from the presence of oral bacteria, the heterogeneity of sample composition, and the confounding factor of degradation. Based on these observations, we formulate recommendations that might help to improve RNA biomarker discovery from the challenging but forensically relevant body fluid saliva.
Collapse
Affiliation(s)
- Annica Gosch
- Institute of Legal Medicine, University Hospital of Cologne, Cologne, Germany
| | - Regine Banemann
- Federal Criminal Police Office, Forensic Science Institute, Wiesbaden, Germany
| | - Guro Dørum
- Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Cordula Haas
- Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Thorsten Hadrys
- State Criminal Police Office, Forensic Science Institute, Munich, Germany
| | - Nadescha Haenggi
- Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Galina Kulstein
- Federal Criminal Police Office, Forensic Science Institute, Wiesbaden, Germany
| | - Jacqueline Neubauer
- Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Cornelius Courts
- Institute of Legal Medicine, University Hospital of Cologne, Cologne, Germany.
| |
Collapse
|
6
|
Lynch C, Fleming R. Partial validation of multiplexed real-time quantitative PCR assays for forensic body fluid identification. Sci Justice 2023; 63:724-735. [PMID: 38030341 DOI: 10.1016/j.scijus.2023.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 09/04/2023] [Accepted: 10/15/2023] [Indexed: 12/01/2023]
Abstract
Confirmatory body fluid identification using messenger RNA (mRNA) is a well-established technique to address issues encountered with conventional testing - such as poor sensitivity, specificity, and a lack of available tests for all body fluids of interest. For over a decade, endpoint reverse-transcription polymerase chain reaction (RT-PCR) assays have been used in forensic casework for such purposes. However, in comparison with real-time quantitative RT-PCR (RT-qPCR), endpoint RT-PCR has lower sensitivity, precision, and linear dynamic range. This research details the multiplexing and partial validation of confirmatory RT-qPCR assays. We have previously described novel assays for a range of body fluid targets and identified an optimal commercial kit for their amplification. Here, multiplexing was undertaken to form three assays: circulatory blood (SLC4A1) and menstrual fluid (STC1), saliva (HTN3) and vaginal material (CYP2B7P), and spermatozoa (PRM1) and seminal fluid (KLK2), all including a synthetic internal control RNA. Partial validation of the multiplexed assays incorporated the MIQE guidelines, ISO requirements, and SWGDAM guidelines. Using receiver operating characteristic (ROC) curves, each marker was significantly different from an uninformative assay and optimal cut-offs were all above 35 cycles. All assays showed a wide LDR (ranging from 3 to 5 logs with most R2 > 0.99), and high precision (most mean CV < 1 %). STC1 showed some instances of sporadic expression in blood, semen, and vaginal material at high CT values. CYP2B7P showed off-target expression in semen and blood. The sensitivities were approximated as; saliva: 1 in 1,000 dilution of a whole buccal swab, circulatory blood: 0.01-0.1 µL blood, menstrual fluid: 1 in 10,000 dilution of a whole menstrual swab, spermatozoa: 0.001 µL semen, seminal fluid: 0.01 µL semen, and vaginal material: 1 in 1,000 dilution of a whole vaginal swab. A total of 16 mock body fluid extract mixtures and 18 swab mixtures were tested and had 100% and 99% detection of target markers below each specific cut-off, respectively. Some mixtures containing high volumes of blood and semen showed off-target CYP2B7P expression. The successful application of a probabilistic model to the RT-qPCR data was also demonstrated. Further work will involve full developmental validation.
Collapse
Affiliation(s)
- Courtney Lynch
- Forensic Science Programme, School of Chemical Sciences, The University of Auckland, Auckland, New Zealand; Forensic Research and Development Team, Institute of Environmental Science and Research Ltd, Auckland, New Zealand
| | - Rachel Fleming
- Forensic Research and Development Team, Institute of Environmental Science and Research Ltd, Auckland, New Zealand.
| |
Collapse
|
7
|
Gosch A, Bhardwaj A, Courts C. TrACES of time: Transcriptomic analyses for the contextualization of evidential stains - Identification of RNA markers for estimating time-of-day of bloodstain deposition. Forensic Sci Int Genet 2023; 67:102915. [PMID: 37598452 DOI: 10.1016/j.fsigen.2023.102915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 07/20/2023] [Accepted: 08/01/2023] [Indexed: 08/22/2023]
Abstract
Obtaining forensically relevant information beyond who deposited a biological stain on how and under which circumstances it was deposited is a question of increasing importance in forensic molecular biology. In the past few years, several studies have been produced on the potential of gene expression analysis to deliver relevant contextualizing information, e.g. on nature and condition of a stain as well as aspects of stain deposition timing. However, previous attempts to predict the time-of-day of sample deposition were all based on and thus limited by previously described diurnal oscillators. Herein, we newly approached this goal by applying current sequencing technologies and statistical methods to identify novel candidate markers for forensic time-of-day predictions from whole transcriptome analyses. To this purpose, we collected whole blood samples from ten individuals at eight different time points throughout the day, performed whole transcriptome sequencing and applied biostatistical algorithms to identify 81 mRNA markers with significantly differential expression as candidates to predict the time of day. In addition, we performed qPCR analysis to assess the characteristics of a subset of 13 candidate predictors in dried and aged blood stains. While we demonstrated the general possibility of using the selected candidate markers to predict time-of-day of sample deposition, we also observed notable variation between different donors and storage conditions, highlighting the relevance of employing accurate quantification methods in combination with robust normalization procedures.This study's results are foundational and may be built upon when developing a targeted assay for time-of-day predictions from forensic blood samples in the future.
Collapse
Affiliation(s)
- A Gosch
- Institute of Legal Medicine, Medical Faculty, University Hospital Cologne, Cologne, Germany
| | - A Bhardwaj
- Institute of Clinical Molecular Biology, University of Kiel, Kiel, Germany
| | - C Courts
- Institute of Legal Medicine, Medical Faculty, University Hospital Cologne, Cologne, Germany.
| |
Collapse
|
8
|
Wang HX, Liu XZ, He XM, Xiao C, Huang DX, Yi SH. Identification of Mixtures of Two Types of Body Fluids Using the Multiplex Methylation System and Random Forest Models. Curr Med Sci 2023; 43:908-918. [PMID: 37700190 DOI: 10.1007/s11596-023-2770-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/08/2023] [Indexed: 09/14/2023]
Abstract
OBJECTIVE Body fluid mixtures are complex biological samples that frequently occur in crime scenes, and can provide important clues for criminal case analysis. DNA methylation assay has been applied in the identification of human body fluids, and has exhibited excellent performance in predicting single-source body fluids. The present study aims to develop a methylation SNaPshot multiplex system for body fluid identification, and accurately predict the mixture samples. In addition, the value of DNA methylation in the prediction of body fluid mixtures was further explored. METHODS In the present study, 420 samples of body fluid mixtures and 250 samples of single body fluids were tested using an optimized multiplex methylation system. Each kind of body fluid sample presented the specific methylation profiles of the 10 markers. RESULTS Significant differences in methylation levels were observed between the mixtures and single body fluids. For all kinds of mixtures, the Spearman's correlation analysis revealed a significantly strong correlation between the methylation levels and component proportions (1:20, 1:10, 1:5, 1:1, 5:1, 10:1 and 20:1). Two random forest classification models were trained for the prediction of mixture types and the prediction of the mixture proportion of 2 components, based on the methylation levels of 10 markers. For the mixture prediction, Model-1 presented outstanding prediction accuracy, which reached up to 99.3% in 427 training samples, and had a remarkable accuracy of 100% in 243 independent test samples. For the mixture proportion prediction, Model-2 demonstrated an excellent accuracy of 98.8% in 252 training samples, and 98.2% in 168 independent test samples. The total prediction accuracy reached 99.3% for body fluid mixtures and 98.6% for the mixture proportions. CONCLUSION These results indicate the excellent capability and powerful value of the multiplex methylation system in the identification of forensic body fluid mixtures.
