1
|
Li Y, Huang X, Zhou G, Ye A, Deng Y, Shi L, Zhang R. Characterization of a novel endornavirus isolated from the phytopathogenic fungus Rhizoctonia solani. Arch Virol 2024; 169:15. [PMID: 38163823 DOI: 10.1007/s00705-023-05915-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/19/2023] [Indexed: 01/03/2024]
Abstract
Rhizoctonia solani endornavirus 8 (RsEV8) was isolated from strain XY175 of Rhizoctonia solani AG-1 IA. The full-length genome of RsEV8 is 16,147 nucleotides (nt) in length and contains a single open reading frame that encodes a large polyprotein of 5227 amino acids. The polyprotein contains four conserved domains: viral methyltransferase, putative DEAH box helicase, viral helicase, and RNA-dependent RNA polymerase (RdRp). RsEV8 has a shorter 3'-UTR (58 nt) and a longer 5'-UTR (404 nt). A multiple sequence alignment indicated that the RdRp of RsEV8 possesses eight typical RdRp motifs. According to a BLASTp analysis, RsEV8 shares 39.31% sequence identity with Rhizoctonia cerealis endornavirus-1084-7. Phylogenetic analysis demonstrated that RsEV8 clusters with members of the genus Betaendornavirus.
Collapse
Affiliation(s)
- Yangyi Li
- Institute of Vegetable Research, Wuhan Academy of Agricultural Sciences, Wuhan, 430045, Hubei, China
| | - Xingxue Huang
- Institute of Vegetable Research, Wuhan Academy of Agricultural Sciences, Wuhan, 430045, Hubei, China
| | - Guolin Zhou
- Institute of Vegetable Research, Wuhan Academy of Agricultural Sciences, Wuhan, 430045, Hubei, China
| | - Anhua Ye
- Institute of Vegetable Research, Wuhan Academy of Agricultural Sciences, Wuhan, 430045, Hubei, China
| | - Yaohua Deng
- Institute of Vegetable Research, Wuhan Academy of Agricultural Sciences, Wuhan, 430045, Hubei, China
| | - Lingfang Shi
- Institute of Vegetable Research, Wuhan Academy of Agricultural Sciences, Wuhan, 430045, Hubei, China
| | - Runhua Zhang
- Institute of Vegetable Research, Wuhan Academy of Agricultural Sciences, Wuhan, 430045, Hubei, China.
| |
Collapse
|
2
|
Wang P, Pan S, Zheng Y, Pan X, Gao Z, Zhou X, Dai F, Li Z, Deng Q, Fang S, Wang H, Zhang S. Four closely related endornaviruses each with a low incidence in the phytopathogenic fungi Exserohilum turcicum or Bipolaris maydis. Virus Res 2024; 339:199256. [PMID: 37898320 PMCID: PMC10628355 DOI: 10.1016/j.virusres.2023.199256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 10/30/2023]
Abstract
Endornaviruses are known to occur widely in plants, fungi, and oomycetes, but our understanding of their diversity and distribution is limited. In this study, we report the discovery of four endornaviruses tentatively named Setosphaeria turcica endornavirus 1 (StEV1), Setosphaeria turcica endornavirus 2 (StEV2), Bipolaris maydis endornavirus 1 (BmEV1), and Bipolaris maydis endornavirus 2 (BmEV2). StEV1 and StEV2 infect Exserohilum turcicum, while BmEV1 and BmEV2 infect Bipolaris maydis. The four viruses encode a polyprotein with less than 40 % amino acid sequence identity to other known endornaviruses, indicating that they are novel, previously undescribed endornaviruses. However, StEV1 and BmEV1 share a sequence identity of 78 % at the full-genome level and 87 % at the polyprotein level, suggesting that they may belong to the same species. Our study also found that each of the four endornaviruses has an incidence of approximately 3.5 % to 5.5 % in E. turcicum or B. maydis. Interestingly, BmEV1 and BmEV2 were found to be unable to transmit between hosts of different vegetative incompatibility groups, which may explain their low incidence.
Collapse
Affiliation(s)
- Peng Wang
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou 434025, China
| | - Shouhui Pan
- Anshun Branch of Guizhou Tobacco Company, Anshun 561000, China
| | - Yun Zheng
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou 434025, China
| | - Xin Pan
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou 434025, China
| | - Zhongnan Gao
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou 434025, China
| | - Xuan Zhou
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou 434025, China
| | - Fei Dai
- Anshun Branch of Guizhou Tobacco Company, Anshun 561000, China
| | - Zhanbiao Li
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Qingchao Deng
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou 434025, China
| | - Shouguo Fang
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou 434025, China
| | - Haoran Wang
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou 434025, China.
| | - Songbai Zhang
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou 434025, China.
