1
|
Bamberg M, Bruder M, Kunz SN, Wöhrle T, Wiegand P. Really the best of both? Application of an mRNA/miRNA multiplex assay to casework samples, animal samples, and a storage study. Forensic Sci Int Genet 2024; 74:103129. [PMID: 39243526 DOI: 10.1016/j.fsigen.2024.103129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/15/2024] [Accepted: 08/27/2024] [Indexed: 09/09/2024]
Abstract
The identification of body fluids is an important area of forensic genetics. In particular, the susceptibility to degradation of casework samples is of crucial importance, as the traces can often be exposed to different environmental conditions over a long period of time. RNAs especially are used as molecular markers for the identification of body fluids in forensics. Messenger RNAs (mRNAs) show an increased susceptibility to degradation, e.g. under humidity and UV radiation but are highly body fluid-specific. The shorter micro RNAs (miRNAs), however, are less susceptible to degradation, but only a few body fluid-specific markers could be investigated. In this study, a self-developed mRNA/miRNA multiplex assay for capillary electrophoresis from a preliminary study was further adapted and validated. The approach was applied to casework samples, animal samples, and a storage study. The advantages and disadvantages of the mRNA/miRNA assay were investigated in order to review a possible application for forensic casework. Some miRNA markers were also detected in animal samples, which once again underlines the possible non-specificity of miRNAs. In the storage study, the different markers were detected for different lengths of time depending on the body fluid examined. For almost all body fluids, the miRNA markers were still detectable after a period of 35 days under environmental conditions compared to the mRNA markers. The mRNA peaks were often already clearly reduced or no longer detectable after 14 days. The results show the advantage of the new mRNA/miRNA assay compared to established mRNA approaches, especially for older and degraded samples, but the assay has its limitations due to the limited number of specific miRNA markers.
Collapse
Affiliation(s)
- Malte Bamberg
- Institute of Legal Medicine, University Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Maria Bruder
- Institute of Legal Medicine, University Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Sebastian N Kunz
- Institute of Legal Medicine, University Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Theresa Wöhrle
- Institute of Legal Medicine, University Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Peter Wiegand
- Institute of Legal Medicine, University Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| |
Collapse
|
2
|
Hamza M, Sankhyan D, Shukla S, Pandey P. Advances in body fluid identification: MiRNA markers as powerful tool. Int J Legal Med 2024; 138:1223-1232. [PMID: 38467753 DOI: 10.1007/s00414-024-03202-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/23/2024] [Indexed: 03/13/2024]
Abstract
Body fluids are one of the most encountered types of evidence in any crime and are commonly used for identifying a person's identity. In addition to these, they are also useful in ascertaining the nature of crime by determining the ty pe of fluid such as blood, semen, saliva, urine etc. Body fluids collected from crime scenes are mostly found in degraded, trace amounts and/or mixed with other fluids. However, the existing immunological and enzyme-based methods used for differentiating these fluids show limited specificity and sensitivity in such cases. To overcome these challenges, a new method utilizing microRNA expression of the body fluids has been proposed. This method is believed to be non-destructive as well as sensitive in nature and researches have shown promising results for highly degraded samples as well. This systematic review focuses on and explores the use and reliability of miRNAs in body fluid identification. It also summarizes the researches conducted on various aspects of miRNA in terms of body fluid examination in forensic investigations.
