1
|
Wang J, Zhao F, Huang J, Li Q, Yang Q, Ju J. Application of essential oils as slow-release antimicrobial agents in food preservation: Preparation strategies, release mechanisms and application cases. Crit Rev Food Sci Nutr 2024; 64:6272-6297. [PMID: 36651301 DOI: 10.1080/10408398.2023.2167066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Food spoilage caused by foodborne microorganisms will not only cause significant economic losses, but also the toxins produced by some microorganisms will also pose a serious threat to human health. Essential oil (EOs) has significant antimicrobial activity, but its application in the field of food preservation is limited because of its volatile, insoluble in water and sensitive to light and heat. Therefore, in order to solve these problems effectively, this paper first analyzed the antibacterial effect of EOs as an antimicrobial agent on foodborne bacteria and its mechanism. Then, the application strategies of EOs as a sustained-release antimicrobial agent in food preservation were reviewed. On this basis, the release mechanism and application cases of EOs in different antibacterial composites were analyzed. The purpose of this paper is to provide technical support and solutions for the preparation of new antibacterial packaging materials based on plant active components to ensure food safety and reduce food waste.
Collapse
Affiliation(s)
- Jindi Wang
- Special Food Research Institute, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Beijing, People's Republic of China
| | - Fangyuan Zhao
- Special Food Research Institute, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Beijing, People's Republic of China
| | - Jinglin Huang
- Special Food Research Institute, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Beijing, People's Republic of China
| | - Qianyu Li
- Special Food Research Institute, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Beijing, People's Republic of China
| | - Qingli Yang
- Special Food Research Institute, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Beijing, People's Republic of China
| | - Jian Ju
- Special Food Research Institute, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Beijing, People's Republic of China
| |
Collapse
|
2
|
Pilozo G, Villavicencio-Vásquez M, Chóez-Guaranda I, Murillo DV, Pasaguay CD, Reyes CT, Maldonado-Estupiñán M, Ruiz-Barzola O, León-Tamariz F, Manzano P. Chemical, antioxidant, and antifungal analysis of oregano and thyme essential oils from Ecuador: Effect of thyme against Lasiodiplodia theobromae and its application in banana rot. Heliyon 2024; 10:e31443. [PMID: 38831831 PMCID: PMC11145482 DOI: 10.1016/j.heliyon.2024.e31443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 06/05/2024] Open
Abstract
The objective of this study was to evaluate the antioxidant capacity by spectrophotometric methods, the in vitro and in vivo antifungal effect against Lasiodiplodia theobromae and the constitution of the essential oils (EO) of oregano and thyme in comparison with their commercial counterparts. The results showed by the EOs of extracted thyme (T-EO), commercial thyme (CT-EO), extracted oregano (O-EO) and commercial oregano (CO-EO), demonstrated antioxidant profiles with a radical neutralizing potential (DPPH•) of IC50: 1.11 ± 0.019; 1.08 ± 0.05; 40.56 ± 0.227 and 0.69 ± 0.004 mg/mL, respectively. They also revealed a ferric ion reducing capacity (FRAP) of 93.05 ± 0.52; 97.72 ± 0.42; 21.85 ± 0.57 and 117.24 ± 0.64 mg Eq Trolox/g. A reduction in β-carotene degradation of 65.71 ± 0.04; 51.97 ± 0.66; 43.58 ± 1.56 and 57.46 ± 1.56 %. A total phenol content (Folin-Ciocalteu) of 132.97 ± 0.77; 141.89 ± 2.56; 152.04 ± 0.10 and 25.66 ± 0.40 mg EGA/g. Chemical characterization performed by gas chromatography mass spectrometry (GC-MS) showed that the respective major components of the samples were thymol (T-EO: 45.78 %), thymol (CT-EO: 43.57 %), alloaromadendrene (O-EO: 25.17 %) and carvacrol (CO-EO: 62.06 %). Regarding antifungal activity, it was evident that at the in vitro level, both commercial EOs had a MIC of 250 ppm while the extracted thyme EO had a MIC of 500 ppm; In vivo studies demonstrated that the application of thyme EO had a behavior similar to the synthetic fungicide, slowing down rot in bananas under storage conditions. Finally, partial least squares discriminant analysis (PLS-DA) and heat maps suggest p-cymene, carvacrol, linalool, eucalyptol, 4-terpineol, (z)-β-terpineol, alkanhol, caryophyllene, β-myrcene, d-limonene, α-terpinene, α-terpineol, d-α-pinene, camphene, caryophyllene oxide, δ-cadinene, terpinolene and thymol as relevant biomarkers associated with the assessed bioactive properties demonstrating the potential of extracted essential oils for the development of a botanical biofungicide.