Collapse
Affiliation(s)
- Han-Xiao Wang
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao-Zhao Liu
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xi-Miao He
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chao Xiao
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dai-Xin Huang
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shao-Hua Yi
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
9
|
Lynch C, Fleming R. One-step endpoint RT-PCR assays for confirmatory body fluid identification. Forensic Sci Int Genet 2023; 64:102856. [PMID: 36921484 DOI: 10.1016/j.fsigen.2023.102856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/26/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023]
Abstract
Messenger RNA (mRNA) expression analysis is increasingly used in casework, in the form of multiplex two-step reverse transcriptase PCR (RT-PCR) assays such as CellTyper 2 (CT2), developed by the Institute of Environmental Science and Research (ESR). This paper presents the development of a one-step endpoint RT-PCR workflow to improve the efficiency and precision of confirmatory body fluid identification. A comparative study of commercial one-step RT-PCR kits was undertaken, with the highest performing kit (RNA to CT) retained for further development. Sensitivity, specificity across body fluids, and precision was assessed simultaneously using receiver operating characteristic (ROC) curves. An optimal RFU cut-off value which maximised sensitivity and specificity was determined for each marker. All assays performed significantly better when compared to the equivalent of a completely uninformative test (area under the curve of 0.5) for their target body fluid. Sensitivity varied between different donors, but the limit of detectionss were estimated as follows; saliva markers HTN3: 1 in 100 dilution of a whole buccal swab and FDCSP: 1 in 10 dilution of a whole buccal swab, circulatory blood marker SLC4A1: 0.1 µL blood, menstrual fluid markers STC1, MMP10: 1 in 10 dilution of a whole menstrual swab, spermatozoa markers PRM1, TNP1: 0.1 µL semen, seminal fluid markers KLK2: 0.1 µL semen and MSMB: 0.01 µL semen, and vaginal material marker CYP2B7P: 1 in 1000 dilution of a whole vaginal swab. The method successfully detected most body fluids in a range of simple mixtures with 77 out of 80 markers observed when expected. The developed one-step endpoint RT-PCR assays lack the sensitivity and precision required for forensic casework and provide little benefit when compared with standard two-step endpoint RT-PCR, other than minimal time and cost savings, similar sensitivity, and improved precision for some markers. As both methods utilise endpoint RT-PCR, they have the same narrow linear dynamic range. The novel method is therefore similarly susceptible to varied RNA input, a major disadvantage of this approach. The limited sensitivity and precision consistently encountered with endpoint RT-PCR - regardless of cDNA synthesis strategy - could be addressed by a real-time PCR approach.
Collapse
Affiliation(s)
- Courtney Lynch
- Forensic Science Programme, School of Chemical Sciences, The University of Auckland, Auckland, New Zealand; Forensic Research and Development Team, Institute of Environmental Science and Research Ltd, Auckland, New Zealand
| | - Rachel Fleming
- Forensic Research and Development Team, Institute of Environmental Science and Research Ltd, Auckland, New Zealand.
| |
Collapse
|
10
|
Kubo S, Niimi H, Kitajima I. Improved reverse transcription-recombinase polymerase amplification assay for blood mRNA screening: comparison with one-step RT-qPCR assay. Forensic Sci Int Genet 2023; 63:102808. [PMID: 36462298 DOI: 10.1016/j.fsigen.2022.102808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/07/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022]
Abstract
mRNA profiling is effective for body fluid identification because of its sensitivity, specificity, and multiplexing capability. Body fluid mRNA markers can typically be detected using RT-qPCR, RT-PCR followed by capillary electrophoresis, or targeted RNA sequencing. However, due to the multiple handling steps involved, the analysis of many forensic samples using these methods requires time and effort. Here, we describe a rapid and simple method for detecting the blood mRNA marker hemoglobin β (HBB), intended for use in screening before definitive blood identification. We employed a reverse transcription-recombinase polymerase amplification (RT-RPA) assay that can detect target mRNA within 20 min in a single tube. For comparison, we used a one-step RT-qPCR assay. We optimized the RT-RPA assay and found that it could detect HBB from 10-3-10-4 ng of leukocyte RNA and approximately 10-3 µL of blood. The sensitivity was 10-fold lower than that of the one-step RT-qPCR assay but higher than that of the comprehensive analysis methods for definitive blood identification. Thus, the rapidity and sensitivity of the RT-RPA assay support its use as a screening tool. We also found that the RT-RPA assay was highly tolerant to common inhibitors such as humic acid, hematin, tannic acid, and melanin. Considering the inhibitor tolerability, we integrated a simple lysis method (addition of TCEP/EDTA and heating at 95 °C for 5 min) without the RNA purification process into the RT-RPA assay. This direct assay successfully detected HBB in crude blood samples. Our findings suggest that the RT-RPA assay for HBB is a promising strategy for mRNA-based blood screening.
Collapse
Affiliation(s)
- Seiji Kubo
- Department of Clinical Laboratory and Molecular Pathology, Faculty of Medicine, Academic Assembly, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; Forensic Science Laboratory, Ishikawa Prefectural Police Headquarters, 1-1 Kuratsuki, Kanazawa 920-8553, Japan.
| | - Hideki Niimi
- Department of Clinical Laboratory and Molecular Pathology, Faculty of Medicine, Academic Assembly, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Isao Kitajima
- Administrative office, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan
| |
Collapse
|
11
|
Hanson E, Dørum G, Zamborlin M, Wang S, Gysi M, Ingold S, Lagace R, Roth C, Haas C, Ballantyne J. Targeted S5 RNA sequencing assay for the identification and direct association of common body fluids with DNA donors in mixtures. Int J Legal Med 2023; 137:13-32. [PMID: 36333511 DOI: 10.1007/s00414-022-02908-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
The evidentiary value of DNA profiles varies depending upon the context in which the DNA was found. Linking a DNA profile to a particular cellular phenotype in mixtures may aid in assessing its evidentiary relevance and value. We report the development of two dual-function high-resolution messenger RNA (mRNA) sequencing assays that can each identify the presence of 6 body fluids/tissues (blood, semen, saliva, vaginal secretions, menstrual blood, skin) and, via coding region SNPs (cSNPs) present in the body fluid-specific mRNA transcripts, directly associate particular body fluids with their specific DNA donors in mixtures. The original blood, semen, and saliva (BSS) assay contains 23 cSNPs for blood, semen, and saliva, while the expanded 6F (all 6 fluids/tissues) assay encompasses the BSS assay and also contains 23 additional cSNPs for vaginal secretions, menstrual blood, and skin. Software tools were developed to infer the identity of the body fluids present as well as providing the corresponding cSNP genotypes. Concomitant genomic DNA assays (BSS-d and 6F-d), required to genotype the same cSNPs from persons of interest/inferred contributors to the body fluid mixture, were also developed. Body fluid specificity was demonstrated by the ability to identify the body fluid origin of single-source and two-fluid admixtures. The discriminatory power (European Caucasians) for all body fluids is 0.957-0.997, with linkage disequilibrium considered. Reciprocal body fluid admixtures (mixture pairs with the same two donors but reversed body fluid types) were used to demonstrate the ability to identify the body fluid source of origin as well as associate the donor of each of the two fluids.