| |
Collapse
|
3
|
Umer M, Mubeen M, Shakeel Q, Ali S, Iftikhar Y, Bajwa RT, Anwar N, Rao MJ, He Y. Mycoviruses: Antagonistic Potential, Fungal Pathogenesis, and Their Interaction with Rhizoctonia solani. Microorganisms 2023; 11:2515. [PMID: 37894173 PMCID: PMC10609472 DOI: 10.3390/microorganisms11102515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/14/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Mycoviruses, or fungal viruses, are prevalent in all significant fungal kingdoms and genera. These low-virulence viruses can be used as biocontrol agents to manage fungal diseases. These viruses are divided into 19 officially recognized families and 1 unclassified genus. Mycoviruses alter sexual reproduction, pigmentation, and development. Spores and fungal hypha spread mycoviruses. Isometric particles mostly encapsulate dsRNA mycoviruses. The widespread plant-pathogenic fungus Rhizoctonia solani, which has caused a rice sheath blight, has hosted many viruses with different morphologies. It causes significant crop diseases that adversely affect agriculture and the economy. Rice sheath blight threatens the 40% of the global population that relies on rice for food and nutrition. This article reviews mycovirology research on Rhizoctonia solani to demonstrate scientific advances. Mycoviruses control rice sheath blight. Hypovirulence-associated mycoviruses are needed to control R. solani since no cultivars are resistant. Mycoviruses are usually cryptic, but they can benefit the host fungus. Phytopathologists may use hypovirulent viruses as biological control agents. New tools are being developed based on host genome studies to overcome the intellectual challenge of comprehending the interactions between viruses and fungi and the practical challenge of influencing these interactions to develop biocontrol agents against significant plant pathogens.
Collapse
Affiliation(s)
- Muhammad Umer
- Forestry College, Research Centre of Forest Ecology, Guizhou University, Guiyang 550025, China;
- Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang 550025, China
| | - Mustansar Mubeen
- Department of Plant Pathology, College of Agriculture, University of Sargodha, Sargodha 40100, Pakistan; (M.M.); (Y.I.)
| | - Qaiser Shakeel
- Cholistan Institute of Desert Studies, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (Q.S.); (R.T.B.)
| | - Sajjad Ali
- Department of Entomology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Yasir Iftikhar
- Department of Plant Pathology, College of Agriculture, University of Sargodha, Sargodha 40100, Pakistan; (M.M.); (Y.I.)
| | - Rabia Tahir Bajwa
- Cholistan Institute of Desert Studies, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (Q.S.); (R.T.B.)
| | - Naureen Anwar
- Department of Biology, Virtual University of Pakistan, Lahore 54000, Pakistan;
| | - Muhammad Junaid Rao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Yuejun He
- Forestry College, Research Centre of Forest Ecology, Guizhou University, Guiyang 550025, China;
- Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang 550025, China
| |
Collapse
|
4
|
Zhao C, Li S, Ma Z, Wang W, Gao L, Han C, Yang A, Wu X. Anastomosis Groups and Mycovirome of Rhizoctonia Isolates Causing Sugar Beet Root and Crown Rot and Their Sensitivity to Flutolanil, Thifluzamide, and Pencycuron. J Fungi (Basel) 2023; 9:jof9050545. [PMID: 37233256 DOI: 10.3390/jof9050545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/26/2023] [Accepted: 05/05/2023] [Indexed: 05/27/2023] Open
Abstract
Anastomosis groups (AGs) or subgroups of 244 Rhizoctonia isolates recovered from sugar beet roots with symptoms of root and crown rot were characterized to be AG-A, AG-K, AG-2-2IIIB, AG-2-2IV, AG-3 PT, AG-4HGI, AG-4HGII, and AG-4HGIII, with AG-4HGI (108 isolates, 44.26%) and AG-2-2IIIB (107 isolates, 43.85%) being predominate. Four unclassified mycoviruses and one hundred and one putative mycoviruses belonging to six families, namely Mitoviridae (60.00%), Narnaviridae (18.10%), Partitiviridae (7.62%), Benyviridae (4.76%), Hypoviridae (3.81%), and Botourmiaviridae (1.90%), were found to be present in these 244 Rhizoctonia isolates, most of which (88.57%) contained positive single-stranded RNA genome. The 244 Rhizoctonia isolates were all sensitive to flutolanil and thifluzamide, with average median effective concentration (EC50) value of 0.3199 ± 0.0149 μg·mL-1 and 0.1081 ± 0.0044 μg·mL-1, respectively. Among the 244 isolates, except for 20 Rhizoctonia isolates (seven isolates of AG-A and AG-K, one isolate of AG-4HGI, and 12 isolates of AG-4HGII), 117 isolates of AG-2-2IIIB, AG-2-2IV, AG-3 PT, and AG-4HGIII, 107 isolates of AG-4HGI, and six isolates of AG-4HGII were sensitive to pencycuron, with average EC50 value of 0.0339 ± 0.0012 μg·mL-1. Correlation index (ρ) of cross-resistance level between flutolanil and thifluzamide, flutolanil and pencycuron, and thifluzamide and pencycuron was 0.398, 0.315, and 0.125, respectively. This is the first detailed study on AG identification, mycovirome analysis, and sensitivity to flutolanil, thifluzamide, and pencycuron of Rhizoctonia isolates associated with sugar beet root and crown rot.