Collapse
Affiliation(s)
- Glenda Pilozo
- Facultad de Ciencias de la Vida, ESPOL Polytechnic University, ESPOL, Campus Gustavo Galindo, Km. 30.5 Vía Perimetral, Guayaquil, 090902, Ecuador
- Centro de Investigaciones Biotecnológicas del Ecuador, ESPOL Polytechnic University, ESPOL, Campus Gustavo Galindo, Km. 30.5 Vía Perimetral, Guayaquil, 090902, Ecuador
| | - Mirian Villavicencio-Vásquez
- Centro de Investigaciones Biotecnológicas del Ecuador, ESPOL Polytechnic University, ESPOL, Campus Gustavo Galindo, Km. 30.5 Vía Perimetral, Guayaquil, 090902, Ecuador
| | - Ivan Chóez-Guaranda
- Centro de Investigaciones Biotecnológicas del Ecuador, ESPOL Polytechnic University, ESPOL, Campus Gustavo Galindo, Km. 30.5 Vía Perimetral, Guayaquil, 090902, Ecuador
| | - Damon Vera Murillo
- Facultad de Ciencias Naturales y Matemáticas, ESPOL Polytechnic University, ESPOL, Campus Gustavo Galindo, Km. 30.5 Vía Perimetral, Guayaquil, 090902, Ecuador
| | - Cynthia Duarte Pasaguay
- Facultad de Ciencias Naturales y Matemáticas, ESPOL Polytechnic University, ESPOL, Campus Gustavo Galindo, Km. 30.5 Vía Perimetral, Guayaquil, 090902, Ecuador
| | - Christofer Tomalá Reyes
- Facultad de Ciencias Naturales y Matemáticas, ESPOL Polytechnic University, ESPOL, Campus Gustavo Galindo, Km. 30.5 Vía Perimetral, Guayaquil, 090902, Ecuador
| | - Maria Maldonado-Estupiñán
- Facultad de Ciencias Naturales y Matemáticas, ESPOL Polytechnic University, ESPOL, Campus Gustavo Galindo, Km. 30.5 Vía Perimetral, Guayaquil, 090902, Ecuador
| | - Omar Ruiz-Barzola
- Facultad de Ciencias Naturales y Matemáticas, ESPOL Polytechnic University, ESPOL, Campus Gustavo Galindo, Km. 30.5 Vía Perimetral, Guayaquil, 090902, Ecuador
| | - Fabián León-Tamariz
- University of Cuenca, Universidad de Cuenca, Departamento de Biociencias, Facultad de Ciencias Químicas, Campus Central Av. 12 de Abril, Cuenca, Ecuador
| | - Patricia Manzano
- Facultad de Ciencias de la Vida, ESPOL Polytechnic University, ESPOL, Campus Gustavo Galindo, Km. 30.5 Vía Perimetral, Guayaquil, 090902, Ecuador
- Centro de Investigaciones Biotecnológicas del Ecuador, ESPOL Polytechnic University, ESPOL, Campus Gustavo Galindo, Km. 30.5 Vía Perimetral, Guayaquil, 090902, Ecuador
- Facultad de Ciencias Naturales y Matemáticas, ESPOL Polytechnic University, ESPOL, Campus Gustavo Galindo, Km. 30.5 Vía Perimetral, Guayaquil, 090902, Ecuador
| |
Collapse
|
3
|
Alves J, Gaspar PD, Lima TM, Silva PD. What is the role of active packaging in the future of food sustainability? A systematic review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1004-1020. [PMID: 35303759 DOI: 10.1002/jsfa.11880] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 01/17/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Nowadays, the strong increase in products consumption, the purchase of products on online platforms as well as the requirements for greater safety and food protection are a concern for food and packaging industries. Active packaging brings huge advances in the extension of product shelf-life and food degradation and losses reduction. This systematic work aims to collect and evaluate all existing strategies and technologies of active packaging that can be applied in food products, with a global view of new possibilities for food preservation. Oxygen scavengers, carbon dioxide emitters/absorbers, ethylene scavengers, antimicrobial and antioxidant active packaging, and other active systems and technologies are summarized including the products commercially available and the respective mechanisms of action. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Joel Alves
- Department of Electromechanical Engineering, University of Beira Interior, Covilhã, Portugal
| | - Pedro D Gaspar
- Department of Electromechanical Engineering, University of Beira Interior, Covilhã, Portugal
- C-MAST - Center for Mechanical and Aerospace Science and Technologies, University of Beira Interior, Covilhã, Portugal
| | - Tânia M Lima
- Department of Electromechanical Engineering, University of Beira Interior, Covilhã, Portugal
- C-MAST - Center for Mechanical and Aerospace Science and Technologies, University of Beira Interior, Covilhã, Portugal
| | - Pedro D Silva
