1
|
Moutinho S, Peres H, Fontinha F, Estevão-Rodrigues T, Monroig Ó, Magalhães R, Pulido-Rodríguez L, Parisi G, Oliva-Teles A. Hermetia illucens larvae oil as an alternative lipid source: Effects on immune function, antioxidant activity, and inflammatory response in gilthead seabream juveniles. Comp Biochem Physiol B Biochem Mol Biol 2025; 276:111059. [PMID: 39681265 DOI: 10.1016/j.cbpb.2024.111059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/11/2024] [Accepted: 12/11/2024] [Indexed: 12/18/2024]
Abstract
Hermetia illucens larvae oil (HIO) is a promising new ingredient that can potentially be an alternative lipid source in aquafeeds. To assess its viability in gilthead seabream juvenile diets, a 10-week feeding trial was performed, and the effects on antioxidant, immune, and inflammatory responses were evaluated. Four diets were formulated to include HIO at increasing levels: 0, 4, 7.9, and 9.5 %, replacing a vegetable oil mix at 0, 42 %, 84 %, and 100 %, respectively. At the end of the trial, no significant changes were detected in the plasma immune humoral parameters, except for a linear increase in plasma peroxidase activity. Hepatic lipid peroxidation (LPO) remained unchanged, while the activity of antioxidant enzymes showed a linear increase corresponding to the level of dietary HIO inclusion. Fish fed the HIO diets exhibited lower intestinal LPO, and no differences between groups were observed in the activity of the oxidative stress-related enzymes. Regarding the inflammation-related genes, the different diets did not affect interleukin-1β and transforming growth factor β expressions in the intestine. In contrast, upregulation of tumor necrosis factor α and interleukin-10 was observed, being higher in fish fed the diet with total vegetable oil replacement than the others. In conclusion, these findings suggest that Hermetia illucens larvae oil can be included at levels up to 7.9 % of gilthead seabream juvenile diets without compromising their immune, antioxidant, and inflammatory responses while enhancing intestinal LPO.
Collapse
Affiliation(s)
- Sara Moutinho
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, Ed. FC4, 4169-007 Porto, Portugal.
| | - Helena Peres
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, Ed. FC4, 4169-007 Porto, Portugal
| | - Filipa Fontinha
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, Ed. FC4, 4169-007 Porto, Portugal
| | - Tássia Estevão-Rodrigues
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, Ed. FC4, 4169-007 Porto, Portugal
| | - Óscar Monroig
- Instituto de Acuicultura Torre de la Sal (IATS), CSIC, Ribera de Cabanes, 12595 Castellón, Spain
| | - Rui Magalhães
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, Ed. FC4, 4169-007 Porto, Portugal
| | - Lina Pulido-Rodríguez
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, via delle Cascine 5, 50144 Florence, Italy
| | - Giuliana Parisi
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, via delle Cascine 5, 50144 Florence, Italy
| | - Aires Oliva-Teles
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, Ed. FC4, 4169-007 Porto, Portugal
| |
Collapse
|
2
|
Al-Wakeel AH, Elbahnaswy S, Risha E, Zahran E. Dietary Pediastrum boryanum microalgal extract improves growth, enhances immunity, and regulates immune-related genes in Nile tilapia. BMC Vet Res 2024; 20:321. [PMID: 39026262 PMCID: PMC11256681 DOI: 10.1186/s12917-024-04155-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 06/20/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Identifying alternative sustainable feed sources with high nutritional values is crucial for the future of environmentally and socially responsible aquaculture. In this regard, microalgae have been proven to have positive effects on fish health, which overwhelmed our interest in this study. METHODS Pediastrum boryanum (P. boryanum) was incorporated into Nile tilapia feed at concentrations of 0, 0.75, and 1.5 mg/kg, as control, PbExt0.75, and PbExt1.5 groups to assess its effects on growth and biochemical indices, oxidant/antioxidant activities, immune and stress-related gene expression, and intestinal morphology. RESULTS After 8 weeks, fish fed P. boryanum supplemented feed exhibited significant increases in final weight, length, condition factor, body weight gain, and specific growth rate, while the spleen-somatic index (SSI) and hepatosomatic index (HSI) showed no significant differences compared to the control group. Dietary P. boryanum supplementation also enhanced IgM levels and lysozyme activity, along with no marked effect on markers of liver function enzymes (alanine aminotransferase/ALT and aspartate aminotransferase/AST) or protein status (total protein and albumin). Furthermore, P. boryanum addition increased the activity of superoxide dismutase (SOD), catalase (CAT), and reduced glutathione (GSH) enzymes, highlighting its antioxidant potential, whereas malondialdehyde (MDA) concentrations showed no significant differences among the groups. Gene expression analysis revealed that tumor necrosis factor-α (TNF-α), interleukin-10 (IL-10), and transforming growth factor-β1 (TGF-β1) expression notably increased in groups fed P. boryanum containing feed, while no significant difference was observed in hepatic Heat Shock Protein 70 (HSP70) mRNA expression. Histopathological examination revealed no adverse effects of P. boryanum supplementation on the liver, spleen, or intestinal tissues. Villous height and villous surface area were notably increased in the high P. boryanum supplementation group, suggesting improved intestinal integrity and nutrient absorption. CONCLUSION Dietary P. boryanum supplementation can potentially improve growth performance, immune response, antioxidant status, and intestinal health of Nile tilapia, making it a promising candidate for sustainable aquaculture.