Collapse
Affiliation(s)
- Mohd Hamza
- Department of Forensic Science, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Deeksha Sankhyan
- Department of Forensic Science, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
| | - Saurabh Shukla
- Department of Forensic Science, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Preeti Pandey
- Department of Forensic Science, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| |
Collapse
|
3
|
Gürsoy N, Karadayı S, Akmayan İ, Karadayı B, Özbek T. Time-dependent change in the microbiota structure of seminal stains exposed to indoor environmental. Int J Legal Med 2024; 138:591-602. [PMID: 37814017 DOI: 10.1007/s00414-023-03108-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/02/2023] [Indexed: 10/11/2023]
Abstract
Seminal stains acquired from fabric surfaces stand as pivotal biological evidence of utmost significance for elucidating sexual assault cases. The ability to determine the temporal aspect of a forensic incident via the analysis of a biological specimen found at the crime scene is crucial in resolving most cases. This study aimed to investigate the time-dependent change in the microbiota structure of human seminal stains exposed to indoor environmental conditions. Stains on polyester fabric generated using semen samples from five male volunteers were kept indoors for varying durations of up to 20 days, followed by sequencing of the V1-V9 regions of the 16S rRNA gene of the microbial DNA extracted from the stains. The acquired data provided the taxonomic composition, and microbial alterations across different days were examined. The most abundantly detected phyla in all samples were Firmicutes, Proteobacteria, and Bacteroidetes, and the relative abundances of bacteria were observed to change over time. Statistically significant changes at the species level were found for Treponema medium, Corynebacterium tuberculostearicum, Faecalibacterium prausnitzii, and Anaerostipes hadrus. Alterations observed in the samples between the analyzed time periods were investigated. The changes during the specified time periods were examined, identifying rare bacterial species that were initially present on certain days but later ceased to exist in the environment. Conversely, bacterial species that were absent before exposure but emerged at a later stage were also identified. The findings of this study demonstrate that species-level evaluations, in particular, can provide crucial insights into semen stain age.
Collapse
Affiliation(s)
- Nursena Gürsoy
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Yıldız Technical University, Istanbul, Turkey
| | - Sukriye Karadayı
- Department of Medical Laboratory Techniques, Altınbaş University, Istanbul, Turkey.
| | - İlkgül Akmayan
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Yıldız Technical University, Istanbul, Turkey
| | - Beytullah Karadayı
- Department of Forensic Medicine, Cerrahpaşa Medical Faculty, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Tülin Özbek
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Yıldız Technical University, Istanbul, Turkey
| |
Collapse
|
4
|
Liao L, Ye L, Huang L, Yao T, Liang X, Chen L, Shen M. Changes in the microbial community after vaginal fluid exposure in different simulated forensic situations. Forensic Sci Int 2023; 349:111766. [PMID: 37339565 DOI: 10.1016/j.forsciint.2023.111766] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 05/21/2023] [Accepted: 06/13/2023] [Indexed: 06/22/2023]
Abstract
If vaginal fluid is found on clothing or on the body of the suspect, it may indicate the occurrence of sexual assault. Therefore, it is important to collect the victim's vaginal fluid at different sites from the suspect. Previous studies have revealed that fresh vaginal fluids can be identified based on 16S rRNA gene sequencing data. However, the influence of environmental factors on the stability of microbial markers must be investigated before being used in forensic practice. We collected vaginal fluid from nine unrelated individuals and placed each individual of vaginal swab on five different substrates. A total of 54 vaginal swabs were analyzed using 16S rRNA on the V3-V4 regions. Then, we constructed a random forest model including the samples of all vaginal fluids in this study and the other four types of body fluids in our previous studies. The alpha diversity of vaginal samples increased after exposure to the substrate environment for 30 days. The dominant vaginal bacteria were Lactobacillus and Gardnerella, which remained relatively stable after exposure, with Lactobacillus being the most abundant in all substrates, while Gardnerella was more abundant in other substrates than in the polyester fiber substrate. Except for bed sheets, Bifidobacterium significantly declined when placed on other substrates. Rhodococcus and Delftia from the substrate environment migrated to the vaginal samples. Rhodococcus was abundant in polyester fibers, and Delftia was abundant in wool substrates, while those environmental bacteria were all in low abundance in bed sheets. Overall, the bed sheet substrates showed a good retention capacity for the dominant flora and could reduce the number of taxa migrated by the environment compared with the other substrates. Both fresh and exposed vaginal samples of the same individuals could mostly be clustered and clearly distinguished from different individuals, showing the potential of individual identification, and the confusion matrix value of body fluid identification for vaginal samples was 1. In summary, vaginal samples placed on the surface of different substrates retained their stability and demonstrated good application potential for individual and body fluid identification.