Collapse
Affiliation(s)
- Can Zhao
- College of Plant Protection, China Agricultural University, Beijing 100193, China
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Siwei Li
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Zhihao Ma
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Wenjun Wang
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Lihong Gao
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Chenggui Han
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Anpei Yang
- Institute of Plant Protection, Xinjiang Academy of Agricultural Science, Urumqi 830091, China
| | - Xuehong Wu
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| |
Collapse
|
5
|
Li B, Cao Y, Ji Z, Zhang J, Meng X, Dai P, Hu T, Wang S, Cao K, Wang Y. Coinfection of Two Mycoviruses Confers Hypovirulence and Reduces the Production of Mycotoxin Alternariol in Alternaria alternata f. sp. mali. Front Microbiol 2022; 13:910712. [PMID: 35756001 PMCID: PMC9218907 DOI: 10.3389/fmicb.2022.910712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/28/2022] [Indexed: 11/22/2022] Open
Abstract
Alternaria leaf blotch caused by Alternaria alternata apple pathotype (Alternaria mali) is an important fungal disease that affects the production of apples worldwide. Mycoviruses harbored in plant pathogenic fungi can confer hypovirulence in their hosts and have attracted widespread attention as potential biocontrol tools. In this study, the coinfection of two mycoviruses, named A. alternata chrysovirus 1 strain QY2 (AaCV1-QY2) and A. alternata magoulivirus 1 (AaMV1), respectively, were isolated from A. alternata f. sp. mali strain QY21. Sequence analyses revealed that AaCV1-QY2 virus belonged to the genus Betachrysovirus and AaMV1 virus belonged to the genus Magoulvirus. These two mycoviruses were found to be associated with hypovirulence in A. alternata, among which AaCV1-QY2 might play a relatively leading role. Because the elimination of AaMV1 from the strain QY21 does not affect the hypovirulence trait, which indicates that the virus AaCV1-QY2 can independently induce slow growth and reduce host virulence. Moreover, the presence of viruses decreased the accumulation of the mycotoxin alternariol (AOH) in A. alternata strains. Intriguingly, AaCV1-QY2/AaMV1 mycoviruses can be horizontally transmitted to other A. alternata strains, and this coinfection can promote the interspecific transmission efficiency of AaCV1-QY2. To our knowledge, this study reports the first description of the member of Chrysovirus is related to hypovirulence in Alternaria spp. that facilitates the development of biocontrol measures of A. mali Roberts.
Collapse
Affiliation(s)
- Bo Li
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Yuhan Cao
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Zixuan Ji
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Jingyi Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Xianglong Meng
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Pengbo Dai
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Tongle Hu
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Shutong Wang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Keqiang Cao
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Yanan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
| |
Collapse
|
6
|
Li W, Zhang H, Shu Y, Cao S, Sun H, Zhang A, Chen H. Genome structure and diversity of novel endornaviruses from wheat sharp eyespot pathogen Rhizoctonia cerealis. Virus Res 2021; 297:198368. [PMID: 33684418 DOI: 10.1016/j.virusres.2021.198368] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/22/2021] [Accepted: 02/26/2021] [Indexed: 10/22/2022]
Abstract
Rhizoctonia cerealis (teleomorph Ceratobasidium cereale) is a soil-borne plant pathogenic fungus that can cause sharp eyespot in wheat or yellow patch in grasses. In this study, 21 new endornavirus genomes were obtained from five R. cerealis strains through the high-throughput sequencing of viral double-stranded RNA. Eighteen viruses were identified as Alphaendornavirus, and three viruses were identified as new species of Betaendornavirus on the basis of the phylogenetic analysis of the deduced amino acid sequences of RNA-dependent RNA polymerase. Notably, 12 of the new alphaendornaviruses could encode two open reading frames (ORFs), which were a rare feature of Endornaviridae. The amino acid sequences encoded by ORF2 from different endornaviruses had very low identity, and their functions and evolution origins remained unclear. Different endornavirus species with remarkably different genome structures could be found in the same R. cerealis strain. This study indicated that endornaviruses are common in R. cerealis and display wide diversity. Betaendornaviruses were found in R. cerealis, and a new species was proposed. This study is the first to report that the endornaviruses from R. cerealis can encode two ORFs and enhances our understanding of the viruses in the Endornaviridae family.
Collapse
Affiliation(s)
- Wei Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu, Nanjing, 210014, China; Jiangsu Co-Innovation Centre for Modern Production Technology of Grain Crops, Yangzhou University, Jiangsu, Yangzhou, 225009, China.
| | - Haotian Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu, Nanjing, 210014, China; Hubei Collaborative Innovation Centre for Grain Industry, Yangtze University, Hubei, Jingzhou, 434025, China
| | - Yan Shu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu, Nanjing, 210014, China
| | - Shulin Cao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu, Nanjing, 210014, China
| | - Haiyan Sun
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu, Nanjing, 210014, China
| | - Aixiang Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu, Nanjing, 210014, China
| | - Huaigu Chen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu, Nanjing, 210014, China; Jiangsu Co-Innovation Centre for Modern Production Technology of Grain Crops, Yangzhou University, Jiangsu, Yangzhou, 225009, China.
| |
Collapse
|
7
|
Chen Y, Su JE, Qin XY, Fan ZY, Zhang XH, Yu Q, Xia ZY, Zou CM, Zhao GK, Lin ZL. A novel putative betapartitivirus isolated from the plant-pathogenic fungus Rhizoctonia solani. Arch Virol 2020; 165:1697-1701. [PMID: 32405824 DOI: 10.1007/s00705-020-04598-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 03/24/2020] [Indexed: 10/24/2022]
Abstract
In this study, we describe the genome sequence of a novel double-stranded RNA (dsRNA) mycovirus, designated as "Rhizoctonia solani partitivirus 15" (RsPV15), from the phytopathogenic fungus Rhizoctonia solani. RsPV15 consists of two genomic double-stranded RNA segments, dsRNA-1 and dsRNA-2, which are 2433 bp and 2350 bp long, respectively. Each of the dsRNA segments contains a single open reading frame, encoding the putative RNA-dependent RNA polymerase and coat protein, respectively. Homology searches and phylogenetic analysis suggested that RsPV15 is a new member of the genus Betapartitivirus within the family Partitiviridae.