- Department of Electromechanical Engineering, University of Beira Interior, Covilhã, Portugal
- C-MAST - Center for Mechanical and Aerospace Science and Technologies, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
4
|
Colín-Chávez C, Virgen-Ortiz JJ, Miranda-Ackerman MA, Hernández-Cristóbal O, Martínez-Téllez MÁ, Esquivel-Chávez F, Gallegos-Santoyo NL. Induction of defense mechanisms in avocado using Mexican oregano oil-based antifungal sachet. FUTURE FOODS 2022. [DOI: 10.1016/j.fufo.2022.100171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
5
|
In Vitro Antibacterial Activity and in Silico Analysis of the Bioactivity of Major Compounds Obtained from the Essential Oil of Virola surinamensis Warb (Myristicaceae). J FOOD QUALITY 2022. [DOI: 10.1155/2022/5275805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Essential oils are well known for their antimicrobial activity and they are used as an effective food preservative. Virola is one of the five genera of Myristicaceae and this genus is native to the American continent, especially in neotropical regions. The largest number of species of this genus is found in the Amazon region and the most important species include Virola surinamensis Warb. and Virola sebifera Aubl. In the present study, we describe the chemical composition of the essential oil of the V. surinamensis obtained at two different periods of the day in two seasons (rainy and dry), as well as their antimicrobial activity against pathogenic bacterial strains of Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus. In addition, we investigated, using in silico tools, the antimicrobial activity of the major chemical compounds present in the essential oil of V. surinamensis. The samples collected at different seasons and times showed a similar chemical profile, characterized by the major constituents α-pinene (>33%) and β-pinene (>13%). The essential oil of V. surinamensis showed an interesting antibacterial activity, exhibiting low inhibitory concentrations against the tested bacterial species. The computational investigation indicated that limonene, myrcene, and β-pinene could be related to the antibacterial activity against the tested pathogenic bacterial strains. Our results shed light on the possible constituents of essential oil that could be related to its activity against bacterial species and might be useful for further experimental tests that aim to discover new potential antibacterial agents for food preservation.
Collapse
|
6
|
Cheng YJ, Wu YJ, Lee FW, Ou LY, Chen CN, Chu YY, Kuan YC. Impact of Storage Condition on Chemical Composition and Antifungal Activity of Pomelo Extract against Colletotrichum gloeosporioides and Anthracnose in Post-harvest Mango. PLANTS (BASEL, SWITZERLAND) 2022; 11:2064. [PMID: 35956542 PMCID: PMC9370353 DOI: 10.3390/plants11152064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/31/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Anthracnose caused by Colletotrichum leads to a tremendous post-harvest mango loss. While chemical fungicides are applied to control anthracnose, natural alternatives are preferred due to food safety and environmental concerns. Pomelo extract (PE) exhibits a broad spectrum of antimicrobial activities; however, its effect against anthracnose is unknown. Here we investigated the chemical profile of PE using GC-MS and the anti-anthracnose activity of PE using in vitro and in vivo assays. We also evaluated the impact of storage temperature (0°, 5°, 10°, 20°, -20°, and -80 °C) and light conditions on the composition and antifungal activity of PE. We found that PE inhibited C. gloeosporioides in vitro with an IC50 of 3.2 mL L-1. Applying chitosan-based coating incorporated with 20 mL L-1 PE significantly suppressed anthracnose in post-harvest 'Keitt' mango. A storage temperature below 5 °C substantially preserved major compounds and the antifungal activity of PE after 6 m of storage. Finally, we showed that applying d-limonene, the key constituent of PE, inhibited C. gloeosporioides in vitro (IC50: 10.9 mM) and suppressed anthracnose in vivo. In conclusion, we demonstrated that the application of PE and d-limonene are sustainable methods for anthracnose control in post-harvest crops and established the preservation protocol for PE.