Collapse
Affiliation(s)
- Erin Hanson
- Department of Chemistry, University of Central Florida, P.O. Box 162367, Orlando, FL, 32816-2367, USA.,National Center for Forensic Science, Orlando, FL, USA
| | - Guro Dørum
- Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Manuel Zamborlin
- Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Shouyu Wang
- Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Mario Gysi
- Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Sabrina Ingold
- Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Robert Lagace
- Life Sciences/HID, Thermo Fisher Scientific, San Francisco, CA, USA
| | - Chantal Roth
- Life Sciences/HID, Thermo Fisher Scientific, San Francisco, CA, USA
| | - Cordula Haas
- Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Jack Ballantyne
- Department of Chemistry, University of Central Florida, P.O. Box 162367, Orlando, FL, 32816-2367, USA. .,National Center for Forensic Science, Orlando, FL, USA.
| |
Collapse
|
12
|
Carratto TMT, Moraes VMS, Recalde TSF, Oliveira MLGD, Teixeira Mendes-Junior C. Applications of massively parallel sequencing in forensic genetics. Genet Mol Biol 2022; 45:e20220077. [PMID: 36121926 PMCID: PMC9514793 DOI: 10.1590/1678-4685-gmb-2022-0077] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/15/2022] [Indexed: 11/22/2022] Open
Abstract
Massively parallel sequencing, also referred to as next-generation sequencing, has positively changed DNA analysis, allowing further advances in genetics. Its capability of dealing with low quantity/damaged samples makes it an interesting instrument for forensics. The main advantage of MPS is the possibility of analyzing simultaneously thousands of genetic markers, generating high-resolution data. Its detailed sequence information allowed the discovery of variations in core forensic short tandem repeat loci, as well as the identification of previous unknown polymorphisms. Furthermore, different types of markers can be sequenced in a single run, enabling the emergence of DIP-STRs, SNP-STR haplotypes, and microhaplotypes, which can be very useful in mixture deconvolution cases. In addition, the multiplex analysis of different single nucleotide polymorphisms can provide valuable information about identity, biogeographic ancestry, paternity, or phenotype. DNA methylation patterns, mitochondrial DNA, mRNA, and microRNA profiling can also be analyzed for different purposes, such as age inference, maternal lineage analysis, body-fluid identification, and monozygotic twin discrimination. MPS technology also empowers the study of metagenomics, which analyzes genetic material from a microbial community to obtain information about individual identification, post-mortem interval estimation, geolocation inference, and substrate analysis. This review aims to discuss the main applications of MPS in forensic genetics.
Collapse
Affiliation(s)
- Thássia Mayra Telles Carratto
- Universidade de São Paulo, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Química, Laboratório de Pesquisas Forenses e Genômicas, Ribeirão Preto, SP, Brazil
| | - Vitor Matheus Soares Moraes
- Universidade de São Paulo, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Química, Laboratório de Pesquisas Forenses e Genômicas, Ribeirão Preto, SP, Brazil
| | | | | | - Celso Teixeira Mendes-Junior
- Universidade de São Paulo, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Química, Laboratório de Pesquisas Forenses e Genômicas, Ribeirão Preto, SP, Brazil
| |
Collapse
|
13
|
Unlocking the potential of forensic traces: Analytical approaches to generate investigative leads. Sci Justice 2022; 62:310-326. [PMID: 35598924 DOI: 10.1016/j.scijus.2022.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 03/17/2022] [Accepted: 03/19/2022] [Indexed: 11/21/2022]
Abstract
Forensic investigation involves gathering the information necessary to understand the criminal events as well as linking objects or individuals to an item, location or other individual(s) for investigative purposes. For years techniques such as presumptive chemical tests, DNA profiling or fingermark analysis have been of great value to this process. However, these techniques have their limitations, whether it is a lack of confidence in the results obtained due to cross-reactivity, subjectivity and low sensitivity; or because they are dependent on holding reference samples in a pre-existing database. There is currently a need to devise new ways to gather as much information as possible from a single trace, particularly from biological traces commonly encountered in forensic casework. This review outlines the most recent advancements in the forensic analysis of biological fluids, fingermarks and hair. Special emphasis is placed on analytical methods that can expand the information obtained from the trace beyond what is achieved in the usual practices. Special attention is paid to those methods that accurately determine the nature of the sample, as well as how long it has been at the crime scene, along with individualising information regarding the donor source of the trace.
Collapse
|
14
|
Dørum G, Bleka Ø, Gill P, Haas C. Source level interpretation of mixed biological stains using coding region SNPs. Forensic Sci Int Genet 2022; 59:102685. [DOI: 10.1016/j.fsigen.2022.102685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 11/28/2022]
|
15
|
Kubo S, Niimi H, Kitajima I. Rapid detection of blood and semen mRNA markers by reverse transcription-recombinase polymerase amplification. Forensic Sci Int Genet 2022; 58:102665. [DOI: 10.1016/j.fsigen.2022.102665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 12/15/2021] [Accepted: 01/17/2022] [Indexed: 12/16/2022]
|
16
|
Dash HR, Kaitholia K, Kumawat RK, Singh AK, Shrivastava P, Chaubey G, Das S. Sequence variations, flanking region mutations, and allele frequency at 31 autosomal STRs in the central Indian population by next generation sequencing (NGS). Sci Rep 2021; 11:23238. [PMID: 34853383 PMCID: PMC8636586 DOI: 10.1038/s41598-021-02690-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 11/18/2021] [Indexed: 02/05/2023] Open
Abstract
Capillary electrophoresis-based analysis does not reflect the exact allele number variation at the STR loci due to the non-availability of the data on sequence variation in the repeat region and the SNPs in flanking regions. Herein, this study reports the length-based and sequence-based allelic data of 138 central Indian individuals at 31 autosomal STR loci by NGS. The sequence data at each allele was compared to the reference hg19 sequence. The length-based allelic results were found in concordance with the CE-based results. 20 out of 31 autosomal STR loci showed an increase in the number of alleles by the presence of sequence variation and/or SNPs in the flanking regions. The highest gain in the heterozygosity and allele numbers was observed in D5S2800, D1S1656, D16S539, D5S818, and vWA. rs25768 (A/G) at D5S818 was found to be the most frequent SNP in the studied population. Allele no. 15 of D3S1358, allele no. 19 of D2S1338, and allele no. 22 of D12S391 showed 5 isoalleles each with the same size and with different intervening sequences. Length-based determination of the alleles showed Penta E to be the most useful marker in the central Indian population among 31 STRs studied; however, sequence-based analysis advocated D2S1338 to be the most useful marker in terms of various forensic parameters. Population genetics analysis showed a shared genetic ancestry of the studied population with other Indian populations. This first-ever study to the best of our knowledge on sequence-based STR analysis in the central Indian population is expected to prove the use of NGS in forensic case-work and in forensic DNA laboratories.