Collapse
Affiliation(s)
- Yi Chen
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, Yunnan, China
| | - Jia En Su
- Research center of Yunnan Aromatic Tobacco Company, Dali, 671000, Yunnan, China
| | - Xi Yun Qin
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, Yunnan, China
| | - Zhi Yong Fan
- Research center of Yunnan Aromatic Tobacco Company, Dali, 671000, Yunnan, China
| | - Xiao Hai Zhang
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, Yunnan, China
| | - Qing Yu
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, Yunnan, China
| | - Zhen Yuan Xia
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, Yunnan, China
| | - Cong Ming Zou
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, Yunnan, China
| | - Gao Kun Zhao
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, Yunnan, China.
| | - Zhong Long Lin
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, Yunnan, China.
| |
Collapse
|
8
|
Viruses Infecting the Plant Pathogenic Fungus Rhizoctonia solani. Viruses 2019; 11:v11121113. [PMID: 31801308 PMCID: PMC6950361 DOI: 10.3390/v11121113] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/18/2019] [Accepted: 11/26/2019] [Indexed: 12/15/2022] Open
Abstract
The cosmopolitan fungus Rhizoctonia solani has a wide host range and is the causal agent of numerous crop diseases, leading to significant economic losses. To date, no cultivars showing complete resistance to R. solani have been identified and it is imperative to develop a strategy to control the spread of the disease. Fungal viruses, or mycoviruses, are widespread in all major groups of fungi and next-generation sequencing (NGS) is currently the most efficient approach for their identification. An increasing number of novel mycoviruses are being reported, including double-stranded (ds) RNA, circular single-stranded (ss) DNA, negative sense (−)ssRNA, and positive sense (+)ssRNA viruses. The majority of mycovirus infections are cryptic with no obvious symptoms on the hosts; however, some mycoviruses may alter fungal host pathogenicity resulting in hypervirulence or hypovirulence and are therefore potential biological control agents that could be used to combat fungal diseases. R. solani harbors a range of dsRNA and ssRNA viruses, either belonging to established families, such as Endornaviridae, Tymoviridae, Partitiviridae, and Narnaviridae, or unclassified, and some of them have been associated with hypervirulence or hypovirulence. Here we discuss in depth the molecular features of known viruses infecting R. solani and their potential as biological control agents.
Collapse
|
9
|
Characterization of three novel betapartitiviruses co-infecting the phytopathogenic fungus Rhizoctonia solani. Virus Res 2019; 270:197649. [DOI: 10.1016/j.virusres.2019.197649] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/29/2019] [Accepted: 07/01/2019] [Indexed: 11/17/2022]
|
10
|
Gilbert KB, Holcomb EE, Allscheid RL, Carrington JC. Hiding in plain sight: New virus genomes discovered via a systematic analysis of fungal public transcriptomes. PLoS One 2019; 14:e0219207. [PMID: 31339899 PMCID: PMC6655640 DOI: 10.1371/journal.pone.0219207] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 06/18/2019] [Indexed: 11/25/2022] Open
Abstract
The distribution and diversity of RNA viruses in fungi is incompletely understood due to the often cryptic nature of mycoviral infections and the focused study of primarily pathogenic and/or economically important fungi. As most viruses that are known to infect fungi possess either single-stranded or double-stranded RNA genomes, transcriptomic data provides the opportunity to query for viruses in diverse fungal samples without any a priori knowledge of virus infection. Here we describe a systematic survey of all transcriptomic datasets from fungi belonging to the subphylum Pezizomycotina. Using a simple but effective computational pipeline that uses reads discarded during normal RNA-seq analyses, followed by identification of a viral RNA-dependent RNA polymerase (RdRP) motif in de novo assembled contigs, 59 viruses from 44 different fungi were identified. Among the viruses identified, 88% were determined to be new species and 68% are, to our knowledge, the first virus described from the fungal species. Comprehensive analyses of both nucleotide and inferred protein sequences characterize the phylogenetic relationships between these viruses and the known set of mycoviral sequences and support the classification of up to four new families and two new genera. Thus the results provide a deeper understanding of the scope of mycoviral diversity while also increasing the distribution of fungal hosts. Further, this study demonstrates the suitability of analyzing RNA-seq data to facilitate rapid discovery of new viruses.