Collapse
Affiliation(s)
- Yu-Jung Cheng
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei 10617, Taiwan
| | - Ying-Jou Wu
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei 10617, Taiwan
| | - Fang-Wei Lee
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei 10617, Taiwan
| | - Ling-Yi Ou
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei 10617, Taiwan
| | - Chi-Nan Chen
- Chiayi Agricultural Experiment Branch, Taiwan Agricultural Research Institute, Council of Agriculture, Executive Yuan, Chiayi 60044, Taiwan
| | - Yu-Ying Chu
- Chiayi Agricultural Experiment Branch, Taiwan Agricultural Research Institute, Council of Agriculture, Executive Yuan, Chiayi 60044, Taiwan
| | - Yen-Chou Kuan
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei 10617, Taiwan
- Highland Experimental Farm, National Taiwan University, Nantou 54641, Taiwan
| |
Collapse
|
7
|
Cholmaitri C, Uthairatanakij A, Laohakunjit N, Jitareerat P, Mingvanish W. Controlled release sachet of methyl salicylate from rice husk absorbents for delayed ripening in ‘Namwa’ bananas. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Coimbra A, Ferreira S, Duarte AP. Biological properties of Thymus zygis essential oil with emphasis on antimicrobial activity and food application. Food Chem 2022; 393:133370. [PMID: 35667177 DOI: 10.1016/j.foodchem.2022.133370] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/02/2022] [Accepted: 05/29/2022] [Indexed: 11/19/2022]
Abstract
The Thymus plants have been used for centuries in traditional medicine and as a food spice, among this genus, Thymus zygis (red thyme) is a widespread plant, vastly used as a culinary flavouring agent. Its essential oil has demonstrated diverse bioactive properties, such as antimicrobial, insecticidal, larvicidal and antiparasitic activities. Numerous studies have characterized this essential oil showing that it possesses a broad antimicrobial spectrum and may even enhance the effect of certain antimicrobial agents. Its potential application as a food preservative has been analysed on different matrixes pointing to its antimicrobial activity against spoilage and pathogenic microorganisms in food. This review provides an insight in the chemical composition, antimicrobial, insecticidal, larvicidal and antiparasitic activities and toxicity of T. zygis essential oil, as well as its potential application in food as a preservative.
Collapse
Affiliation(s)
- Alexandra Coimbra
- CICS-UBI Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Susana Ferreira
- CICS-UBI Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
| | - Ana Paula Duarte
- CICS-UBI Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
| |
Collapse
|
9
|
Zubair M, Shahzad S, Hussain A, Pradhan RA, Arshad M, Ullah A. Current Trends in the Utilization of Essential Oils for Polysaccharide- and Protein-Derived Food Packaging Materials. Polymers (Basel) 2022; 14:polym14061146. [PMID: 35335477 PMCID: PMC8950623 DOI: 10.3390/polym14061146] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 12/04/2022] Open
Abstract
Essential oils (EOs) have received attention in the food industry for developing biopolymer-derived food packaging materials. EOs are an excellent choice to replace petroleum-derived additives in food packaging materials due to their abundance in nature, eco-friendliness, and superior antimicrobial and antioxidant attributes. Thus far, EOs have been used in cellulose-, starch-, chitosan-, and protein-based food packaging materials. Biopolymer-based materials have lower antioxidant and antibacterial properties in comparison with their counterparts, and are not suitable for food packaging applications. Various synthetic-based compounds are being used to improve the antimicrobial and antioxidant properties of biopolymers. However, natural essential oils are sustainable and non-harmful alternatives to synthetic antimicrobial and antioxidant agents for use in biopolymer-derived food packaging materials. The incorporation of EOs into the polymeric matrix affects their physicochemical properties, particularly improving their antimicrobial and antioxidant properties. EOs in the food packaging materials increase the shelf life of the packaged food, inhibit the growth of microorganisms, and provide protection against oxidation. Essential oils also influence other properties, such as tensile, barrier, and optical properties of the biopolymers. This review article gives a detailed overview of the use of EOs in biopolymer-derived food packaging materials. The innovative ways of incorporating of EOs into food packaging materials are also highlighted, and future perspectives are discussed.