Collapse
Affiliation(s)
- Lili Liao
- Hygiene Detection Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health and Tropical Medical, Southern Medical University, Guangzhou 510515, China; Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Linying Ye
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Litao Huang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Ting Yao
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xiaomin Liang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Ling Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China; Shanghai Key Lab of Forensic Medicine, Key Lab of Forensic Science, Ministry of Justice, China (Academy of Forensic Science), Shanghai 200063, China.
| | - Mei Shen
- Hygiene Detection Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health and Tropical Medical, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
5
|
Bruijns B, Tiggelaar R, Knotter J, van Dam A. Use of Lateral Flow Assays in Forensics. SENSORS (BASEL, SWITZERLAND) 2023; 23:6201. [PMID: 37448049 DOI: 10.3390/s23136201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023]
Abstract
Already for some decades lateral flow assays (LFAs) are 'common use' devices in our daily life. Also, for forensic use LFAs are developed, such as for the analysis of illicit drugs and DNA, but also for the detection of explosives and body fluid identification. Despite their advantages, including ease-of-use, LFAs are not yet frequently applied at a crime scene. This review describes (academic) developments of LFAs for forensic applications, focusing on biological and chemical applications, whereby the main advantages and disadvantages of LFAs for the different forensic applications are summarized. Additionally, a critical review is provided, discussing why LFAs are not frequently applied within the forensic field and highlighting the steps that are needed to bring LFAs to the forensic market.
Collapse
Affiliation(s)
- Brigitte Bruijns
- Technologies for Criminal Investigations, Saxion University of Applied Sciences, M.H. Tromplaan 28, 7513 AB Enschede, The Netherlands
- Police Academy, Arnhemseweg 348, 7334 AC Apeldoorn, The Netherlands
| | - Roald Tiggelaar
- NanoLab Cleanroom, MESA+ Institute, University of Twente, Drienerlolaan 5, 7500 AE Enschede, The Netherlands
| | - Jaap Knotter
- Technologies for Criminal Investigations, Saxion University of Applied Sciences, M.H. Tromplaan 28, 7513 AB Enschede, The Netherlands
- Police Academy, Arnhemseweg 348, 7334 AC Apeldoorn, The Netherlands
| | - Annemieke van Dam
- Department of Biomedical Engineering & Physics, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Department of Forensic Science, Amsterdam University of Applied Sciences, Tafelbergweg 51, 1105 BD Amsterdam, The Netherlands
- Methodology Research Program, Amsterdam Public Health Research Institute, Amsterdam University Medical Centers (UMC), Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
6
|
DNA recovery and human identification from semen stains washed at different temperatures. Int J Legal Med 2023; 137:303-310. [PMID: 36565315 DOI: 10.1007/s00414-022-02937-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/14/2022] [Indexed: 12/25/2022]
Abstract
One of the most important pieces of evidence to find the suspect of a sexual assault are semen stains. It has been observed that suspects do not use condoms in many cases and transfer seminal fluids over the body of the victim, to their clothes, to bed linen, or to other objects in the environment. However, in many cases, it has been seen that the suspects or the victims tend to clean their bodies and clothes because of psychological conditions such as fear, panic, and anxiety. This study aims to determine whether human identification can be accomplished from washed semen stains by evaluating the quantity of extracted DNA obtained from washed clothes. In this study, both cotton- and nylon-blended fabrics were stained with semen samples taken from 10 volunteers and washed with detergent at 40 °C, 60 °C, and 90 °C. After stains were made re-visible using an ultraviolet (UV) light source, DNA was extracted using two different extraction methods (phenol-chloroform and spin-column). As a result, DNA extraction methods, washing conditions, and obtained DNA quantity from different washed fabrics were compared. It was shown that DNA could be obtained from all samples and that these DNA amounts could be used to perform identification. This study gives hope to the victims who have not been able to go to the judicial units immediately after the incident for fear or any other reasons and who think that they cannot get results because they have washed the laundry.