Collapse
Affiliation(s)
- Kerrigan B. Gilbert
- Donald Danforth Plant Science Center, Saint Louis, Missouri, United States of America
| | - Emily E. Holcomb
- Donald Danforth Plant Science Center, Saint Louis, Missouri, United States of America
| | - Robyn L. Allscheid
- Donald Danforth Plant Science Center, Saint Louis, Missouri, United States of America
| | - James C. Carrington
- Donald Danforth Plant Science Center, Saint Louis, Missouri, United States of America
| |
Collapse
|
11
|
Zheng L, Shu C, Zhang M, Yang M, Zhou E. Molecular Characterization of a Novel Endornavirus Conferring Hypovirulence in Rice Sheath Blight Fungus Rhizoctonia solani AG-1 IA Strain GD-2. Viruses 2019; 11:v11020178. [PMID: 30791630 PMCID: PMC6409856 DOI: 10.3390/v11020178] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 02/17/2019] [Accepted: 02/18/2019] [Indexed: 01/09/2023] Open
Abstract
The complete sequence and genome organization of a novel Endornavirus from the hypovirulent strain GD-2 of Rhizoctonia solani AG-1 IA, the causal agent of rice sheath blight, were identified using a deep sequencing approach and it was tentatively named as Rhizoctonia solani endornavirus 1 (RsEV1). It was composed of only one segment that was 19,936 bp in length and was found to be the longest endornavirus genome that has been reported so far. The RsEV1 genome contained two open reading frames (ORFs): ORF1 and ORF2. ORF1 contained a glycosyltransferase 1 domain and a conserved RNA-dependent RNA polymerase domain, whereas ORF2 encoded a conserved hypothetical protein. Phylogenetic analysis revealed that RsEV1 was phylogenetically a new endogenous RNA virus. A horizontal transmission experiment indicated that RsEV1 could be transmitted from the host fungal strain GD-2 to a virulent strain GD-118P and resulted in hypovirulence in the derivative isogenic strain GD-118P-V1. Metabolomic analysis showed that 32 metabolites were differentially expressed between GD-118P and its isogenic hypovirulent strain GD-118P-V1. The differential metabolites were mainly classified as organic acids, amino acids, carbohydrates, and the intermediate products of energy metabolism. Pathway annotation revealed that these 32 metabolites were mainly involved in pentose and glucuronate interconversions and glyoxylate, dicarboxylate, starch, and sucrose metabolism, and so on. Taken together, our results showed that RsEV1 is a novel Endornavirus, and the infection of virulent strain GD-118P by RsEV1 caused metabolic disorders and resulted in hypovirulence. The results of this study lay a foundation for the biocontrol of rice sheath blight caused by R. solani AG1-IA.
Collapse
Affiliation(s)
- Li Zheng
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China.
- College of Plant Protection, Hainan University/Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Haikou 570228, China.
| | - Canwei Shu
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Meiling Zhang
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Mei Yang
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Erxun Zhou
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
12
|
First report of a novel alphapartitivirus in the basidiomycete Rhizoctonia oryzae-sativae. Arch Virol 2018; 164:889-892. [PMID: 30535806 DOI: 10.1007/s00705-018-04116-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 11/13/2018] [Indexed: 10/27/2022]
Abstract
Rhizoctonia oryzae-sativae is a soil-borne basidiomycete fungus that causes aggregate sheath spot disease on rice worldwide. Here, we report the complete genome sequence of a partitivirus designated as Rhizoctonia oryzae-sativae partitivirus 1 (RosPV1) infecting this fungus. The genome of RosPV1 consists of two double-stranded RNA (dsRNA) segments. The larger segment, designated as dsRNA-1 (1,961 bp), contains a single open reading frame (ORF) that encodes a putative polypeptide with a conserved RNA-dependent RNA polymerase (RdRp) domain. The smaller segment, dsRNA-2 (1,819 bp), also has a single ORF, which is predicted to encode the capsid protein (CP). BLAST searches and phylogenetic analyses suggested that RosPV1 is a representative member of a new species within the genus Alphapartitivirus. This is the first report of an alphapartitivirus infecting the fungus R. oryzae-sativae.
Collapse
|
13
|
Liu C, Zeng M, Zhang M, Shu C, Zhou E. Complete Nucleotide Sequence of a Partitivirus from Rhizoctonia solani AG-1 IA Strain C24. Viruses 2018; 10:E703. [PMID: 30544926 PMCID: PMC6316540 DOI: 10.3390/v10120703] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/21/2018] [Accepted: 12/07/2018] [Indexed: 11/24/2022] Open
Abstract
The complete genome of a novel double-stranded (ds) RNA mycovirus, named as Rhizoctonia solani partitivirus 5 (RsPV5), isolated from rice sheath blight fungus R. solani AG-1 IA strain C24, was sequenced and analysed. RsPV5 consists of two segments, dsRNA-1 (1899 nucleotides) and dsRNA-2 (1787 nucleotides). DsRNA-1 has an open reading frame (ORF) 1 that potentially codes for a protein of 584 amino acid (aa) containing the conserved motifs of a RNA-dependent RNA polymerase (RdRp), and dsRNA-2 also contains a ORF 2, encoding a putative capsid protein (CP) of 513 aa. Phylogenetic analysis revealed that RsPV5 clustered together with six other viruses in an independent clade of the genus Alphapartitivirus, indicating that RsPV5 was a new member of the genus Alphapartitivirus, within the family Partitiviridae.
Collapse
Affiliation(s)
- Chen Liu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Miaolin Zeng
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Meiling Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Canwei Shu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Erxun Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
14
|
Picarelli MASC, Gobatto D, Patrício F, Rivas EB, Colariccio A. Vírus que infectam fungos fitopatogênicos. ARQUIVOS DO INSTITUTO BIOLÓGICO 2018. [DOI: 10.1590/1808-1657000162016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
RESUMO: Micovírus são vírus que infectam todos os taxa de fungos. São geralmente crípticos (latentes), mas podem causar pequenas ou imperceptíveis alterações no hospedeiro. Nos fungos fitopatogênicos, os vírus podem interferir com os sintomas e, em alguns casos, reduzir a virulência de seu hospedeiro; por esta razão, são objeto de estudo, por serem um potencial agente de biocontrole e por serem ferramentas importantes para o conhecimento sobre os mecanismos de patogênese de fungos. A presente revisão teve o objetivo de reunir os dados de literatura relacionados aos aspectos gerais da biologia e do comportamento dos micovírus presentes em alguns fungos fitopatogênicos.