Collapse
Affiliation(s)
- Muhammad Zubair
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Lab# 540, South Academic Building, Edmonton, AB T6G 2P5, Canada; (M.Z.); (M.A.)
| | - Sohail Shahzad
- Department of Chemistry, University of Sahiwal, Sahiwal 57000, Pakistan;
| | - Ajaz Hussain
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60000, Pakistan;
| | - Rehan Ali Pradhan
- Biopolymer Innovation Head, Yash Pakka Limited, Ayodhya 224135, UP, India;
| | - Muhammad Arshad
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Lab# 540, South Academic Building, Edmonton, AB T6G 2P5, Canada; (M.Z.); (M.A.)
| | - Aman Ullah
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Lab# 540, South Academic Building, Edmonton, AB T6G 2P5, Canada; (M.Z.); (M.A.)
- Correspondence:
| |
Collapse
|
10
|
Chávez‐Zaragoza K, Morales‐Guerrero A, Colín‐Chávez C, Tovar‐Díaz L, Ornelas‐Paz JDJ, Osuna‐Castro JA, Vargas‐Arispuro I, Martínez‐Téllez MA, Virgen‐Ortiz JJ. Improving the nutraceutical value of mango during ripening by postharvest irradiation with blue LEDs via enhancing of antioxidant enzyme activities. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Karen Chávez‐Zaragoza
- Centro de Innovación y Desarrollo Agroalimentario de Michoacán (CIDAM) Antigua Carretera a Pátzcuaro km 8 Morelia Michoacán C.P. 58341 México
- Instituto Tecnológico Superior de Uruapan Carretera Uruapan‐Carapan No. 5555 Col. La Basilia Uruapan Michoacán C.P. 60015 México
| | - Alejandro Morales‐Guerrero
- Instituto Tecnológico Superior de Uruapan Carretera Uruapan‐Carapan No. 5555 Col. La Basilia Uruapan Michoacán C.P. 60015 México
| | - Citlali Colín‐Chávez
- Centro de Innovación y Desarrollo Agroalimentario de Michoacán (CIDAM) Antigua Carretera a Pátzcuaro km 8 Morelia Michoacán C.P. 58341 México
| | - Luis Tovar‐Díaz
- Centro de Innovación y Desarrollo Agroalimentario de Michoacán (CIDAM) Antigua Carretera a Pátzcuaro km 8 Morelia Michoacán C.P. 58341 México
| | - José de Jesús Ornelas‐Paz
- Centro de Investigación en Alimentación y Desarrollo A.C. ‐ Unidad Cuauhtémoc Av. Río Conchos S/N, Parque Industrial Cd. Cuauhtémoc Chihuahua C.P. 31570 México
| | - Juan A. Osuna‐Castro
- Facultad de Ciencias Biológicas y Agropecuarias Universidad de Colima Carretera Colima‐Manzanillo km 40 Tecomán, Colima C.P. 28100 México
| | - Irasema Vargas‐Arispuro
- Centro de Investigación en Alimentación y Desarrollo A.C. Carretera la Victoria km 0.6 Hermosillo Sonora C.P. 83304 México
| | - Miguel A. Martínez‐Téllez
- Centro de Investigación en Alimentación y Desarrollo A.C. Carretera la Victoria km 0.6 Hermosillo Sonora C.P. 83304 México
| | - Jose J. Virgen‐Ortiz
- CONACYT ‐ Centro de Investigación en Alimentación y Desarrollo A. C. ‐ CIDAM. Antigua Carretera a Pátzcuaro km 8 Morelia Michoacán C.P. 58341 México
| |
Collapse
|
11
|
Wei S, Mei J, Xie J. Effects of Edible Coating and Modified Atmosphere Technology on the Physiology and Quality of Mangoes after Low-Temperature Transportation at 13 °C in Vibration Mitigation Packaging. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112432. [PMID: 34834795 PMCID: PMC8621718 DOI: 10.3390/plants10112432] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 05/17/2023]
Abstract
The mango is an important tropical fruit in the world, but it is easily perishable after harvest. In order to investigate the effect of the compound preservation technology on the physiology and quality of mangoes during transportation and storage, mangoes were treated with different packaging and preservation methods. All mangoes were subjected to simulated transportation by a vibration table for 24 h (180 r/min, 13 °C), and stored at 13 °C. The changes in the color, physicochemical characteristics, quality, and antioxidant-related enzymes of the mangoes were measured. The results show that the shelf life of inflatable bag packing (CK) was only 24 d, while the other treatments could be 30 d. The inflatable bag packing with modified atmosphere packaging (MAP) treatment (HPM) had the lowest yellowing degree (12.5%), disease index (34.4%), and mass loss (2.95%), at 30 d. Compared with the CK, the compound treatment containing MAP prolonged the peak respiration of the mangoes by 6 d and suppressed the increase in the total soluble solids and relative conductivity. Meanwhile, the HPM could effectively maintain moisture content, firmness, titratable acid, vitamin C, and the peroxidase and superoxide dismutase content, indicating that the treatment could maintain the better quality and antioxidation ability of mangoes. In summary, the MAP compound treatment better maintained the commercial characteristics of the mangoes, followed by the edible coating compound treatment. The results provide a theoretical reference for mango cushioning packaging and postharvest storage technology.