Collapse
Affiliation(s)
- Ahmed H Al-Wakeel
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Samia Elbahnaswy
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Engy Risha
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Eman Zahran
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
3
|
de Oliveira EF, Araújo BC, Marques VH, de Mello PH, Moreira RG, Honji RM. Influence of Docosahexaenoic and Eicosapentaenoic Acid Ratio and Temperature on the Growth Performance, Fatty Acid Profile, and Liver Morphology of Dusky Grouper ( Epinephelus marginatus) (Teleostei: Serranidae) Juveniles. Animals (Basel) 2023; 13:3212. [PMID: 37893939 PMCID: PMC10603700 DOI: 10.3390/ani13203212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/01/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
An 8-week trial was performed to evaluate the influence of docosahexaenoic (DHA) and eicosapentaenoic acid (EPA) ratios and temperature on the fatty acid (FA) metabolism and liver morphology of Epinephelus marginatus. A basal diet was manufactured, and DHA (D1:0.5%; D2:0.75%; D3:1%; and D4:1.5%) and EPA (D1:1.0%; D2:0.75%; D3:0.5%; and D4:0%) levels were added. E. marginatus were kept in twelve tanks with a lower temperature (LT, 23.17 ± 0.12 °C) and twelve with a higher temperature (HT, 28.63 ± 0.06 °C). The DHA/EPA ratio did not affect performance, regardless of the temperature, but the animals fed with the D4 diet showed better growth at HT. A higher lipid deposition and a large lipid vacuole area in the hepatocytes at HT were observed, regardless of the diet. Triacylglycerol (TG) in reflected the diet FA profile mainly in the muscle and liver, whereas the phospholipid (PL) was less influenced by the diet. The same DHA content in the TG fraction of muscle (D3 and D4) were observed at LT; however, only the DHA/EPA ratio of D4 could be differentially stored in the TG fraction of muscle (HT). Monounsaturated and polyunsaturated FA increased in the PL of the eyes at HT, whereas saturated FA was reduced in the TG and PL fractions at LT. These results evidence the importance of temperature and a balanced DHA/EPA ratio in the diet of marine fish.
Collapse
Affiliation(s)
- Ethiene Fernandes de Oliveira
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo (IB/USP), Rua do Matão, trav. 14, nº 321, São Paulo 05508-090, SP, Brazil; (E.F.d.O.); (R.G.M.)
| | - Bruno Cavalheiro Araújo
- Núcleo Integrado de Biotecnologia, Universidade de Mogi das Cruzes (UMC), Mogi das Cruzes 08701-970, SP, Brazil;
| | - Victor Hugo Marques
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo (IB/USP), Rua do Matão, trav. 14, nº 321, São Paulo 05508-090, SP, Brazil; (E.F.d.O.); (R.G.M.)
| | - Paulo Henrique de Mello
- Beacon Development, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia;
| | - Renata Guimarães Moreira
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo (IB/USP), Rua do Matão, trav. 14, nº 321, São Paulo 05508-090, SP, Brazil; (E.F.d.O.); (R.G.M.)