Collapse
|
15
|
Mu F, Xie J, Cheng S, You MP, Barbetti MJ, Jia J, Wang Q, Cheng J, Fu Y, Chen T, Jiang D. Virome Characterization of a Collection of S. sclerotiorum from Australia. Front Microbiol 2018; 8:2540. [PMID: 29375495 PMCID: PMC5768646 DOI: 10.3389/fmicb.2017.02540] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 12/06/2017] [Indexed: 11/13/2022] Open
Abstract
Sclerotinia sclerotiorum is a devastating plant pathogen that attacks numerous economically important broad acre and vegetable crops worldwide. Mycoviruses are widespread viruses that infect fungi, including S. sclerotiorum. As there were no previous reports of the presence of mycoviruses in this pathogen in Australia, studies were undertaken using RNA_Seq analysis to determine the diversity of mycoviruses in 84 Australian S. sclerotiorum isolates collected from various hosts. After RNA sequences were subjected to BLASTp analysis using NCBI database, 285 contigs representing partial or complete genomes of 57 mycoviruses were obtained, and 34 of these (59.6%) were novel viruses. These 57 viruses were grouped into 10 distinct lineages, namely Endornaviridae (four novel mycoviruses), Genomoviridae (isolate of SsHADV-1), Hypoviridae (two novel mycoviruses), Mononegavirales (four novel mycovirusess), Narnaviridae (10 novel mycoviruses), Partitiviridae (two novel mycoviruses), Ourmiavirus (two novel mycovirus), Tombusviridae (two novel mycoviruses), Totiviridae (one novel mycovirus), Tymovirales (five novel mycoviruses), and two non-classified mycoviruses lineages (one Botrytis porri RNA virus 1, one distantly related to Aspergillus fumigatus tetramycovirus-1). Twenty-five mitoviruses were determined and mitoviruses were dominant in the isolates tested. This is not only the first study to show existence of mycoviruses in S. sclerotiorum in Australia, but highlights how they are widespread and that many novel mycoviruses occur there. Further characterization of these mycoviruses is warranted, both in terms of exploring these novel mycoviruses for innovative biocontrol of Sclerotinia diseases and in enhancing our overall knowledge on viral diversity, taxonomy, ecology, and evolution.
Collapse
Affiliation(s)
- Fan Mu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Shufen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Ming Pei You
- Faculty of Science, UWA School of Agriculture and Environment and The UWA Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| | - Martin J. Barbetti
- Faculty of Science, UWA School of Agriculture and Environment and The UWA Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| | - Jichun Jia
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Qianqian Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Yanping Fu
- The Provincial Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Tao Chen
- The Provincial Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
16
|
Lyu R, Zhang Y, Tang Q, Li Y, Cheng J, Fu Y, Chen T, Jiang D, Xie J. Two alphapartitiviruses co-infecting a single isolate of the plant pathogenic fungus Rhizoctonia solani. Arch Virol 2017; 163:515-520. [PMID: 29101540 DOI: 10.1007/s00705-017-3627-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 09/25/2017] [Indexed: 11/24/2022]
Abstract
Seven dsRNA segments were detected from a single Rhizoctonia solani strain HG81. From the full-length cDNA sequences of four smaller dsRNA segments, the genomes of two related partitiviruses, designated as Rhizoctonia solani partitivirus 3 (RsPV3) and RsPV4, were determined. The genomes of RsPV3 and RsPV4 are both composed of two separate dsRNA segments, with each segment possessing a single open reading frame (ORF). ORF1 from RsPV3 and RsPV4 encodes a putative RNA-dependent RNA polymerase, while ORF2 of RsPV3 and RsPV4 encodes a putative capsid protein. RsPV3 and RsPV4 share high sequence identity with viruses classified within the genus Alphapartitivirus, family Partitiviridae.
Collapse
Affiliation(s)
- Ruiling Lyu
- State Key Laboratory of Agricultural Microbiology, Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yi Zhang
- State Key Laboratory of Agricultural Microbiology, Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Qing Tang
- Xiangyang Academy of Agricultural Sciences, Xiangyang, 441057, Hubei, China
| | - Yangyi Li
- State Key Laboratory of Agricultural Microbiology, Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yanping Fu
- State Key Laboratory of Agricultural Microbiology, Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Tao Chen
- State Key Laboratory of Agricultural Microbiology, Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
17
|
Phytopathogenic fungus hosts a plant virus: A naturally occurring cross-kingdom viral infection. Proc Natl Acad Sci U S A 2017; 114:12267-12272. [PMID: 29087346 DOI: 10.1073/pnas.1714916114] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The transmission of viral infections between plant and fungal hosts has been suspected to occur, based on phylogenetic and other findings, but has not been directly observed in nature. Here, we report the discovery of a natural infection of the phytopathogenic fungus Rhizoctonia solani by a plant virus, cucumber mosaic virus (CMV). The CMV-infected R. solani strain was obtained from a potato plant growing in Inner Mongolia Province of China, and CMV infection was stable when this fungal strain was cultured in the laboratory. CMV was horizontally transmitted through hyphal anastomosis but not vertically through basidiospores. By inoculation via protoplast transfection with virions, a reference isolate of CMV replicated in R. solani and another phytopathogenic fungus, suggesting that some fungi can serve as alternative hosts to CMV. Importantly, in fungal inoculation experiments under laboratory conditions, R. solani could acquire CMV from an infected plant, as well as transmit the virus to an uninfected plant. This study presents evidence of the transfer of a virus between plant and fungus, and it further expands our understanding of plant-fungus interactions and the spread of plant viruses.