Collapse
|
7
|
Avicenna F, Yudianto A, I'tishom R, Wungu CDK. Effect of machine-washing semen-stained fabrics on the persistence of human spermatozoa DNA: A systematic review of five articles. Leg Med (Tokyo) 2023; 60:102179. [PMID: 36450204 DOI: 10.1016/j.legalmed.2022.102179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/05/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022]
Abstract
Biological evidence of sexual violence, such as semen, can change due to fabric washing. This can be due to attempts by the perpetrator to eliminate evidence or because the victim feels ashamed of sexual violence. While much research on this topic has been conducted, no systematic review has been attempted. This systematic review explores the effect of fabric machine-washing on the persistence of human spermatozoa deoxyribonucleic acid (DNA). This systematic review seeks in vitro experiments in which semen-stained fabrics were washed by washing machines, published in English, and matched with keywords in PubMed, Europe PMC, ScienceDirect, and Google Scholar. We then assessed the obtained articles with the Joanna Briggs Institute quasi-experimental checklist. This systematic review used the narrative synthesis method. Our search yielded five articles. These articles observe the effect of machine-washing factors on the persistence of human spermatozoa DNA, such as water temperature, washing duration, detergent type, washing repetition, and duration of fabric storage before washing. This systematic review shows that fabric washing insignificantly affects spermatozoa DNA persistence, and DNA might persist after multiple washes. However, variations in the articles indicate that future studies on this topic need to account for more variables and be reported in more detail to reduce bias.
Collapse
Affiliation(s)
- Fajar Avicenna
- Faculty of Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia.
| | - Ahmad Yudianto
- Department of Forensic Medicine and Medicolegal, Faculty of Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia; Institute of Tropical Disease, Universitas Airlangga, Surabaya, East Java, Indonesia.
| | - Reny I'tishom
- Department of Medical Biology, Faculty of Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia.
| | - Citrawati Dyah Kencono Wungu
- Institute of Tropical Disease, Universitas Airlangga, Surabaya, East Java, Indonesia; Department of Physiology and Medical Biochemistry, Faculty of Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia.
| |
Collapse
|
8
|
Carratto TMT, Moraes VMS, Recalde TSF, Oliveira MLGD, Teixeira Mendes-Junior C. Applications of massively parallel sequencing in forensic genetics. Genet Mol Biol 2022; 45:e20220077. [PMID: 36121926 PMCID: PMC9514793 DOI: 10.1590/1678-4685-gmb-2022-0077] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/15/2022] [Indexed: 11/22/2022] Open
Abstract
Massively parallel sequencing, also referred to as next-generation sequencing, has positively changed DNA analysis, allowing further advances in genetics. Its capability of dealing with low quantity/damaged samples makes it an interesting instrument for forensics. The main advantage of MPS is the possibility of analyzing simultaneously thousands of genetic markers, generating high-resolution data. Its detailed sequence information allowed the discovery of variations in core forensic short tandem repeat loci, as well as the identification of previous unknown polymorphisms. Furthermore, different types of markers can be sequenced in a single run, enabling the emergence of DIP-STRs, SNP-STR haplotypes, and microhaplotypes, which can be very useful in mixture deconvolution cases. In addition, the multiplex analysis of different single nucleotide polymorphisms can provide valuable information about identity, biogeographic ancestry, paternity, or phenotype. DNA methylation patterns, mitochondrial DNA, mRNA, and microRNA profiling can also be analyzed for different purposes, such as age inference, maternal lineage analysis, body-fluid identification, and monozygotic twin discrimination. MPS technology also empowers the study of metagenomics, which analyzes genetic material from a microbial community to obtain information about individual identification, post-mortem interval estimation, geolocation inference, and substrate analysis. This review aims to discuss the main applications of MPS in forensic genetics.