| | - Renato Massaaki Honji
- Centro de Biologia Marinha, Universidade de São Paulo (CEBIMar/USP), Rodovia Manoel Hipólito do Rego, km 131,5, São Sebastião 11612-109, SP, Brazil
| |
Collapse
|
4
|
Magalhães R, Martins N, Fontinha F, Olsen RE, Serra CR, Peres H, Oliva-Teles A. Dietary ARA, DHA, and Carbohydrate Ratios Affect the Immune Status of Gilthead Sea Bream Juveniles upon Bacterial Challenge. Animals (Basel) 2023; 13:1770. [PMID: 37889635 PMCID: PMC10251966 DOI: 10.3390/ani13111770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/15/2023] [Accepted: 05/24/2023] [Indexed: 10/29/2023] Open
Abstract
This study aims to assess the effects of different dietary n-6/n-3 long-chain polyunsaturated fatty acid ratios and CHO content in the immune response of gilthead seabream. For that purpose, gilthead sea bream juveniles (initial body weight = 47.5 g) were fed for 84 days with four isoproteic (47% crude protein) and isolipidic (18% crude lipids) diets with high (20%) or low (5%) level of gelatinized starch (HS or LS diets, respectively) and included approximately 2.4% ARA or DHA. At the end of the trial, the DHA-enriched groups presented increased red blood cell (RBC) count, hemoglobin, plasmatic nitric oxide (NO) content, and antiprotease and alternative complement activities. The ARA groups had increased thrombocyte count, and plasmatic bactericidal activity against Vibrio anguillarum was lower in the fish fed the ARA/LS diet. After the feeding trial, the fish were challenged with an intraperitoneal injection (i.p.) of killed Photobacterium damselae subsp. piscicida (Phdp) and sampled at 4 and 24 h after the challenge. At 4 h after i.p., the ARA groups presented increased plasma total immunoglobulins (Ig) and bactericidal activity against V. anguillarum. In addition, the fish fed the ARA/LS diet presented lower white blood cell (WBC) and alternative complement activity. At 24 h after i.p., the ARA groups presented increased RBC, WBC, and thrombocyte numbers, total IG, plasma peroxidase activity, and casp3 expression in the distal intestine. The HS groups presented increased plasma NO content and bactericidal activity against Phdp and decreased protease, antiprotease activity, and bactericidal activity against V. anguillarum. In conclusion, high dietary DHA levels seemed to improve the immune status of unchallenged gilthead sea bream juveniles, while high dietary ARA levels improved the fish immune response to a bacterial challenge. The energy provided by dietary starch seems to be important to promote a fast response by the fish immune system after a challenge.
Collapse
Affiliation(s)
- Rui Magalhães
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
- Departamento de Biologia, Faculdade de Ciências, University of Porto, Rua do Campo Alegre s/n, Ed. FC4, 4169-007 Porto, Portugal
| | - Nicole Martins
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
- Departamento de Biologia, Faculdade de Ciências, University of Porto, Rua do Campo Alegre s/n, Ed. FC4, 4169-007 Porto, Portugal
| | - Filipa Fontinha
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
- Departamento de Biologia, Faculdade de Ciências, University of Porto, Rua do Campo Alegre s/n, Ed. FC4, 4169-007 Porto, Portugal
| | - Rolf Erick Olsen
- Department of Biology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Claudia Reis Serra
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
- Departamento de Biologia, Faculdade de Ciências, University of Porto, Rua do Campo Alegre s/n, Ed. FC4, 4169-007 Porto, Portugal
| | - Helena Peres
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
- Departamento de Biologia, Faculdade de Ciências, University of Porto, Rua do Campo Alegre s/n, Ed. FC4, 4169-007 Porto, Portugal
| | - Aires Oliva-Teles
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
- Departamento de Biologia, Faculdade de Ciências, University of Porto, Rua do Campo Alegre s/n, Ed. FC4, 4169-007 Porto, Portugal
| |
Collapse
|
5
|
Wild and Farmed Sea Bass (Dicentrarchus Labrax): Comparison of Biometry Traits, Chemical and Fatty Acid Composition of Fillets. FISHES 2022. [DOI: 10.3390/fishes7010045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Sea bass is a fish widely produced, consumed and appreciated in Italy. Its intensive rearing system provides the consumption of valuable fish to a wider population. Thanks to the use of an appropriate feed, it is possible to obtain reared sea bass which are richer in total lipid with a majority presence of polyunsaturated fatty acids, such as n-3 and n-6 series. In this study, a total of 75 specimens of European sea bass coming from three different origins (two farmed and one wild) were considered, with 25 fish from each origin. Biometry traits were valued as of the chemical and fatty acid profile of fillets. Biometric indices, proximate composition and fatty acid percentage were significantly affected by the rearing system. Fishes from the intensive rearing system (IRS) showed the highest value of relative profile and condition factor, a higher content of lipid and total n-6 that influenced the n-6/n-3 ratio and the atherogenic indexes, and values that indicated their flesh for human consumption as a healthy alternative to the wild fishes.