Collapse
|
18
|
Ong JWL, Li H, Sivasithamparam K, Dixon KW, Jones MGK, Wylie SJ. The challenges of using high-throughput sequencing to track multiple bipartite mycoviruses of wild orchid-fungus partnerships over consecutive years. Virology 2017; 510:297-304. [PMID: 28797947 DOI: 10.1016/j.virol.2017.07.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 07/25/2017] [Accepted: 07/25/2017] [Indexed: 11/19/2022]
Abstract
The bipartite alpha- and betapartitiviruses are recorded from a wide range of fungi and plants. Using a combination of dsRNA-enrichment, high-throughput shotgun sequencing and informatics, we report the occurrence of multiple new partitiviruses associated with mycorrhizal Ceratobasidium fungi, themselves symbiotically associated with a small wild population of Pterostylis sanguinea orchids in Australia, over two consecutive years. Twenty-one partial or near-complete sequences representing 16 definitive alpha- and betapartitivirus species, and further possible species, were detected from two fungal isolates. The majority of partitiviruses occurred in fungal isolates from both years. Two of the partitiviruses represent phylogenetically divergent forms of Alphapartitivirus, suggesting that they may have evolved under long geographical isolation there. We address the challenge of pairing the two genomic segments of partitiviruses to identify species when multiple partitiviruses co-infect a single host.
Collapse
Affiliation(s)
- Jamie W L Ong
- Plant Biotechnology Group - Plant Virology, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Hua Li
- Plant Biotechnology Group - Plant Virology, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Krishnapillai Sivasithamparam
- Plant Biotechnology Group - Plant Virology, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Kingsley W Dixon
- Department of Environment and Agriculture, School of Science, Curtin University, Bentley, Western Australia 6102, Australia
| | - Michael G K Jones
- Plant Biotechnology Group - Plant Virology, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Stephen J Wylie
- Plant Biotechnology Group - Plant Virology, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia.
| |
Collapse
|
19
|
Complete genome sequence of a novel mitovirus from the phytopathogenic fungus Rhizoctonia oryzae-sativae. Arch Virol 2017; 162:1409-1412. [PMID: 28124142 DOI: 10.1007/s00705-017-3229-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 12/23/2016] [Indexed: 10/20/2022]
Abstract
A double-stranded RNA (dsRNA) segment was isolated from the filamentous phytopathogenic fungus Rhizoctonia oryzae-sativae and its full-length cDNA sequence (3038 nucleotides) was determined. Sequence analysis revealed that a large open reading frame (ORF) is present on the positive strand of this dsRNA segment when the mitochondrial genetic code was applied. The ORF encodes a putative RNA-dependent RNA polymerase, which shares the closest similarity with Rhizoctonia mitovirus 1 and Rhizophagus sp. RF1 mitovirus, with 43% and 29% identity, respectively. This dsRNA segment represents the replication form of a novel mitovirus that was temporarily designated Rhizoctonia oryzae-sativae mitovirus 1 (RoMV1). Phylogenetic analysis further suggested that RoMV1 belongs to the family Narnaviridae. This is the first study to report a mitovirus genome sequence in the phytopathogenic fungus R. oryzae-sativae.
Collapse
|
20
|
Ong JW, Li H, Sivasithamparam K, Dixon KW, Jones MG, Wylie SJ. Novel Endorna-like viruses, including three with two open reading frames, challenge the membership criteria and taxonomy of the Endornaviridae. Virology 2016; 499:203-211. [DOI: 10.1016/j.virol.2016.08.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/11/2016] [Accepted: 08/19/2016] [Indexed: 10/21/2022]
|
21
|
Deep Sequencing Analysis Reveals the Mycoviral Diversity of the Virome of an Avirulent Isolate of Rhizoctonia solani AG-2-2 IV. PLoS One 2016; 11:e0165965. [PMID: 27814394 PMCID: PMC5096721 DOI: 10.1371/journal.pone.0165965] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 10/20/2016] [Indexed: 02/06/2023] Open
Abstract
Rhizoctonia solani represents an important plant pathogenic Basidiomycota species complex and the host of many different mycoviruses, as indicated by frequent detection of dsRNA elements in natural populations of the fungus. To date, eight different mycoviruses have been characterized in Rhizoctonia and some of them have been reported to modulate its virulence. DsRNA extracts of the avirulent R. solani isolate DC17 (AG2-2-IV) displayed a diverse pattern, indicating multiple infections with mycoviruses. Deep sequencing analysis of the dsRNA extract, converted to cDNA, revealed that this isolate harbors at least 17 different mycovirus species. Based on the alignment of the conserved RNA-dependent RNA-polymerase (RdRp) domain, this viral community included putative members of the families Narnaviridae, Endornaviridae, Partitiviridae and Megabirnaviridae as well as of the order Tymovirales. Furthermore, viruses, which could not be assigned to any existing family or order, but showed similarities to so far unassigned species like Sclerotinia sclerotiorum RNA virus L, Rhizoctonia solani dsRNA virus 1, Aspergillus foetidus slow virus 2 or Rhizoctonia fumigata virus 1, were identified. This is the first report of a fungal isolate infected by 17 different viral species and a valuable study case to explore the diversity of mycoviruses infecting R. solani.