Collapse
Affiliation(s)
- Saichao Wei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (S.W.); (J.M.)
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (S.W.); (J.M.)
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (S.W.); (J.M.)
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
- Correspondence: ; Tel.: +86-021-61900351
| |
Collapse
|
12
|
Sivakumar D, Tuna Gunes N, Romanazzi G. A Comprehensive Review on the Impact of Edible Coatings, Essential Oils, and Their Nano Formulations on Postharvest Decay Anthracnose of Avocados, Mangoes, and Papayas. Front Microbiol 2021; 12:711092. [PMID: 34394060 PMCID: PMC8360855 DOI: 10.3389/fmicb.2021.711092] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/07/2021] [Indexed: 11/13/2022] Open
Abstract
Subtropical fruit such as avocados (Persea americana), mangoes (Mangifera indica L.), and papayas (Carica papaya L.) are economically important in international trade and predominantly exported to European destinations. These fruits are highly consumed due to their health benefits. However, due to long-distance shipping and the time required to reach the retail department stores, postharvest losses, due to postharvest decay occurring during the supply chain, affect the fruit quality on arrival at the long-distance distribution points. Currently, the use of synthetic fungicide, Prochloraz®, is used at the packing line to reduce postharvest decay and retain the overall quality of mangoes and avocados. Due to the ban imposed on the use of synthetic fungicides on fresh fruit, several studies have focused on the development of alternative technologies to retain the overall quality during marketing. Among the developed alternative technologies for commercial adoption is the use of edible coatings, such as chitosan biocontrol agents and essential oil vapors. The objective of this review is to summarize and analyze the recent advances and trends in the use of these alternative postharvest treatments on anthracnose decay in avocados, mangoes, and papayas.
Collapse
Affiliation(s)
- Dharini Sivakumar
- Phytochemical Food Network, Department of Crop Sciences, Tshwane University of Technology, Pretoria, South Africa
| | - Nurdan Tuna Gunes
- Department of Horticulture, Faculty of Agriculture, Ankara University, Ankara, Turkey
| | - Gianfranco Romanazzi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| |
Collapse
|
13
|
Neves MIL, Strieder MM, Prata AS, Silva EK, Meireles MAA. Fructans with different degrees of polymerization and their performance as carrier matrices of spray dried blue colorant. Carbohydr Polym 2021; 270:118374. [PMID: 34364618 DOI: 10.1016/j.carbpol.2021.118374] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/20/2021] [Accepted: 06/22/2021] [Indexed: 01/15/2023]
Abstract
Inulin-type fructans with different degrees of polymerization (DPs) were used as wall materials for the blue colorant produced from the crosslinking between genipin and milk proteins. The impact of using fructooligosaccharides (FOS) with DP = 5 and inulins with DP ≥ 10 (GR-In) and DP ≥ 23 (HP-In) on the physical (microstructure, size, water activity, wettability, solubility, water adsorption, glass transition temperature, and color), chemical (free genipin retention and moisture), and technological (colorant power, pH stability, and thermal stability) properties of the powdered blue colorant was examined. Inulins were more efficient carriers as seen from the physical characteristics of the microparticles. FOS and GR-In promoted higher retention of free genipin than HP-In. Additionally, their lower DP influenced the rehydration proprieties as well as the color intensity and colorant power. The DP did not affect the physical stability of the colorant at different pH conditions or at high temperature. Our findings demonstrated that the DP of the fructan exhibited a strong impact on the blue intensity of the samples and also their rehydration capacity.
Collapse
Affiliation(s)
- Maria Isabel Landim Neves
- School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, Campinas, SP CEP:13083-862, Brazil
| | - Monique Martins Strieder
- School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, Campinas, SP CEP:13083-862, Brazil
| | - Ana Silvia Prata
- School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, Campinas, SP CEP:13083-862, Brazil
| | - Eric Keven Silva
- School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, Campinas, SP CEP:13083-862, Brazil.
| | - Maria Angela A Meireles
- School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, Campinas, SP CEP:13083-862, Brazil
| |
Collapse
|