Collapse
Affiliation(s)
- Hirak Ranjan Dash
- DNA Fingerprinting Unit, Integrated High-Tech Complex, Forensic Science Laboratory, Bhopal, Madhya Pradesh, 462003, India.
| | - Kamlesh Kaitholia
- DNA Fingerprinting Unit, Integrated High-Tech Complex, Forensic Science Laboratory, Bhopal, Madhya Pradesh, 462003, India
| | - R K Kumawat
- DNA Division, State Forensic Science Laboratory, Jaipur, Rajasthan, 302016, India
| | - Anil Kumar Singh
- DNA Fingerprinting Unit, Integrated High-Tech Complex, Forensic Science Laboratory, Bhopal, Madhya Pradesh, 462003, India
| | - Pankaj Shrivastava
- DNA Fingerprinting Unit, State Forensic Science Laboratory, Sagar, Madhya Pradesh, 769001, India
| | - Gyaneshwer Chaubey
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India
| | - Surajit Das
- Department of Life Science, National Institute of Technology, Rourkela, Odisha, 470001, India
| |
Collapse
|
17
|
Sijen T, Harbison S. On the Identification of Body Fluids and Tissues: A Crucial Link in the Investigation and Solution of Crime. Genes (Basel) 2021; 12:1728. [PMID: 34828334 PMCID: PMC8617621 DOI: 10.3390/genes12111728] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022] Open
Abstract
Body fluid and body tissue identification are important in forensic science as they can provide key evidence in a criminal investigation and may assist the court in reaching conclusions. Establishing a link between identifying the fluid or tissue and the DNA profile adds further weight to this evidence. Many forensic laboratories retain techniques for the identification of biological fluids that have been widely used for some time. More recently, many different biomarkers and technologies have been proposed for identification of body fluids and tissues of forensic relevance some of which are now used in forensic casework. Here, we summarize the role of body fluid/ tissue identification in the evaluation of forensic evidence, describe how such evidence is detected at the crime scene and in the laboratory, elaborate different technologies available to do this, and reflect real life experiences. We explain how, by including this information, crucial links can be made to aid in the investigation and solution of crime.
Collapse
Affiliation(s)
- Titia Sijen
- Division Human Biological Traces, Netherlands Forensic Institute, Laan van Ypenburg 6, 2497 GB The Hague, The Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - SallyAnn Harbison
- Institute of Environmental Science and Research Limited, Private Bag 92021, Auckland 1142, New Zealand;
- Department of Statistics, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
18
|
Developments in forensic DNA analysis. Emerg Top Life Sci 2021; 5:381-393. [PMID: 33792660 PMCID: PMC8457771 DOI: 10.1042/etls20200304] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 12/20/2022]
Abstract
The analysis of DNA from biological evidence recovered in the course of criminal investigations can provide very powerful evidence when a recovered profile matches one found on a DNA database or generated from a suspect. However, when no profile match is found, when the amount of DNA in a sample is too low, or the DNA too degraded to be analysed, traditional STR profiling may be of limited value. The rapidly expanding field of forensic genetics has introduced various novel methodologies that enable the analysis of challenging forensic samples, and that can generate intelligence about the donor of a biological sample. This article reviews some of the most important recent advances in the field, including the application of massively parallel sequencing to the analysis of STRs and other marker types, advancements in DNA mixture interpretation, particularly the use of probabilistic genotyping methods, the profiling of different RNA types for the identification of body fluids, the interrogation of SNP markers for predicting forensically relevant phenotypes, epigenetics and the analysis of DNA methylation to determine tissue type and estimate age, and the emerging field of forensic genetic genealogy. A key challenge will be for researchers to consider carefully how these innovations can be implemented into forensic practice to ensure their potential benefits are maximised.
Collapse
|
19
|
Li Z, Lv M, Peng D, Xiao X, Fang Z, Wang Q, Tian H, Zha L, Wang L, Tan Y, Liang W, Zhang L. Feasibility of using probabilistic methods to analyse microRNA quantitative data in forensically relevant body fluids: a proof-of-principle study. Int J Legal Med 2021; 135:2247-2261. [PMID: 34477924 DOI: 10.1007/s00414-021-02678-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/30/2021] [Indexed: 10/20/2022]
Abstract
Several studies have confirmed that microRNAs (miRNAs) are promising markers for body fluid identification since they were introduced to this field. However, there is no consensus on the choice of reference genes and identification strategies. In this study, 13 potential candidate miRNAs were screened from three forensically relevant body fluid datasets, and the expression of 12 markers in five body fluids was determined using a real-time quantitative method. Two probabilistic approaches, Naive Bayes (NB) and partial least squares discriminant analysis (PLS-DA), were then applied to predict the origin of the samples to determine whether probabilistic methods are helpful in body fluid identification using miRNA quantitative data. Furthermore, 14 reference combinations were used to validate the influence of different reference choices on the predicted results simultaneously. Our results showed that in the NB model, leave-one-out cross-validation (LOOCV) achieved 100% accuracy and the prediction accuracy of the test set was 100% in most reference combinations. In the PLS-DA model, the first two components could interpret about 80% expression variance and LOOCV achieved 100% accuracy when miR-92a-3p was used as the reference. This study preliminarily proved that probabilistic approaches hold huge potential in miRNA-based body fluid identification, and the choice of references influences the prediction results to a certain extent.
Collapse
Affiliation(s)
- Zhilong Li
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Meili Lv
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Duo Peng
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xiao Xiao
- Department of Obstetric and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Zhuangyan Fang
- School of Mathematical Sciences, Peking University, Beijing, 10000, People's Republic of China
| | - Qian Wang
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Huan Tian
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Lagabaiyila Zha
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Li Wang
- Department of Obstetric and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Yu Tan
- Department of Obstetric and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Weibo Liang
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China.
| | - Lin Zhang
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China. .,Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China.
| |
Collapse
|
20
|
McKiernan HE, Danielson PB, Brown CO, Signaevsky M, Westring CG, Legg KM. Developmental validation of a multiplex proteomic assay for the identification of forensically relevant biological fluids. Forensic Sci Int 2021; 326:110908. [PMID: 34311288 DOI: 10.1016/j.forsciint.2021.110908] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/30/2021] [Accepted: 07/12/2021] [Indexed: 11/16/2022]
Abstract
The aim of this study was to validate a multiplex proteomic assay for the identification of high-specificity protein biomarkers by multiple reaction monitoring mass spectrometry on a triple quadrupole mass spectrometer for the accurate, reliable, and confirmatory identification of bodily fluids commonly encountered in a forensic context. This includes the identification of peripheral blood, semen, saliva, urine, and vaginal/menstrual fluid. The assay is able to efficiently identify pure or mixed stains through the identification of target peptide fragments originating from tissue-specific proteins including: uromodulin from urine; prostatic acid phosphatase, prostate specific antigen and semenogelin-II for semen; statherin, submaxillary gland androgen-regulated protein 3B and amylase for saliva; cornulin, martrigel-induced gene C4 protein, suprabasin and neutrophil gelatinase-associated lipocalin for vaginal/menstrual fluid; and alpha-1 antitrypsin, hemopexin, and hemoglobin subunit beta for peripheral blood. Based on the results of the developmental validation studies which included an assessment of reproducibility and repeatability, sensitivity, species specificity, carryover, mixtures, as well as a series of casework type samples. Only a small selection of case samples was unable to unambiguously identify the target fluid including urine recovered from substrates as well as semen when mixed with personal lubricants. Overall, the mass spectrometry-based workflow offers significant advantages compared to existing serological methods.