Collapse
|
22
|
Sabanadzovic S, Wintermantel WM, Valverde RA, McCreight JD, Aboughanem-Sabanadzovic N. Cucumis melo endornavirus: Genome organization, host range and co-divergence with the host. Virus Res 2016; 214:49-58. [DOI: 10.1016/j.virusres.2016.01.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/30/2015] [Accepted: 01/03/2016] [Indexed: 01/30/2023]
|
23
|
Novel mitoviruses in Rhizoctonia solani AG-3PT infecting potato. Fungal Biol 2016; 120:338-50. [DOI: 10.1016/j.funbio.2015.11.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 10/28/2015] [Accepted: 11/04/2015] [Indexed: 11/23/2022]
|
24
|
Li Y, Xu P, Zhang L, Xia Z, Qin X, Yang G, Mo X. Molecular characterization of a novel mycovirus from Rhizoctonia fumigata AG-Ba isolate C-314 Baishi. Arch Virol 2015; 160:2371-4. [PMID: 26133296 DOI: 10.1007/s00705-015-2483-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 06/03/2015] [Indexed: 11/25/2022]
Abstract
The complete genome sequence of a novel dsRNA virus isolated from Rhizoctonia fumigata AG-Ba isolate C-314 Baishi (designated as Rhizoctonia fumigata virus 1, RfV1) was determined. The RfV1 genome was 9,907 bp in length and contained two open reading frames (ORFs). ORF1 potentially coded for a 198.10-kDa protein (P1). P1 shared low but significant amino acid sequence similarity to the putative protein encoded by Lentinula edodes mycovirus (LeV) ORF1. P1 contained a NUDIX domain, which was also present in the putative proteins encoded by the ORF1s of LeV and Phlebiopsis gigantea large virus 1 (PgLV-1). ORF2 potentially coded for a 146.72-kDa protein (P2) that contained the conserved motifs of the RNA-dependent RNA polymerase (RdRp). ORF1 and ORF2 were overlapping, and it was predicted that ORF2 could be translated as a fusion with ORF1 via a ribosomal -1 frameshifting mechanism. Phylogenetic analysis indicated that RfV1 clustered with PgLV-1, LeV and Rosellinia necatrix megabirnavirus 1 (RnMBV1) in a separate clade independent of other virus genera. We propose that RfV1, along with PgLV-1 and LeV, should be grouped into a new viral genus related to the family Megabirnaviridae. This is the first report of the full-length genome sequence of a novel mycovirus isolated from R. fumigata.
Collapse
Affiliation(s)
- Yanqiong Li
- Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | | | | | | | | | | | | |
Collapse
|
25
|
Genome sequence of a novel mycovirus of Rhizoctonia solani, a plant pathogenic fungus. Virus Genes 2015; 51:167-70. [PMID: 26116286 DOI: 10.1007/s11262-015-1219-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 06/17/2015] [Indexed: 10/23/2022]
Abstract
Here we present the genome sequence of a novel dsRNA virus we designed as Rhizoctonia solani RNA virus HN008 (RsRV-HN008) from a filamentous fungus R. solani. Its genome (7596 nucleotides) contains two non-overlapping open reading frames (ORF1 and ORF2). ORF1 encoded a 128 kDa protein that showed no significant identity to any other virus sequence in the NCBI database. ORF2 encoded a protein with a molecular weight of 140 kDa and shared a low percentage of sequence identity to the RdRps of unclassified dsRNA viruses. Sequence analysis revealed that RsRV-HN008 may be a member of a novel unclassified family of mycoviruses.
Collapse
|
26
|
Abstract
Linear double-stranded RNAs (dsRNAs) of about 15 kbp in length are often found from healthy plants, such as bell pepper and rice plants. Nucleotide sequencing and phylogenetic analyses reveal that these dsRNAs are not transcribed from host genomic DNAs, encode a single long open reading frame (ORF) with a viral RNA-dependent RNA polymerase domain, and contain a site-specific nick in the 5' region of their coding strands. Consequently the International Committee on Taxonomy of Viruses has approved that these dsRNAs are viruses forming a distinct taxon, the family Endornaviridae the genus Endornavirus. Endornaviruses have common properties that differ from those of conventional viruses: they have no obvious effect on the phenotype of their host plants, and they are efficiently transmitted to the next generation via both pollen and ova, but their horizontal transfer to other plants has never been proven. Conventional single-stranded RNA viruses, such as cucumber mosaic virus, propagate hugely and systemically in host plants to sometime kill their hosts eventually and transmit horizontally (infect to other plants). In contrast, copy numbers of endornaviruses are low and constant (about 100 copies/cell), and they symbiotically propagate with host plants and transmit vertically. Therefore, endornaviruses are unique plant viruses with symbiotic properties.
Collapse
|