Collapse
Affiliation(s)
- Thássia Mayra Telles Carratto
- Universidade de São Paulo, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Química, Laboratório de Pesquisas Forenses e Genômicas, Ribeirão Preto, SP, Brazil
| | - Vitor Matheus Soares Moraes
- Universidade de São Paulo, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Química, Laboratório de Pesquisas Forenses e Genômicas, Ribeirão Preto, SP, Brazil
| | | | | | - Celso Teixeira Mendes-Junior
- Universidade de São Paulo, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Química, Laboratório de Pesquisas Forenses e Genômicas, Ribeirão Preto, SP, Brazil
| |
Collapse
|
9
|
Bamberg M, Bruder M, Dierig L, Kunz SN, Schmidt M, Wiegand P. Best of both: a simultaneous analysis of mRNA and miRNA markers for body fluid identification. Forensic Sci Int Genet 2022; 59:102707. [DOI: 10.1016/j.fsigen.2022.102707] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 12/19/2022]
|
10
|
Karadayı Ş, Karadayı B, Öner D, Çetin G. Evaluation of the relationship between the detectability of seminal stains on laundered fabric and stain age. MEDICINE, SCIENCE, AND THE LAW 2021; 61:198-207. [PMID: 33573465 DOI: 10.1177/0025802421992916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In some cases of sexual assault that are not reported to judicial authorities within a certain time, it is important to detect and identify seminal stains on laundered fabrics. In this study, we aimed to reveal the effect of the time from staining to laundering on the detectability and identification of seminal stains on laundered clothes. A total of 180 pieces of fabric (four different colours and five different types) were stained with seminal fluids, and three different lag times (12 hours, 1 week and 1 month) from staining to laundering were used. Three different laundering protocols were applied to these fabrics after staining. The built-in camera of the Mobile Multispectral UV-VIS-IR Imaging System® was used to take photos (1260 in total) of the stains with seven different wavelength and filter options, and the obtained images were evaluated. The Seratec® PSA Semiquant test was used to analyse the presence of prostate-specific antigen (PSA) in the seminal stains laundered after different lag times. We observed that in examining with the forensic light source (FLS) system, the time from staining to laundering affected the detectability of seminal stains on pieces of cloth. The best fluorescence was obtained in the examination of semen-stained fabric with FLS, particularly when the fabric was not laundered for one month after staining. On the other hand, the time from staining to laundering had a more limited effect on PSA test positivity than on the results of the examination with FLS.
Collapse
Affiliation(s)
- Şükriye Karadayı
- Department of Medical Laboratory Techniques, Altınbaş University, Turkey
| | - Beytullah Karadayı
- Department of Forensic Medicine, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpaşa, Turkey
| | - Dilara Öner
- Institute of Forensic Sciences and Legal Medicine, Istanbul University-Cerrahpaşa, Turkey
| | - Gürsel Çetin
- Department of Forensic Medicine, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpaşa, Turkey
| |
Collapse
|
11
|
Bamberg M, Dierig L, Kulstein G, Kunz SN, Schmidt M, Hadrys T, Wiegand P. Development and validation of an mRNA-based multiplex body fluid identification workflow and a rectal mucosa marker pilot study. Forensic Sci Int Genet 2021; 54:102542. [PMID: 34098418 DOI: 10.1016/j.fsigen.2021.102542] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 01/26/2023]
Abstract
Molecular identification of body fluids and tissues is crucial in order to understand the circumstances of crimes. For that reason, molecular investigations used to identify body fluids/tissues have increasingly been examined recently. Various studies have proved that messenger RNA (mRNA) profiling is a sensitive and robust method for body fluid/tissue identification. The forensically relevant body fluids/tissues blood, semen, saliva, vaginal secretion, menstrual blood and skin have all been detected successfully by applying suitable mRNA assay. However, rectal mucosa, which can be found as evidence in sexual assault cases, has been neglected in forensic investigations. So far there is no mRNA marker to detect rectal mucosa, although anal penetration occurs in a large number of sexual assaults (23.2% of female victims and 50% of male victims). In this study, specific and sensitive mRNA markers for forensically relevant body fluids were adapted and validated in an mRNA multiplex assay for routine casework. This included the implementation of a DNA/RNA re-extraction method for automated extraction that can be integrated into casework without loss of DNA. This re-extraction method and the mRNA multiplex assay were tested using casework samples. PCR-primers were designed for the identification of rectal mucosa and the more effective marker MUC12 was integrated into an extended multiplex assay. The result of our study is a highly specific and sensitive mRNA multiplex assay plus an automated DNA/RNA re-extraction method, that can be integrated into casework and identify rectal mucosa for the first time.