Collapse
Affiliation(s)
- Heather E McKiernan
- Department of Chemistry and Physics, Arcadia University, Glenside, PA 19038, USA
| | - Phillip B Danielson
- The Center for Forensic Science Research & Education, Willow Grove, PA 19090, USA; The University of Denver, Department of Biological Sciences, Denver, CO 80208, USA
| | - Catherine O Brown
- The Center for Forensic Science Research & Education, Willow Grove, PA 19090, USA; The University of Denver, Department of Biological Sciences, Denver, CO 80208, USA
| | - Masha Signaevsky
- Department of Chemistry and Physics, Arcadia University, Glenside, PA 19038, USA
| | - Christian G Westring
- Purdue University Northwest, Center for Crime, Forensics, and Security Analysis, Hammond, IN 46323, USA
| | - Kevin M Legg
- The Center for Forensic Science Research & Education, Willow Grove, PA 19090, USA.
| |
Collapse
|
21
|
The prevalence and persistence of saliva in vehicles. Forensic Sci Int Genet 2021; 53:102530. [PMID: 34058533 DOI: 10.1016/j.fsigen.2021.102530] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 04/25/2021] [Accepted: 05/07/2021] [Indexed: 11/23/2022]
Abstract
In forensic investigations involving stolen and crashed vehicles, examining airbags for the presence of saliva is useful strategy in order to try and establish who the driver of the vehicle may have been. The use of an evaluative approach in these types of investigations allows the forensic scientist to evaluate the significance of the evidence with regard to two alternative hypothesis. The presence of saliva on an airbag may be the result of the driver coming into contact with it during an impact. Alternatively, the saliva may have transferred to the airbag from another area in the vehicle following its deployment. To address this question and attach significance to this finding, a dataset on the prevalence and persistence of saliva is required, alongside relevant background information on the case. The purpose of this study was to determine if saliva matching the main driver of a vehicle is present in the areas immediately surrounding the driver's section, and also to determine the persistence of saliva in vehicles. Salivary-α-amylase was detected in 53% of all samples collected from vehicles. Saliva positive samples yielded statistically significantly (p<0.05) more DNA than saliva negative samples. There was no statistical difference in DNA yields from the different areas sampled in the vehicles. The steering wheel was observed to have the greatest number of saliva positive samples (80%). The driver's DNA profile was detected in 72% of the total samples taken. We demonstrated that saliva can persist for at least ten days in vehicles in daily use. This study has produced a useful dataset that can be utilised under certain conditions by forensic investigators when taking an evaluative approach to these particular types of forensic investigations.
Collapse
|
22
|
Salzmann AP, Russo G, Kreutzer S, Haas C. Degradation of human mRNA transcripts over time as an indicator of the time since deposition (TsD) in biological crime scene traces. Forensic Sci Int Genet 2021; 53:102524. [PMID: 34015741 DOI: 10.1016/j.fsigen.2021.102524] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/08/2021] [Accepted: 04/26/2021] [Indexed: 12/13/2022]
Abstract
Knowledge about the age of a stain, also termed as time since deposition (TsD), would provide law-enforcing authorities with valuable information for the prosecution of criminal offenses. Yet, there is no reliable method for the inference / assessment of TsD available. The aim of this study was to gain further insight into the RNA degradation pattern of forensically relevant body fluids and to find candidate markers for TsD estimation. Blood, menstrual blood, saliva, semen and vaginal secretion samples were exposed to indoor (dark, room temperature) and outdoor (exposed to sun, wind, etc. but protected from rain) conditions for up to 1.5 years. Based on expression and degradation analyses, we were able to identify body fluid specific signatures and RNA degradation patterns. The indoor samples showed a marked drop in RNA integrity after 6 months, while the outdoor samples were difficult to interpret and therefore excluded for some of the analyses. Up to 4 weeks, indoor samples showed more stable and less degrading transcripts than outdoor samples. Stable transcripts tended to be significantly shorter than degrading ones or transcripts, which are neither degrading nor stable. We reinforced the body fluid specific and the housekeeping gene nature of previously reported markers. With an unbiased approach, we selected stable and degrading genes for each body fluid in the short term and assessed their integrity during extended storage. We identified several stable and degrading gene transcripts, which could be tested in a targeted assay to assess the TsD interval e.g. by analyzing the ratio of degrading vs stable transcripts. In conclusion, we were able to detect RNA degradation patterns in samples being aged up to 1.5 years and identified several candidate markers, which could be evaluated for TsD estimation.
Collapse
Affiliation(s)
| | - Giancarlo Russo
- Functional Genomics Centre Zurich (FGCZ), University of Zurich/ETH Zurich, Switzerland
| | - Susanne Kreutzer
- Functional Genomics Centre Zurich (FGCZ), University of Zurich/ETH Zurich, Switzerland
| | - Cordula Haas
- Zurich Institute of Forensic Medicine, University of Zurich, Switzerland.
| |
Collapse
|
23
|
Evaluation of one-step RT-PCR multiplex assay for body fluid identification. Int J Legal Med 2021; 135:1727-1735. [PMID: 33666691 DOI: 10.1007/s00414-021-02535-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 02/10/2021] [Indexed: 01/27/2023]
Abstract
The discrimination of body fluid stains provides crucial evidence during the investigation of criminal cases. Previous studies have demonstrated the practical value of mRNA profiling in body fluid identification. Conventional strategy of mRNA profiling entails reverse transcription and PCR amplification in two separate procedures with different buffer systems. In this study, we subjected the one-step multiplex reverse transcription PCR strategy to mRNA profiling with the inclusion of the same 18 tissue-specific biomarkers in the F18plex system targeting peripheral blood, menstrual blood, vaginal secretion, saliva, semen, and urine. The Qiagen OneStep RT-PCR kit and Titanium One-Step RT-PCR kit were applied to multiplex construction, while reproducible profiling results were obtained with both kits. Compared to the F18plex system, similar expression profiles of biomarkers were obtained in targeted tissues, while expected cross-reaction was observed in non-targeted body fluids. However, CYP2B7P1 and SPINK5 were detected in menstrual blood samples, which was not observed using the F18plex system. Full-profiling results were obtained in all samples using 0.1 ng peripheral blood and semen RNA, and 1 ng menstrual blood, vaginal secretion, saliva, and urine RNA. In conclusion, the application of one-step mRNA profiling strategy could be a reliable and economical method for the simplified, specific, and simultaneous analysis of tissue-specific biomarkers for the discrimination of body fluid origin.