Collapse
|
6
|
Tseng Y, Dominguez D, Bravo J, Acosta F, Robaina L, Geraert PA, Kaushik S, Izquierdo M. Organic Selenium (OH-MetSe) Effect on Whole Body Fatty Acids and Mx Gene Expression against Viral Infection in Gilthead Seabream ( Sparus aurata) Juveniles. Animals (Basel) 2021; 11:2877. [PMID: 34679898 PMCID: PMC8532762 DOI: 10.3390/ani11102877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022] Open
Abstract
The supplementation of fish diets with OH-SeMet reduces oxidative stress and modulates immune response against bacterial infection. However, despite the importance of essential polyunsaturated fatty acids in fish nutrition and their high risk of oxidation, the potential protective effect of OH-SeMet on these essential fatty acids has not been studied in detail. Moreover, while viral infection is very relevant in seabream production, no studies have focused the Se effects against viral infection. The aim of the present study was to assess the impact of dietary supplementation with OH-SeMet on gilthead seabream fatty acid profiles, growth performance and response against viral infection. Gilthead seabream juveniles (21.73 ± 0.27 g) were fed for 91 days with three experimental diets, a control diet without supplementation of Se (0.29 mg Se kg diet-1) and two diets supplemented with OH-SeMet (0.52 and 0.79 mg Se kg diet-1). A crowding stress test was performed at week 7 and an anti-viral response challenge were conducted at the end of the feeding trial. Selenium, proximate and fatty acid composition of diets and body tissues were analyzed. Although fish growth was not affected, elevation in dietary Se proportionally raised Se content in body tissues, increased lipid content in the whole body and promoted retention and synthesis of n-3 polyunsaturated fatty acids. Specifically, a net production of DHA was observed in those fish fed diets with a higher Se content. Additionally, both monounsaturated and saturated fatty acids were significantly reduced by the increase in dietary Se. Despite the elevation of dietary Se to 0.79 mg kg-1 not affecting basal cortisol levels, 2 h post-stress plasma cortisol levels were markedly increased. Finally, at 24 h post-stimulation, dietary OH-SeMet supplementation significantly increased the expression of the antiviral response myxovirus protein gene, showing, for the first time in gilthead seabream, the importance of dietary Se levels on antiviral defense.
Collapse
Affiliation(s)
- Yiyen Tseng
- Aquaculture Research Group (GIA), Institute of Sustainable Aquaculture and Marine Ecosystems (ECOAQUA), Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214 Telde, Spain; (D.D.); (J.B.); (F.A.); (L.R.); (S.K.); (M.I.)
| | - David Dominguez
- Aquaculture Research Group (GIA), Institute of Sustainable Aquaculture and Marine Ecosystems (ECOAQUA), Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214 Telde, Spain; (D.D.); (J.B.); (F.A.); (L.R.); (S.K.); (M.I.)
| | - Jimena Bravo
- Aquaculture Research Group (GIA), Institute of Sustainable Aquaculture and Marine Ecosystems (ECOAQUA), Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214 Telde, Spain; (D.D.); (J.B.); (F.A.); (L.R.); (S.K.); (M.I.)
| | - Felix Acosta
- Aquaculture Research Group (GIA), Institute of Sustainable Aquaculture and Marine Ecosystems (ECOAQUA), Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214 Telde, Spain; (D.D.); (J.B.); (F.A.); (L.R.); (S.K.); (M.I.)
| | - Lidia Robaina
- Aquaculture Research Group (GIA), Institute of Sustainable Aquaculture and Marine Ecosystems (ECOAQUA), Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214 Telde, Spain; (D.D.); (J.B.); (F.A.); (L.R.); (S.K.); (M.I.)
| | - Pierre-André Geraert
- Adisseo France S.A.S., 10 Place du General de Gaulle, Antony, 92160 Paris, France;
| | - Sadasivam Kaushik
- Aquaculture Research Group (GIA), Institute of Sustainable Aquaculture and Marine Ecosystems (ECOAQUA), Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214 Telde, Spain; (D.D.); (J.B.); (F.A.); (L.R.); (S.K.); (M.I.)
| | - Marisol Izquierdo
- Aquaculture Research Group (GIA), Institute of Sustainable Aquaculture and Marine Ecosystems (ECOAQUA), Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214 Telde, Spain; (D.D.); (J.B.); (F.A.); (L.R.); (S.K.); (M.I.)
| |
Collapse
|