Collapse
Affiliation(s)
- Malte Bamberg
- Institute of Legal Medicine, University Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Lisa Dierig
- Institute of Legal Medicine, University Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | | | - Sebastian N Kunz
- Institute of Legal Medicine, University Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Max Schmidt
- Institute of Legal Medicine, University Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Thorsten Hadrys
- Bavarian State Criminal Police Office, Institute of Forensic Sciences, DNA Department, Maillingerstr. 15, 80636 Munich, Germany
| | - Peter Wiegand
- Institute of Legal Medicine, University Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| |
Collapse
|
12
|
Williams GA. Body fluid identification: A case for more research and innovation. FORENSIC SCIENCE INTERNATIONAL: REPORTS 2020. [DOI: 10.1016/j.fsir.2020.100096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
13
|
Schyma C, Madea B, Müller R, Zieger M, Utz S, Grabmüller M. DNA-free does not mean RNA-free-The unwanted persistence of RNA. Forensic Sci Int 2020; 318:110632. [PMID: 33302243 DOI: 10.1016/j.forsciint.2020.110632] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 11/25/2020] [Indexed: 12/19/2022]
Abstract
Contact shots to the head often provoke a transfer of biological traces into firearm barrels, which are not visible at endoscopic inspection. STR-PCR can amplify these latent traces and assign them to the victim. Via RNA-DNA-co-extraction also miRNA can be detected, which allow a conclusion to be drawn about the body fluid or tissue. Molecular genetic analysis of experimental stains in firearm barrels requires the guarantee that the barrel is initially free of any nucleic acid. Twelve shots were fired to so-called "reference cubes" (10 % gelatine, 12 cm edge length, embedded paint-blood-pad) using three current handguns: from 20 and 30 cm distance, four at close range (1-2.5 cm) and six contact shots. After endoscopic examination and swabbing of the barrels, a previously described mechanical and chemical cleaning using DNAExitusPlus™ was performed. The inner surface of the barrel was thoroughly wiped off using moistened forensic swabs, which were submitted to RNA-DNA-co-extraction. The combined thorough mechanical cleaning with Ballistol® and the application of DNAExitusPlus™ eliminated any profilable DNA in all samples. However, in 10 of 12 samples RNA concentrations between 0.11 - 0.79 ng/μl were measured. Furthermore, in 9 of 12 samples blood-specific miRNA (miR-451a) was detected. Summarizing, none of the experimentally contaminated barrels was RNA-free despite the performed cleaning procedure. Further investigation showed, that even "professional" cleaning by a gunsmith did not remove RNA.
Collapse
Affiliation(s)
- Christian Schyma
- Institute of Forensic Medicine of the University of Bern, Bühlstrasse 20, 3012 Bern, Switzerland.