Collapse
|
24
|
Haas C, Neubauer J, Salzmann AP, Hanson E, Ballantyne J. Forensic transcriptome analysis using massively parallel sequencing. Forensic Sci Int Genet 2021; 52:102486. [PMID: 33657509 DOI: 10.1016/j.fsigen.2021.102486] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/15/2022]
Abstract
The application of transcriptome analyses in forensic genetics has experienced tremendous growth and development in the past decade. The earliest studies and main applications were body fluid and tissue identification, using targeted RNA transcripts and a reverse transcription endpoint PCR method. A number of markers have been identified for the forensically most relevant body fluids and tissues and the method has been successfully used in casework. The introduction of Massively Parallel Sequencing (MPS) opened up new perspectives and opportunities to advance the field. Contrary to genomic DNA where two copies of an autosomal DNA segment are present in a cell, abundant RNA species are expressed in high copy numbers. Even whole transcriptome sequencing (RNA-Seq) of forensically relevant body fluids and of postmortem material was shown to be possible. This review gives an overview on forensic transcriptome analyses and applications. The methods cover whole transcriptome as well as targeted MPS approaches. High resolution forensic transcriptome analyses using MPS are being applied to body fluid/ tissue identification, determination of the age of stains and the age of the donor, the estimation of the post-mortem interval and to post mortem death investigations.
Collapse
Affiliation(s)
- Cordula Haas
- University of Zurich, Zurich Institute of Forensic Medicine, Forensic Genetics, Winterthurerstrasse 190/52, CH-8057 Zurich, Switzerland.
| | - Jacqueline Neubauer
- University of Zurich, Zurich Institute of Forensic Medicine, Forensic Genetics, Winterthurerstrasse 190/52, CH-8057 Zurich, Switzerland
| | - Andrea Patrizia Salzmann
- University of Zurich, Zurich Institute of Forensic Medicine, Forensic Genetics, Winterthurerstrasse 190/52, CH-8057 Zurich, Switzerland
| | - Erin Hanson
- National Center for Forensic Science, University of Central Florida, 12354 Research Parkway, Suite 225, Orlando, FL 32826, USA
| | - Jack Ballantyne
- National Center for Forensic Science, University of Central Florida, 12354 Research Parkway, Suite 225, Orlando, FL 32826, USA; Department of Chemistry, National Center for Forensic Science, University of Central Florida, 12354 Research Parkway, Suite 225, Orlando, FL 32826, USA
| |
Collapse
|
25
|
Ypma RJF, Maaskant-van Wijk PA, Gill R, Sjerps M, van den Berge M. Calculating LRs for presence of body fluids from mRNA assay data in mixtures. Forensic Sci Int Genet 2021; 52:102455. [PMID: 33461104 DOI: 10.1016/j.fsigen.2020.102455] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/20/2020] [Accepted: 12/12/2020] [Indexed: 12/12/2022]
Abstract
Messenger RNA (mRNA) profiling can identify body fluids present in a stain, yielding information on what activities could have taken place at a crime scene. To account for uncertainty in such identifications, recent work has focused on devising statistical models to allow for probabilistic statements on the presence of body fluids. A major hurdle for practical adoption is that evidentiary stains are likely to contain more than one body fluid and current models are ill-suited to analyse such mixtures. Here, we construct a likelihood ratio (LR) system that can handle mixtures, considering the hypotheses H1: the sample contains at least one of the body fluids of interest (and possibly other body fluids); H2: the sample contains none of the body fluids of interest (but possibly other body fluids). Thus, the LR-system outputs an LR-value for any combination of mRNA profile and set of body fluids of interest that are given as input. The calculation is based on an augmented dataset obtained by in silico mixing of real single body fluid mRNA profiles. These digital mixtures are used to construct a probabilistic classification method (a 'multi-label classifier'). The probabilities produced are subsequently used to calculate an LR, via calibration. We test a range of different classification methods from the field of machine learning, ways to preprocess the data and multi-label strategies for their performance on in silico mixed test data. Furthermore, we study their robustness to different assumptions on background levels of the body fluids. We find logistic regression works as well as more flexible classifiers, but shows higher robustness and better explainability. We test the system's performance on lab-generated mixture samples, and discuss practical usage in case work.
Collapse
Affiliation(s)
- R J F Ypma
- Division of digital and biometric traces, Netherlands Forensic Institute, the Netherlands.
| | - P A Maaskant-van Wijk
- Division of human biological traces, Netherlands Forensic Institute, the Netherlands
| | - R Gill
- Mathematical institute, Faculty of Science, Leiden University, the Netherlands
| | - M Sjerps
- Division of digital and biometric traces, Netherlands Forensic Institute, the Netherlands; Korteweg-de Vries Institute for Mathematics, University of Amsterdam, the Netherlands
| | - M van den Berge
- Division of human biological traces, Netherlands Forensic Institute, the Netherlands
| |
Collapse
|
26
|
Tian H, Bai P, Tan Y, Li Z, Peng D, Xiao X, Zhao H, Zhou Y, Liang W, Zhang L. A new method to detect methylation profiles for forensic body fluid identification combining ARMS-PCR technique and random forest model. Forensic Sci Int Genet 2020; 49:102371. [DOI: 10.1016/j.fsigen.2020.102371] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/02/2020] [Accepted: 08/09/2020] [Indexed: 02/08/2023]
|
27
|
Salzmann AP, Bamberg M, Courts C, Dørum G, Gosch A, Hadrys T, Hadzic G, Neis M, Schneider PM, Sijen T, den Berge MV, Wiegand P, Haas C. mRNA profiling of mock casework samples: Results of a FoRNAP collaborative exercise. Forensic Sci Int Genet 2020; 50:102409. [PMID: 33220528 DOI: 10.1016/j.fsigen.2020.102409] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/02/2020] [Accepted: 10/12/2020] [Indexed: 01/23/2023]
Abstract
In recent years, forensic mRNA profiling has increasingly been used to identify the origin of human body fluids. By now, several laboratories have implemented mRNA profiling and also use it in criminal casework. In 2018 the FoRNAP (Forensic RNA Profiling) group was established among a number of these laboratories with the aim of sharing experiences, discussing optimization potential, identifying challenges and suggesting solutions with regards to mRNA profiling and casework. To compare mRNA profiling methods and results a collaborative exercise was organized within the FoRNAP group. Seven laboratories from four countries received 16 stains, comprising six pure body fluid / tissue stains and ten mock casework samples. The laboratories were asked to analyze the provided stains with their in-house method (PCR/CE or MPS) and markers of choice. Five laboratories used a DNA/RNA co-extraction strategy. Overall, up to 11 mRNA markers per body fluid were analyzed. We found that mRNA profiling using different extraction and analysis methods as well as different multiplexes can be applied to casework-like samples. In general, high input samples were typed with high accuracy by all laboratories, regardless of the method used. Irrespective of the analysis strategy, samples of low input or mixed stains were more challenging to analyze and interpret since, alike to DNA profiling, a higher number of markers dropped out and/or additional unexpected markers not consistent with the cell type in question were detected. It could be shown that a plethora of different but valid analysis and interpretation strategies exist and are successfully applied in the Forensic Genetics community. Nevertheless, efforts aiming at optimizing and harmonizing interpretation approaches in order to achieve a higher consistency between laboratories might be desirable in the future. The simultaneous extraction of DNA alongside RNA showed to be an effective approach to identify not only the body fluid present but also to identify the donor(s) of the stain. This allows investigators to gain valuable information about the origin of crime scene samples and the course of events in a crime case.
Collapse
Affiliation(s)
| | - Malte Bamberg
- Institute of Legal Medicine, University Hospital, University of Ulm, Germany
| | - Cornelius Courts
- Institute of Forensic Medicine, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Guro Dørum
- Zurich Institute of Forensic Medicine, University of Zurich, Switzerland
| | - Annica Gosch
- Institute of Forensic Medicine, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Thorsten Hadrys
- Bavarian State Criminal Police Office, Institute of Forensic Sciences, Munich, Germany
| | | | - Maximilian Neis
- Institute of Legal Medicine, Faculty of Medicine, University Hospital, University of Cologne, Germany
| | - Peter M Schneider
- Institute of Legal Medicine, Faculty of Medicine, University Hospital, University of Cologne, Germany
| | - Titia Sijen
- Netherlands Forensic Institute, The Hague, the Netherlands
| | | | - Peter Wiegand
- Institute of Legal Medicine, University Hospital, University of Ulm, Germany
| | - Cordula Haas
- Zurich Institute of Forensic Medicine, University of Zurich, Switzerland.
| |
Collapse
|
28
|
Liu Y, Jin X, Mei S, Lan Q, Fang Y, Liu C, Zhu B. A set of novel multi‐allelic SNPs for forensic application developed through massively parallel sequencing and its examples of population genetic studies. Electrophoresis 2020; 41:2036-2046. [DOI: 10.1002/elps.202000128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/10/2020] [Accepted: 08/23/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Yanfang Liu
- Multi‐Omics Innovative Research Center of Forensic Identification; Department of Forensic Genetics School of Forensic Medicine Southern Medical University Guangzhou P. R. China
| | - Xiaoye Jin
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research College of Stomatology Xi'an Jiaotong University Shaanxi P. R. China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases College of Stomatology Xi'an Jiaotong University Shaanxi P. R. China
- College of Forensic Medicine Xi'an Jiaotong University Health Science Center Shaanxi P. R. China
| | - Shuyan Mei
- Multi‐Omics Innovative Research Center of Forensic Identification; Department of Forensic Genetics School of Forensic Medicine Southern Medical University Guangzhou P. R. China
| | - Qiong Lan
- Multi‐Omics Innovative Research Center of Forensic Identification; Department of Forensic Genetics School of Forensic Medicine Southern Medical University Guangzhou P. R. China
| | - Yating Fang
- Multi‐Omics Innovative Research Center of Forensic Identification; Department of Forensic Genetics School of Forensic Medicine Southern Medical University Guangzhou P. R. China
| | - Chao Liu
- Multi‐Omics Innovative Research Center of Forensic Identification; Department of Forensic Genetics School of Forensic Medicine Southern Medical University Guangzhou P. R. China
| | - Bofeng Zhu
- Multi‐Omics Innovative Research Center of Forensic Identification; Department of Forensic Genetics School of Forensic Medicine Southern Medical University Guangzhou P. R. China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research College of Stomatology Xi'an Jiaotong University Shaanxi P. R. China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases College of Stomatology Xi'an Jiaotong University Shaanxi P. R. China
| |
Collapse
|
29
|
Javan GT, Hanson E, Finley SJ, Visonà SD, Osculati A, Ballantyne J. Identification of cadaveric liver tissues using thanatotranscriptome biomarkers. Sci Rep 2020; 10:6639. [PMID: 32313164 PMCID: PMC7170907 DOI: 10.1038/s41598-020-63727-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 03/31/2020] [Indexed: 01/10/2023] Open
Abstract
Thanatotranscriptome studies involve the examination of mRNA transcript abundance and gene expression patterns in the internal organs of deceased humans. Postmortem gene expression is indicative of the cellular status of a corpse at the time of death, a portion of which may represent a cascade of molecular events occasioned by death. Specific gene biomarkers identify perceptible transcriptional changes induced by stochastic responses to the cessation of biological functions. Transcriptome analyses of postmortem mRNA from a tissue fragment may determine unique molecular identifiers for specific organs and demonstrate unique patterns of gene expression that can provide essential contextual anatomical information. We evaluated the impact of targeted transcriptome analysis using RNA sequencing to reveal global changes in postmortem gene expression in liver tissues from 27 Italian and United States corpses: 3.5-hour-old to 37-day-old. We found that our single blind study using eight liver tissue-specific gene biomarkers (e.g. AMBP and AHSG) is highly specific, with autopsy-derived organ samples correctly identified as tissues originating from postmortem livers. The results demonstrate that 98–100% of sequencing reads were mapped to these liver biomarkers. Our findings indicate that gene expression signatures of mRNA exposed up to 37 days of autolysis, can be used to validate the putative identity of tissue fragments.
Collapse
Affiliation(s)
- Gulnaz T Javan
- Forensic Science Program, Physical Sciences Department, Alabama State University, Montgomery, AL, USA.
| | - Erin Hanson
- National Center for Forensic Science, University of Central Florida, Orlando, FL, USA
| | - Sheree J Finley
- Forensic Science Program, Physical Sciences Department, Alabama State University, Montgomery, AL, USA
| | - Silvia D Visonà
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Antonio Osculati
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Jack Ballantyne
- National Center for Forensic Science, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
30
|
Body fluid identification and assignment to donors using a targeted mRNA massively parallel sequencing approach – results of a second EUROFORGEN / EDNAP collaborative exercise. Forensic Sci Int Genet 2020; 45:102208. [DOI: 10.1016/j.fsigen.2019.102208] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 12/30/2022]
|
31
|
Butler JM, Willis S. Interpol review of forensic biology and forensic DNA typing 2016-2019. Forensic Sci Int Synerg 2020; 2:352-367. [PMID: 33385135 PMCID: PMC7770417 DOI: 10.1016/j.fsisyn.2019.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 12/10/2019] [Indexed: 12/23/2022]
Abstract
This review paper covers the forensic-relevant literature in biological sciences from 2016 to 2019 as a part of the 19th Interpol International Forensic Science Managers Symposium. The review papers are also available at the Interpol website at: https://www.interpol.int/content/download/14458/file/Interpol%20Review%20Papers%202019.pdf.
Collapse
|
32
|
Fujimoto S, Manabe S, Morimoto C, Ozeki M, Hamano Y, Hirai E, Kotani H, Tamaki K. Distinct spectrum of microRNA expression in forensically relevant body fluids and probabilistic discriminant approach. Sci Rep 2019; 9:14332. [PMID: 31586097 PMCID: PMC6778116 DOI: 10.1038/s41598-019-50796-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 09/19/2019] [Indexed: 11/09/2022] Open
Abstract
MicroRNA is attracting worldwide attention as a new marker for the identification of forensically relevant body fluids. A probabilistic discriminant model was constructed to identify venous blood, saliva, semen, and vaginal secretion, based on microRNA expression assessed via RT-qPCR. We quantified 15 candidate microRNAs in four types of body fluids by RT-qPCR and found that miR-144-3p, miR-451a-5p, miR-888-5p, miR-891a-5p, miR-203a-3p, miR-223-3p and miR-1260b were helpful to discriminate body fluids. Using the relative expression of seven candidate microRNAs in each body fluid, we implemented a partial least squares-discriminant analysis (PLS-DA) as a probabilistic discriminant model and distinguished four types of body fluids. Of 14 testing samples, 13 samples were correctly identified with >90% posterior probability. We also investigated the effects of microRNA expression in skin, semen infertility, and vaginal secretion during different menstrual phases. Semen infertility and menstrual phases did not affect our body fluid identification system. Therefore, the selected microRNAs were effective in identifying the four types of body fluids, indicating that probabilistic evaluation may be practical in forensic casework.