| | - Burkhard Madea
- Institute of Legal Medicine, University Bonn, Stiftsplatz 12, 53111 Bonn, Germany
| | - Rolf Müller
- Criminal Investigation Service of the Cantonal Police Department of Bern, Nordring 30, 3013 Bern, Switzerland
| | - Martin Zieger
- Institute of Forensic Medicine of the University of Bern, Bühlstrasse 20, 3012 Bern, Switzerland
| | - Silvia Utz
- Institute of Forensic Medicine of the University of Bern, Bühlstrasse 20, 3012 Bern, Switzerland
| | - Melanie Grabmüller
- Institute of Legal Medicine, University Bonn, Stiftsplatz 12, 53111 Bonn, Germany
| |
Collapse
|
14
|
Mayes C, Houston R, Seashols-Williams S, LaRue B, Hughes-Stamm S. The stability and persistence of blood and semen mRNA and miRNA targets for body fluid identification in environmentally challenged and laundered samples. Leg Med (Tokyo) 2019; 38:45-50. [PMID: 30959396 DOI: 10.1016/j.legalmed.2019.03.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/25/2019] [Accepted: 03/28/2019] [Indexed: 01/27/2023]
Abstract
The identification of body fluids in evidentiary stains may provide investigators with probative information during an investigation. In this study, quantitative reverse transcription polymerase chain reaction (RT-qPCR) assays were performed to detect the presence of mRNA and miRNA in fresh and environmentally challenged samples. Blood, semen, and reference markers were chosen for both mRNA/miRNA testing. Samples of blood and semen were exposed to heat, humidity, and sunlight, and controlled conditions (room temperature, low humidity, and darkness) for 6 months. All mRNA targets were observed through six months under controlled conditions, but were undetected after 30 days in experimental conditions. However, miRNA targets persisted under all test conditions for the duration of the study. Additionally, cotton stained with blood or semen was laundered using a liquid detergent in various washing and drying conditions. An unstained cutting was evaluated for potential transfer. Both miRNA targets were observed in all stained samples regardless of the wash protocol used. Of the mRNA markers, HBB was detected in all bloodstained samples and PRM1 persisted in all but one semen stained sample. The unstained samples showed transfer of at least one body fluid specific miRNA marker in all samples and at least one body fluid specific mRNA in approximately half of the samples. These results support that RNA markers can be used for body fluid identification in challenging samples, and that miRNA markers may be more persistent than mRNA for blood and semen stains. However, some caution is warranted with laundered items due to possible transfer.
Collapse
Affiliation(s)
- Carrie Mayes
- Department of Forensic Science, College of Criminal Justice, Sam Houston State University, 1003 Bowers Blvd., Huntsville, TX 77340-2525, United States.
| | - Rachel Houston
- Department of Forensic Science, College of Criminal Justice, Sam Houston State University, 1003 Bowers Blvd., Huntsville, TX 77340-2525, United States
| | - Sarah Seashols-Williams
- Department of Forensic Science, Virginia Commonwealth University, Box 843079, Richmond, VA 23284, United States
| | - Bobby LaRue
- Department of Forensic Science, College of Criminal Justice, Sam Houston State University, 1003 Bowers Blvd., Huntsville, TX 77340-2525, United States
| | - Sheree Hughes-Stamm
- Department of Forensic Science, College of Criminal Justice, Sam Houston State University, 1003 Bowers Blvd., Huntsville, TX 77340-2525, United States; School of Biomedical Sciences, University of Queensland, St. Lucia, QLD 4072, Australia
| |
Collapse
|
15
|
"The acid test"-validation of the ParaDNA® Body Fluid ID Test for routine forensic casework. Int J Legal Med 2018; 133:751-757. [PMID: 30460509 DOI: 10.1007/s00414-018-1971-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/12/2018] [Indexed: 01/18/2023]
Abstract
The identification of the cellular origin and composition of crime scene-related traces can provide crucial insight into a crime scene reconstruction. In the last decade, especially mRNA-based body fluid and tissue identification (BFI) has been vigorously examined. Besides capillary electrophoretic (CE) and real-time quantitative PCR (RT-qPCR)-based approaches for mRNA detection, melt curve analysis bears potential as a simple-to-use method for BFI. The ParaDNA® Body Fluid ID Test relies on HyBeacon® probes and was developed as a rapid test for mRNA-based BFI of six different body fluids: vaginal fluid, seminal fluid, sperm cells, saliva, menstrual, and peripheral blood. The herein presented work was performed as an "acid test" of the system and should clarify whether the approach matches the requirements of forensic routine casework in German police departments. Tested samples consisted of single source as well as of mixed samples.
Collapse
|