Collapse
Affiliation(s)
- Shuntaro Fujimoto
- Department of Forensic Medicine, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Sho Manabe
- Department of Forensic Medicine, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Chie Morimoto
- Department of Forensic Medicine, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Munetaka Ozeki
- Department of Forensic Medicine, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yuya Hamano
- Department of Forensic Medicine, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.,Forensic Science Laboratory, Kyoto Prefectural Police Headquaters, 85-3, 85-4, Yabunouchi-cho, Kamigyo-ku, Kyoto, 602-8550, Japan
| | - Eriko Hirai
- Department of Forensic Medicine, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hirokazu Kotani
- Department of Forensic Medicine, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Keiji Tamaki
- Department of Forensic Medicine, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
33
|
Wang S, Wang Z, Tao R, Wang M, Liu J, He G, Yang Y, Xie M, Zou X, Hou Y. Expression profile analysis of piwi-interacting RNA in forensically relevant biological fluids. Forensic Sci Int Genet 2019; 42:171-180. [DOI: 10.1016/j.fsigen.2019.07.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/21/2019] [Accepted: 07/23/2019] [Indexed: 12/12/2022]
|
34
|
Dørum G, Ingold S, Hanson E, Ballantyne J, Russo G, Aluri S, Snipen L, Haas C. Predicting the origin of stains from whole miRNome massively parallel sequencing data. Forensic Sci Int Genet 2019; 40:131-139. [DOI: 10.1016/j.fsigen.2019.02.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 10/24/2018] [Accepted: 02/14/2019] [Indexed: 12/15/2022]
|
35
|
The potential use of Piwi-interacting RNA biomarkers in forensic body fluid identification: A proof-of-principle study. Forensic Sci Int Genet 2019; 39:129-135. [DOI: 10.1016/j.fsigen.2019.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 12/14/2018] [Accepted: 01/07/2019] [Indexed: 12/21/2022]
|
36
|
Wang M, Wang Z, He G, Liu J, Wang S, Qian X, Lang M, Li J, Xie M, Li C, Hou Y. Developmental validation of a custom panel including 165 Y-SNPs for Chinese Y-chromosomal haplogroups dissection using the ion S5 XL system. Forensic Sci Int Genet 2019; 38:70-76. [DOI: 10.1016/j.fsigen.2018.10.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 09/18/2018] [Accepted: 10/09/2018] [Indexed: 02/03/2023]
|
37
|
"The acid test"-validation of the ParaDNA® Body Fluid ID Test for routine forensic casework. Int J Legal Med 2018; 133:751-757. [PMID: 30460509 DOI: 10.1007/s00414-018-1971-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/12/2018] [Indexed: 01/18/2023]
Abstract
The identification of the cellular origin and composition of crime scene-related traces can provide crucial insight into a crime scene reconstruction. In the last decade, especially mRNA-based body fluid and tissue identification (BFI) has been vigorously examined. Besides capillary electrophoretic (CE) and real-time quantitative PCR (RT-qPCR)-based approaches for mRNA detection, melt curve analysis bears potential as a simple-to-use method for BFI. The ParaDNA® Body Fluid ID Test relies on HyBeacon® probes and was developed as a rapid test for mRNA-based BFI of six different body fluids: vaginal fluid, seminal fluid, sperm cells, saliva, menstrual, and peripheral blood. The herein presented work was performed as an "acid test" of the system and should clarify whether the approach matches the requirements of forensic routine casework in German police departments. Tested samples consisted of single source as well as of mixed samples.
Collapse
|
38
|
Fujimoto S, Manabe S, Morimoto C, Ozeki M, Hamano Y, Tamaki K. Optimal small-molecular reference RNA for RT-qPCR-based body fluid identification. Forensic Sci Int Genet 2018; 37:135-142. [PMID: 30172170 DOI: 10.1016/j.fsigen.2018.08.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/10/2018] [Accepted: 08/17/2018] [Indexed: 12/21/2022]
Abstract
MicroRNA (miRNA) -based body fluid identification (BFID) plays a prominent role in a forensic practice, and the selected reference RNA is indispensable for a robust normalization in BFID performed using reverse transcription-quantitative PCR. In this study, we first examined sample quality using RNA integrity number, then evaluated the consistency of expression of candidate reference RNAs in 4 forensically relevant body fluids using NormFinder and BestKeeper, and lastly used each rank and index output from these tools for selecting the optimal reference RNA and the combination of the multiple RNAs using the RankAggreg package of R. We found that RNA integrity number was small in our samples, despite the use of pristine body fluids; 5S-rRNA was the optimal reference RNA for the identification of forensically relevant body fluids; and the combination of 5S-rRNA and miR-92a-3p and/or miR-484 enhanced the normalization quality. Our findings enable us to perform stringent normalization of the expression of body fluid-specific RNAs, and thus, can contribute to the development of small RNA-based BFID systems.
Collapse
Affiliation(s)
- Shuntaro Fujimoto
- Department of Forensic Medicine, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Sho Manabe
- Department of Forensic Medicine, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Chie Morimoto
- Department of Forensic Medicine, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Munetaka Ozeki
- Department of Forensic Medicine, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yuya Hamano
- Department of Forensic Medicine, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Forensic Science Laboratory, Kyoto Prefectural Police Headquaters, 85-3, 85-4, Yabunouchi-cho, Kamigyo-ku, Kyoto 602-8550, Japan
| | - Keiji Tamaki
- Department of Forensic Medicine, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
39
|
Hanson E, Ballantyne J. Human Organ Tissue Identification by Targeted RNA Deep Sequencing to Aid the Investigation of Traumatic Injury. Genes (Basel) 2017; 8:genes8110319. [PMID: 29125589 PMCID: PMC5704232 DOI: 10.3390/genes8110319] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 11/03/2017] [Accepted: 11/06/2017] [Indexed: 11/16/2022] Open
Abstract
Molecular analysis of the RNA transcriptome from a putative tissue fragment should permit the assignment of its source to a specific organ, since each will exhibit a unique pattern of gene expression. Determination of the organ source of tissues from crime scenes may aid in shootings and other investigations. We have developed a prototype massively parallel sequencing (MPS) mRNA profiling assay for organ tissue identification that is designed to definitively identify 10 organ/tissue types using a targeted panel of 46 mRNA biomarkers. The identifiable organs and tissues include brain, lung, liver, heart, kidney, intestine, stomach, skeletal muscle, adipose, and trachea. The biomarkers were chosen after iterative specificity testing of numerous candidate genes in various tissue types. The assay is very specific, with little cross-reactivity with non-targeted tissue, and can detect RNA mixtures from different tissues. We also demonstrate the ability of the assay to successful identify the tissue source of origin using a single blind study.
Collapse
Affiliation(s)
- Erin Hanson
- National Center for Forensic Science, University of Central Florida, Orlando, FL 32816, USA.
| | - Jack Ballantyne
- National Center for Forensic Science, University of Central Florida, Orlando, FL 32816, USA.
- Department of Chemistry, University of Central Florida, Orlando, FL 32816, USA.
| |
Collapse
|